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Abstract

We give improved lower bounds for binary 3-query locally correctable codes (3-LCCs)
𝒞 : {0, 1}𝑘 → {0, 1}𝑛 . Specifically, we prove:

(1) If 𝒞 is a linear design 3-LCC, then 𝑛 ≥ 2(1−𝑜(1))
√
𝑘 . A design 3-LCC has the additional property

that the correcting sets for every codeword bit form a perfect matching and every pair of
codeword bits is queried an equal number of times across all matchings. Our bound is tight
up to a factor

√
8 in the exponent of 2, as the best construction of binary 3-LCCs (obtained by

taking Reed–Muller codes on F4 and applying a natural projection map) is a design 3-LCC
with 𝑛 ≤ 2

√
8𝑘 . Up to a

√
8 factor, this resolves the Hamada conjecture on the maximum

F2-codimension of a 4-design.

(2) If 𝒞 is a smooth, non-linear 3-LCC with near-perfect completeness, then, 𝑛 ≥ 𝑘Ω(log 𝑘).

(3) If 𝒞 is a smooth, non-linear 3-LCC with completeness 1− 𝜀, then 𝑛 ≥ Ω̃(𝑘 1
2𝜀 ). In particular,

when 𝜀 is a small constant, this implies a lower bound for general non-linear LCCs that
beats the prior best 𝑛 ≥ Ω̃(𝑘3) lower bound of [AGKM23] by a polynomial factor.

Our design LCC lower bound is obtained via a fine-grained analysis of the Kikuchi matrix
method applied to a variant of the matrix used in [KM23]. Our lower bounds for non-linear
codes are obtained by designing a from-scratch reduction from nonlinear 3-LCCs to a system of
“chain polynomial equations” — polynomial equations with similar structure to the long chain
derivations that arise in the lower bounds for linear 3-LCCs [KM23].
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1 Introduction

A locally correctable code (LCC) is an error correcting code that admits, in addition, a local correction
(a.k.a. self-correction) algorithm that can recover any symbol of the original codeword by querying
only a small number of randomly chosen symbols from the received corrupted codeword. More
formally, we say that a code 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 is 𝑞-locally correctable if for any codeword 𝑥,
a corruption 𝑦 of 𝑥, and input 𝑢 ∈ [𝑛], the local correction algorithm reads at most 𝑞 symbols
(typically a small constant such as 2 or 3) of 𝑦 and recovers the bit 𝑥𝑢 with probability 1− 𝜀 whenever
Δ(𝑥, 𝑦) B |{𝑣 ∈ [𝑛] : 𝑥𝑣 ≠ 𝑦𝑣}| ≤ 𝛿𝑛, where 𝛿, the “distance” of the code, and 𝜀, the decoding error,
are constants. Such codes have had myriad applications (see the surveys [Tre04, Yek12, Dvi12])
starting with program checking [BK95], sublinear algorithms and property testing [RS96, BLR93],
probabilistically checkable proofs [ALM+98, AS98], IP=PSPACE [LFKN90, Sha90], worst-case to
average-case reductions [BFNW93], constructions of explicit rigid matrices [Dvi10], and 𝑞-server
private information retrieval protocols [IK99, BIW10].

Reed–Muller codes, or codes based on the evaluations of multivariate degree 𝑞 − 1 polynomials
over a finite field, provide a natural class of 𝑞-query locally correctable codes. For any constant
𝑞 ≥ 2, they imply binary 𝑞-LCCs with block length 𝑛 ≤ 2𝑂(𝑘

1/(𝑞−1)). These codes are in fact F2-linear
if we view the code 𝒞 as mapping F𝑘

2 into F𝑛
2 . Despite significant effort over the past three decades,

we do not know of a binary 𝑞-LCC with a smaller block length than Reed–Muller codes. This has
motivated the conjecture that Reed–Muller codes are optimal 𝑞-LCCs for any constant 𝑞.

For 𝑞 = 2, classical works [KW04, GKST06] on lower bounds on local codes confirm that the
2-LCC based on binary Hadamard codes (the special case of Reed–Muller codes when 𝑞 = 2)
achieves the smallest possible block length of 𝑛 = 2𝑘 up to absolute constants in the exponent. For
𝑞 = 3, a recent work of [KM23] improved on the best prior lower bound of 𝑛 ≥ Ω̃(𝑘3) [AGKM23],
and showed that for any binary1 linear code, 𝑛 ≥ 2Ω(𝑘

1/8). As a corollary, they obtained a strong
separation between 3-LCCs and the weaker notion of 3-query locally decodable codes — codes
where the local correction algorithm only needs to succeeds for the 𝑘 message bits and for which
sub-exponential length constructions, i.e., 𝑛 = 2𝑘

𝑜(1)
, are known [Yek08, Efr09]. The lower bound

of [KM23] was very recently improved to 𝑛 ≥ 2Ω(𝑘
1/4) in a follow-up work by Yankovitz [Yan24].

Despite this substantial progress, these results strongly exploit the linearity of the codes and do
not yield any improvement over the prior cubic lower bound for non-linear codes of [AGKM23].
Even for the case of linear codes, these bounds, while exponential, still do not asymptotically match
the block length of Reed–Muller codes. In this work, we make progress on both these fronts. Before
discussing our results, we will take a brief detour to discuss a connection between 3-LCCs and a
foundational question about the algebraic rank of combinatorial designs.

Connections to the Hamada Conjecture. Locally correctable codes have a deep connection —
first formalized by Barkol, Ishai and Weinreb [BIW10] — to the widely open Hamada conjecture
from the 1970s in combinatorial design theory (with deep connections to coding theory, see [AK92]
for a classical reference). For positive integers 𝑚, 𝑠,𝜆, a 2-(𝑚, 𝑠,𝜆)-design is a collection ℬ ⊆ [𝑚] of
subsets (called blocks) of size 𝑠, such that every pair of elements in [𝑚] appears in exactly 𝜆 subsets

1Their results extends to codes over any field F of size |F| ≤ 𝑘1−𝜂 for a constant 𝜂 > 0, more generally.
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in ℬ. For any prime 𝑝, the 𝑝-rank of a design ℬ is the rank, over F𝑝 , of the incidence matrix of ℬ:
the 0-1 matrix with rows labeled by elements of [𝑚], columns labeled by elements of ℬ and an
entry (𝑖, 𝐵) is 1 iff 𝐵 contains 𝑖. A central question in algebraic design theory is understanding the
smallest possible 𝑝-rank of a 2-(𝑚, 𝑠,𝜆)-design.

In [BIW10], the authors showed that given any 2-(𝑚, 𝑠,𝜆)-design𝒟 of 𝑝-rank 𝑚 − 𝑘, the dual
subspace to the column space of the incidence matrix of 𝒟 yields a linear (𝑠 − 1)-query locally
correctable code on F𝑚

𝑝 of dimension 𝑘. In particular, applying this transformation to the well-
studied geometric designs yields the folklore construction of Reed–Muller locally correctable codes
discussed earlier. Specifically, the 3-query locally correctable binary code obtained from Reed–
Muller codes on F4 corresponds to a 2-(𝑛, 4, 1)-design over F2 (see Appendix B).

In 1973, Hamada [Ham73] made a foundational conjecture (see [Jun11] for a recent survey) in
the area that states2 that affine geometric designs (i.e., duals to the Reed–Muller LCCs) minimize
the 𝑝-rank among all algebraic designs of the same parameters. Over the past few decades,
the conjecture has been confirmed in various special cases [HO75, DHV78, Tei80, Ton99] that all
correspond to 𝑠 ≤ 3 or 𝑠 = 𝑛 − 1. In particular, the case of 𝑠 = 4 (the setting of 3-LCCs) was widely
open until the recent result of [KM23] for 3-LCC lower bounds. The connection between Hamada’s
conjecture and LCC lower bounds was suggested in [BIW10] as evidence for the difficulty of proving
LCC lower bounds.

1.1 Theorem 1: Sharp lower bounds for design 3-LCCs.

In our first result, we obtain a bound that is sharp up to a
√

8 factor in the exponent on the
blocklength of any binary linear 3-LCC where the local correction query sets form a 2-(𝑛, 4, 1)-
design. This is equivalent to asking for the local correction sets for correcting any bit of the
codeword to be a perfect 3-uniform hypergraph matching and that every pair of codewords bits
appears in exactly 2 triples across all matchings3. Specifically, for such design 3-LCCs, we prove:

Theorem 1. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a design 3-LCC. Then, 𝑛 ≥ 2(1−𝑜(1))
√
𝑘 . Here, the 𝑜(1)-factor is

𝑂(log 𝑘/
√
𝑘).

Theorem 1 improves on the prior best lower bound of 𝑛 ≥ 2Ω(𝑘
1/3) for designs recently obtained

by Yankovitz [Yan24] building on the 𝑛 ≥ 2Ω(𝑘
1/6) bound of [KM23].4 We note that there is a

technical bottleneck that prevents the proof of [Yan24] from beating a lower bound of 𝑛 ≥ 2Ω(𝑘
1/3)

even for the case of designs that Theorem 1 tackles (see Remark 2.4 for a more detailed explanation).
Reed–Muller codes, in particular, are design LCCs. In fact, in Appendix B we observe that the

folklore best-known construction of binary 3-query LCCs — obtained by projecting Reed–Muller

2Hamada’s original conjecture is that affine geometric designs, or, dual codes to Reed–Muller codes, are the unique
optimal designs with the same parameters. This strong form has since then been disproved – there are non-affine
geometric designs that achieve the same (but not better!) parameters [Jun84, Kan94, LLT00, LLT01, LT02, JT09]. The
version of the problem we study here is called the weak version of Hamada conjecture.

3The reason that this is 2 instead of 𝜆 = 1 is because a 4-tuple (𝑢, 𝑣, 𝑠, 𝑡) yields 2 decoding triples, (𝑢, 𝑠, 𝑡) for 𝑣 and
(𝑣, 𝑠, 𝑡) for 𝑢, that contain the pair (𝑠, 𝑡).

4The stated result of [KM23] is 𝑛 ≥ 2Ω(𝑘
1/8) for (non-design) linear 3-LCCs; however, their proof implicitly gives this

slightly stronger bound for designs.
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codes of degree-2 polynomials over F4 to F2 via the trace map — is a design 3-LCC with 𝑛 ≤ 2
√

8𝑘 ,
or equivalently, a 2-(𝑛, 4, 1) design of rank 𝑛 − 𝑘. Thus, the bound in Theorem 1 is tight up to
a factor of

√
8 in the exponent. As a direct corollary, we also confirm the Hamada conjecture for

2-(𝑛, 4, 1)-designs up to a factor of 8 in the co-dimension.

Towards obtaining a 𝒌 ≤ 𝑶(log2 𝒏) bound for all linear 3-LCCs. Given our almost sharp
lower bound for design 3-LCCs, we can use our proof to attribute the “extra” log2 𝑛 factor loss
in [KM23, Yan24] to certain “irregularities” of general linear 3-LCCs. Concretely, there are two
places where the proof of [KM23, Yan24] is lossy: (1) there is a “hypergraph decomposition” step
to handle that pairs of codeword bits may appear in ≫ 𝑂(1) triples across all matchings (one
log 𝑛 loss), and (2) there is a “row pruning” step to argue that a certain graph is approximately
regular (one log 𝑛 loss). For the case of designs, [Yan24] proves a 𝑘 ≤ 𝑂(log3 𝑛) bound since there
is no “hypergraph decomposition” needed for designs as each pair of codeword bits appears
in a bounded number of triples. Our proof of Theorem 1 additionally shows that because the
hypergraph matchings in the design are perfect, we can (via this work’s modified approach, see
Remark 2.4) mitigate the log 𝑛 factor loss in the “row pruning” step.

The sharpness of our bound for design 3-LCCs may be somewhat surprising because removing
an analogous “last" log 𝑛 factor in the hypergraph Moore bound (also proved via the Kikuchi matrix
method) and related problems remains a challenging problem [GKM22, HKM23, HKM+24]. In this
setting, making extra structural assumptions about the hypergraph, analogous to the additional
structure of design 3-LCCs, does not seem to help.

1.2 Theorem 2: Superpolynomial lower bounds for smooth 3-LCCs.

In our second result, we obtain improved lower bounds for smooth 3-LCCs with high completeness.
These codes may be non-linear and may have adaptive correction algorithms.

A 3-LCC is said to be 𝛿-smooth if no codeword bit is queried with probability more than 1
𝛿𝑛 on

any particular invocation of the decoder. Introduced by Katz and Trevisan [KT00], smooth codes
provide a clean formalization of general locally correctable/decodable codes. We say that such
a code has completeness 1 − 𝜖, if, when running the 𝛿-smooth local correction algorithm on an
uncorrupted codeword, the algorithm succeeds with probability at least 1− 𝜖. Recall that the usual
notion of completeness (e.g., in [KT00]) for LCCs is for an input with a 𝛿-fraction of corruptions.

Our result shows that for any (1− 𝜖)-complete 𝛿-smooth code where 𝛿 is a constant, 𝑛 ≥ 𝑘𝑂(1/𝜖).
In particular, when 𝜖 is subconstant, we obtain a superpolynomial lower bound on the block length.
For technical reasons (explained in Section 2.3), the bound does not improve when 𝜀 becomes very
small, namely 𝑜(1/

√
log 𝑛).

Theorem 2. There is an absolute constant 𝛾 > 0 such that the following holds. Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 be a
𝛿-smooth (possibly non-linear) 3-LCC with completeness 1− 𝜀 where 𝜀 ≤ 𝛾/

√
log2 𝑛. Then, 𝑛 ≥ (𝑘′)Ω(log 𝑘′),

where 𝑘′ = 𝛿3𝑘/log(1/𝛿).
If instead 𝜀 ≥ 𝛾/

√
log2 𝑛, then 𝑛 ≥ Ω̃((𝑘′′)𝑡) where 𝑘′′ = 𝛿3𝜀4𝑘/log(1/𝛿) and 𝑡 = ⌊ 1

2𝜀 − 1
log2 𝑛
⌋. In

particular, if 𝜀 is a small enough constant and 1/2𝜀 is not an integer, then 𝑛 ≥ Ω̃((𝑘′) 1
2𝜀 ).
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As we shall discuss towards at the end of this section, Theorem 2 implies a lower bound
for general (3, 𝛿, 𝜀)-LCCs that beats the prior best 𝑛 ≥ Ω̃(𝑘3) lower bound of [AGKM23] by a
polynomial factor when 𝜀 is a small constant. Moreover, in the case of near-perfect completeness,
our result above obtains the first superpolynomial lower bound for (possibly adaptive and non-
linear) smooth 3-LCCs.

Our proof is based on the method of spectral refutation via Kikuchi matrices (first introduced
in [WAM19] for an application to Gaussian tensor PCA and refutation of random 𝑘-XOR instances
of even arity) developed in prior works [GKM22, HKM23, AGKM23, KM23]. The key idea in this
method is to associate the existence of a combinatorial object (e.g., a 3-LCC) to the satisfiability of a
family of XOR formulas and find a spectral refutation (i.e., certificate of unsatisfiability) for a ran-
domly chosen member of the family. Unlike the works of [KM23, Yan24], which only prove lower
bounds for linear codes with an argument that can be reformulated to be entirely combinatorial,
the proof of Theorem 2 crucially uses the power of spectral refutation.

The proof of Theorem 2 requires new conceptual ideas. The first immediate observation is that
the standard reduction of [KT00] to nonadaptive, linear decoders that succeeds in expectation loses
a large factor in the completeness parameter. So, to prove Theorem 2 we need to come up with a
new reduction from scratch. Our reduction is based on two new key ideas. First, we execute the
“long chain derivation” strategy of [KM23] by adaptively forming chains by replacing the third query
𝑣3 of the decoder by an invocation of the decoding algorithm for 𝑣3 (and then iterating); we call
such chains “adaptive chains”. Second, we exactly encode the behavior of the LCC decoder on a
particular input index 𝑢 as a degree ≤ 3 polynomial. Effectively, the constraints we uncover from
the decoder are “AND” constraints:

“𝑥𝑣1 = 𝑎1 ∧ 𝑥𝑣2 = 𝑎2 =⇒ 𝑥𝑢 = 𝑥𝑣3 ,′′

rather than the linear constraints 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 = 𝑥𝑢 encountered for linear codes. Combining these
two ideas allows us to write a “chain polynomial” that plays the role of the “long chain derivations”
in [KM23]. Refuting this “chain polynomial” using spectral bounds on Kikuchi matrices yields
Theorem 2.

Smooth vs. general LCCs. Smooth LCCs (Definition 3.2) were defined in the work of [KT00],
motivated by their connection to general LCCs (Definition 3.1). A simple reduction in [KT00]
shows that any (3, 𝛿, 𝜀)-LCC, i.e., an LCC with distance 𝛿 and completeness 1− 𝜀, can be turned
into a (3, 𝛿/3, 𝜀)-smooth LCC, i.e., a 𝛿/3-smooth 3-LCC with completeness 1− 𝜀. Conversely, any
(3, 𝛿, 𝜀)-smooth LCC is a (3,𝜂𝛿, 𝜀 + 𝜂)-LCC for any 𝜂 > 0.

Thus, when 𝜀 is a small constant, Theorem 2 implies a lower bound for general (3, 𝛿, 𝜀)-LCCs
that beats the prior best 𝑛 ≥ Ω̃(𝑘3) lower bound of [AGKM23] by a polynomial factor.

However, in the setting of perfect completeness (and 𝜀 = 𝑜(1)more generally), the comparison
between smooth LCCs and general LCCs begins to break down. This is because, for a general
LCC, 𝛿 is the fraction of errors one can tolerate while still decoding correctly with probability
1− 𝜀; the parameters 𝛿 and 𝜀 are coupled! In particular, it is likely not possible to simultaneously
have 𝜀 = 𝑜(1), 𝛿 = 𝑂(1) and 𝑞 = 𝑂(1). On the other hand, for a smooth LCC, 𝛿 is the smoothness
parameter, and 1− 𝜀 is the probability that the decoder succeeds on an uncorrupted codeword. Thus,
for smooth codes, it is perfectly sensible to set 𝛿 = 𝑂(1), 𝜀 = 0, and 𝑞 = 𝑂(1).
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In retrospect, the definition of LCCs inherently couples 𝛿 and the completeness 𝜀, whereas for
smooth codes these parameters become independent. In particular, a smooth code allows us to
seamlessly trade off between the fraction of errors 𝜂𝛿 tolerated and the success probability 1− 𝜀− 𝜂
of the decoder in the presence of this fraction of errors. For this reason, a smooth code is a stronger
object, but also perhaps a more natural one.

Indeed, in some important applications of LDCs/LCCs, smooth LDCs/LCCs are the right
notion to consider. For example, a perfectly smooth (𝑞, 1, 𝜀)-smooth LDC gives a 𝑞-server information-
theoretically secure private information retrieval scheme with completeness 1− 𝜀.

The subtle definitional issues above did not affect prior lower bound (or upper bound) tech-
niques. Indeed, known constructions of 𝑞-LDCs and LCCs are perfectly smooth and satisfy perfect
completeness, i.e., (𝑞, 1, 0)-smooth LDCs/LCCs, and the lower bound techniques of [KT00, KW04,
AGKM23] (that is, the best known lower bounds before the work [KM23]) succeed for smooth
LDCs/LCCs even with low completeness.

Concurrent work. In concurrent and independent work, [AG24] proves an 𝑛 ≥ 2Ω(
√
𝑘/log 𝑘)

lower bound for all linear 3-LCCs over F2, improving on the 2Ω(𝑘
1/4) shown in [Yan24]. This

is incomparable to Theorem 1, as it proves a weaker (and possibly not tight) lower bound, as
compared to the sharp statement in Theorem 1, but it applies for all linear 3-LCCs over F2, not just
design 3-LCCs. The work of [AG24] does not prove any lower bound for nonlinear codes.

2 Proof Overview

In this section, we summarize the key conceptual ideas that we use in the proofs. We start by
recalling the approach of [KM23] for proving lower bounds for linear 3-LCCs. Then, we explain the
technical barriers to proving Theorem 1 encountered in the works of [KM23, Yan24]. Finally, we
discuss our approach to handling the nonlinear case.

2.1 The approach of [KM23]

The proof of [KM23] gives a transformation that takes any linear 3-LCC ℒ : {0, 1}𝑘 → {0, 1}𝑛 and
turns it into a 2-LDC ℒ′ : {0, 1}𝑘 → {0, 1}𝑁 , where 𝑁 = 𝑛𝑂(polylog(𝑛)). By applying known 2-LDC
lower bounds (Fact 3.10), we can then conclude that 𝑘 ≤ 𝑂(polylog(𝑛)) · log 𝑛. Obtaining better
lower bounds thus boils down to optimizing the polylog(𝑛) factor here and/or removing the extra
log 𝑛 factor from Fact 3.10.

For intuition, let us think of 𝑁 as 𝑁 =
(𝑛
𝑠

) 𝑟 for some choice of parameters 𝑠 and 𝑟, and ℒ′ as the
very simple transformation: for sets (𝑆1, . . . , 𝑆𝑟), each in

([𝑛]
𝑠

)
, we set ℒ′(𝑏)(𝑆1,...,𝑆𝑟 ) =

∑𝑟
ℎ=1

∑
𝑣∈𝑆ℎ 𝑥𝑣 ,

where 𝑥 = ℒ(𝑏). Namely, we just take the XOR of the bits across all the sets. If we can show that
ℒ′ is indeed a 2-LDC, then we can apply known 2-LDC lower bounds (Fact 3.10) to conclude that
𝑘 ≤ 𝑂(log𝑁) = 𝑂(𝑟𝑠 log 𝑛). If we can then take 𝑟𝑠 = 𝑂(log 𝑛), or 𝑟 = 𝑠 = 𝑂(log 𝑛) while removing
the extra log 𝑛 factor from Fact 3.10, we will get an 𝑂(log2 𝑛) bound, i.e, 𝑛 ≥ 2Ω(

√
𝑘).

Recall that in a linear 3-LCC, we are given 3-uniform hypergraph matchings {𝐻𝑢}𝑢∈[𝑛], such
that for each 𝐶 ∈ 𝐻𝑢 ,

∑
𝑣∈𝐶 𝑥𝑣 = 𝑥𝑢 for all codewords 𝑥 ∈ ℒ. To show that ℒ′ is a 2-LDC, we need
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to find, for each 𝑖 ∈ [𝑘], many pairs of vertices ((𝑆1, . . . , 𝑆𝑟), (𝑇1, . . . ,𝑇𝑟)) such that
∑𝑟
ℎ=1

∑
𝑣∈𝑆ℎ 𝑥𝑣 +∑𝑟

ℎ=1
∑
𝑣∈𝑇ℎ 𝑥𝑣 = 𝑏𝑖 for all 𝑥 = ℒ(𝑏). The key idea of [KM23] is to build many such constraints by

building long chain derivations out of the original constraints 𝐻𝑢 .

Definition 2.1 (𝑟-chains). Let 𝐻1, . . . ,𝐻𝑛 be the 3-uniform hypergraph matchings defined from
the 3-LCC ℒ. An 𝑟-chain with head 𝑢0 is an ordered sequence of vertices of length 3𝑟 + 1, given
by 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) and for each ℎ = 0, . . . , 𝑟 − 1, it holds that
{𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1} ∈ 𝐻𝑢ℎ . We letℋ (𝑟)𝑢 denote the set of 𝑟-chains with head 𝑢.

We let 𝐶𝐿 = (𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑟−1)+1) denote the “left half” of the chain, and 𝐶𝑅 = (𝑣2, 𝑣4, 𝑣6, . . . , 𝑣2(𝑟−1)+2)
denote the “right half”. We call 𝑢𝑟 the “tail”.

The number of chains |ℋ (𝑟)𝑢 | is at most (6𝛿𝑛)𝑟 .

The 2-chains can be interpreted as deriving constraints by taking two constraints 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑢1 =

𝑥𝑢0 in 𝐻𝑢0 and 𝑥𝑣3 + 𝑥𝑣4 + 𝑥𝑢2 = 𝑥𝑢1 in 𝐻𝑢1 , and then adding them together to produce the constraint
𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 + 𝑥𝑣4 + 𝑥𝑢2 = 𝑥𝑢0 ; the set of 𝑟-chains is formed by repeating this operation. We have
(6𝛿𝑛)𝑟 chains inℋ (𝑟)𝑢 because there are 6𝛿𝑛 ordered hyperedges in 𝐻𝑢 .

The next idea of [KM23] is to use a Kikuchi graph to (1) define 𝑁 and the map ℒ′, and (2)
define the 2-LDC decoding constraints for ℒ′. For this overview, we will start with the following
graph due to [Yan24], which is a bit simpler than the graphs used in [KM23] as it saves a use of the
Cauchy-Schwarz inequality.

Definition 2.2 (Imbalanced Kikuchi graph). Let 𝑠 be a parameter, and let 𝐺𝑢 be the graph with
left vertex set 𝐿 =

([𝑛]
𝑠

) 𝑟 × [𝑛] and right vertex set 𝑅 =
([𝑛]
𝑠

) 𝑟
. For a chain 𝐶 ∈ ℋ (𝑟)𝑢 , we add an edge

between ((𝑆1, . . . , 𝑆𝑟),𝑤) and (𝑇1, . . . ,𝑇𝑟) in 𝐺𝑢 “labeled” by 𝐶 if 𝑤 = 𝑢𝑟 and for each ℎ = 1, . . . , 𝑟,
we have 𝑆ℎ = {𝑣2(ℎ−1)+1} ∪𝑈ℎ and 𝑇ℎ = {𝑣2(ℎ−1)+2} ∪𝑈ℎ for some𝑈ℎ ⊆ [𝑛] \ {𝑣2(ℎ−1)+1, 𝑣2(ℎ−1)+2} of
size 𝑠 − 1. Two distinct chains may produce the same edge — we add edges with multiplicity.

To show that ℒ′, defined now as a map from {0, 1}𝑘 → {0, 1}𝐿∪𝑅 in an analogous way, is a
2-LDC, we need to show that for each 𝑢, 𝐺𝑢 admits a large matching. An obvious barrier to this is
that the graph is bipartite and imbalanced, and so the largest matching can only have size at most
|𝑅 | = |𝐿|/𝑛. This be fixed with a simple trick: for each right vertex (𝑇1, . . . ,𝑇𝑟), we can add 𝑛 copies
of the vertex to the graph and then split its edges evenly across the copies, thereby decreasing the
degree by a factor of 𝑛.5

Extracting a large matching from 𝑮𝒖 . Let us now explain the approach of [KM23] to show that
𝐺𝑢 admits a large matching. We note that this is the key technical difficulty in the proof of [KM23],
and in some sense, this has to be the difficult step because it will prove that ℒ′ is a 2-LDC!

Let 𝑑𝑢,𝐿 denote the average left degree of 𝐺𝑢 , and let 𝑑𝑢,𝑅 denote the average right degree. For
𝐺𝑢 to have a large matching, it should, at the very least, have at least |𝐿| = 𝑛

(𝑛
𝑡

) 𝑟 edges!
Some simple combinatorics shows that each chain 𝐶 ∈ ℋ (𝑟)𝑢 contributes exactly

(𝑛−2
𝑠−1

) 𝑟
edges to

5Technically, the degree might not be divisible exactly by 𝑛, so reduces the degree by a factor of 𝑛(1− 𝑜(1)), which is
sufficient.
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the graph 𝐺𝑢 . Therefore, as long as we have

𝑑𝑢,𝐿 = |ℋ (𝑟)𝑢 |
(𝑛−2
𝑠−1

) 𝑟
𝑛
(𝑛
𝑠

) 𝑟 = (1± 𝑜(1))(6𝛿𝑛)𝑟 1
𝑛

( 𝑠
𝑛

) 𝑟
= (1± 𝑜(1))(6𝛿𝑠)𝑟 1

𝑛
≫ 1 ,

then we can hope to find a large matching. Note that for this to hold, we must set 𝑟 = 𝑂(log 𝑛/log 𝑠).
One simple way to find a matching in 𝐺𝑢 is to argue that 𝐺𝑢 is approximately regular, meaning

that most vertices have degree ≤ 𝑂(𝑑𝑢,𝐿). If this were the case, then (after the “vertex splitting trick”)
we get a matching of size |𝐸(𝐺𝑢)|𝑂(𝑑𝑢,𝐿) ≥ Ω(|𝐿|), which would finish the proof. Unfortunately,
this is not true: there can be left (right) vertices in 𝐺𝑢 of degree≫ 𝑑𝑢,𝐿 (≫ 𝑑𝑢,𝑅). The “row pruning”
strategy of [KM23] is to show that such vertices are rare so that by removing them we obtain a
graph 𝐺′𝑢 with Ω(|𝐸(𝐺𝑢)|) edges that has bounded left degree ≤ 𝑂(𝑑𝑢,𝐿) and bounded right degree
≤ 𝑂(𝑑𝑢,𝑅).

More formally, the proof of [KM23] uses a form of a Kim–Vu concentration inequality [KV00,
SS12] for polynomials to argue that, with high probability, a random left (right) vertex has degree at
most 𝑂(𝑑𝑢,𝐿) (𝑂(𝑑𝑢,𝑅)), which finishes the proof. This is the key technical “row pruning” step in
the proof, and the proof uses the moment method with high moments. Unfortunately, to prove
this, [KM23] requires 𝑠 = 𝑂(𝑟3 log 𝑛), which loses several extra log 𝑛 factors.

The clever trick of [Yan24], when phrased in the language of probability, can be interpreted
as follows: we can achieve the same goals by only bounding the second moments of the degrees
instead of the higher moments. This is similar in spirit to the “edge deletion” technique of [HKM23],
which used a similar argument to remove some of the log 𝑛 factors from a different “row pruning”
argument of [GKM22] that used Kim–Vu concentration inequalities [KV00, SS12] in the context of
CSP refutation.

Specifically, if deg𝑢,𝐿(𝑆1, . . . , 𝑆𝑟 ,𝑤) is the left degree of the vertex (𝑆1, . . . , 𝑆𝑟 ,𝑤) and deg𝑢,𝑅(𝑇1, . . . ,𝑇𝑟)
is the right degree of (𝑇1, . . . ,𝑇𝑟), then [Yan24] shows that

E𝑆1,...,𝑆𝑟 ,𝑤[deg𝑢,𝐿(𝑆1, . . . , 𝑆𝑟 ,𝑤)2] ≤ (1+ 𝑜(1))𝑑2
𝑢,𝐿 ,

E𝑇1,...,𝑇𝑟 [deg𝑢,𝑅(𝑇1, . . . ,𝑇𝑟)2] ≤ (1+ 𝑜(1))𝑑2
𝑢,𝑅 ,

where 𝑑𝑢,𝐿 and 𝑑𝑢,𝑅 are the first moments, and we only need 𝑠 = Γ𝑟 and 𝑟 = 𝑂(log 𝑛), where Γ is a
large enough constant, for this to hold.

Thus, applying Chebyshev’s inequality, we can show that after removing a small number of
vertices, we can find a subgraph 𝐺′𝑢 of 𝐺𝑢 where each vertex has left degree ≤ (1+ 𝑜(1))𝑑𝑢,𝐿 and
right degree ≤ (1+ 𝑜(1))𝑑𝑢,𝑅, which, after a few more straightforward steps, finishes the proof.

In total, the final lower bound is 𝑘 ≤ 𝑂(𝑟𝑠 log 𝑛) = 𝑂(log3 𝑛), as we have set 𝑟, 𝑠 = 𝑂(log 𝑛).
Remark 2.3. This sketches the proof of Theorem 1.6 in [Yan24] for design 3-LCCs. We note that the
reason [Yan24] obtains a weaker 𝑘 ≤ 𝑂(log4 𝑛) bound for linear 3-LCCs is because a general 3-LCC
can have “heavy pairs” — pairs of variables (𝑣1, 𝑣2) that appear in many hyperedges across all the
𝐻𝑢’s — and this loses the extra log 𝑛 factor. Indeed, overcoming this issue to produce any lower
bound better than the 𝑘 ≤ �̃�(𝑛1/3) of [AGKM23] is one of two key technical difficulties in [KM23]
(the above row pruning argument is the other one). However, as Theorem 1 is only for designs, this
issue does not arise.
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2.2 Tight bounds for designs: proof sketch of Theorem 1

To beat the 𝑂(log3 𝑛) of [Yan24] for designs and get 𝑂(log2 𝑛), we need to find a log 𝑛 factor to
remove. At the very least, we know we cannot hope to take 𝑟 much smaller than log 𝑛, as we need
𝑠𝑟 ≫ 𝑛 for the entire approach to even make sense. So, there are two possibilities: either we can
take 𝑠 = 𝑂(1), or the 𝑂(𝑟𝑠 log 𝑛) bound coming from Fact 3.10 is not tight for the 2-LDC that we
produce, and the truth is really 𝑂(𝑟𝑠). Let us now investigate the first case, as if we could take
𝑠 = 𝑂(1) this would be the easiest route towards proving Theorem 1.

Second moments of degrees are large for 𝒔 ≪ 𝒓 . Unfortunately, as we shall show, we cannot take
𝑠 = 𝑂(1), or even 𝑠 much smaller than 𝑟, and still have the following moment bounds:

E𝑆1,...,𝑆𝑟 ,𝑤[deg𝑢,𝐿(𝑆1, . . . , 𝑆𝑟 ,𝑤)2] ≤ 𝑂(𝑑2
𝑢,𝐿) ,

E𝑇1,...,𝑇𝑟 [deg𝑢,𝑅(𝑇1, . . . ,𝑇𝑟)2] ≤ 𝑂(𝑑2
𝑢,𝑅) .

Indeed, let us compute E𝑇1,...,𝑇𝑟 [deg𝑢,𝑅(𝑇1, . . . ,𝑇𝑟)2]. Recall that we will compare it to 𝑑2
𝑢,𝑅, and we

have already computed 𝑑𝑢,𝑅 = 𝑛 · 𝑑𝑢,𝐿 = (1± 𝑜(1))(6𝛿𝑠)𝑟 . To do the computation, we will need to
use the number of pairs of chains 𝐶,𝐶′ ∈ ℋ (𝑟)𝑢 with |𝐶𝑅 ∩ 𝐶′𝑅 | = 𝑡 is at most

(𝑟
𝑡

)
· 22𝑟(3𝛿𝑛)2𝑟−𝑡 . Let us

denote 𝐶𝑅 = (𝑣2, 𝑣4, 𝑣6, . . . , 𝑣2(𝑟−1)+2) and 𝐶′
𝑅
= (𝑣′2, 𝑣′4, 𝑣′6, . . . , 𝑣′2(𝑟−1)+2)

E𝑇1,...,𝑇𝑟 [deg𝑢,𝑅(𝑇1, . . . ,𝑇𝑟)2] ≤
𝑟∑
𝑡=0

∑
𝐶,𝐶′∈ℋ (𝑟)𝑢 :|𝐶𝑅∩𝐶′𝑅 |=𝑡

Pr[𝑣2ℎ+2, 𝑣′2ℎ+2 ∈ 𝑇ℎ+1 ∀ℎ ∈ {0, . . . , 𝑟 − 1}]

≤
𝑟∑
𝑡=0

∑
𝐶,𝐶′∈ℋ (𝑟)𝑢 :|𝐶𝑅∩𝐶′𝑅 |=𝑡

( 𝑛
𝑠−1

) 𝑡 ( 𝑛
𝑠−2

) 𝑟−𝑡(𝑛
𝑠

) 𝑡 (if 𝑣2ℎ+2 = 𝑣′2ℎ+2, then 𝑇ℎ has ≤
(
𝑛

𝑠 − 1

)
choices, else ≤

(
𝑛

𝑠 − 2

)
choices)

≤
𝑟∑
𝑡=0

∑
𝐶,𝐶′∈ℋ (𝑟)𝑢 :|𝐶𝑅∩𝐶′𝑅 |=𝑡

(1+ 𝑜(1))
( 𝑠
𝑛

) 𝑡 ( 𝑠
𝑛

)2𝑟−2𝑡
(by binomial coefficient estimates)

≤ (1+ 𝑜(1))
𝑟∑
𝑡=0

(
𝑟

𝑡

)
· 22𝑟(3𝛿𝑛)2𝑟−𝑡

( 𝑠
𝑛

)2𝑟−𝑡
(from the bound on number of pairs (𝐶,𝐶′))

≤ (1+ 𝑜(1))(6𝛿𝑠)2𝑟
𝑟∑
𝑡=0

(
𝑟

𝑡

)
(3𝛿𝑠)−𝑡

≤ (1+ 𝑜(1))𝑑2
𝑢,𝑅

𝑟∑
𝑡=0

(
𝑟

𝑡

)
(3𝛿𝑠)−𝑡 .

The problem with the moment bound is now readily apparent. For small 𝑡,
(𝑟
𝑡

)
is roughly 𝑟𝑡 , and so

we need 𝑠 ≫ 𝑟/3𝛿 so that (3𝛿𝑠)−𝑡𝑟𝑡 ≪ 1. Hence, if we take 𝑠 = 𝑜(𝑟), the second moment is large.
Still, one may wonder if our estimate on the second moment here is tight. Perhaps it is simply

that our bound on the moment is large, but the true second moment is not. It turns out that when
the 𝐻𝑢’s are near-perfect matchings (which is the case for design 3-LCCs!), i.e., 3𝛿 = 1− 𝑜(1), then
this bound is tight up to a 1+ 𝑜(1) factor. This implies that the right degrees truly have high variance
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(a similar calculation shows this for left degree also). So, it is unlikely that one can find a subgraph
𝐺′𝑢 with Ω(|𝐸(𝐺𝑢)|) edges and, say, right degree bounded by 𝑂(𝑑𝑢,𝑅).
Remark 2.4. In Theorem 1, our notion of designs requires the matchings 𝐻𝑢 to be perfect matchings,
which is a stronger definition from the one used in [Yan24]. One might be worried that our
improvement in the lower bound for designs is therefore primarily due to the initial assumption
being a bit stronger, rather than for any real technical improvements. The above observation that
the second moment bound is tight for perfect matchings not only shows that this is not the case,
but also that perfect matchings are the case where the second moments are too large.

It is still potentially possible that the graph 𝐺𝑢 admits a large matching, even though the second
moments are large. While we have not formally ruled this out, the second moment calculation
informally tells us that one probably needs a substantially different approach to prove this.

Removing a log 𝒏 factor from Fact 3.10? We have argued that we cannot take 𝑠 = 𝑂(1) so that
𝑂(𝑟𝑠 log2 𝑛). What about the other approach, where we try to shave off the extra log 𝑛 coming from
Fact 3.10 to get a bound of 𝑂(𝑟𝑠)? This is not something that can be done generically for all 2-LDCs,
as of course the Hadamard code is a 2-LDC with 𝑘 = log2 𝑛.

Shaving this log 𝑛 factor is closely related to removing the log 𝑛 factor from Matrix Khintchine
(Fact 3.11), a task studied in many different contexts [BSS14, MSS15, BJM23].

One such example is the hypergraph Moore bound: the task of showing that a 𝑞-uniform
hypergraph on 𝑛 vertices with (𝑛/ℓ )𝑞/2ℓ must have a cycle (also called an even cover) of length
𝑂(ℓ log(𝑛/ℓ )). The best bound for this problem is due to the methods of [GKM22, HKM23], which
uses Kikuchi graphs similar to Definition 2.2 to show the existence of a length 𝑂(ℓ log 𝑛) cycle
when the hypergraph has (𝑛/ℓ )𝑞/2ℓ · log 𝑛 hyperedges, a log 𝑛 factor larger than the conjectured

threshold. A more complicated argument manages to reduce the log 𝑛 factor to (log 𝑛)
1
𝑞+1 when 𝑞 is

odd [HKM+24], and this proof requires a rather technical modification of the Kikuchi graph.
One might thus naturally surmise that a rather complicated modification of the graphs 𝐺𝑢 ,

perhaps along the lines of [HKM+24], is necessary for us to obtain a sharp lower bound via the
Kikuchi matrix method.

Our new Kikuchi graph. To our surprise, and perhaps contrary to the intuition developed above,
it turns out that the following simple modification of the graphs succeeds: instead of indexing the
vertices by collections of sets (𝑆1, . . . , 𝑆𝑟) or (𝑇1, . . . ,𝑇𝑟), each of size 𝑠, we index by “big” sets 𝑆 and
𝑇 of size ℓ (Definition 4.3). This graph is essentially the same as the previous graph if we ℓ = 𝑟𝑠

— the advantage of this new graph is that if we take 𝑠 = 𝑂(1), then the sets have size ℓ = 𝑂(𝑟),
which is still large, in contrast to the previous graph where the constituent sets 𝑆ℎ would only have
size 𝑠 = 𝑂(1). We shall call this new graph the “uncolored graph”, as we think of the graphs in
Definition 2.2 as consisting of a big set 𝑆 = 𝑆1 ∪ · · · ∪ 𝑆𝑟 , where 𝑆ℎ contains vertices from [𝑛]with
color ℎ, which makes the 𝑆ℎ’s disjoint by fiat as they use different colors.

In some sense, the above graph is more natural than even the ones appearing in [KM23, Yan24].
Of course, the reason those works use the colored graph rather than the uncolored one is that the
colored graph makes some of the combinatorial analysis more tame! Indeed, this is because the
𝑟 colors specify which vertices should appear in the 𝑟 “links” of the chain, namely, vertices that
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are in 𝑆ℎ appear in the “ℎ-th link”, and correspond to choices only of 𝑣2(ℎ−1)+1. One can note (as
observed in Definition 4.3) that the uncolored graph does not have edges for all chains 𝐶 ∈ ℋ (𝑟)𝑢 .
Indeed, if the left half 𝐶𝐿 or the right half 𝐶𝑅 contains duplicate vertices, then 𝐶 does not contribute
any edges! And, if they share vertices, then they contribute many more edges than a chain where
all vertices in 𝐶𝐿,𝐶𝑅 are distinct. Fortunately, as we observe in Definition 4.1, there are at least
(1− 𝑜(1))|ℋ (𝑟)𝑢 | chains such that the vertices in 𝐶𝐿 and 𝐶𝑅 are distinct, so we can ignore these issues
by working with this large subset of chains.

In spite of these technical challenges, we can make the analysis work for the uncolored graph.
This allows us to take ℓ = 2𝑟 for 𝑟 = 1

2 log2 𝑛 + 𝑂(log log 𝑛), and gives us a final bound of 𝑘 ≤
(1 + 𝑜(1))2𝑟 log2 𝑛, i.e., ((1 − 𝑜(1))𝑘)2 ≤ log2 𝑛, which gives us Theorem 1. We note that to get the
sharp constant in Theorem 1, we have to show that 𝐺𝑢 admits a near-perfect matching.

The calculations involved here are sensitive and require sharp bounds on binomial coefficients.
To give the reader a sense of how precise these bounds are, we observe that our proof shows that

E(𝑆,𝑤)[deg𝑢,𝐿(𝑆,𝑤)2] = (1± 𝑜(1))𝑑2
𝑢,𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(3𝛿)−𝑡
(𝑟
𝑡

) (ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) ,

E𝑇[deg𝑢,𝑅(𝑇)2] = (1± 𝑜(1))𝑑2
𝑅

𝑟∑
𝑡=0

(3𝛿)−𝑡
(𝑟
𝑡

) (ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) .

How do we bound the sum
∑𝑟
𝑡=0(3𝛿)−𝑡

(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

? First of all, (
𝑟
𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

is the probability mass function of

a hypergeometric distribution, and so
∑𝑟
𝑡=0
(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

= 1. Note that the mean of this distribution is

𝑟2/ℓ and it has good concentration, so we should expect to lose a factor of (3𝛿)−𝑡∗ where 𝑡∗ = 𝑟2/ℓ .
In particular, if 3𝛿 is bounded away from 1, say, 1/2, then we need to take ℓ = 𝑂(𝑟2) to mitigate

this factor, and we so get no improvement. But, if we have a design, then 3𝛿 = 1− 1
𝑛 , and so (3𝛿)−𝑟 is

only a 1+ 𝑜(1) factor and thus does not matter!

Finally, we note that since
∑𝑟
𝑡=0
(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

= 1, we do need to be precise in our estimates above. In

particular, standard estimates on binomial coefficients such as
(ℓ
𝑟

)
≥

(
ℓ
𝑟

) 𝑟
are insufficient.

We give the full proof of Theorem 1 in Section 4.

2.3 Superpolynomial lower bounds for nonlinear smooth 3-LCCs

We now explain the key ideas in the proof of Theorem 2. In this section, we will let 𝒞 : {−1, 1}𝑘 →
{−1, 1}𝑛 be a nonlinear code, namely we will use {−1, 1}-notation rather than {0, 1}-notation, as it
is more convenient for the proof.

Existing reductions do not work with the long chain derivation method of [KM23]. The standard
starting point for lower bounds for nonlinear 𝑞-LDCs or 𝑞-LCCs is a reduction from the original
work of Katz and Trevisan [KT00]. For 3-LCCs, this reduction takes any 𝛿-smooth code 𝒞 with
completeness even as low as 1

2 + 𝜂 and outputs 3-uniform hypergraph matchings 𝐻𝑢 for 𝑢 ∈ [𝑛]
with the following property: for every 𝑢 ∈ [𝑛] and hyperedge 𝐶 ∈ 𝐻𝑢 , E𝑥[𝑥𝑢

∏
𝑣∈𝐶 𝑥𝑣] ≥ Ω(𝜂),

10



where the expectation is over a uniformly random codeword 𝑥 ∈ 𝒞. That is to say, every hyperedge
decodes correctly with some constant advantage in expectation over a random codeword.

We can now form chains (Definition 2.1) on the hypergraphs 𝐻𝑢 . This gives us a “chain XOR
instance” Ψ𝑢(𝑥) defined as

∑
𝐶∈ℋ (𝑟)𝑢

𝑥𝑢𝑥𝑤
∏

𝑣∈𝐶𝐿 𝑥𝑣
∏

𝑣∈𝐶𝑅 𝑥𝑣 , where 𝐶𝐿 and 𝐶𝑅 are the left and right
halves of the chain 𝐶 and 𝑤 is the tail of 𝐶. Unlike in the linear case, it is not guaranteed that these
equations are all satisifiable, and so the “reduction-based approach of [KM23, Yan24] to 2-LDCs
breaks down.6 However, the “spectral refutation approach” of [KM23] is sufficiently general and
resilient enough that, if we could show that E𝑥∈𝒞[Ψ𝑢(𝑥)] ≥ 𝜂|ℋ (𝑟)𝑢 | for 𝜂 even as small as 𝜂 ≫ 1

𝑛1/3 ,
then we could at the very least beat the cubic lower bound of [AGKM23]. And, if we could take 𝜂

to be constant, we would get an exponential lower bound.
Unfortunately, we cannot show any lower bound on E𝑥[Ψ𝑢(𝑥)]. Indeed, let us even consider

the simple case of length 2-chains, and let us try to bound, for 𝐶 = {𝑣1, 𝑣2, 𝑢1} ∈ 𝐻𝑢 and 𝐶′ =

{𝑣3, 𝑣4, 𝑢2} ∈ 𝐻𝑢1 , the quantity E𝑥∈𝒞[𝑥𝑢𝑥𝑣1𝑥𝑣2𝑥𝑣3𝑥𝑣4𝑥𝑢2]. This is clearly E𝑥∈𝒞[(𝑥𝑢𝑥𝑣1𝑥𝑣2𝑥𝑢1)(𝑥𝑢1𝑥𝑣3𝑥𝑣4𝑥𝑢2)],
and while we know that the expectation of each term is ≥ 𝜂, this does not imply anything on the
expectation of the product.

This now suggests the following simple way to recover a lower bound: simply assume that
the completeness is 1 − 𝜀, with the intuition being that 𝜂 is related to 1 − 𝜀, and if 𝜂 is close to 1
then we can apply a union bound. However, the reduction of [KT00] is lossy with respect to the
completeness parameter. Indeed, this is because the reduction first makes the decoder nonadaptive
by simulating the adaptive decoder by giving it random answers, and this takes 1− 𝜀 completeness
to 1

2 + 𝜂 for 𝜂 = 1
8 (1− 𝜀), which is too small for the union bound strategy to succeed.

Key idea 1: adaptive chains and the adaptive chain decoder. As explained above, the reduction
of [KT00] is lossy, so we need to rethink the whole approach. Our intuition is that our reduction
should try to remember as much information about the decoder as possible. In particular, this
means that we need to remember information about the (possibly adaptive) decoder, and cannot
use standard reductions to convert adaptive decoders into nonadaptive ones. At a high level, our
new strategy is to form chains before applying the reduction of [KT00].

The first insight we have is that we can form chains adaptively by invoking the adaptive decoder
Dec𝑥(𝑢) in a structured way. Namely, define the “adaptive chain decoder” Dec𝑥𝑟 (𝑢) to be the
decoder that works as follows:

(1) Simulate Dec𝑥(𝑢) to generate the first query 𝑣1. Then, read 𝑎1 = 𝑥𝑣1 and respond with 𝑎1 to the
simulated Dec𝑥(𝑢) instance.

(2) The simulated Dec𝑥(𝑢) generates a second query 𝑣2. Then, read 𝑎2 = 𝑥𝑣2 and respond with 𝑎2

to the simulated Dec𝑥(𝑢) instance.

(3) The simulated Dec𝑥(𝑢) generates a third query 𝑢1, but Dec𝑟𝑥(𝑢) does not make this query.
Instead, Dec𝑟𝑥(𝑢) invokes Dec𝑥(𝑢1), and then proceeds starting from Step (1).

6We note here that one of log 𝑛 factors saved by [Yan24] is in optimizing the “hypergraph decomposition” step
in [KM23], but this optimization is specific to linear codes. In this paper, we give a slightly tighter analysis of the
decomposition in [KM23] that also saves this log 𝑛 factor, and additionally generalizes to the nonlinear setting.
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After 𝑟 iterations of the loop, Dec𝑥𝑟 (𝑢) makes the final query 𝑢𝑟 to receive 𝑎𝑟 , and then “feeds
answers backwards”. Namely, the simulated Dec𝑥(𝑢𝑟−1) now outputs some guess 𝑎𝑟−1 for 𝑥𝑢𝑟−1 ,
which Dec𝑥𝑟 (𝑢) uses to answer the query 𝑢𝑟−1 made by the simulated Dec𝑥(𝑢𝑟−2), etc. Finally,
Dec𝑥𝑟 (𝑢) outputs the same answer as the first simulated Dec𝑥(𝑢).

We can think of the decoder Dec𝑥𝑟 (𝑢) as generating adaptive chains, which are sequences of the
form (𝑢0, (𝑣1, 𝑎1), (𝑣2, 𝑎2), 𝑢1, (𝑣3, 𝑎3), (𝑣4, 𝑎4), . . . ).
Key idea 2: representing the decoder as a polynomial. Let us assume that the decoder succeeds
with probability 1 for simplicity. Now that we have adaptive chains, we need to define a polynomial
Ψ𝑢(𝑥) using the adaptive chains 𝐶 inℋ (𝑟)𝑢 (now redefined to be the set of adaptive chains) so that
Ψ𝑢(𝑥)𝑥𝑢 = 1 for all 𝑥 ∈ 𝒞. Our key idea is to encode the behavior of Dec𝑥(𝑢) as a certain polynomial.
Then, forming chains corresponds to taking certain “chain products” of these polynomials, which
defines a “chain polynomial” Ψ𝑢(𝑥) that we will refute.

We can represent Dec𝑥(𝑢) as a decision tree, and for simplicity, let us assume that Dec𝑥(𝑢)
makes exactly 3 queries and has perfect completeness. First, it has some distribution that it uses to
generate the first query 𝑣1. Then, it has a branch for each answer 𝑎1 ∈ {−1, 1} that it could receive.
After the branch, it has another distribution to generate the second query 𝑣2, and then another
branch for each answer 𝑎2 ∈ {−1, 1}. It then has a final distribution for the query 𝑣3, and then it
has a “decoding function” 𝑓𝑣1,𝑎1,𝑣2,𝑎2,𝑣3(𝑎3). Notice that we are allowed to have a different decoding
function for each choice of “adaptive constraint” 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3), and so 𝑓𝑣1,𝑎1,𝑣2,𝑎2,𝑣3(𝑎3) need
only depend on 𝑎3. Because Dec𝑥(𝑢) decodes with probability 1, we must have that for any 𝑥 ∈ 𝒞
with 𝑥𝑣1 = 𝑎1, 𝑥𝑣2 = 𝑎2, it holds that 𝑓𝑣1,𝑎1,𝑣2,𝑎2,𝑣3(𝑥𝑣3) = 𝑥𝑢 . Additionally, this implies that 𝑓𝑣1,𝑎1,𝑣2,𝑎2,𝑣3

is deterministic, and so it is one of the following 4 functions: 1,−1, 𝑎3,−𝑎3. For simplicity, let us
pretend that all such decoding functions are simply 𝑎3.

The above analysis effectively gives us constraints of the form

“𝑥𝑣1 = 𝑎1 ∧ 𝑥𝑣2 = 𝑎2 =⇒ 𝑥𝑢 = 𝑥𝑣3 .′′

We can represent these constraints as polynomials by the AND polynomial (Definition 5.1): we
then have polynomial constraints AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑥𝑣3𝑥𝑢 = AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2).

Unlike in the linear case, the constraints come with weights, corresponding to the probability
that the decoder Dec𝑥(𝑢)makes the queries 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3)where 𝑥 satisfies 𝑥𝑣1 = 𝑎1, 𝑥𝑣2 = 𝑎2.
Let wt𝑢(𝐶) be the weight of such a constraint. We then have for any 𝑥 ∈ 𝒞:∑

𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)
wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1∑

𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)
wt𝑢(𝐶) = 4 .

The first equation sums the probabilities of querying certain 𝐶’s, which must sum to 1 because this
is the query distribution of Dec𝑥(𝑢). The second equation observes that wt(𝐶)/4 is the probability
that Dec𝑦(𝑢) queries 𝐶 when 𝑦 is chosen uniformly at random. As we will explain, the fact that
this sums to 4 and not 1 is the critical reason why we only obtain a superpolynomial lower bound
instead of an exponential one in the perfect completeness case.

12



Finally, we have∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)

wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑥𝑣3𝑥𝑢 =
∑

𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)
wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1 ,

using the fact that the polynomial constraints are satisfied and the first of the 2 previous equations.
We also note that, more generally, the left-hand side exactly computes E[Dec𝑥𝑟 (𝑢)𝑥𝑢] for a fixed 𝑥,
where the expectation is over the internal randomness of the adaptive decoder.

Forming and refuting chain polynomials. The next step of the proof is to use the polynomial
representation of Dec𝑥(𝑢) above to represent the behavior of the chain decoder Dec𝑥𝑟 (𝑢) as a
polynomial as well. Concretely, the polynomial for Dec𝑥2 (𝑢) is

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑢1)

©«wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)
©«

∑
𝐶′=(𝑣3,𝑎3,𝑣4,𝑎4,𝑢2)

wt𝑢1(𝐶′)AND(𝑎3𝑥𝑣3 , 𝑎3𝑥𝑣3)𝑥𝑢2
ª®¬ª®¬ ,

and we let Ψ𝑢(𝑥) denote the polynomial for the length 𝑟-chains, defined analogously. Because of
perfect completeness, Ψ𝑢(𝑥) = 1 for all 𝑥 ∈ 𝒞. Notice that Ψ𝑢(𝑥) exactly computes E[Dec𝑥𝑟 (𝑢)𝑥𝑢]
where Dec𝑥𝑟 (𝑢) is the adaptive chain decoder and the expectation is over the internal randomness
of Dec𝑥𝑟 (𝑢).

We then follow the strategy of [KM23] and let Ψ𝑏(𝑥) =
∑𝑘
𝑖=1 𝑏𝑖Ψ𝑖(𝑥). Standard reductions

(Fact 3.4) allow us to assume that the code 𝒞 is systematic with only a small loss in parameters, so
that for a random 𝑥 ∈ 𝒞, the bits 𝑥1, . . . , 𝑥𝑘 ∈ {−1, 1} are independent. To prove a lower bound, it
suffices to then argue that E𝑏∈{−1,1}𝑘 [max𝑦∈{−1,1}𝑛 Ψ𝑏(𝑦)] < 𝑘, as Ψ𝑏(𝒞(𝑏)) = 𝑘.

The spectral refutation of [KM23], built on the CSP refutation algorithm of [GKM22], does not
directly bound E𝑏∈{−1,1}𝑘 [max𝑦∈{−1,1}𝑛 Ψ(𝑦)], because the polynomials constructed here are quite
a bit more general than the case handled in [KM23]. However, because the spectral methods
of [GKM22, KM23] are sufficiently resilient, one can succeed in using the techniques to bound
E𝑏∈{−1,1}𝑘 [max𝑦∈{−1,1}𝑛 Ψ(𝑦)] (Lemmas 5.9 and 6.6). This requires a more complicated version of the
(already somewhat technical) proof in [KM23]; we will comment on the generalizations we require
later.

We obtain a bound of E𝑏∈{−1,1}𝑘 [max𝑦∈{−1,1}𝑛 Ψ(𝑦)] ≤ 𝑊 ·𝑂(
√
𝑘ℓ 𝑟 log 𝑛) where ℓ , 𝑟 are param-

eters with ℓ 𝑟 ≫ 𝑛, and 𝑊 is the total “weight” of the Ψ𝑢 , i.e., the sum of the weights of the
coefficients. The quantity𝑊 should be considered some normalized analog of the “number of XOR
constraints” present in the polynomial.

Because the sum of the weights in a single Dec(𝑢) is 4, the total weight in Ψ𝑢 is at most 4𝑟 . This

gives us a bound of 4𝑟 ·𝑂(
√
𝑘ℓ 𝑟 log 𝑛); we then set 𝑟 =

√
log 𝑛, and ℓ = 2𝑂(

√
log 𝑛). Rearranging then

implies that 𝑘 ≤ 2𝑂(
√

log 𝑛), i.e., 𝑛 ≥ 𝑘Ω(log 𝑘).
The reason for the factor of 4 loss (which causes the 4𝑟 loss and prevents us from taking

𝑟 = 𝑂(log 𝑛) to get an exponential lower bound) can be observed by looking at how this reduction
behaves when the code 𝒞 is actually a linear 3-LCC. For each linear constraint 𝑥𝑣1𝑥𝑣2𝑥𝑣3 = 𝑥𝑢 , we
produce 4 constraints

“𝑥𝑣1 = 𝑎1 ∧ 𝑥𝑣2 = 𝑎2 =⇒ 𝑥𝑢 = 𝑎1𝑎2𝑥𝑣3 ,′′
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one for every 𝑎1, 𝑎2 ∈ {−1, 1}𝑘 . So, we have produced a factor of 4 more equations than was needed.
Indeed, the reason that this loss does not appear for linear codes is because of the equality∑

𝑎1,𝑎2

AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑎1𝑎2𝑥𝑣3 = 𝑥𝑣1𝑥𝑣2𝑥𝑣3 .

However, in the adaptive case, the query 𝑣3 can depend on the answers, and we also need not have
𝑓𝑣1,𝑎1,𝑣2,𝑎2(𝑎3) = 𝑎1𝑎2𝑎3, so this does not necessarily hold.

Additional technical complications. Let us now discuss the generalizations that we need of the
theorems in [KM23] in order to prove Lemmas 5.9 and 6.6. First of all, we need to now handle
weighted hypergraphs that are not necessarily matchings, rather than just matchings where all
hyperedges have equal weight. The definitions and methods in [KM23] are sufficiently general that
this can be done with some effort. A key part of the generalization is relying on the smoothness
of the decoder, which conceptually generalizes the concept of hypergraph matchings to weighted
hypergraphs. A second issue encountered is that AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) is not a homogeneous degree
2 polynomial and the decoding function 𝑓𝑣1,𝑎1,𝑣2,𝑎2(𝑎3) might have a negative sign and be −𝑎3.
This means that Ψ𝑏 is not a homogeneous degree 2𝑟 polynomial with nonnegative coefficients.
Fortunately, this issue can again be circumvented by adding extra dummy variables 𝑦−𝑣 , 𝑦1(𝑣) , and
𝑦−1(𝑣) for each 𝑣 ∈ [𝑛], where we expect these variables to take the values 𝑦−𝑣 = −𝑥𝑣 , 𝑦1(𝑣) = 1, and
𝑦−1(𝑣) − 1.

A third and perhaps more pressing issue encountered is that the adaptive chains of Dec𝑥𝑟 (𝑢) are
not necessarily all of length 𝑟. For example, suppose the initial invocation of Dec𝑥(𝑢) by Dec𝑥𝑟 (𝑢)
leads to the first 2 queries and answers being 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2). Then, Dec𝑥(𝑢) generates a third
query 𝑢1. However, the decoding function 𝑓𝑣1,𝑎1,𝑣2,𝑎2,𝑢1(𝑎3) might not depend on 𝑎3 = 𝑥𝑢1 , i.e., it
could be the constant function 1 or the constant function −1. In this case, we do not have a way to
continue the chain as normal, and Dec𝑥𝑟 (𝑢) does not make any more queries.

It turns out that the polynomials for the chains that stop early are (modulo some tricks) ho-
mogeneous degree 2𝑡 polynomials, where 2𝑡 is the number of queries, which is even. This should
be compared to the polynomial Ψ𝑏 , which is (modulo some tricks) a homogeneous degree 2𝑟 + 1
polynomial, which is odd. It turns out that the methods of [KM23], and indeed the more general
case of refuting XOR instances [GKM22], are easier to analyze for even degree instances. This
allows us to refute these “early stop” instances, and thereby show our key refutation lemmas:
Lemmas 5.9 and 6.6.

Handling imperfect completeness. Finally, we explain how to handle the case when the decoder
only succeeds with probability 1− 𝜀. By union bound, it follows that Dec𝑥𝑟 (𝑢) therefore succeeds
with probability at least 1 − 𝑟𝜀, and thus has E[𝑥𝑢Dec𝑥𝑟 (𝑢)] ≥ 1 − 2𝑟𝜀. Now, we can only take
𝑟 ≈ 1/2𝜀 length chains while still showing a lower bound on E𝑏∈{−1,1}𝑘 [max𝑦∈{−1,1}𝑛 Ψ𝑏(𝑦)]. In this
parameter regime, when 𝜀 is a small constant, say, our final bound will be about 𝑘 ≤ 𝑛1/𝑟 ≈ 𝑛2𝜀.

One may wonder why we cannot obtain a better lower bound on E[𝑥𝑢Dec𝑥𝑟 (𝑢)]. Indeed, if
E[𝑥𝑢Dec𝑥(𝑢)] only depends on 𝑥, or 𝑢, but not both, then we could make the analysis work. The
problem is that this is not something that we can enforce without loss of generality, as E[𝑥𝑢Dec𝑥(𝑢)]
could depend on both 𝑥 and 𝑢.
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The reason this causes an issue can be seen from the 2-chains. Consider the 2-chain polynomial
from before:

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑢1)

©«wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)
©«

∑
𝐶′=(𝑣3,𝑎3,𝑣4,𝑎4,𝑢2)

wt𝑢1(𝐶′)AND(𝑎3𝑥𝑣3 , 𝑎3𝑥𝑣3)𝑥𝑢2
ª®¬ª®¬ .

We have

𝑥𝑢1

∑
𝐶′=(𝑣3,𝑎3,𝑣4,𝑎4,𝑢2)

wt𝑢1(𝐶′)AND(𝑎3𝑥𝑣3 , 𝑎3𝑥𝑣3)𝑥𝑢2 = E[𝑥𝑢1Dec𝑥(𝑢1)] = 𝑝𝑥,𝑢1 ≥ 1− 𝜀 ,

so that

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑢1)

©«wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)
©«

∑
𝐶′=(𝑣3,𝑎3,𝑣4,𝑎4,𝑢2)

wt𝑢1(𝐶′)AND(𝑎3𝑥𝑣3 , 𝑎3𝑥𝑣3)𝑥𝑢2
ª®¬ª®¬

= 𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑢1)

(wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑥𝑢1𝑝𝑥,𝑢1) .

Now,

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑢1)

(wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑥𝑢1) = 𝑝𝑥,𝑢 ≥ 1− 2𝜀 ,

for all 𝑥 ∈ 𝒞, and so we would like conclude that

= 𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑢1)

(wt𝑢(𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝑥𝑢1𝑝𝑥,𝑢1) ≥ (1− 2𝜀)2 .

Unfortunately, the reweightings caused by the different 𝑝𝑥,𝑢1 ’s cannot be ignored because the
terms in the sum are not nonnegative. In particular, it could be that 𝑝𝑥,𝑢1 = 1 for the negative
terms and 𝑝𝑥,𝑢1 = 1− 2𝜀 for the positive terms, which would then (if 𝑝𝑥,𝑢 = 1− 2𝜀) make the sum
(1− 𝜀)(1− 2𝜀) − 𝜀 = (1− 2𝜀)2 − 2𝜀2, for example.

2.4 Roadmap

The rest of the paper is organized as follows. First, in Section 3, we introduce some notation and
recall basic facts about LCCs that we shall use in the proof. In Section 4, we prove Theorem 1. In
Sections 5, 6 and 8 to 10, we prove Theorem 2 in the case of perfect completeness. This proof is
broken into two stages: the reduction from the adaptive smooth decoder to the chain polynomials
and chain XOR instances is done in Sections 5 and 6, and in Sections 8 to 10 we refute these instances
by proving Lemmas 5.9 and 6.6.

Finally, in Appendix A we prove the case of imperfect completeness in Theorem 2 and in
Appendix B we recall the folklore construction of design 3-LCCs from Reed–Muller codes.
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3 Preliminaries

3.1 Basic notation

We let [𝑛] denote the set {1, . . . , 𝑛}. For two subsets 𝑆,𝑇 ⊆ [𝑛], we let 𝑆 ⊕ 𝑇 denote the symmetric
difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 B {𝑖 : (𝑖 ∈ 𝑆 ∧ 𝑖 ∉ 𝑇) ∨ (𝑖 ∉ 𝑆 ∧ 𝑖 ∈ 𝑇)}. For a natural number
𝑡 ∈ N, we let

([𝑛]
𝑡

)
be the collection of subsets of [𝑛] of size exactly 𝑡. Given variables 𝑥1, . . . , 𝑥𝑛 and

a subset 𝐶 ⊆ [𝑛], we let 𝑥𝑆 B
∏

𝑣∈𝑆 𝑥𝑣 .
For a rectangular matrix 𝐴 ∈ R𝑚×𝑛 , we let ∥𝐴∥2 =B max𝑥∈R𝑚 ,𝑦∈R𝑛 :∥𝑥∥2=∥𝑦∥2=1 𝑥

⊤𝐴𝑦 denote the
spectral norm of 𝐴, and ∥𝐴∥∞→1 B max𝑥∈{−1,1}𝑚 ,𝑦∈{−1,1}𝑛 𝑥

⊤𝐴𝑦. We note that ∥𝐴∥∞→1 ≤
√
𝑛𝑚∥𝐴∥2.

3.2 XOR formulas

A (weighted) XOR instance 𝜓 on 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 taking values in {−1, 1} is a collection of
constraints of the form {𝑥𝐶 = 𝑏𝐶} where 𝐶 ∈ ℋ whereℋ ⊆ 2[𝑛] is the constraint hypergraph, along
with weights wt(𝐶) ≥ 0 for each 𝐶 ∈ ℋ . The arity of a constraint {𝑥𝐶 = 𝑏𝐶} equals |𝐶 |. The arity of
𝜓 is the maximum arity of any constraint in it. The XOR formula associated with 𝜓 is the expression
𝜓(𝑥) = ∑

𝐶∈ℋ wt(𝐶)𝑏𝐶𝑥𝐶 seen as a polynomial over {−1, 1}𝑛 . Notice that 𝜓(𝑥) = ∑
𝐶∈ℋ wt(𝐶) if 𝑥

satisfies all the constraints of 𝜓 and in general, evaluates to (weight of constraints satisfied by 𝑥) -
(weight of constraints violated by 𝑥). The value val(𝜓) of a XOR instance 𝜓 (or, of the associated
formula 𝜓(𝑥)) is the maximum of 𝜓(𝑥) as 𝑥 ranges over {−1, 1}𝑛 . More generally, for a function
𝑓 (𝑥), we shall let val( 𝑓 ) B max𝑥∈{−1,1}𝑛 𝑓 (𝑥).

3.3 Locally correctable codes

We refer the reader to the survey [Yek12] for background.

Definition 3.1 (Locally correctable code). A map 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is a (𝑞, 𝛿, 𝜀)-locally cor-
rectable code if there exists a randomized decoding algorithm Dec(·) that takes input an oracle
access to some 𝑦 ∈ {−1, 1}𝑛 and a 𝑢 ∈ [𝑛], and has the following properties:

(1) (𝑞 queries) For any 𝑦 ∈ {−1, 1}𝑛 and 𝑢 ∈ [𝑛], Dec𝑦(𝑢)makes at most 𝑞 queries to the string 𝑦;

(2) ((1 − 𝜀)-correction with 𝛿𝑛 errors) For all 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], and all 𝑦 ∈ {−1, 1}𝑛 such that
Δ(𝑦,𝒞(𝑏)) ≤ 𝛿𝑛, Pr[Dec𝑦(𝑢) = 𝒞(𝑏)𝑢] ≥ 1 − 𝜀. Here, Δ(𝑥, 𝑦) denotes the Hamming distance
between 𝑥 and 𝑦, i.e., the number of indices 𝑣 ∈ [𝑛]where 𝑥𝑣 ≠ 𝑦𝑣 .

We say that 𝒞 is linear if the map 𝒞, when viewed as a map from {0, 1}𝑘 → {0, 1}𝑛 via the mapping
0 ↔ 1 and 1 ↔ −1, is a linear map. We note that for linear codes, 𝑘 = dim(𝒱), where 𝒱 is the
image of {0, 1}𝑘 under the map 𝒞. We will typically let ℒ, as opposed to 𝒞, denote a linear code,
and view ℒ as a map ℒ : {0, 1}𝑘 → {0, 1}𝑛 .

We say that 𝒞 is systematic if for every 𝑏 ∈ {−1, 1}𝑘 , 𝒞(𝑏)|[𝑘] = 𝑏.

For a code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 , we will write 𝑥 ∈ 𝒞 to denote an 𝑥 = 𝒞(𝑏) for some
𝑏 ∈ {−1, 1}𝑘 .
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Definition 3.2 (Smooth LCCs [KT00]). A map 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is a 𝛿-smooth 𝑞-locally
correctable code with completeness 1− 𝜀 if there exists a randomized decoding algorithm Dec(·)
that takes input an oracle access to some 𝑦 ∈ {−1, 1}𝑛 and a 𝑢 ∈ [𝑛], and has the following
properties:

(1) (𝑞 queries) For any 𝑦 ∈ {−1, 1}𝑛 and 𝑢 ∈ [𝑛], Dec𝑦(𝑢)makes at most 𝑞 queries to the string 𝑦;

(2) ((1− 𝜀)-completeness) For all 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], Pr[Dec𝒞(𝑏)(𝑢) = 𝒞(𝑏)𝑢] ≥ 1− 𝜀.

(3) (𝛿-smoothness) For all 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], 𝑥 = 𝒞(𝑏), 𝑣 ∈ [𝑛], Pr[Dec𝒞(𝑏)(𝑢) queries 𝑣] ≤ 1
𝛿𝑛 .

We will call such codes (𝑞, 𝛿, 𝜀)-smooth LCCs.

Remark 3.3. Any 𝛿-smooth 𝑞-LCC with completeness 1 − 𝜀 is a (𝑞,𝜂𝛿, 𝜀 + 𝜂)-LCC for any 𝜂 > 0.
Indeed, this follows because if we let 𝑦 ∈ {−1, 1}𝑛 be a corruption of a codeword 𝑥 ∈ 𝒞 with 𝜂𝛿𝑛

errors, then the probability that the smooth decoder queries a corrupted entry is at most 𝜂.

Fact 3.4 (Systematic Nonlinear Codes, Lemma A.5, Thm A.6 in [BGT17]). Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛
be a 𝛿-smooth 𝑞-LCC with completeness 1− 𝜀. Then, there is a systematic code 𝒞′ : {−1, 1}𝑘′ → {−1, 1}𝑛
that is a 𝛿-smooth 𝑞-LCC with completeness 1− 𝜀, where 𝑘′ = Ω(𝑘/log(1/𝛿)).

We next discuss a combinatorial characterization of linear locally correctable codes. To begin
with, we recall basic notions about hypergraphs.

Definition 3.5. A weighted (and undirected) hypergraphℋ on vertex set [𝑛] is a weight function
wtℋ : 2[𝑛] → R≥0, i.e., a function from unordered sets 𝐶 ⊆ [𝑛] to R≥0. The hypergraph is ≤ 𝑞-
uniform if |𝐶 | > 𝑞 implies that wtℋ (𝐶) = 0 and 𝑞-uniform if |𝐶 | ≠ 𝑞 implies that wtℋ (𝐶) = 0.

A weighted directed hypergraphℋ on vertex set [𝑛] is a weight function wtℋ : 𝑆→ R≥0, where
𝑆 denotes the set of all ordered subsets of [𝑛]. The hypergraph is ≤ 𝑞-uniform if for any ordered set
𝐶 ⊆ [𝑛], |𝐶 | > 𝑞 implies that wtℋ (𝐶) = 0 and 𝑞-uniform if |𝐶 | ≠ 𝑞 implies that wtℋ (𝐶) = 0.

For a subset𝑄 ⊆ [𝑛], we define the degree of𝑄 inℋ , denoted degℋ (𝑄), to be
∑
𝐶∈[𝑛]𝑞 :𝑄⊆𝐶 wtℋ (𝐶),

where we say that 𝑄 ⊆ 𝐶 if this containment holds as sets.

LCCs admit a standard combinatorial characterization (formalized in the definition below).

Definition 3.6 (Linear LCC in normal form). A linear code ℒ : {0, 1}𝑘 → {0, 1}𝑛 is (𝑞, 𝛿)-normally
correctable if for each 𝑢 ∈ [𝑛], there is a 𝑞-uniform hypergraph matching ℋ𝑢 with at least 𝛿𝑛

hyperedges such that for every 𝐶 ∈ ℋ𝑢 and 𝑏 ∈ {−1, 1}𝑘 , it holds that
∏

𝑣∈𝐶 𝑥𝑣 = 𝑥𝑢 where
𝑥 = 𝒞(𝑏).

Every linear LCC can be transformed into a linear LCC in normal form with only a small loss in
parameters.

Fact 3.7 (Reduction to LCC normal form, Theorem 8.1 in [Dvi16]). Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a
linear code that is (𝑞, 𝛿, 𝜀)-locally correctable. Then, there is a linear code ℒ′ : {0, 1}𝑘 → {0, 1}2𝑛 that is
(𝑞, 𝛿′)-normally correctable, with 𝛿′ ≥ 𝛿/2𝑞.
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Below, we define design 3-LCCs, which are an idealized form of linear 3-LCCs in normal
form. We note that Reed–Muller codes, the best known construction of 3-LCCs, are designs (see
Appendix B).

Definition 3.8 (Design 3-LCCs). Let 𝐻 ⊆
([𝑛]

4

)
denote a collection of subsets of 𝑛 of size exactly 4.

We say that 𝐻 is a design if, for every pair of vertices 𝑢 ≠ 𝑣 ∈ [𝑛], there exists exactly one 𝐶 ∈ 𝐻 with
{𝑢, 𝑣} ⊆ 𝐶.

We say that such an 𝐻 is a design 3-LCC of dimension 𝑘 if the subspace 𝒱 := {𝑥 ∈ {0, 1}𝑛 :∑
𝑣∈𝐶 𝑥𝑣 = 0 ∀𝐶 ∈ 𝐻} ⊆ {0, 1}𝑛 has dimension 𝑘.

Remark 3.9 (Connection between Definition 3.8 and Definition 3.6). Given a design 3-LCC 𝐻, we
can construct the hypergraphs 𝐻𝑢 for 𝑢 ∈ [𝑛] in Definition 3.8 by letting 𝐻𝑢 := {𝐶 \ {𝑢} : 𝐶 ∈
𝐻 and 𝑢 ∈ 𝐶} be the set of 𝐶 ∈ 𝐻 that contain 𝑢 (and then remove 𝑢). Because 𝐻 is a design, for
every pair 𝑢 ≠ 𝑣 ∈ [𝑛], there exists 𝐶 ∈ 𝐻 containing 𝑢 and 𝑣. So, there is exactly one 𝐶′ ∈ 𝐻𝑢

containing 𝑣, which implies that 𝐻𝑢 is a perfect 3-uniform hypergraph matching on [𝑛] \ {𝑢}, i.e.,
|𝐻𝑢 | = 𝑛−1

3 .

Finally, we recall the lower bound for linear 2-LDCs from [GKST06].

Fact 3.10 (Lemma 3.3, Lemma 3.5 in [GKST06]). Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a linear map, and let
𝐺1, . . . ,𝐺𝑘 be matchings on 𝑛 vertices such that for every 𝑏 ∈ {0, 1}𝑘 and every 𝑖 ∈ [𝑘] and every (𝑢, 𝑣) ∈ 𝐺𝑖 ,
it holds that 𝑥𝑢 + 𝑥𝑣 = 𝑏𝑖 , where 𝑥 = ℒ(𝑏). Suppose that 1

𝑘

∑𝑘
𝑖=1 |𝐺𝑖 | ≥ 𝛿𝑛. Then, 2𝛿𝑘 ≤ log2 𝑛.

3.4 Concentration inequalities

We will use the following non-commutative Khintchine inequality [LP91].

Fact 3.11 (Rectangular Matrix Khintchine inequality, Theorem 4.1.1 of [Tro15]). Let 𝑋1, . . . ,𝑋𝑘 be fixed
𝑑1 × 𝑑2 matrices and 𝑏1, . . . , 𝑏𝑘 be i.i.d. from {−1, 1}. Let 𝜎2 ≥ max(∥∑𝑘

𝑖=1 𝑋𝑖𝑋
⊤
𝑖
]∥2, ∥∑𝑘

𝑖=1 𝑋
⊤
𝑖
𝑋𝑖]∥2).

Then

E

[  𝑘∑
𝑖=1

𝑏𝑖𝑋𝑖


2

]
≤

√
2𝜎2 log(𝑑1 + 𝑑2) .

3.5 A fact about binomial coefficients

Fact 3.12. Let 𝑛, 𝑟, 𝑡, ℓ be integers with 𝑡 ≤ 𝑟 and ℓ ≥ 𝑟. Then, it holds that(𝑟
𝑡

)
𝑡!
(𝑛
ℓ

) ( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) ≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑛𝑡

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

)
Proof. First, we have that(𝑛

ℓ

) ( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) ≤ (
1+ 𝑂(ℓ

2)
𝑛

)
𝑛ℓ

ℓ !
· 𝑛ℓ−(2𝑟−𝑡)

(ℓ − (2𝑟 − 𝑡))! ·
(ℓ − 𝑟)!
𝑛ℓ−𝑟

(ℓ − 𝑟)!
𝑛ℓ−𝑟

≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑛𝑡
(ℓ − 𝑟)!
ℓ !

· (ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))! .
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We now observe that(
𝑟

𝑡

)
𝑡!
(ℓ − 𝑟)!
ℓ !

· (ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))! =

𝑟!
(𝑟 − 𝑡)! ·

(ℓ − 𝑟)!
ℓ !

· (ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))!

=
1(ℓ
𝑟

) · 1
(𝑟 − 𝑡)! ·

(ℓ − 𝑟)!
(ℓ − (2𝑟 − 𝑡))!

=

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) ,

which finishes the proof. □

4 Proof of Theorem 1

In this section, we prove Theorem 1. The proof is substantially simpler than the proof for general
linear codes ([KM23]) or Theorem 2. The proof here will be self-contained, and will also serve as a
partial warmup to Theorem 2.

The proof presented follows the overall blueprint of the proof in [KM23]. Namely, we will
use the design 3-LCC ℒ to construct a 2-query linear locally decodable code, and then we will
apply the lower bound of [GKST06].7 As mentioned in Section 2.2, we will incorporate the clever
second moment method proof of the row pruning step due to [Yan24], which is very similar to
the edge deletion method of [HKM23] done in the context of semirandom and smoothed CSP
refutation [GKM22]. The key reason that we save the final log 𝑛 factor is by using a more carefully
chosen Kikuchi graph, a sharp accounting of binomial coefficients, and the crucial use of the fact
that in the design case, the hypergraph matchings are perfect.

Let us now proceed with the proof. Let ℒ : {0, 1}𝑘 → {0, 1}𝑛 be a design 3-LCC. Namely,
there exists a 4-uniform hypergraph design 𝐻 ⊆

([𝑛]
4

)
such that for all 𝐶 ∈ 𝐻,

∑
𝑣∈𝐶 𝑥𝑣 = 0 for all

𝑥 ∈ ℒ. Without loss of generality, we may assume that ℒ is systematic, i.e., for each 𝑏 ∈ {0, 1}𝑘 ,
ℒ(𝑏)𝑖 = 𝑏𝑖 . To bound 𝑘, we will give another linear map ℒ′ : {0, 1}𝑛 → {0, 1}2𝑛𝑁 , where 𝑁 =

(𝑛
ℓ

)
for

some parameter ℓ = (1+ 𝑜(1)) log2 𝑛, and we will show that ℒ′ ◦ ℒ : {0, 1}𝑘 → {0, 1}𝑁 is a 2-query
linear locally decodable code with 𝛿 = 1

2 (1 − 𝑜(1)). We can then apply Fact 3.10 to conclude that
(1− 𝑜(1))𝑘 ≤ 2𝛿𝑘 ≤ log2 𝑁 ≤ (ℓ + 1) log2 𝑛 where ℓ = (1+ 𝑜(1)) log2 𝑛.

For each 𝑢 ∈ [𝑛], we let 𝐻𝑢 denote the 3-uniform hypergraph defined from 𝐻 as specified
in Remark 3.9, i.e., 𝐻𝑢 = {𝐶 : 𝐶 ∪ {𝑢} ∈ 𝐻}. As shown in Remark 3.9, 𝐻𝑢 is a matching of size
𝛿𝑛 = 𝑛−1

3 , i.e., 𝛿 := 1
3 − 1

3𝑛 .

Step 1: forming long chain derivations. In the first step of the proof, we use the initial system of
constraints 𝐻 to define a larger system of constraints, called long chain derivations. This is the key
idea of [KM23] that yields the first exponential lower bound for linear 3-LCCs, and is the starting
point of our proof.

7The proof in [KM23] is presented using the perspective of spectral refutation and matrix concentration bounds, even
though the final proof eventually is a reduction to a 2-LDC. Here, we present the proof as a reduction as it is a more
accessible and combinatorial analysis, although we note that one could prove the same result using matrix concentration
as well.
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Definition 4.1. Let 𝐻1, . . . ,𝐻𝑛 be the 3-uniform hypergraph matchings defined from the 4-design
𝐻. An 𝑟-chain with head 𝑢0 is an ordered sequence of vertices of length 3𝑟 + 1, given by 𝐶 =

(𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟), such that all the 𝑣ℎ’s are distinct8 and for each
ℎ = 0, . . . , 𝑟 − 1, it holds that {𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1} ∈ 𝐻𝑢ℎ . We letℋ (𝑟)𝑢 denote the set of 𝑟-chains with
head 𝑢.

We let 𝐶𝐿 = (𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑟−1)+1) denote the “left half” of the chain, and 𝐶𝑅 = (𝑣2, 𝑣4, 𝑣6, . . . , 𝑣2(𝑟−1)+2)
denote the “right half”. We call 𝑢𝑟 the “tail”.

We observe that ℋ (𝑟)𝑢 has size at most (6𝛿𝑛)𝑟 and size at least (6𝛿𝑛 − 4𝑟)𝑟 . Indeed, the upper
bound follows because, given a partial chain (𝑢0, 𝑣1, 𝑣2, . . . , 𝑢ℎ), there are exactly 6𝛿𝑛 choices of
(𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) (which we note are ordered), and the lower bound follows because there are
always at least 6𝛿𝑛 − 4ℎ ≥ 6𝛿𝑛 − 4𝑟 choices, as each vertex 𝑣 can appear in either the first or second
spot in at most 2 ordered hyperedges in 𝐻𝑢′ for any 𝑢′ ∈ [𝑛].

The following observation asserts that the system of linear equations given by the chains are
satisfied by every 𝑥 ∈ ℒ.

Observation 4.2. Let 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) ∈ ℋ (𝑟)𝑢 be an 𝑟-chain, with
left half 𝐶𝐿 and right half 𝐶𝑅. Then, for any 𝑥 ∈ ℒ, it holds that 𝑥𝑢𝑟 +

∑
𝑣∈𝐶𝐿 𝑥𝑣 +

∑
𝑣∈𝐶𝑅 𝑥𝑣 = 𝑥𝑢0 .

Proof. For any chain 𝐶, we have that for all ℎ = 0, . . . , 𝑟 − 1, it holds that {𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1} ∈ 𝐻𝑢ℎ ,
which implies that 𝑥𝑣2ℎ+1 + 𝑥𝑣2ℎ+2 + 𝑥𝑢ℎ+1 = 𝑥𝑢ℎ for all 𝑥 ∈ ℒ. By taking the product over all these
equations, Observation 4.2 follows. □

Step 2: defining the Kikuchi graphs. In this step, we will define two linear maps ℒ1 : {0, 1}𝑛 →
{0, 1}𝐿 and ℒ2 : {0, 1}𝑛 → {0, 1}𝑅, where 𝐿 =

([𝑛]
ℓ

)
× [𝑛], 𝑅 =

([𝑛]
ℓ

)
, and ℓ is a parameter, as follows.

Let ℒ1(𝑥)(𝑆,𝑣) := 𝑥𝑣 +
∑
𝑣′∈𝑆 𝑥𝑣′ , and let ℒ2(𝑥)𝑇 :=

∑
𝑣′∈𝑇 𝑥𝑣′ . Note that |𝐿| = 𝑛𝑁 and |𝑅 | = 𝑁 , where

𝑁 =
(𝑛
ℓ

)
.

Now, for each 𝑢 ∈ [𝑛], we will use the set of 𝑟-chains ℋ (𝑟)𝑢 to define a bipartite graph 𝐺𝑢

with left vertices 𝐿 and right vertices 𝑅 such that, for each edge ((𝑆, 𝑣),𝑇) in 𝐺𝑢 , it holds that
ℒ1(𝑥)(𝑆,𝑣) +ℒ2(𝑥)𝑇 = 𝑥𝑢 . This graph 𝐺𝑢 will be the following Kikuchi graph.

Definition 4.3 (Kikuchi graph). Let ℓ be a parameter, to be determined later, and let 𝐺𝑢 be
the graph with left vertex set 𝐿 =

([𝑛]
ℓ

)
× [𝑛] and right vertex set 𝑅 =

([𝑛]
ℓ

)
. For a chain 𝐶 =

(𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) ∈ ℋ (𝑟)𝑢 with left half 𝐶𝐿 and right half 𝐶𝑅, we add
an edge ((𝑆,𝑤),𝑇) to 𝐺𝑢 “labeled” by 𝐶 if 𝑆 = 𝐶𝐿 ∪𝑈 , 𝑇 = 𝐶𝑅 ∪𝑈 where |𝑈 | = ℓ − 𝑟9 and 𝑤 = 𝑢𝑟 .
Two distinct chains may produce the same edge — we add edges with multiplicity.

We now make the following simple observations about the graph 𝐺𝑢 .

Observation 4.4. For any chain 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟) ∈ ℋ (𝑟)𝑢 , the
number of edges in 𝐺𝑢 “labeled” by 𝐶 is exactly

(𝑛−2𝑟
ℓ−𝑟

)
.

In particular, the average left degree of 𝐺𝑢 , denoted by 𝑑𝑢,𝐿 is
(𝑛−2𝑟
ℓ−𝑟

)
/𝑛𝑁 , and the average right

degree, denoted by 𝑑𝑢,𝑅 is
(𝑛−2𝑟
ℓ−𝑟

)
/𝑁 .

8In this section only, we will enforce that all the 𝑣ℎ ’s are distinct, as this will be slightly more convenient.
9Note that here we will use that all the 𝑣ℎ ’s are distinct, so that |𝐶𝐿 | = |𝐶𝑅 | = 𝑟 and |𝐶𝐿 | + |𝐶𝑅 | = 2𝑟.
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Proof. Let 𝐶𝐿 be the left half of 𝐶 and let 𝐶𝑅 be the right half. Because all the 𝑣ℎ’s are distinct, we
have |𝐶𝐿 | = |𝐶𝑅 | = 𝑟 and |𝐶𝐿 ∪ 𝐶𝑅 | = 2𝑟. It follows that the number of pairs ((𝑆,𝑤),𝑇) such that
((𝑆,𝑤),𝑇) is an edge in 𝐺𝑢 labeled by 𝐶 is simply the number of choices for the set 𝑈 , which is a
subset of [𝑛] \ (𝐶𝐿 ∪ 𝐶𝑅) of size ℓ − 𝑟. Thus, there are exactly

(𝑛−2𝑟
ℓ−𝑟

)
choices. □

Observation 4.5. For every edge ((𝑆,𝑤),𝑇) in 𝐺𝑢 and 𝑥 ∈ ℒ, it holds that ℒ1(𝑥)(𝑆,𝑤) +ℒ2(𝑥)𝑇 = 𝑥𝑢 .

Proof. Suppose that ((𝑆,𝑤),𝑇) in 𝐺𝑢 is an edge labeled by the chain 𝐶, which has left half 𝐶𝐿 and
right half 𝐶𝑅. We then have that 𝑤 = 𝑢𝑟 , 𝑢 = 𝑢0, and 𝑆 = 𝐶𝐿 ∪𝑈 , 𝑇 = 𝐶𝑅 ∪𝑈 . Therefore,

ℒ1(𝑥)(𝑆,𝑤) +ℒ2(𝑥)𝑇 = 𝑥𝑢𝑟 +
∑
𝑧∈𝑆

𝑥𝑧 +
∑
𝑧∈𝑇

𝑥𝑧

= 𝑥𝑢𝑟 +
∑
𝑧∈𝐶𝐿

𝑥𝑧 +
∑
𝑧∈𝐶𝑟

𝑥𝑧 +
∑
𝑧∈𝑈
(𝑥𝑧 + 𝑥𝑧) = 𝑥𝑢𝑟 +

∑
𝑧∈𝐶𝐿

𝑥𝑧 +
∑
𝑧∈𝐶𝑟

𝑥𝑧 = 𝑥𝑢 ,

where the last equality uses Observation 4.2. □

The plan for the remainder of the proof. Let us now take a brief moment to outline the steps for
the remainder of the proof. To construct a 2-LCC, it suffices to show that 𝐺𝑢 admits a matching 𝑀𝑢

of size Ω(𝑁). Indeed, if this were the case, then the matching 𝑀𝑢 would be the matching that we
require to invoke Fact 3.10 and thus finish the proof.

To show that 𝐺𝑢 has a large matching, it suffices bound the maximum degree of the graph by
𝑑, as then 𝐺𝑢 must admit a matching of size at least |𝐸(𝐺𝑢)|/𝑑. However to do this, there are two
issues to resolve. The most obvious issue is that the bipartite graph is unbalanced, i.e., |𝐿| = 𝑛 |𝑅 |,
and so this prevents us from obtaining a matching of size Ω(|𝐿|). This issue can be easily fixed
by the following trick:10 for each right vertex 𝑇 ∈ 𝑅, we can create 𝑛 copies of 𝑇, denoted by
𝑇(1), . . . ,𝑇(𝑛), and split the edges adjacent to 𝑇 evenly across the copies. This decreases the average
(and maximum) right degree by a factor of (1− 𝑜(1))𝑛, and fixes the issue.

The second, and much more challenging problem, is that the graph 𝐺𝑢 need not be approxi-
mately biregular. Indeed, if the graph 𝐺𝑢 was exactly biregular, then apply the above “splitting
trick” would imply that the resulting graph has a perfect matching of size 𝑛𝑁/2.

This irregularity issue is a common problem for Kikuchi matrices and has arisen in many prior
works [GKM22, HKM23, AGKM23, KM23, Yan24]. The way to handle this issue is to show that
𝐺𝑢 admits a subgraph 𝐺′𝑢 that is approximately biregular and still contains a significant fraction of
the edges of 𝐺𝑢 , i.e., |𝐸(𝐺′𝑢)| ≥ Ω(|𝐸(𝐺𝑢)|). We follow the terminology of prior work and call this
step the “row pruning” step, which is so named because it involves pruning rows (and columns)
of the adjacency matrix of 𝐺𝑢 . This row pruning step is the crucial, and by far the most technical,
component of the proof.

Step 3: Finding a near-perfect matching in 𝑮𝒖 . We now argue that 𝐺𝑢 admits a degree-bounded
subgraph 𝐺′𝑢 containing (1 − 𝑜(1))|𝐸(𝐺𝑢)| edges. The strategy in [KM23] is to use the moment
method to argue that with high probability, a random left (or right) vertex of the graph has

10This is a nice trick of [Yan24] that, while it does not affect the final bounds, saves a use of the Cauchy–Schwarz
inequality and thus makes the graph 𝐺𝑢 a bit simpler to describe.
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degree at most 𝑂(𝑑𝑢,𝐿) (or 𝑂(𝑑𝑢,𝑅)) with high probability. Here, we will diverge from the technical
implementation of the proof in [KM23] and follow the approach of [HKM23, Yan24], which is the
observation that it suffices to compute first and second moments only. Indeed, it is computing
higher moments that causes the loss of several extra log 𝑛 factors in the proof of [KM23], as
compared to [Yan24].

The key reason we shall save the final log 𝑛 factor is because the matchings 𝐻𝑢 are nearly perfect,
i.e., they have size 𝛿𝑛 where 𝛿 = 1

3 − 1
3𝑛 . This, combined with the careful choice of the matrix (see

Remark 2.4) allows us to take ℓ = 𝑂(𝑟) instead of ℓ = 𝑂(𝑟2), which saves a log 𝑛 factor. We note
that in order to get the sharp constant achieved in Theorem 1, we need to show that 𝐺𝑢 contains a
near-perfect matching.

Let deg𝑢,𝐿(𝑆,𝑤) denote the left degree of (𝑆,𝑤) in 𝐺𝑢 , and let deg𝑢,𝑅(𝑇) denote the right degree
of 𝑇 in 𝐺𝑢 . In the following lemma, we compute the first11 and second moments of the degree
functions. This lemma is the key technical lemma of the proof, and immediately implies the
existence of a degree-bounded subgraph of 𝐺𝑢 of comparable density, as we shall shortly see.

Lemma 4.6 (Second moment bounds for the left and right degree). Let ℓ be a parameter with ℓ ≥ 𝑟
such that 𝑟, ℓ = 𝑜(𝑛1/4). Let 𝐺𝑢 be the graph defined in Definition 4.3. Then, it holds that

E(𝑆,𝑤)[deg𝐿(𝑆,𝑤)2] ≤ (1+ 𝑜(1) + 𝜂)E(𝑆,𝑤)[deg𝐿(𝑆,𝑤)] ,
E𝑇[deg𝑅(𝑇)2] ≤ (1+ 𝑜(1))E𝑇[deg𝑅(𝑇)] .

Here, the 𝑜(1) is 𝑂(ℓ 2)/𝑛 and 𝜂 = 𝑛/
(ℓ
𝑟

)
.

We note that when we apply Lemma 4.6, we will take 𝑟 = 1
2 log2 𝑛 +𝑂(log log 𝑛) and ℓ = 2𝑟 − 1,

which will end up satisfying the conditions with 𝜂 = 1/polylog(𝑛).
We postpone the proof of Lemma 4.6 to Section 4.1. Let us now use Lemma 4.6 to extract a

near-perfect matching from 𝐺𝑢 . We will assume that ℓ , 𝑟 are chosen so that 𝜂 ≤ 1/𝑂(log2 𝑛) = 𝑜(1),
which will be the case when we choose parameters.

Using Lemma 4.6, we apply Chebyshev’s inequality to observe that for the graph 𝐺𝑢 :

1. There are at least (1− 𝑜(1))|𝐿| left vertices with degree 𝑑𝑢,𝐿(1± 𝑜(1)). Let 𝐿′𝑢 denote these left
vertices.

2. There are at least (1− 𝑜(1))|𝑅 | right vertices with degree 𝑑𝑢,𝑅(1± 𝑜(1)). Let 𝑅′𝑢 denote these
right vertices.

Let 𝐺′𝑢 = 𝐺𝑢[𝐿′𝑢 ,𝑅′𝑢] be the induced subgraph. First, we observe that |𝐸(𝐺′𝑢)| ≥ (1 − 𝑜(1))|𝐸(𝐺𝑢)|.
This is because there are at least (1 − 𝑜(1))𝑑𝑢,𝐿 |𝐿′𝑢 | ≥ (1 − 𝑜(1))(1 − 𝑜(1))𝑑𝑢,𝐿 |𝐿| ≥ (1 − 𝑜(1))|𝐸(𝐺)|
edges in 𝐺[𝐿′,𝑅] and at least (1− 𝑜(1))𝑑𝑢,𝑅 |𝑅′𝑢 | ≥ (1− 𝑜(1))(1− 𝑜(1))𝑑𝑢,𝑅 |𝑅 | ≥ (1− 𝑜(1))|𝐸(𝐺)| edges
in 𝐺[𝐿,𝑅′], and therefore 𝐺[𝐿′,𝑅′]must have at least (1− 𝑜(1))|𝐸(𝐺)| edges. Furthermore, each left
vertex in 𝐺′ has degree at most (1+ 𝑜(1))𝑑𝑢,𝐿, and similarly each right vertex has degree at most
(1+ 𝑜(1))𝑑𝑢,𝑅.

11Note that Observation 4.4 computes the first moments already.
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Recall that 𝑛 · 𝑑𝑢,𝐿 = 𝑑𝑢,𝑅 and |𝐿| = |𝑅 | · 𝑛. Therefore, by making 𝑛 copies 𝑇(1), . . . ,𝑇(𝑛) of
each vertex 𝑇 in 𝑅 and splitting the edges equally across all copies (and doing the same induced
transformation on 𝐺′𝑢), we can create a new bipartite graph 𝐺′′𝑢 with left vertex set 𝐿 and right
vertex set 𝑅 × [𝑛]where 𝐺′′𝑢 has max left (or right!) degree (1+ 𝑜(1))𝑑𝑢,𝐿 and at least (1− 𝑜(1))|𝐸(𝐺)|
edges. Therefore, 𝐺′′𝑢 contains a matching 𝑀𝑢 of size at least (1 − 𝑜(1))|𝐸(𝐺)|𝑑𝑢,𝐿 ≥ (1 − 𝑜(1))|𝐿|.
Note that this matching is nearly perfect, as the graph 𝐺′′𝑢 has 2|𝐿| vertices, |𝐿| left vertices and |𝐿|
right vertices.

Step 4: proving the final bound. Recall that we began with a linear map ℒ : {0, 1}𝑘 → {0, 1}𝑛
that is a design 3-LCC. We then built the maps ℒ1 : {0, 1}𝑛 → {0, 1}𝐿 and ℒ2 : {0, 1}𝑛 → {0, 1}𝑅,
where 𝐿 =

([𝑛]
ℓ

)
× [𝑛] and 𝑅 =

([𝑛]
ℓ

)
, and the matchings 𝑀𝑢 for each 𝑢 ∈ [𝑛] on the left vertex set

𝐿 and the right vertex set 𝑅 × [𝑛]. To do this, we needed to apply Lemma 4.6, which requires
that ℓ , 𝑟 = 𝑜(𝑛1/4). We thus set 𝑟 = ⌈1

2 log2 𝑛 + Γ log2 log2 𝑛⌉ for a sufficiently large constant Γ and
ℓ = 2𝑟 − 1, which satisfies the conditions. We additionally have 𝜂 = 1/log2

2 𝑛, as(
ℓ

𝑟

)
=

(
2𝑟 − 1
𝑟

)
≥ 22𝑟−1

2𝑟
≥ 𝑛 · 2Γ log2 log2 𝑛

𝑂(log 𝑛) ≥ 𝑛 · (log2 𝑛)Γ−1−𝑜(1) ≥ 𝑛(log2
2 𝑛) ,

where we use that
(2𝑟−1
𝑡

)
is maximized at 𝑡 = 𝑟 and 𝑡 = 𝑟 − 1.

Let ℒ′2 : {0, 1}𝑛 → {0, 1}𝑅 × [𝑛] be the map where ℒ′2(𝑥)𝑇(ℎ) = ℒ2(𝑥)𝑇 , where 𝑇(ℎ) is the ℎ-th
copy of 𝑇 in 𝑅 × [𝑛]. A simple corollary of Observation 4.5 is that, for any 𝑥 ∈ ℒ, 𝑢 ∈ [𝑛], and edge
((𝑆,𝑤),𝑇(ℎ)) in 𝑀𝑢 , it holds that ℒ1(𝑥)(𝑆,𝑤) +ℒ′2(𝑥)𝑇(ℎ) = 𝑥𝑢 . In particular, since ℒ is systematic, for
any 𝑖 ∈ [𝑘], edge ((𝑆,𝑤),𝑇(ℎ)) in 𝑀𝑢 , and 𝑏 ∈ {0, 1}𝑘 , it holds that ℒ1(𝑥)(𝑆,𝑤) +ℒ′2(𝑥)𝑇(ℎ) = 𝑥𝑖 = 𝑏𝑖 .

Letℒ′ : {0, 1}𝑛 → {0, 1}𝐿∪(𝑅×[𝑛]) � {0, 1}2𝑛𝑁 be the map whereℒ′(𝑥)(𝑆,𝑤) = ℒ1(𝑥) andℒ′(𝑥)𝑇(ℎ) =
ℒ′2(𝑥)𝑇(ℎ) . We have that ℒ ◦ℒ′ is linear map from {0, 1}𝑘 → {0, 1}2𝑛𝑁 and that 𝑀𝑖 is a matching of
size ≥ (1− 𝑜(1))𝑛𝑁 = 1

2 (1− 𝑜(1)) · 2𝑛𝑁 that decodes 𝑏𝑖 . Therefore, by Fact 3.10, we conclude that
(1− 𝑜(1))𝑘 ≤ log2 𝑁 ≤ (ℓ + 1)(log2 𝑛) = 2𝑟 log2 𝑛 = (1+ 𝑜(1))(log2 𝑛)2, which proves Theorem 1.

4.1 Bounding the second moment of the left and right degrees: proof of Lemma 4.6

In this subsection, we compute upper bounds on the second moments of degree functions. This
constitutes the main technical component of the proof.

As one can imagine, computing second moments requires counting the number of chains
𝐶 ∈ ℋ (𝑟)𝑢 where the left half 𝐶𝐿 (or right half 𝐶𝑅) contains a particular set 𝑍. Because of this, we
first prove the following claim.

Claim 4.7 (Ideal smoothness of chains from designs). Let 𝐻 be a design 3-LCC and let 𝐻1, . . . ,𝐻𝑛

be the 3-uniform hypergraphs defined in Remark 3.9. Let 𝑟 ≥ 1 be an integer, and let 𝑍 ⊆ [𝑛] be a
subset of size 𝑡, for some 0 ≤ 𝑡 ≤ 𝑟. Then, the number of chains 𝐶 ∈ ℋ (𝑟)𝑢 with 𝑍 ⊆ 𝐶𝑅 is at most(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡 · 2𝑟 . And, for any 𝑤 ∈ [𝑛], the number of chains 𝐶 ∈ ℋ (𝑟)𝑢 with tail 𝑤 and 𝑍 ⊆ 𝐶𝐿 is at

most
(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡−1 · 2𝑟 if 𝑡 ≤ 𝑟 − 1 and 𝑟! · 2𝑟 if |𝑍 | = 𝑟.

Proof. First, let us count the number of chains 𝐶 ∈ ℋ (𝑟)𝑢 with 𝑍 ⊆ 𝐶𝑅. We compute this in a similar
way to our upper bound on |ℋ (𝑟)𝑢 |. First, we pick the

(𝑟
𝑡

)
locations in 𝐶𝑅 (recall that 𝐶𝑅 is implicitly
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ordered by the order that the vertices appear in the chain) that will contain 𝑍, and then we pick
one of the 𝑡! ways of ordering the entries of 𝑍 in these locations. Formally, we view this as fixing
an ordered tuple 𝑄 ∈ {[𝑛] ∪★}𝑟 , where the set of non-★ elements of 𝑄 is equal to 𝑍. The notation
𝑄ℎ = ★ means that the element 𝑣2(ℎ−1)+2 in the chain 𝐶 is “free”, and 𝑄ℎ = 𝑣 means that we must
have 𝑣2(ℎ−1)+2 = 𝑣.

Next, we count the number of chains as follows. We start with 𝑢0 = 𝑢, and then we choose an
ordered constraint (𝑣1, 𝑣2, 𝑢1) ∈ 𝐻𝑢0 as follows. If 𝑄1 ≠ ★, then we clearly have at most 2 choices,
as we have forced 𝑣2 = 𝑣 for where 𝑣 = 𝑄1, which leaves at most one (unordered) 𝐶 ∈ 𝐻𝑢0 that
contains 𝑣, and then we have 2 ways to order 𝐶. If this is not one of the locations where we have
placed an entry of 𝑍, i.e., 𝑄1 = ★, then we have at most 6𝛿𝑛 choices. In total, we pay at most(𝑟
𝑡

)
𝑡!(6𝛿𝑛)𝑟−|𝑍 |2|𝑍 | =

(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−|𝑍 |2𝑟 .

Now, we fix 𝑤 ∈ [𝑛] and count the number of chains 𝐶 ∈ ℋ (𝑟)𝑢 with tail 𝑤 and 𝑍 ⊆ 𝐶𝐿. We first
observe that if |𝑍 | = 𝑟, then we have at most 2𝑟 · 𝑟! choices. Indeed, this means that 𝑍 = 𝐶𝐿, so we
first pick an ordering on 𝑍 (to determine the ordering of the vertices in 𝐶𝐿), and then we pay a
factor of 2 per step in the chain (as in the analysis in the previous paragraph). In total, there are
2𝑟 · 𝑟! choices.

Next, suppose that |𝑍 | ≤ 𝑟 − 1. As before, we pay
(𝑟
𝑡

)
· 𝑡! to determine 𝑄, i.e., the locations and

ordering of 𝑍 within the (ordered) set 𝐶𝐿. Let us now consider a fixed choice of the locations and
ordering. We have two cases.

In the first case, suppose that 𝑄𝑟 = ★, i.e., the vertex of 𝐶𝐿 in the “last link” (namely, 𝑣2(𝑟−1)+1),
is not one of the locations chosen. Then, we can proceed as in the case of 𝐶𝑅, where we pay a factor
of 2 to choose a link where 𝑣2ℎ+1 is determined by 𝑄, and a factor of 6𝛿𝑛 on the other steps. There
is one exception, which is the last step of the chain. Now, because we have also fixed the tail 𝑤,
there are again only 2 choices for this step, even though 𝑄𝑟 = ★. Thus, in total, we have paid at
most 2|𝑍 |+1(6𝛿𝑛)𝑟−|𝑍 |−1 = (3𝛿𝑛)𝑟−|𝑍 | · 2𝑟 .

In the second case, suppose that 𝑄𝑟 ≠ ★, so that the vertex 𝑣2(𝑟−1)+1 is one of the locations chosen.
Let ℎ∗ denote the index of the last ★ in 𝑄, so 𝑄ℎ∗ = ★ and 𝑄ℎ ≠ ★ for all ℎ∗ < ℎ ≤ 𝑟. We now start
at the tail of the chain and work our way backwards until we reach the ℎ-th link in the chain. In
the first step, we have already fixed the tail 𝑤 and the vertex 𝑣2(𝑟−1)+1, and so because 𝐻 is a design,
there are at most 2 ordered tuples (𝑣, 𝑣′, 𝑣2(𝑟−1)+1,𝑤) where {𝑣, 𝑣′, 𝑣2(𝑟−1)+1,𝑤} ∈ 𝐻, as there is one
such unordered tuple and then we can swap the locations of 𝑣 and 𝑣′. We continue backwards
along the chain in this way until we reach the location ℎ∗, so that 𝑣2(ℎ∗−1)+1 is not determined by 𝑄
since 𝑄ℎ∗ = ★. In particular, we have completely determined 𝑢ℎ∗ , along with the all elements after
𝑢ℎ∗ in the chain, namely (𝑣2ℎ∗+1, 𝑣2ℎ∗+2, . . . , 𝑢𝑟).

Next, we proceed from the start of the chain, again paying 2 for each non-★ entry and 6𝛿𝑛
for each ★ entry, until we reach the ℎ∗-th link. We have thus determined the chain up until (and
including) 𝑢ℎ∗−1, i.e., (𝑢0, 𝑣1, 𝑣2, . . . , 𝑢ℎ∗−1). For the final 2 vertices (𝑣2(ℎ∗−1)+1, 𝑣2(ℎ∗−1)+2), we have at
most 2 choices, because there is at most one hyperedge in 𝐻𝑢ℎ∗−1 that contains 𝑢ℎ∗ , and then we
have 2 ways to order the vertices. In total, we have paid (6𝛿𝑛)𝑟−|𝑍 |−1 · 2|𝑍 |+1 = (3𝛿𝑛)𝑟−|𝑍 |−1 · 2𝑟 , the
same as in the other case.

In total, when |𝑍 | = 𝑡 ≤ 𝑟 − 1, we have at most
(𝑟
𝑡

)
𝑡!(3𝛿𝑛)𝑟−|𝑍 |−1 · 2𝑟 choices. □
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With Claim 4.7 in hand, we are almost ready to compute the second moments. To begin, we
will first compute good upper bounds on the first moments E(𝑆,𝑤)[deg𝑢,𝐿(𝑆,𝑤)] and E𝑇[deg𝑢,𝑅(𝑇)].
For the remainder of the proof, we may omit the subscript 𝑢 in some places for convenience.

We have
1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛 − 4𝑟)𝑟 ≤ 𝑑𝑅 = E𝑇[deg𝑅(𝑇)] ≤

1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛)𝑟 ,

1
𝑛 ·

(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛 − 4𝑟)𝑟 ≤ 𝑑𝐿 = E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)] ≤ 1

𝑛 ·
(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛)𝑟 .

This is because each chain 𝐶 contributes
(𝑛−2𝑟
ℓ−𝑟

)
edges to the graph 𝐺, and we have already computed

(6𝛿𝑛 − 4𝑟)𝑟 ≤ |ℋ (𝑟)𝑢 | ≤ (6𝛿𝑛)𝑟 . We also clearly have (6𝛿𝑛 − 4𝑟)𝑟 ≥ (6𝛿𝑛)𝑟(1 −𝑂(𝑟2/𝑛)), and so we
have: (

1− 𝑂(𝑟
2)

𝑛

)
1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛)𝑟 ≤ 𝑑𝑅 = E𝑇[deg𝑅(𝑇)] ≤

1(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
(6𝛿𝑛)𝑟 , (1)(

1− 𝑂(𝑟
2)

𝑛

)
1

𝑛 ·
(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛)𝑟 ≤ 𝑑𝐿 = E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)] ≤ 1

𝑛 ·
(𝑛
ℓ

) (𝑛 − 2𝑟
ℓ − 𝑟

)
· (6𝛿𝑛)𝑟 . (2)

Computing second moment of the right degree. We now compute the second moments. We will
begin with E𝑇[deg𝑅(𝑇)2], as this case is simpler. We have

E𝑇[deg𝑅(𝑇)2]
≤

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤′)

Pr[𝐶𝑅,𝐶′𝑅 ⊆ 𝑇] (𝑇 adjacent to edge labeled by 𝐶 implies 𝐶𝑅 ⊆ 𝑇)

=
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤′)
|𝐶𝑅∩𝐶′𝑅 |=𝑡

Pr[𝐶𝑅,𝐶′𝑅 ⊆ 𝑇]

=
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤′)
|𝐶𝑅∩𝐶′𝑅 |=𝑡

( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛
ℓ

) (as 𝐶𝑅 ∪ 𝐶′𝑅 ⊆ 𝑇 and |𝐶𝑅 ∪ 𝐶′𝑅 | = 2𝑟 − 𝑡)

≤
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

(
𝑟

𝑡

)
·
(
𝑟

𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡 · 2𝑟 ·

( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛
ℓ

) (by Claim 4.7 and
(
𝑟

𝑡

)
to pick 𝑍 ⊆ 𝐶𝑅 where 𝐶𝑅 ∩ 𝐶′𝑅 = 𝑍)

≤
𝑟∑
𝑡=0

(6𝛿𝑛)𝑟
(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)𝑟−𝑡 · 2𝑟 ·

( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛
ℓ

)
≤

(
1+ 𝑂(𝑟

2)
𝑛

)
𝑑2
𝑅

𝑟∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)−𝑡

(𝑛
ℓ

) ( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) (by Eq. (1) .

Now, we apply Fact 3.12 to conclude that

E𝑇[deg𝑅(𝑇)2] ≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝑅

𝑟∑
𝑡=0

(
𝑟

𝑡

)
(3𝛿𝑛)−𝑡𝑛𝑡

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

)
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=

(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝑅

𝑟∑
𝑡=0

(3𝛿)−𝑡
(𝑟
𝑡

) (ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) .

Now, we observe that
∑𝑟
𝑡=0
(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

= 1, as this is the probability mass function of a hypergeometric

distribution, and that 3𝛿 = 1− 1
𝑛 (as 𝐻 is a design), and so (3𝛿)−𝑡 ≤ (3𝛿)−𝑟 ≤

(
1+ 𝑂(𝑟)

𝑛

)
. Thus,

E𝑇[deg𝑅(𝑇)2] ≤
(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝑅 ,

which gives the desired bound on the second moment.

Computing second moment of left degree. We now compute E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2]. We have

E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2] ≤
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤),𝐶′=(𝐶′
𝐿
,𝐶′
𝑅

,𝑤)
Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤] (both chains have same fixed tail 𝑤)

=
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤]

=

©«
∑

𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤]
ª®®®®¬
+

(𝑛−2𝑟
ℓ−𝑟

)
𝑛 ·

(𝑛
ℓ

) · (6𝛿𝑛)𝑟 · 𝑟!2𝑟 ,

where the last equality is because when 𝑡 = 𝑟, then 𝐶𝐿 = 𝐶′
𝐿
, and so Pr[𝐶𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤] = (

𝑛−2𝑟
ℓ−𝑟 )
𝑛·(𝑛ℓ )

,

and by Claim 4.7, there are 𝑟!2𝑟 choices for 𝐶′.
Let us quickly handle this second term. We have by Eq. (2),(𝑛−2𝑟

ℓ−𝑟
)

𝑛 ·
(𝑛
ℓ

) · (6𝛿𝑛)𝑟 · 𝑟!2𝑟 ≤ (
1+ 𝑂(𝑟

2)
𝑛

)
𝑑𝐿 · 𝑟!2𝑟 .

We now compare 𝑑𝐿 and 𝑟!2𝑟 . By Eq. (2), we have

𝑑𝐿 ≥
(
1− 𝑂(𝑟

2)
𝑛

)
ℓ !
𝑛ℓ+1
· (𝑛 − 2𝑟)ℓ−𝑟
(ℓ − 𝑟)! · (6𝛿𝑛)

𝑟 ≥
(
1− 𝑂(𝑟

2)
𝑛
− 𝑂(𝑟ℓ )

𝑛

)
(6𝛿)𝑟 · 1

𝑛
· ℓ !
(ℓ − 𝑟)! .

Therefore,

𝑑𝐿

2𝑟𝑟!
≥

(
1− 𝑂(𝑟

2)
𝑛
− 𝑂(𝑟ℓ )

𝑛

)
(3𝛿)𝑟 · 1

𝑛
· ℓ !
(ℓ − 𝑟)!𝑟! =

(
1− 𝑂(𝑟

2)
𝑛
− 𝑂(𝑟ℓ )

𝑛

) (
1− 1

𝑛

) 𝑟
· 1
𝑛
·
(
ℓ

ℓ − 𝑟

)
=

(
1− 𝑂(𝑟ℓ )

𝑛

) (
1− 1

𝑛

) 𝑟
· 1
𝑛
·
(
ℓ

ℓ − 𝑟

)
.

As
( ℓ
ℓ−𝑟

)
= 𝜂𝑛 is the definition of 𝜂 in Lemma 4.6, we conclude that

𝑑𝐿

2𝑟𝑟!
≥ 𝜂

(
1− 𝑂(𝑟ℓ )

𝑛

)
,
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and so the second term is 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
.

We now return to the main calculation. We have

E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2] ≤
©«

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

Pr[𝐶𝐿,𝐶′𝐿 ⊆ 𝑆 ∧ 𝑣 = 𝑤]
ª®®®®¬
+ 𝜂𝑑2

𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

∑
𝐶′=(𝐶′

𝐿
,𝐶′
𝑅

,𝑤)
|𝐶𝐿∩𝐶′𝐿 |=𝑡

( 𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

) (as 𝐶𝐿 ∪ 𝐶′𝐿 ⊆ 𝑆 and |𝐶𝐿 ∪ 𝐶′𝐿 | = 2𝑟 − 𝑡)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+

∑
𝐶=(𝐶𝐿,𝐶𝑅 ,𝑤)

𝑟−1∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!2𝑟(3𝛿𝑛)𝑟−𝑡−1

( 𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

) (by Claim 4.7 and
(
𝑟

𝑡

)
to pick 𝑍 = 𝐶𝐿 ∩ 𝐶′𝐿)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+

𝑟−1∑
𝑡=0

(6𝛿𝑛)𝑟
(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!2𝑟(3𝛿𝑛)𝑟−𝑡−1

( 𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

)
≤ 𝜂𝑑2

𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+ (6𝛿𝑛)

2𝑟

3𝛿𝑛

𝑟−1∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)−𝑡

( 𝑛
ℓ−(2𝑟−𝑡)

)
𝑛
(𝑛
ℓ

)
≤ 𝜂𝑑2

𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+

(
1+ 𝑂(𝑟

2)
𝑛

)
𝑑2
𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(
𝑟

𝑡

) (
𝑟

𝑡

)
𝑡!(3𝛿𝑛)−𝑡

(𝑛
ℓ

) ( 𝑛
ℓ−(2𝑟−𝑡)

)(𝑛−2𝑟
ℓ−𝑟

) (𝑛−2𝑟
ℓ−𝑟

) (by Eq. (2))

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+

(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(
𝑟

𝑡

)
(3𝛿𝑛)−𝑡𝑛𝑡

(ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) (by Fact 3.12)

≤ 𝜂𝑑2
𝐿

(
1+ 𝑂(𝑟ℓ )

𝑛

)
+

(
1+ 𝑂(ℓ

2)
𝑛

)
𝑑2
𝐿 · (3𝛿)

−1
𝑟−1∑
𝑡=0

(3𝛿)−𝑡
(𝑟
𝑡

) (ℓ−𝑟
𝑟−𝑡

)(ℓ
𝑟

) .

Now, we have
∑𝑟
𝑡=0
(𝑟𝑡)(ℓ−𝑟𝑟−𝑡)
(ℓ𝑟)

= 1 as this is the probability mass function of a hypergeometric distri-

bution. As 3𝛿 = 1− 1/𝑛, it follows that (3𝛿)−𝑡−1 ≤ (3𝛿)−𝑟 ≤ 1+𝑂(𝑟/𝑛), and therefore we conclude
that E(𝑆,𝑣)[deg𝐿(𝑆, 𝑣)2] ≤

(
1+ 𝑂(ℓ2)

𝑛 + 𝜂
)
𝑑2
𝐿
.

5 From Adaptive Decoders to Chain Polynomials

In this section, we begin the proof of Theorem 2. We will transform a 3-LCC with an adaptive
decoder into a system of satisfiable polynomial constraints that we call “chain polynomials”. The
polynomials will be products of AND polynomials, which we recall below.

Definition 5.1 (AND polynomial). Let AND: {−1, 1}2 → {0, 1} be the function where AND(𝜎, 𝜎′) =
1 if 𝜎 = 𝜎′ = 1, and 0 otherwise. We note that AND(𝜎, 𝜎′) = 1

2 (1+ 𝜎) · 1
2 (1+ 𝜎′).

The key structure that we shall extract from the 3-LCC is captured by the following lemma.
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Lemma 5.2. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a 3-LCC with an adaptive decoder Dec(·). Then, for every
𝑢 ∈ [𝑛], there are weight functions wt𝐻𝑢 : [𝑛] × {−1, 1} × [𝑛] × {−1, 1} × [𝑛] → R≥0 and wt𝐺𝑢 : [𝑛] ×
{−1, 1} × [𝑛] × {−1, 1} → R≥0 and bits 𝜎(𝑢,𝑣1,𝑎1,𝑣2,𝑎2,𝑣3) ∈ {−1, 1}, 𝜎(𝑢,𝑣1,𝑎1,𝑣2,𝑎2) ∈ {−1, 1} such that for
every 𝑥 ∈ 𝒞,

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)

©«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ = 4 , (3)

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)

©«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1 , (4)

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)

©«wt𝐺𝑢 (𝐶)𝜎(𝑢,𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)𝜎(𝑢,𝐶,𝑣3)𝑥𝑣3
ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = E[Dec𝑥(𝑢)𝑥𝑢] ,

(5)

where the expectation E[Dec𝑥(𝑢)𝑥𝑢] is over the internal randomness of the decoder. In particular, if Dec has
perfect completeness, then E[Dec𝑥(𝑢)𝑥𝑢] = 1.

Furthermore, if Dec(·) is 𝛿-smooth, then for any 𝑣 ∈ [𝑛], we have∑
(𝐶,𝑣3)=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)
𝑣1=𝑣∨𝑣2=𝑣∨𝑣3=𝑣

wt𝐻𝑢 (𝐶, 𝑣3) +
∑

𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)
𝑣1=𝑣∨𝑣2=𝑣

wt𝐺𝑢 (𝐶) ≤
4
𝛿𝑛

.

We prove Lemma 5.2 in Section 5.1.
We now continue and use the above collection of polynomials to construct polynomial chains, a

generalization of chain XOR instances defined in [KM23].

Definition 5.3 (𝑡-chain hypergraphℋ (𝑡)𝑢 ). Let 𝑡 ≥ 1 be an integer. For any 𝑢 ∈ [𝑛], letℋ (𝑡)𝑢 denote
the weight function wtℋ (𝑡)𝑢 :

(
[𝑛] × ([𝑛] × {−1, 1})2

) 𝑡 × [𝑛] → R≥0, i.e., from tuples of the form 𝐶 =

(𝑢0, 𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑢1, 𝑣3, 𝑎3, 𝑣4, 𝑎4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑎2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑎2(𝑡−1)+1, 𝑢𝑡) to R≥0, where
wtℋ (𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and otherwise:

wtℋ (𝑡)𝑢 (𝐶) =
𝑡−1∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑎2ℎ+1, 𝑣2ℎ+2, 𝑎2ℎ+2, 𝑢ℎ+1) .

For a 𝑡-chain 𝐶, we call 𝑢0 the head, the 𝑢ℎ’s the pivots for 1 ≤ ℎ ≤ 𝑡 − 1, and 𝑢𝑡 the tail of
the chain 𝐶. We call 𝐶𝐿 = (𝑣1, 𝑎1, 𝑣3, 𝑎3, . . . , 𝑣2(𝑡−1)+1, 𝑎2(𝑡−1)+1) the left half of the chain and 𝐶𝑅 =

(𝑣2, 𝑎2, 𝑣4, 𝑎4, . . . , 𝑣2(𝑡−1)+2, 𝑎2(𝑡−1)+2) the right half.
The ℎ-th link in defined to be (𝑢ℎ , 𝑣2ℎ+1, 𝑎2ℎ+1, 𝑣2ℎ+2, 𝑎2ℎ+2, 𝑢ℎ+1).

Definition 5.4 (𝑡-chain hypergraph 𝒢(𝑡)𝑢 ). Let 𝑡 ≥ 1 be an integer. For any 𝑢 ∈ [𝑛], let 𝒢(𝑡)𝑢 de-
note the weight function wt𝒢(𝑡)𝑢 :

(
[𝑛] × ([𝑛] × {−1, 1})2

) 𝑡 → R≥0, i.e., from tuples of the form 𝐶 =
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(𝑢0, 𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑢1, 𝑣3, 𝑎3, 𝑣4, 𝑎4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑎2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑎2(𝑡−1)+1)12 to R≥0, where wt𝒢(𝑡)𝑢 (𝐶) =
0 if 𝑢0 ≠ 𝑢, and otherwise:

wt𝒢(𝑡)𝑢 (𝐶) = wt𝐺𝑢𝑡−1
(𝑣2(𝑡−1)+1, 𝑎2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑎2(𝑡−1)+2) ·

𝑡−2∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑎2ℎ+1, 𝑣2ℎ+2, 𝑎2ℎ+2, 𝑢ℎ+1) .

As before, we call 𝐶𝐿 = (𝑣1, 𝑎1, 𝑣3, 𝑎3, . . . , 𝑣2(𝑡−1)+1, 𝑎2(𝑡−1)+1) the left half of the chain and 𝐶𝑅 =

(𝑣2, 𝑎2, 𝑣4, 𝑎4, . . . , 𝑣2(𝑡−1)+2, 𝑎2(𝑡−1)+2) the right half.
Note that the chains in 𝒢(𝑡) have no tail vertex 𝑢𝑡 . We call the 𝑡-chain hypergraph 𝒢(𝑡)𝑢 “graph-

tailed”, as the “last link” has 2 vertices only.

Remark 5.5 (Iterative view of the chain construction). We can view the chains as being constructed
iteratively in the following way. We start with a fixed 𝑢0. Then, we add (𝑣1, 𝑎2, 𝑣2, 𝑎2). We now
have 2 choices. We can either stop (and the chain is then in 𝒢(1)𝑢 ), or we can add 𝑢1 to the end of the
chain (and then the chain is inℋ (1)𝑢 ). For each chain inℋ (1)𝑢 , we can then continue by adding on a
“link” at 𝑢1. On the other hand, there is no way to continue a chain in 𝒢(1)𝑢 in this way, as it does not
contain 𝑢1.

Definition 5.6 (Chain Polynomials). Let 𝐶 = (𝑢0, 𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑢1, . . . , 𝑢𝑡) be a 𝑡-chain inℋ (𝑡)𝑢 . The
chain polynomial, denoted by 𝑓𝐶 is a polynomial in the variables 𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 , 𝑥𝑢𝑡 (where 𝐶𝐿 and 𝐶𝑅
are the right and left halves of the chains), defined as

𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 , 𝑥𝑢𝑡 ) = 𝑥𝑢𝑡

𝑡−1∏
ℎ=0

AND(𝑎2ℎ+1𝑥𝑣2ℎ+1 , 𝑎2ℎ+2𝑥𝑣2ℎ+2)𝜎(𝑢ℎ−1,𝑣2ℎ+1,𝑎2ℎ+1,𝑣2ℎ+2,𝑎2ℎ+2,𝑢ℎ) .

For a chain 𝐶 ∈ 𝒢(𝑡)𝑢 , we let

𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 ) =
𝑡−1∏
ℎ=0

AND(𝑎2ℎ+1𝑥𝑣2ℎ+1 , 𝑎2ℎ+2𝑥𝑣2ℎ+2)𝜎(𝑢ℎ−1,𝑣2ℎ+1,𝑎2ℎ+1,𝑣2ℎ+2,𝑎2ℎ+2) .

We are now ready to state the key facts about the chain polynomials.

Claim 5.7 (Key facts of chain polynomials). Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a systematic 3-LCC with
a (potentially adaptive) decoder. Fix 𝑟 ≥ 0, and for 1 ≤ 𝑡 ≤ 𝑟 + 1, let 𝒢(𝑡)𝑢 ,ℋ (𝑡)𝑢 for 𝑢 ∈ [𝑛] be the
chains defined in Definitions 5.3 and 5.4, constructed from the polynomial system of equations in
Lemma 5.2. Then, for each 𝑢 ∈ [𝑛], the following holds:

(1) The chain polynomials correctly decode 𝑥𝑢 . Namely, for each 𝑥 ∈ 𝒞, it holds that

𝑥𝑢
©«

∑
𝐶∈ℋ (𝑟+1)

𝑢

wtℋ (𝑟+1)
𝑢
(𝐶) 𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 , 𝑥𝑢𝑟+1) +

𝑟∑
𝑡=1

∑
𝐶∈𝒢(𝑡)𝑢

wt𝒢(𝑡)𝑢 (𝐶) 𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 )
ª®®¬ = 1 ,

12Note the difference with Definition 5.3: there is no final tail vertex here.
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(2) The total weight of the chains of length at most 𝑟 + 1 is∑
𝐶∈ℋ (𝑟+1)

𝑢

wtℋ (𝑡)𝑢 (𝐶) +
𝑟+1∑
𝑡=1

∑
𝐶∈𝒢(𝑡)𝑢

wt𝒢(𝑡)𝑢 (𝐶) ≤ 4𝑟+1 .

Proof. Let us first show the first equation. We prove this by induction on 𝑟. The base case of 𝑟 = 0 is
simple, as we have

𝑥𝑢
©«

∑
𝐶∈ℋ (1)𝑢

wtℋ (1)𝑢 (𝐶) 𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 , 𝑥𝑢1) +
∑
𝐶∈𝒢(1)𝑢

wt𝒢(1)𝑢 (𝐶) 𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 )
ª®®¬

= 𝑥𝑢
©«

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3)

wt𝐻𝑢 (𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝜎(𝑢,𝐶)𝑥𝑣3 +
∑

𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)
wt𝐺𝑢 (𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2)𝜎(𝑢,𝐶)

ª®¬
= E[𝑥𝑢Dec𝑥(𝑢)] = 1 (by Eq. (5)) .

We now prove the induction step. Suppose that

𝑥𝑢
©«

∑
𝐶∈ℋ (𝑟)𝑢

wtℋ (𝑟)𝑢 (𝐶) 𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 , 𝑥𝑢𝑟 ) +
𝑟∑
𝑡=1

∑
𝐶∈𝒢(𝑡)𝑢

wt𝒢(𝑡)𝑢 (𝐶) 𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 )
ª®®¬ = 1 .

We then have that for each 𝐶 ∈ ℋ (𝑟)𝑢 with tail 𝑢𝑟 and wtℋ (𝑟)𝑢 (𝐶) > 0,

𝑓𝐶(𝑥 |𝐶𝐿 , 𝑥 |𝐶𝑅 , 𝑥𝑢𝑟 ) =
(
𝑟−1∏
ℎ=0

AND(𝑎2ℎ+1𝑥𝑣2ℎ+1 , 𝑎2ℎ+2𝑥𝑣2ℎ+2)𝜎(𝑢ℎ−1,𝑣2ℎ+1,𝑎2ℎ+1,𝑣2ℎ+2,𝑎2ℎ+2,𝑢ℎ)

)
· 𝑥𝑢𝑟 ,

and we have (via the base case) that

𝑥𝑢𝑟 =
∑

𝐶=(𝑣2𝑟+1,𝑎2𝑟+1,𝑣2𝑟+2,𝑎2𝑟+2,𝑢𝑟+1)
wt𝐻𝑢 (𝐶)AND(𝑎2𝑟+1𝑥𝑣2𝑟+1 , 𝑎2𝑟+2𝑥𝑣2𝑟+2)𝜎(𝑢𝑟 ,𝐶,𝑢𝑟+1)𝑥𝑢𝑟+1

+
∑

𝐶=(𝑣2𝑟+1,𝑎2𝑟+1,𝑣2𝑟+2,𝑎2𝑟+2)
wt𝐺𝑢 (𝐶)AND(𝑎2𝑟+1𝑥𝑣2𝑟+1 , 𝑎2𝑟+2𝑥𝑣2𝑟+2)𝜎(𝑢𝑟 ,𝐶) .

We now simply multiply the two polynomials and sum over 𝐶 ∈ ℋ (𝑟)𝑢 to finish the proof of Item (1).
We now turn to Item (2). We will again prove this by induction, where the base case follows

from Eq. (3). To prove the induction step, we observe that∑
𝐶∈ℋ (𝑟+1)

𝑢

wtℋ (𝑟+1)
𝑢
(𝐶) +

∑
𝐶∈𝒢(𝑟+1)

𝑢

wt𝒢(𝑟+1)
𝑢
(𝐶) = 4

∑
𝐶∈ℋ (𝑟)𝑢

wtℋ (𝑟)𝑢 (𝐶) .

Indeed, this follows by (1) picking a length 𝑟-chain 𝐶, (2) extending it to a length 𝑟 + 1 chain (that is
either inℋ (𝑟+1)

𝑢 or 𝒢(𝑟+1)
𝑢 ), and then applying Eq. (3). We then have by the induction hypothesis∑

𝐶∈ℋ (𝑟+1)
𝑢

wtℋ (𝑟+1)
𝑢
(𝐶) +

𝑟+1∑
𝑡=1

∑
𝐶∈𝒢(𝑡)𝑢

wt𝒢(𝑡)𝑢 (𝐶) = 4
∑

𝐶∈ℋ (𝑟)𝑢

wtℋ (𝑟)𝑢 (𝐶) +
𝑟∑
𝑡=1

∑
𝐶∈𝒢(𝑡)𝑢

wt𝒢(𝑡)𝑢 (𝐶)
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≤ 4
©«

∑
𝐶∈ℋ (𝑟)𝑢

wtℋ (𝑟)𝑢 (𝐶) +
𝑟∑
𝑡=1

∑
𝐶∈𝒢(𝑡)𝑢

wt𝒢(𝑡)𝑢 (𝐶)
ª®®¬ ≤ 4𝑟+1 ,

which finishes the proof of Item (2). □

We are now ready to define the chain polynomial instances.

Definition 5.8 (Chain polynomial instance). Let 𝑟 ≥ 1 be an integer and let 𝑏 ∈ {−1, 1}𝑘 . For each
1 ≤ 𝑡 ≤ 𝑟, we define the “graph-tailed” polynomial

Φ
(𝑡)
𝑏
(𝑥) =

𝑘∑
𝑖=1

∑
𝐶∈𝒢(𝑡)

𝑖

wt𝒢(𝑡)
𝑖

(𝐶) · 𝑏𝑖 𝑓𝐶(𝑥) ,

and we also define the “hypergraph-tailed” polynomial

Ψ𝑏(𝑥) =
𝑘∑
𝑖=1

∑
𝐶∈ℋ (𝑟+1)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) · 𝑏𝑖 𝑓𝐶(𝑥) .

We will omit the subscript 𝑏 when it is clear from context. We note that in the above definitions,
each 𝑓𝐶 is the chain polynomial as defined in Definition 5.6.

With the above setup in hand, we can now state the main technical lemmas.

Lemma 5.9 (Refuting the chain polynomial instances). Let ℓ , 𝑑, 𝑟 be parameters such that 𝑑𝑟 ≥ 𝑛,
ℓ ≥ 6𝑑𝑟/𝛿, and ℓ 𝑟 = 𝑜(𝑛).13 Furthermore, suppose that 𝑘 ≥ 1/𝛿. Then, for every 1 ≤ 𝑡 ≤ 𝑟 + 1, it holds
that

E𝑏←{−1,1}𝑘 [val(Φ(𝑡)
𝑏
)] ≤ 4𝑡𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤ 4𝑟
(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
.

We now use Lemma 6.6 to finish the proof.

Proof of Theorem 2 from Lemma 6.6. By construction of the chain polynomials, i.e., Claim 5.7, we
have that for every 𝑏 ∈ {−1, 1}𝑘 and 𝑥 = 𝒞(𝑏), Ψ𝑏(𝑥) +

∑𝑟+1
𝑡=1 Φ

(𝑡)
𝑏
(𝑥) = 𝑘. This is because 𝑏𝑖 = 𝑥𝑖 (as

the code is systematic), and by Claim 5.7, the “𝑏𝑖 part” of the polynomial is equal to 𝑥𝑖 when 𝑥 is a
codeword. Therefore, there must exist 𝑡 such that E𝑏[val(Φ(𝑡)

𝑏
)] ≥ 𝑘/(𝑟 + 2), or else E𝑏[val(Ψ𝑏(𝑥))] ≥

𝑘/(𝑟 + 2).
Let us take 𝑟 = 𝑂(

√
log 𝑛), 𝑑 = 2𝑂(

√
log 𝑛), and ℓ = 𝑂(𝑑𝑟/𝛿) = 𝛿−12𝑂(

√
log 𝑛)√log 𝑛. We clearly

have that all the conditions of Lemma 6.6 are satisfied.
If E𝑏[val(Φ(𝑡)

𝑏
)] ≥ 𝑘/(𝑟 + 2) for some 𝑡, then we have

𝑘

𝑟 + 2
≤ E𝑏[val(Φ(𝑡)

𝑏
)] ≤ 4𝑡𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

13Note that this is achievable by setting ℓ = 6𝑑𝑟/𝛿 and 𝑟 = 𝑂(log 𝑛/log 𝑑).
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=⇒ 𝑘 ≤ 𝑟24𝑂(𝑡)𝑂(ℓ 𝑟 log 𝑛) ≤ 𝑟24𝑂(𝑟)𝑂(ℓ 𝑟 log 𝑛)

≤ 2𝑂(
√

log 𝑛) ·
𝑟4 log 𝑛

𝛿
≤ 2𝑂(

√
log 𝑛)

=⇒ (log 𝛿𝑘) ≤ 𝑂(
√

log 𝑛) ,

or equivalently, 𝑛 ≥ 2Ω((log 𝛿𝑘)2) = (𝛿𝑘)Ω(log(𝛿𝑘)).
Otherwise, if E𝑏[val(Ψ𝑏(𝑥))] ≥ 𝑘/(𝑟 + 2), then we have

𝑘

𝑟 + 2
≤ E𝑏[val(Ψ𝑏(𝑥))] ≤ 4𝑟

(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2

=⇒ 𝑘 ≤ 𝑟6

𝛿2
2𝑂(𝑟)𝑂(ℓ 𝑟 log 𝑛) = 1

𝛿3
2𝑂(
√

log 𝑛)

=⇒ 𝛿3𝑘 ≤ 2𝑂(
√

log 𝑛)

=⇒ 𝑛 ≥ (𝛿3𝑘)Ω(log 𝛿3𝑘) .

This finishes the proof; we note that the additional log(1/𝛿)-factor comes from Fact 3.4, we loses a
factor of log(1/𝛿) in 𝑘 when one makes the code systematic. □

The remainder of paper is dedicated to proving Lemmas 5.2 and 5.9. First, we show Lemma 5.2
in Section 5.1. Then, in Section 6, we generalize the chain XOR instances of [KM23] to weighted,
directed, and nonuniform hypergraphs, and we show (in Section 6.1 that refuting these “nicer”
polynomials (Lemma 6.6) suffices to prove Lemma 5.9. We then break the proof of Lemma 6.6
across Sections 7 to 10, which will complete the proof of Theorem 2.

5.1 Constructing Polynomials from Adaptive Smoothed Decoders

In this subsection, we prove Lemma 5.2. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a systematic 3-LCC an
adaptive decoder. For each 𝑢 ∈ [𝑛], we use the decoding algorithm Dec(𝑢) to weight functions
wt𝐻𝑢 and wt𝐺𝑢 . In what follows, we consider a fixed 𝑢 ∈ [𝑛].

First, without loss of generality, we may assume that the decoder Dec(𝑢)makes exactly 3 queries.
We can view the decoder as a decision tree: first, Dec(𝑢) generates the first query 𝑣1 from some
distribution. Then, Dec(𝑢) receives a bit 𝑎1 ∈ {−1, 1}, the answer to the query 𝑣1. This answer
selects the branch of the decision tree, which determines the distribution of the next query 𝑣2. Then,
the decoder receives another answer 𝑎2 ∈ {−1, 1}, which selects the branch of the decision tree, and
gives the distribution of the final query 𝑣3. Finally, the decoder receives an answer 𝑎3, and then it
computes a (deterministic) function 𝑓(𝑣1,𝑎1,𝑣2,𝑎2) of 𝑎3 to produce its output. This function must be
deterministic as it must always output 𝑥𝑢 , by perfect completeness.14 We note that there are exactly
4 valid deterministic functions: 1, −1, 𝑎3, and −𝑎3, so 𝑓(𝑣1,𝑎1,𝑣2,𝑎2) must be one of these.

For each choice of 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3) ∈ ([𝑛] × {−1, 1})2 × [𝑛], we let wt𝑢(𝐶) be the probability
that the decoder makes the set of queries 𝐶 (with the appropriate answers) when given oracle

14We note that if the function is not deterministic then it is simply a convex combination of deterministic functions,
and we can also handle this case. See Appendix A.
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access to any 𝑥 that is consistent with 𝐶, meaning that 𝑥𝑣1 = 𝑎1 and 𝑥𝑣2 = 𝑎2. Indeed, this does not
depend on the choice of 𝑥, as there is some probability 𝑝𝑣1 that the decoder queries 𝑣1 (which does
not depend on 𝑥), and then given 𝑥𝑣1 = 𝑎1, there is a probability 𝑝𝑣2 that the decoder queries 𝑣2, etc.

We now partition the query sets into two types. If 𝐶 is such that 𝑓(𝑣1,𝑎1,𝑣2,𝑎2) is a constant
function 𝜎 ∈ {−1, 1} (so it does not depend on 𝑎3), then we set wt𝐺𝑢 (𝑣1, 𝑎1, 𝑣2, 𝑎2) = wt𝑢(𝐶)
and 𝜎(𝑣1,𝑎1,𝑣2,𝑎2) = 𝜎. Otherwise, we have that 𝐶 is such that 𝑓(𝑣1,𝑎1,𝑣2,𝑎2) = 𝜎𝑎3, and then we set
wt𝐻𝑢 (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3) = wt𝑢(𝐶) and 𝜎(𝑣1,𝑎1,𝑣2,𝑎2,𝑣3) = 𝜎.

We now show that this weight function has the desired properties. Indeed, we have essentially
encoded the behavior of the arbitrary decoder as this system of polynomials.

First, let us show that ∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)

©«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ = 4 .

Consider the decoder Dec′(𝑢) that simulates Dec𝑢 by generating random bits as the answers to the
queries of Dec(𝑢). It follows that the probability that Dec′(𝑢) queries a particular 𝐶 is wt(𝐶)/4, and
hence Eq. (3) holds.

Next, let us show that for any 𝑥 ∈ 𝒞∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)

©«wt𝐺𝑢 (𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1 .

Indeed, we observe that for any 𝑥 ∈ 𝒞 and any 𝐶, wt𝐻𝑢 (𝐶, 𝑣3) · AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) is 0 if 𝐶 is
inconsistent with 𝑥, and otherwise it is the probability that Dec𝑥(𝑢) queries 𝐶, and the same
statement holds for wt𝐺𝑢 (𝐶)AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2). Hence, the sum must be 1.

Finally, we have

𝑥𝑢

∑
𝐶=(𝑣1,𝑎1,𝑣2,𝑎2)

©«wt𝐺𝑢 (𝐶)𝜎(𝑢,𝐶) +
∑
𝑣3∈[𝑛]

wt𝐻𝑢 (𝐶, 𝑣3)𝜎(𝑢,𝐶,𝑣3)𝑥𝑣3
ª®¬ ·AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = E[Dec𝑥(𝑢)𝑥𝑢] .

Indeed, this is because for any 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3) and any 𝑥 ∈ 𝒞, if AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) = 1 then
the output of the decoding function (which is 𝜎(𝑢,𝐶,𝑣3)𝑥𝑣3) is equal to 𝑥𝑢 , by perfect completeness.
And, a similar statement holds for 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2) as well. This finishes the proof.

6 Chain XOR Polynomials and the Main Technical Lemma

In this section, we will introduce an abstract notion of chains that produces a polynomial that we
call a “chain XOR instance” and state a technical lemma (Lemma 6.6) that bounds the value of such
instances. Then, in Section 6.1 we show that this technical lemma implies Lemma 5.9. This notion
of chain XOR instances is a generalization of chain XOR derivations constructed in [KM23]. The
notions here handle the case of weighted and nonuniform hypergraphs.

We begin by defining a (𝛿-smoothed) 3-LCC hypergraph collection.
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Definition 6.1 (3-LCC hypergraph collection). A 3-LCC hypergraph collection on [𝑛] vertices is a
collection of pairs (𝐻𝑢 ,𝐺𝑢), one for each 𝑢 ∈ [𝑛], where 𝐺𝑢 is a (weighted and directed) 2-uniform
hypergraph and 𝐻𝑢 is a (weighted and directed) 3-uniform hypergraph15 such that for every
𝑢 ∈ [𝑛], ∑𝐶∈[𝑛]2 wt𝐺𝑢 (𝐶) +

∑
𝐶∈[𝑛]3 wt𝐻𝑢 (𝐶) = 1.

We furthermore say that the hypergraph collection is 𝛿-smooth if for every 𝑢, 𝑣 ∈ [𝑛], ∑𝐶∈[𝑛]2:𝑣∈𝐶 wt𝐺𝑢 (𝐶)+∑
𝐶∈[𝑛]3:𝑣∈𝐶 wt𝐻𝑢 (𝐶) ≤ 1

𝛿𝑛

We now define the 𝑡-chain hypergraphs.

Definition 6.2 (𝑡-chain hypergraph ℋ (𝑡)𝑢 ). Let 𝑡 ≥ 1 be an integer, and let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a
3-LCC hypergraph collection. For any 𝑢 ∈ [𝑛], letℋ (𝑡)𝑢 denote the weight function wtℋ (𝑡)𝑢 : [𝑛]3𝑡+1 →
R≥0, i.e., from length 3𝑡+1 tuples of the form 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2, 𝑢𝑡)
to R≥0, where wtℋ (𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and otherwise:

wtℋ (𝑡)𝑢 (𝐶) =
𝑡−1∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) .

For a 𝑡-chain 𝐶, we call 𝑢0 the head, the 𝑢ℎ’s the pivots for 1 ≤ ℎ ≤ 𝑡 − 1, and 𝑢𝑡 the tail of the chain
𝐶. The monomial associated to 𝐶, which we denote by 𝑔𝐶 , is defined to be 𝑥𝑢𝑡

∏𝑡−1
ℎ=0 𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 . We

call the 𝑡-chain hypergraphℋ (𝑡)𝑢 “hypergraph-tailed”, as the last link uses one of the hypergraphs
𝐻𝑣 .

We note that for any 𝑢 ∈ [𝑛],ℋ (1)𝑢 is equivalent to 𝐻𝑢 , i.e.,ℋ (1)𝑢 = {𝑢} ×𝐻𝑢 .

Definition 6.3 (𝑡-chain hypergraph 𝒢(𝑡)𝑢 ). Let 𝑡 ≥ 1 be an integer, and let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 3-
LCC hypergraph collection. For any 𝑢 ∈ [𝑛], let 𝒢(𝑡)𝑢 denote the weight function wt𝒢(𝑡)𝑢 : [𝑛]3𝑡 → R≥0,
i.e., from length 3𝑡 tuples of the form 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) to R≥0,
where wt𝒢(𝑡)𝑢 (𝐶) = 0 if 𝑢0 ≠ 𝑢, and otherwise:

wtℋ (𝑡)𝑢 (𝐶) = wt𝐺𝑢𝑡−1
(𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) ·

𝑡−2∏
ℎ=0

wt𝐻𝑢ℎ (𝑣2ℎ+1, 𝑣2ℎ+2, 𝑢ℎ+1) .

Note that the chains in 𝒢(𝑡) have no tail vertex 𝑢𝑡 . The monomial associated to 𝐶, which we denote
by 𝑥𝐶 , is defined to be 𝑔𝐶 =

∏𝑡−1
ℎ=0 𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 . We call the 𝑡-chain hypergraph 𝒢(𝑡)𝑢 “graph-tailed”,

as the last link uses one of the graphs 𝐺𝑣 .

We note that for any 𝑢 ∈ [𝑛], 𝒢(1)𝑢 is equivalent to 𝐺𝑢 , i.e., 𝒢(1)𝑢 = {𝑢} ×𝐺𝑢 .
We now make the following observation.

Observation 6.4. Let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 3-LCC hypergraph collection. Then, for any 𝑡 ≥ 1 and
𝑢 ∈ [𝑛], it holds that

∑
𝐶∈[𝑛]3𝑡+1 wtℋ (𝑡)𝑢 (𝐶) +

∑𝑡
𝑡′=1

∑
𝐶∈[𝑛]3𝑡′ wt𝒢(𝑡′)𝑢

(𝐶) = 1.
15Note that Definition 3.5 requires that each tuple with nonzero weight has distinct vertices.
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Proof. This follows by induction. The base case of 𝑡 = 1 is simple, as by definition we have∑
𝐶∈[𝑛]4

wtℋ (1)𝑢 (𝐶) +
∑
𝐶∈[𝑛]3

wt𝒢(1)𝑢 (𝐶) =
∑

(𝑢,𝐶)∈[𝑛]4
wtℋ (1)𝑢 (𝐶) +

∑
(𝑢,𝐶)∈[𝑛]3

wt𝒢(1)𝑢 (𝐶) =
∑
𝐶∈[𝑛]3

wt𝐻𝑢 (𝐶) +
∑
𝐶∈[𝑛]2

wt𝐺𝑢 (𝐶) .

We now show the induction step. Let 𝐶 ∈ [𝑛]3𝑡+1 have tail 𝑢𝑡 . Let 𝑆1 denote the set of tuples in
[𝑛]3𝑡+3 that extend 𝐶, i.e., the first 3𝑡 + 1 coordinates are 𝐶, and similarly let 𝑆2 denote the set of
tuples in [𝑛]3𝑡+4 that extend 𝐶. We observe that 𝑆1 = 𝐶 × [𝑛]2 and 𝑆2 = 𝐶 × [𝑛]3. Moreover, we
have∑
𝐶′∈𝑆1

wt𝒢(𝑡+1)
𝑢
(𝐶′) +

∑
𝐶′∈𝑆2

wtℋ (𝑡+1)
𝑢
(𝐶′) =

∑
𝐶′∈[𝑛]2

wtℋ (𝑡)𝑢 (𝐶)wt𝐺𝑢𝑡 (𝐶
′) +

∑
𝐶′∈[𝑛]3

wtℋ (𝑡)𝑢 (𝐶)wt𝐻𝑢𝑡 (𝐶
′) = wtℋ (𝑡)𝑢 (𝐶) .

Hence, it follows that∑
𝐶∈[𝑛]3𝑡+4

wtℋ (𝑡+1)
𝑢
(𝐶) +

𝑡+1∑
𝑡′=1

∑
𝐶∈[𝑛]3𝑡′

wt𝒢(𝑡′)𝑢
(𝐶) =

∑
𝐶∈[𝑛]3𝑡+4

wtℋ (𝑡+1)
𝑢
(𝐶) +

∑
𝐶∈[𝑛]3𝑡+3

wt𝒢(𝑡′)𝑢
(𝐶) +

𝑡∑
𝑡′=1

∑
𝐶∈[𝑛]3𝑡′

wt𝒢(𝑡′)𝑢
(𝐶)

=
∑

𝐶∈[𝑛]3𝑡+4

wtℋ (𝑡+1)
𝑢
(𝐶) +

∑
𝐶∈[𝑛]3𝑡+3

wt𝒢(𝑡+1)
𝑢
(𝐶) +

𝑡∑
𝑡′=1

∑
𝐶∈[𝑛]3𝑡′

wt𝒢(𝑡′)𝑢
(𝐶) =

∑
𝐶∈[𝑛]3𝑡+1

wtℋ (𝑡)𝑢 (𝐶) +
𝑡∑

𝑡′=1

∑
𝐶∈[𝑛]3𝑡′

wt𝒢(𝑡′)𝑢
(𝐶) = 1 ,

where the last step is by the induction hypothesis. □

We are now ready to define the chain XOR instances.

Definition 6.5 (Chain XOR instance). Let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 3-LCC hypergraph collection. Let
𝑘 ≤ 𝑛 and 𝑟 ≥ 1 be an integer. For each 1 ≤ 𝑡 ≤ 𝑟, we define the “graph-tailed” polynomial

Φ
(𝑡)
𝑏
(𝑥) =

∑
𝑖∈𝐾

∑
𝐶∈[𝑛]3𝑡

wt𝒢(𝑡)
𝑖

(𝐶) · 𝑏𝑖𝑔𝐶 ,

and we also define the “hypergraph-tailed” polynomial

Ψ𝑏(𝑥) =
∑
𝑖∈𝐾

∑
𝐶∈[𝑛]3𝑡+1

wtℋ (𝑟)
𝑖

(𝐶) · 𝑏𝑖𝑔𝐶 .

We will omit the subscript 𝑏 when it is clear from context. We note that in the above definitions,
each 𝑔𝐶 is the monomial associated with the chain 𝐶, as defined in Definitions 6.2 and 6.3.

With the above setup in hand, we can now state the main technical lemma.

Lemma 6.6 (Refuting the chain XOR instances). Let (𝐺𝑢 ,𝐻𝑢)𝑢∈[𝑛] denote a 𝛿-smooth 3-LCC hypergraph
collection and let 𝑘 ≤ 𝑛. Let ℓ , 𝑑, 𝑟 be parameters such that 𝑑𝑟 ≥ 𝑛, ℓ ≥ 6𝑑𝑟/𝛿, and ℓ 𝑟 = 𝑜(𝑛). Furthermore,
suppose that 𝑘 ≥ 1/𝛿. Then, for each 1 ≤ 𝑡 ≤ 𝑟 + 1, it holds that

E𝑏←{−1,1}𝑘 [val(Φ(𝑡)
𝑏
)] ≤ 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

E𝑏←{−1,1}𝑘 [val(Ψ𝑏)] ≤
(
𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)1/2
.
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The proof of Lemma 6.6 has two steps. First, in Section 7, we refute the graph-tailed instances.
Then, in Sections 8 to 10, we refute the hypergraph-tailed instances.

As we shall show in Section 6.1, Lemma 6.6 implies Lemma 5.9. For now, we devote the rest of
this section to establishing some shared terminology which will be useful in the later sections.

Chains that fix some positions. We will often refer to the set of chains where some of the links,
i.e., pairs (𝑣2ℎ+1, 𝑣2ℎ+2) are forced to contain some 𝑣 ∈ [𝑛]. Towards this, we introduce the following
terminology.

Definition 6.7 (Chains containing𝑄). Let 𝑡, 𝑟 be integers with 𝑡 ≤ 𝑟. For any𝑄 = (𝑄1, . . . ,𝑄𝑡 ,𝑄𝑡+1) ∈
{[𝑛]∪★}𝑡+1, we say that a length 3𝑟+1 tuple 𝐶 = (𝑢0, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, 𝑢2, . . . , 𝑢𝑡−1, 𝑣2(𝑟−1)+1, 𝑣2(𝑟−1)+2, 𝑢𝑟)
contains 𝑄, denoted by 𝑄 ⊆ 𝐶, if 𝑄𝑡+1 ∈ {★, 𝑢𝑟} and for 1 ≤ ℎ ≤ 𝑡, if 𝑄ℎ ≠ ★, then either
𝑄ℎ = 𝑣2(𝑟−1−𝑡+ℎ)+1 or 𝑄ℎ = 𝑣2(𝑟−1−𝑡+ℎ)+2.

We say that a 𝑄 is contiguous if there exists 𝑠 ≤ 𝑡 such that 𝑄ℎ ≠ ★ for every ℎ ≥ 𝑠 + 1 and
𝑄ℎ = ★ for every 1 ≤ ℎ ≤ 𝑠, i.e., the first 𝑠 entries are ★, and the remaining entries are non-★. We
note that by definition, 𝑄𝑡+1 ≠ ★ always.

We say that 𝑄 is complete if 𝑄 does not contain any ★. We say that 𝑄′ ⊇ 𝑄 if whenever 𝑄ℎ ≠ ★,
𝑄′
ℎ
= 𝑄ℎ . We define the size |𝑄 | to be the number of coordinates in 𝑄 that do not equal ★.

6.1 Relating the chain polynomials and chain XOR instances

Recall that the chain polynomials Φ(𝑡)
𝑏

and Ψ𝑏 in Section 5 are products of AND functions, which
means that (1) they are inhomogeneous polynomials, and (2) some of the coefficients can be negative.
This is contrast to the chain XOR instances produced in Section 6, which are homogeneous and
with positive coefficients, and this is very helpful in the proof of Lemma 6.6.

The goal of this section is to show that, given the output of Lemma 5.2, we can construct a 3-LCC
hypergraph collection (𝐻′𝑢 ,𝐺′𝑢)𝑢∈[𝑛] such that the chain XOR instances Φ′(𝑡)

𝑏
and Ψ′𝑏 produced from

(𝐻′𝑢 ,𝐺′𝑢) are (up to a scaling factor) equivalent to the chain polynomial instances Φ(𝑡)
𝑏

and Ψ𝑏 from
Section 5.

First, we explain how to convert the polynomials Φ
(𝑡)
𝑏

and Ψ𝑏 into equivalent homogeneous

polynomials Φ̃
(𝑡)
𝑏

and Ψ̃𝑏 over a larger set of 4𝑛 variables. In particular, these new polynomials

will have the following properties (1) val(Φ̃(𝑡)
𝑏
) ≥ val(Φ(𝑡)

𝑏
) and val(Ψ̃𝑏) ≥ val(Ψ𝑏), (2) Ψ̃𝑏 is a degree

2(𝑟 + 1) + 1 homogeneous polynomial and Φ̃
(𝑡)
𝑏

is a degree 2𝑡 homogeneous polynomial. Then, we
will construct a 3-LCC hypergraph collection (𝐻′𝑢 ,𝐺′𝑢)𝑢∈[4𝑛], and show that the chain XOR instances
Φ′(𝑡)

𝑏
and Ψ′𝑏 produced from this collection are equal to 4−𝑡Φ(𝑡)

𝑏
and 4−𝑟Ψ̃𝑏 .

Defining the homogeneous polynomials. This transformation to produce Φ
(𝑡)
𝑏

and Ψ̃𝑏 is straight-
forward. First, we define a map 𝜋 : {−1, 1}𝑛 to {−1, 1}4𝑛 as follows. For each 𝑥 ∈ {−1, 1}𝑛 we define
𝑦 = 𝜋(𝑥) by adding, for each 𝑣 ∈ [𝑛], the 4 bits 𝑥𝑣 , −𝑥𝑣 , 1 and −1 to 𝑦. We refer to these bits as
+𝑣,−𝑣, 1(𝑣),−1(𝑣), i.e., 𝑦+𝑣 = 𝑥𝑣 , 𝑦−𝑣 = −𝑥𝑣 , 𝑦1(𝑣) = 1, and 𝑦−1(𝑣) = −1. We think of 1(𝑣) as the 𝑣-th
copy of 1, and similarly −1(𝑣) is the 𝑣-th copy of −1.

Now, we transform the polynomials Φ(𝑡)
𝑏

andΨ𝑏 . Each term that contains a function AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) ·
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𝜎 for 𝜎 ∈ {−1, 1} is replaced by the 8 terms

1
8
𝑦𝜎(𝑣1)𝑦1(𝑣2) +

1
8
𝑦𝜎𝑎1𝑣1𝑦1(𝑣2) +

1
8
𝑦𝜎(𝑣1)𝑦𝑎2𝑣2 +

1
4
𝑦𝜎𝑎1𝑣1𝑦𝑎2𝑣2 +

1
8
𝑦1(𝑣1)𝑦𝜎(𝑣2) +

1
8
𝑦𝑎1𝑣1𝑦𝜎(𝑣2) +

1
8
𝑦1(𝑣1)𝑦𝜎𝑎2𝑣2 +

1
8
𝑦𝑎1𝑣1𝑦𝜎𝑎2𝑣2 ,

where, e.g., 𝑦𝜎𝑎1𝑣1 is 𝑦+𝑣 if 𝜎𝑎1 = 1 and 𝑦−𝑣 if 𝑎1 = −1, and 𝑦𝜎(𝑣) is either 𝑦1(𝑣) if 𝜎 = 1 or 𝑦−1(𝑣) if
𝜎 = −1. By construction, if 𝑦 = 𝜋(𝑥), then AND(𝑎1𝑥𝑣1 , 𝑎2𝑥𝑣2) · 𝜎 is equal to this new polynomial,
and this polynomial is a homogeneous degree 2 polynomial in 𝑦 with nonnegative coefficients.
Furthermore, the coefficients of the new polynomial all sum to 1.

Defining the homogeneous polynomials via XOR chains on hypergraphs. In order to refute the
homogeneous polynomials using Lemma 6.6, we will need to write them as “chain XOR instances”
on a certain set of hypergraphs. Now, because the coefficients of the new AND polynomials all sum
to 1, we can essentially replace each hyperedge 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3), e.g., with 8 new hyperedges
each of weight 1/8wt(𝐶). This defines, for each 𝑢 ∈ [𝑛], a pair (𝐻′𝑢 ,𝐺′𝑢) of weighted 3-uniform and
2-uniform hypergraphs.

We can then form the chain XOR instances Φ′(𝑡)
𝑏

and Ψ′𝑏 from this hypergraph collection. It will
be fairly immediate to observe that the resulting polynomials produced via this process are the
same as Φ̃(𝑡)

𝑏
and Ψ̃𝑏 up to a scaling factor – in other words, the operations of “form chains” and

”add extra variables” commute. As a result, the “chain XOR instances” Φ′(𝑡)
𝑏

and Ψ′𝑏 we get from

this process are equal to the polynomials 4−𝑡Φ̃(𝑡)
𝑏

and 4−𝑟Ψ̃𝑏 that we have just defined, and thus we
can refute them using Lemma 6.6, which will imply Lemma 5.9.

In the remainder of this section, we define the pairs (𝐻′𝑢 ,𝐺′𝑢) of weighted 3- and 2-uniform hy-
pergraphs. Then, we will finally observe that these XOR instances are equivalent to the polynomials
Φ̃
(𝑡)
𝑏

and Ψ̃𝑏 .

Definition 6.8 (The pairs (𝐻′𝑢 ,𝐺′𝑢)). Let 𝑢 ∈ [𝑛] and let 𝑛′ := 4𝑛. We identify 4𝑛 with the 4𝑛 vertices
+𝑣,−𝑣, 1(𝑣), and −1(𝑣).

We define the weight function wt𝐻′𝑢 and wt𝐺′𝑢 as follows. For each 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3) with
bit 𝜎𝐶 ∈ {−1, 1}, we set

(1) wt𝐻′𝑢 (𝜎𝐶𝑎1𝑣1, 𝑎2𝑣2) = 1
8 wt𝐻𝑢 (𝐶) · 1

4 ,

(2) wt𝐻′𝑢 (𝜎
(𝑣1)
𝐶

, 𝑎2𝑣2) = 1
8 wt𝐻𝑢 (𝐶) · 1

4 ,

(3) wt𝐻′𝑢 (𝜎𝐶𝑎1𝑣1, 1(𝑣2)) = 1
8 wt𝐻𝑢 (𝐶) · 1

4 ,

(4) wt𝐻′𝑢 (𝜎
(𝑣1)
𝐶

, 1(𝑣2)) = 1
8 wt𝐻𝑢 (𝐶) · 1

4 ,

(5) wt𝐻′𝑢 (𝑎1𝑣1, 𝜎𝐶𝑎2𝑣2) = 1
8 wt𝐻𝑢 (𝐶) · 1

4 ,

(6) wt𝐻′𝑢 (1(𝑣1), 𝜎𝐶𝑎2𝑣2) = 1
8 wt𝐻𝑢 (𝐶) · 1

4 ,

(7) wt𝐻′𝑢 (𝑎1𝑣1, 𝜎(𝑣2)
𝐶
) = 1

8 wt𝐻𝑢 (𝐶) · 1
4 ,

(8) wt𝐻′𝑢 (1(𝑣1), 𝜎(𝑣2)
𝐶
) = 1

8 wt𝐻𝑢 (𝐶) · 1
4 ,
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and we do the analogous transformation to define wt𝐺′𝑢 from wt𝐺𝑢 .
Furthermore, if the original decoder Dec(·)was 𝛿-smooth, then for any new vertex 𝑣′ ∈ [𝑛′], it

holds that ∑
𝐶′=(𝑣′1,𝑣′2,𝑣′3):𝑣′∈𝐶′

wt𝐻′𝑢 (𝐶
′) +

∑
𝐶′=(𝑣′1,𝑣′2):𝑣′∈𝐶′

wt𝐺′𝑢 (𝐶
′) ≤ 4

𝛿𝑛′
.

Remark 6.9. So far, we have only defined a pair (𝐻′𝑢 ,𝐺′𝑢) for the original vertices 𝑢, not the new
vertices 𝑢′ ∈ [𝑛′], so technically we have not defined a full hypergraph collection. However, we can
easily define equivalent hypergraphs for all the new vertices, but this turns out to be unnecessary
as the only hyperedges in 𝐻′𝑢 with nonzero weight have 𝐶′ = (𝑣′1, 𝑣′2, 𝑣3)where 𝑣3 ∈ [𝑛] is one of the
original vertices, and so the chain XOR instances formed will never use the hypergraphs (𝐻′𝑢′ ,𝐺′𝑢′)
if 𝑢′ is a “new vertex”. So, we do not need to define 𝐻′𝑢′ and 𝐺′𝑢′ where 𝑢′ is a new variable. This is
also the reason for the upper bound of 16

𝛿𝑛′ instead of 4
𝛿𝑛′ – a fixed third vertex 𝑣3 ∈ [𝑛] could have

4
𝛿𝑛 -fraction of the weight in the original decoder, which is now 16

𝛿𝑛′ · 1
4 (as we scale down all weights

by 1/4).

This now leads us to the following key observation.

Observation 6.10. Let Φ̃(𝑡)
𝑏

and Ψ̃𝑏 be the polynomials defined via the transformation to Φ
(𝑡)
𝑏

and Ψ𝑏 ,

and let Φ′(𝑡)
𝑏

and Ψ′𝑏 be the chain XOR instances of the 3-LCC hypergraph collection (𝐻′𝑢 ,𝐺′𝑢)𝑢∈[𝑛].
Then, Φ̃(𝑡)

𝑏
= 4−𝑡Φ′(𝑡)

𝑏
and Ψ̃𝑏 = 4−𝑟Ψ′

𝑏
.

This observation follows immediately from the definitions. Namely, for each 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3)
in the original 𝐻𝑢 , we have now added 8 different constraints of weight 1/32 times the original
weight of 𝐶, such that the XOR instance on the new constraints is equal to the AND polynomial of
the previous constraints.

The above observation immediately shows that Lemma 6.6 implies Lemma 5.9, and so it remains
to prove Lemma 6.6.

7 Refuting the Graph-Tail Instances

In this section, we prove the first equation of Lemma 6.6. Let 𝑟 ≥ 1 and let 1 ≤ 𝑡 ≤ 𝑟 + 1 be fixed.
We begin by defining the Kikuchi matrices.

Definition 7.1. Let 𝑟 ≥ 1 and 1 ≤ 𝑡 ≤ 𝑟+1. Let 𝑖 ∈ [𝑘]. For a tuple 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) ∈
[𝑛]3𝑡 , we define the matrix 𝐴(𝐶)

𝑖
∈ {0, 1}𝑁 where 𝑁 =

(𝑛
ℓ

) 𝑡 , to be the matrix indexed by tuples

of sets ®𝑆 = (𝑆0, . . . , 𝑆𝑡−1), where 𝐴(𝐶)
𝑖
((𝑆0, . . . , 𝑆𝑡−1), (𝑇0, . . . ,𝑇𝑡−1)) = 1 if for all ℎ = 0, . . . , 𝑡 − 1,

𝑆ℎ ⊕ 𝑇ℎ = {𝑣2ℎ+1, 𝑣2ℎ+2} with 𝑣2ℎ+1 ∈ 𝑆ℎ , 𝑣2ℎ+2 ∈ 𝑇ℎ . If this does not hold, then the entry of the
matrix is 0.

We let 𝐴𝑖 = 1
𝐷𝑡

∑
𝐶∈[𝑛]3𝑡 wt𝒢(𝑡)

𝑖

(𝐶)𝐴(𝐶)
𝑖

and 𝐴 =
∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 . Here, 𝐷𝑡 =

(𝑛−2
ℓ−1

) 𝑡
.

Next, we relate Φ(𝑡)(𝑥) to a quadratic form on the matrix 𝐴.
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Lemma 7.2. Let 𝑥 ∈ {−1, 1}𝑛 , and let 𝑥′ ∈ {−1, 1}𝑁 , where 𝑁 =
(𝑛
ℓ

) 𝑡 , denote the vector where the
(𝑆0, 𝑆1, . . . , 𝑆𝑡−1)-th entry of 𝑥′ is

∏𝑡−1
ℎ=0 𝑥𝑆ℎ . Let 𝑖 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Then, for any 𝐶 =

(𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑣2(𝑡−1)+1, 𝑣2(𝑡−1)+2) ∈ [𝑛]3𝑡 , it holds that

𝑥′⊤𝐴(𝐶)
𝑖
𝑥′ = 𝐷𝑡

𝑡−1∏
ℎ=0

𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 ,

i.e., the product of the monomials associated to 𝐶, where 𝐷𝑡 =
(𝑛−2
ℓ−1

) 𝑡
. Moreover, for any matrix 𝐵(𝐶)

𝑖
obtained

by “zeroing out” exactly 𝛼𝐷𝑡 entries of 𝐴(𝐶)
𝑖

, the equality holds with a factor of 1− 𝛼 on the right.
In particular, 𝑥′⊤𝐴𝑥′ = Φ(𝑡)(𝑥).

Proof. Let ®𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑡−1) and ®𝑇 = (𝑇0, . . . ,𝑇𝑡−1) be such that 𝐴(𝐶)
𝑖
( ®𝑆, ®𝑇) = 1. Then, we have

that

𝑥′®𝑆
𝑥′®𝑇

=

𝑡−1∏
ℎ=0

𝑥𝑆ℎ𝑥𝑇ℎ =

𝑡−1∏
ℎ=0

𝑥𝑆ℎ⊕𝑇ℎ =
𝑡−1∏
ℎ=0

𝑥𝑣2ℎ+1𝑥𝑣2ℎ+2 ,

which is equal to the product of monomials on the right-hand side of the equation we wish to show.
It thus remains to argue that 𝐴(𝐶)

𝑖
has exactly 𝐷𝑡 nonzero entries. We observe that, for each

ℎ = 0, . . . , 𝑡 − 1, there are exactly
(𝑛−2
ℓ−1

)
pairs (𝑆ℎ ,𝑇ℎ) such that 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ with 𝑣2ℎ+1 ∈ 𝑆ℎ and

𝑣2ℎ+2 ∈ 𝑇ℎ . Indeed, this is because by Definition 3.5, these vertices must be distinct, and then
we must simply choose a set of size ℓ − 1 that does not contain either of 𝑣2ℎ+1 and 𝑣2ℎ+2 and this
determines 𝑆ℎ and 𝑇ℎ . Thus, 𝐷𝑡 =

(𝑛−2
ℓ−1

) 𝑡
, as required. □

We would like to now apply matrix Khintchine (Fact 3.11) to bound E𝑏[∥𝐴∥2] and thus bound
E𝑏[val(Φ(𝑡)

𝑏
(𝑥))]. However, to do this, we need good bounds on the ∥𝐴𝑖 ∥2 of the individual matrices

𝐴𝑖 . It turns out that the bounds we require for this approach to work are false, but one can find
a submatrix 𝐵𝑖 of 𝐴𝑖 such that the bounds hold. To argue this, we will need the following first
moment bounds.

Lemma 7.3 (First and conditional moment bounds). Fix 𝑟 ≥ 1, 1 ≤ 𝑡 ≤ 𝑟 + 1, and 𝑖 ∈ [𝑘]. Let 𝐴𝑖 be
the Kikuchi matrix defined in Definition 7.1.

Let ®𝑆 = (𝑆0, . . . , 𝑆𝑡−1) ∈
([𝑛]
ℓ

) 𝑡
be a row of the matrix, and let deg𝑖( ®𝑆) denote the ℓ1-norm of the ®𝑆-th

row of 𝐴𝑖 . Then,

E®𝑆[deg𝑖( ®𝑆)] ≤
1
𝑁

,

where 𝑁 =
(𝑛
ℓ

) 𝑡 .
Furthermore, let 𝐶 ∈ [𝑛]3𝑡 be a chain with head 𝑖. Let𝒟𝐶 denote the uniform distribution over rows of

𝐴
(𝐶)
𝑖

that contain a nonzero entry. Then, it holds that

E®𝑆∼𝒟𝐶
[deg𝑖( ®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 4
𝑁

.

Finally, the same bounds hold for the columns of the matrix.

39



With Lemma 7.3, we can now do the following. Let Γ be a sufficiently large constant, let
ℬ1 = { ®𝑆 : deg𝑖( ®𝑆) ≥ Γ/𝑁} be the set of rows with ℓ1-norm at least Γ/𝑁 , and similarly let ℬ2 be
defined for the columns. We observe that by the conditional moment bounds in Lemma 7.3 and
Markov’s inequality, each 𝐴(𝐶)

𝑖
has at least 1−𝑂(1/Γ)-fraction of its nonzero rows not in ℬ1, and

similarly for columns and ℬ2. It thus follows that after setting all the rows in ℬ1 and columns in
ℬ2 to 0, the resulting matrix still has at least 1−𝑂(1/Γ)-fraction of its original nonzero entries. By
taking Γ large enough, we can ensure that this fraction is at least 1/2. Now, we let 𝐵(𝐶)

𝑖
be the matrix

where we have deleted all rows in ℬ1 and columns in ℬ2 from 𝐴
(𝐶)
𝑖

, and we have additionally set

more entries to 0 so that 𝐵(𝐶)
𝑖

has exactly 𝐷𝑡/2 nonzero entries, where 𝑡 is such that 𝐶 ∈ [𝑛]3𝑡 .
Let us define: 𝐵𝑖 = 1

𝐷𝑡

∑
𝐶∈[𝑛]3𝑡 wt𝒢(𝑡)

𝑖

(𝐶)𝐵(𝐶)
𝑖

and 𝐵 =
∑𝑘
𝑖=1 𝑏𝑖𝐵𝑖 . By Lemma 7.2 (and the

“moreover” part), we have that for every 𝑥 ∈ {−1, 1}𝑛 , there exists 𝑥′ ∈ {−1, 1}𝑁 such that
𝑥′⊤𝐵𝑥′ = 1

2Φ
(𝑡)(𝑥). By construction, we have that ∥𝐵𝑖 ∥2 ≤ Γ/𝑁 , as this is an upper bound on

the ℓ1-norm of any row/column in 𝐵𝑖 .
Thus, applying matrix Khintchine (Fact 3.11), we obtain

E𝑏[val(Φ(𝑡)
𝑏
)] ≤ E𝑏[𝑁 ∥𝐵∥2] ≤ 𝑁 ·

Γ

𝑁
𝑂(

√
𝑘 log𝑁) = 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

where we use that Γ is constant. This finishes the proof of the first equation in Lemma 6.6, up to the
proof of Lemma 7.3.

Proof of Lemma 7.3. We will only prove the statement for the rows. One can observe from the proof
that it will immediately hold for the columns also.

We begin by estimating the first moment, i.e., E®𝑆[deg𝑖( ®𝑆)]. By definition, we have that

E®𝑆[deg𝑖( ®𝑆)] =
1
𝑁

1
𝐷𝑡

∑
𝐶∈[𝑛]3𝑡

wt𝒢(𝑡)
𝑖

(𝐶) ·𝐷𝑡 ≤
1
𝑁

,

as the sum of the weights of all chains is at most 1.
We now fix 𝑡 ∈ {1, . . . , 𝑟 + 1}, 𝐶 ∈ [𝑛]3𝑡 with head 𝑖. Let 𝒟𝐶 denote the uniform distribution

over rows of 𝐴(𝐶)
𝑖

that contain a nonzero entry. We compute the conditional expectation as follows.

First, we shall bound, for 𝐶′ ∈ [𝑛]3𝑡 with head 𝑖, the number of rows ®𝑆 such that 𝐴(𝐶)
𝑖

and 𝐴
(𝐶′)
𝑖

both have a nonzero entry in the ®𝑆-th row, normalized by the scaling factor 1/𝐷𝑡 . This quantity will
depend on some parameter 𝑧, which is the number of “shared vertices” between 𝐶 and 𝐶′. Then,
we will bound, for each 𝑧, the total weight of all 𝐶′ ∈ [𝑛]3𝑡 that has at least 𝑧 “shared vertices” with
𝐶.

Step 1: bounding the normalized number of entries for a fixed 𝑪′. To begin, we define the
number of “shared vertices” between two pairs of chains 𝐶 and 𝐶′.

Definition 7.4 (Left vertices). Let 𝐶 ∈ [𝑛]3𝑡 . The tuple of left vertices of 𝐶 is the sequence 𝐿(𝐶) =
(𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑡−1)+1). We note that if ®𝑆 is a row such that 𝐴(𝐶)

𝑖
has nonzero entry in the ®𝑆-th row,

then 𝑣2ℎ+1 ∈ 𝑆ℎ for ℎ = 0, . . . , 𝑡 − 1.
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Definition 7.5 (Intersection patterns). Let 𝐶 ∈ [𝑛]3𝑡 and 𝐶′ ∈ [𝑛]3𝑡 .
The intersection pattern of 𝐶 with 𝐶′, given by 𝑍 ∈ {0, 1}𝑡 , is defined as 𝑍ℎ = 1 if 𝐿(𝐶)ℎ = 𝐿(𝐶′)ℎ ,

and it is 0 otherwise.

We now fix 𝐶′ ∈ [𝑛]3𝑡 and count the number of rows as a function of the intersection pattern 𝑍.
We observe that in order for a row ®𝑆 to have a nonzero entry for both pairs of chains, we must have
{𝐿(𝐶)ℎ , 𝐿(𝐶′)ℎ} ⊆ 𝑆ℎ−1 for all ℎ = 1, . . . , 𝑡.

We observe that for each intersection point, i.e., an ℎ such that 𝐿(𝐶)ℎ = 𝐿(𝐶′)ℎ , there are
( 𝑛
ℓ−1

)
choices for the corresponding set, as it needs to only contain one vertex. For each nonintersection
point, i.e., an ℎ ∈ {1, . . . , 𝑡} where 𝐿(𝐶)ℎ ≠ 𝐿(𝐶′)ℎ , we have

( 𝑛
ℓ−2

)
choices, because the set needs to

contain both vertices. In total, we have
( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

) 𝑡−𝑧 .
Now, this implies an upper bound of

( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

) 𝑡−𝑧/𝐷𝑡 on the normalized number of entries,
which we can compute as(

𝑛

ℓ − 1

) 𝑧 (
𝑛

ℓ − 2

) 𝑡−𝑧
/𝐷𝑡 =

( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

) 𝑡−𝑧(𝑛−2
ℓ−1

) 𝑡 = 2
( ( 𝑛
ℓ−2

)( 𝑛
ℓ−1

) ) 𝑡−𝑧 · ( ( 𝑛
ℓ−1

)(𝑛−2
ℓ−1

) ) 𝑡
≤

(
ℓ − 1

𝑛 − ℓ + 2

) 𝑡−𝑧
·
(

𝑛(𝑛 − 1)
(𝑛 − ℓ + 1)(𝑛 − ℓ )

) 𝑡
≤

(
ℓ

𝑛

) 𝑡−𝑧
·
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
.

Step 2: bounding the weight of 𝑪′ with a fixed intersection pattern 𝒁. Let us fix the intersection
pattern 𝑍. We observe that this determines a set of |𝑍 | vertices that must be contained in 𝐶′. We
will abuse notation and let 𝑍 ∈ [𝑛] ∪ {★}𝑡 denote this sequence of vertices (with ★’s for the unfixed
entries). Let 𝑡′′ denote the largest ℎ ∈ {1, . . . , 𝑡} for which 𝑍𝑡′′ ≠ ★. We then have∑

𝐶′∈[𝑛]3𝑡 :𝑍⊆𝐶
wt𝒢(𝑡)

𝑖

(𝐶)

=
∑

𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©«wt𝒢(𝑡′′)
𝑖

(𝐶′′) +
∑

𝐶′∈[𝑛]3(𝑡−𝑡′′)
wt𝒢(𝑡)

𝑖

(𝐶′′,𝐶′)ª®¬
=

∑
𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©«wt𝒢(𝑡′′)
𝑖

(𝐶′′) +
∑

(𝑢,𝐶′)∈[𝑛]3(𝑡−𝑡′′)
wtℋ (𝑡′′)

𝑖

(𝐶′′, 𝑢)wt𝒢(𝑡−𝑡′′)𝑢
(𝑢,𝐶′)ª®¬

=
∑

𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©«wt𝒢(𝑡′′)
𝑖

(𝐶′′) +
∑
𝑢∈[𝑛]

wtℋ (𝑡′′)
𝑖

(𝐶′′, 𝑢)
∑

𝐶′∈[𝑛]3(𝑡−𝑡′′)−1

wt𝒢(𝑡−𝑡′′)𝑢
(𝑢,𝐶′)ª®¬

≤
∑

𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

©«wt𝒢(𝑡′′)
𝑖

(𝐶′′) +
∑
𝑢∈[𝑛]

wtℋ (𝑡′′)
𝑖

(𝐶′′, 𝑢)ª®¬ .

Above, we use that
∑
𝐶′∈[𝑛]3(𝑡−𝑡′′)−1 wt𝒢(𝑡−𝑡′′)𝑢

(𝑢,𝐶′) ≤ 1, which follows by Observation 6.4.

We now clearly have that
∑
𝐶′′∈[𝑛]3𝑡′′ :𝑍⊆𝐶′′

(
wt𝒢(𝑡′′)

𝑖

(𝐶′′) +∑
𝑢∈[𝑛]wtℋ (𝑡′′)

𝑖

(𝐶′′, 𝑢)
)
≤ (𝛿𝑛)−|𝑍 |. This

follows by 𝛿-smoothness, as when we sum over a link with no fixed vertex, it has weight 1, and
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when we sum over a link where 𝑍ℎ ≠ ★, by 𝛿-smoothness it must have weight at most 1/𝛿𝑛. We
thus have a bound of (𝛿𝑛)−|𝑍 |.
Putting it all together. By combining steps (1) and (2) (and paying an additional

(𝑡
𝑧

)
factor to

choose the nonzero entries of 𝑍), we thus obtain the final bound of

E®𝑆∼𝒟𝐶
[deg𝑖( ®𝑆)] ≤

1
𝐷𝑡

𝑡∑
𝑧=0

(
𝑡

𝑧

)
· 2

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
·
(
ℓ

𝑛

) 𝑡−𝑧
· (𝛿𝑛)−𝑧

≤
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
2
𝐷𝑡

(
ℓ

𝑛

) 𝑡
·

𝑡∑
𝑧=0

·
(
𝑡

𝛿ℓ

) 𝑧
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
2
𝐷𝑡

(
ℓ

𝑛

) 𝑡
·

𝑟∑
𝑧=0

·
( 𝑟
𝛿ℓ

) 𝑧
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4
𝐷𝑡

(
ℓ

𝑛

) 𝑡
,

where we use that ℓ ≥ 2𝑟/𝛿.
Finally, we need to compute 𝐷𝑡/𝑁 . We have

𝐷𝑡

𝑁
=

(𝑛−2
ℓ−1

) 𝑡 · (𝑛ℓ ) 𝑟+1−𝑡(𝑛
ℓ

) 𝑟+1
=

( (𝑛−2
ℓ−1

)(𝑛
ℓ

) ) 𝑡
(
ℓ (𝑛 − ℓ )
𝑛(𝑛 − 1)

) 𝑡
≥

(
ℓ

𝑛

) 𝑡 (
1− 𝑂(ℓ 𝑟)

𝑛

)
.

Thus, we have

E®𝑆∼𝒟𝐶
[deg𝑖( ®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4
𝐷𝑡

(
ℓ

𝑛

) 𝑡
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4
𝑁

,

which finishes the proof. □

8 Smooth Partitions of Chains

In this section, we begin the proof of the second equation in Lemma 6.6.
For notation, we letℋ (𝑡) be the union, over 𝑢, ofℋ (𝑡)𝑢 , and wtℋ (𝑡)(·) =

∑
𝑢∈[𝑛]wtℋ (𝑡)𝑢 (·).

Lemma 8.1. Let 𝑡 ≥ 1 and 𝑑 ≥ 1 be integers. There is a subset 𝑃𝑡 ⊆ [𝑛]𝑡+1 and disjoint sets 𝒯 (𝑄) ⊆ [𝑛]3𝑡+1

for 𝑄 ∈ 𝑃𝑡 such that (1) 𝑄 ⊆ 𝐶 for each 𝐶 ∈ 𝒯 (𝑄), and (2) wt(𝑄) :=
∑
𝐶∈𝒯 (𝑄) wtℋ (𝑡)(𝐶) ≥ 𝑛𝑑𝑡 · (𝛿𝑛)−𝑡−1.

We say 𝑄 is heavy if 𝑄 ∈ 𝑃𝑡 . Note that if 𝑄 is heavy then 𝑄 is contiguous and complete by definition.
Finally, as a trivial case, we let 𝑃0 = [𝑛] and for 𝑄 = (𝑣) ∈ 𝑃0, we let 𝒯 (𝑄) = (𝑣). Here, we let

wt(𝑄) = 1.
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Proof. The proof follows by a simple greedy algorithm. Let 𝑆 = [𝑛]3𝑡+1. If there exists 𝑄 such that∑
𝐶∈𝑆:𝑄⊆𝐶 wtℋ (𝑡)(𝐶) ≥ 𝑛𝑑𝑡 · (𝛿𝑛)−𝑡−1, then we remove all such 𝐶 from 𝑆 and add them to 𝒯 (𝑄). We

repeat until there is no such 𝑄 remaining. We note that 𝑄 cannot be used twice in this sequence, as
when we pick a 𝑄 we remove all 𝐶 ∈ 𝑆 containing 𝑄. □

Definition 8.2 (Partitions of the chains). Let 𝑟 ≥ 1 be an integer. For each 1 ≤ 𝑡 ≤ 𝑟 and heavy
𝑄 ∈ 𝑃𝑡 , we letℋ (𝑟,𝑄) denote the set of tuples 𝐶 ∈ [𝑛]3𝑟+1 where:

1. 𝐶 is extends a tuple in 𝒯 (𝑄) “backwards”, i.e., (𝐶3(𝑟−𝑡)+1, . . . ,𝐶3𝑟+1) ∈ 𝒯 (𝑄);

2. 𝑄 is maximal: for any 𝑡′ > 𝑡 and 𝑄′ ∈ 𝑃𝑡′, (𝐶3(𝑟−𝑡′)+1, . . . ,𝐶3𝑟+1) ∉ 𝒯 (𝑄
′).

Observation 8.3. We have that for each 𝑡 = 0, . . . , 𝑟, it holds that
∑
𝑄∈𝑃𝑡 wt(𝑄) ≤ 𝑛, and so∑𝑟

𝑡=0
∑
𝑄∈𝑃𝑡 wt(𝑄) ≤ (𝑟 + 1)𝑛.

Proof. We observe that for any 𝑡 = 0, . . . , 𝑟, it holds that∑
𝑄∈𝑃𝑡

wt(𝑄) =
∑
𝑄∈𝑃𝑡

∑
𝐶∈𝒯 (𝑄)

wtℋ (𝑡)(𝐶) ≤
∑

𝐶∈[𝑛]3𝑡+1

wtℋ (𝑡)(𝐶) = 𝑛 . □

We note that Definition 8.2 gives a partition of the 𝑟-chains, but the polynomial Ψ(𝑥) uses a
restricted set of (𝑟 + 1)-chains, namely those that have their head in [𝑘]. In the following definition,
we use the partition of the 𝑟-chains to induce a partition of the special (𝑟 + 1)-chains.

Definition 8.4 (Induced partition of ℋ (𝑟+1)
𝑖

). Let 𝑟 ≥ 1 be an integer. For each 0 ≤ 𝑡 ≤ 𝑟 and

each 𝑄 ∈ 𝑃𝑡 , we letℋ (𝑟+1,𝑄)
𝑖

denote the set of length 3𝑟 + 4 tuples of the form (𝑖,𝑤1,𝑤2,𝐶)where
𝐶 ∈ ℋ (𝑟,𝑄).

Definition 8.5 (Bipartite XOR formulas from a contiguously regular partition). Fix integers 𝑟, 𝑑 ≥ 1.
For each 1 ≤ 𝑡 ≤ 𝑟 and 𝑄 ∈ 𝑃𝑡 , we define Ψ𝑖,𝑄 as the following XOR formula with terms corre-
sponding to (𝑟 + 1)-chains inℋ (𝑟+1,𝑄) with 𝑥𝑄 “modded out” from the corresponding monomial.

Ψ𝑖,𝑄(𝑥) =
∑

𝐶=(𝑖,𝑣1,𝑣2,𝑢1,...,𝑢𝑟+1)∈ℋ (𝑟+1,𝑄)
𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) · 𝑥𝑣1𝑥𝑣2

𝑟∏
ℎ=1

𝑥{𝑣2ℎ+1,𝑣2ℎ+2}\𝑄ℎ
.

Here, we use the convention that if 𝑄ℎ = ★, then {𝑣, 𝑣′} \𝑄ℎ B {𝑣, 𝑣′}.
For each 0 ≤ 𝑡 ≤ 𝑟, letΨ(𝑡)(𝑥, 𝑦) = ∑𝑘

𝑖=1
∑
𝑄∈𝑃𝑡 𝑏𝑖𝑦𝑄Ψ𝑖,𝑄(𝑥). Finally, we letΨ(𝑥, 𝑦) = ∑

0≤𝑡≤𝑟Ψ
(𝑡)(𝑥, 𝑦);

here, for every heavy 𝑄 ∈ 𝑃𝑡 for some 0 ≤ 𝑡 ≤ 𝑟 used in the contiguously regular partition, we
introduce a new variable 𝑦𝑄 .

We next observe that Ψ(𝑥, 𝑦) is a relaxation of the polynomial Ψ(𝑥). Indeed, we have abused
notation and labeled them both as “Ψ” for this reason. This follows from the observation is that
Ψ(𝑥, 𝑦) is produced by simply replacing the monomial 𝑥𝑄 in Ψ(𝑥) with a new variable 𝑦𝑄 for each
heavy 𝑄. More formally, the following holds.

Lemma 8.6. Fix 𝑥 ∈ {−1, 1}𝑛 . Then, there is a 𝑦 ∈ {−1, 1}
∑𝑟
𝑡=0 |𝑃𝑡 | such that Ψ(𝑥, 𝑦) = Ψ(𝑥).
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Proof. For each 0 ≤ 𝑡 ≤ 𝑟, set 𝑦𝑄 = 𝑥𝑄 for every 𝑄 ∈ 𝑃𝑡 , where 𝑥𝑄 B
∏

ℎ:𝑄ℎ≠★ 𝑥𝑄ℎ
. □

We finish this section by proving the following statement, which intuitively shows that the
partitions of the chains are smooth.

Lemma 8.7 (Smoothness of partitioned chains). Fix 𝑖 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Let 𝑍 ∈ ([𝑛] ∪
{★})𝑟+1 × {★} be a 𝑍 that has a ★ in the last entry. Then,

∑
𝐶∈ℋ (𝑟+1)

𝑖
:𝑍⊆𝐶 wtℋ (𝑟+1)

𝑖

(𝐶) ≤ (𝛿𝑛)−|𝑍 |.

Let 𝑄 ∈ 𝑃𝑡 and ℋ (𝑟+1,𝑄)
𝑖

be as defined in Definition 8.4. Let 𝑍 ∈ ([𝑛] ∪ {★})𝑟+1 × [𝑛] be such that
𝑍 extends 𝑄, i.e., 𝑍𝑟−𝑡+ℎ = 𝑄ℎ for all 1 ≤ ℎ ≤ 𝑡 + 1. Then,

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
:𝑍⊆𝐶 wtℋ (𝑟+1)

𝑖

(𝐶) is at most

wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 | if |𝑍 | ≤ 𝑟 + 1, and at most (𝛿𝑛)−𝑟−1 if |𝑍 | = 𝑟 + 2. Furthermore, if 𝑑𝑟+1 ≥ 𝑛,
then (𝛿𝑛)−𝑟−1 ≤ wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 |.

Remark 8.8. We remark that this is place where we need the assumption that 𝑑𝑟+1 ≥ 𝑛.

Proof. The first statement follows immediately by 𝛿-smoothness of the original hypergraphs. In-
deed, for any 𝑢 ∈ [𝑛] and 𝑣 ∈ [𝑛], we have that

∑
𝐶∈[𝑛]3:𝑣∈𝐶 wt𝐻𝑢 (𝐶) ≤ 1/𝛿𝑛. We now have

that ∑
𝐶∈ℋ (𝑟+1)

𝑖
:𝑍⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶)

≤
∑

(𝑣1,𝑣2,𝑢1)
𝑍1∈{𝑣1,𝑣2}

wt𝐻𝑖 (𝑣1, 𝑣2, 𝑢1) ·
( ∑
(𝑣3,𝑣4,𝑢2)
𝑍2∈{𝑣3,𝑣4}

wt𝐻𝑢1
(𝑣3, 𝑣4, 𝑢2)

(
· · ·

( ∑
(𝑣2𝑟+1,𝑣2𝑟+2,𝑢𝑟+1)
𝑍𝑟∈{𝑣2𝑟+1,𝑣2𝑟+2}

wt𝐻𝑢𝑟 (𝑣2𝑟+1, 𝑣2𝑟+2, 𝑢𝑟+1)
)
· · ·

))
.

We notice that the ℎ-th term is at most 1/𝛿𝑛 if 𝑍ℎ ≠ ★, and otherwise it is at most 1. So, in total, we
get a bound of (𝛿𝑛)−|𝑍 |.

We now prove the second part of the statement. Let |𝑄 | = 𝑡 + 1. We have two cases.

Case 1: 𝒁 does not contain a ★ entry. This means that |𝑍 | = 𝑟 + 2. Let 𝑍′ ∈ [𝑛]𝑟+1 × {★} be 𝑍 with
the last entry replaced by a ★, i.e., 𝑍′

ℎ
= 𝑍ℎ for all 1 ≤ ℎ ≤ 𝑟 + 1, and 𝑍′

𝑟+2 = ★. We observe that∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
:𝑍⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶) ≤
∑

𝐶∈ℋ (𝑟+1)
𝑖

:𝑍⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶) ≤
∑

𝐶∈ℋ (𝑟+1)
𝑖

:𝑍′⊆𝐶

wtℋ (𝑟+1)
𝑖

(𝐶) ≤ (𝛿𝑛)−|𝑍′ | = (𝛿𝑛)−𝑟−1 ,

where we use the first statement that we have already shown. To finish the argument in this case,
we need to argue that wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 | ≥ (𝛿𝑛)−𝑟−1. Indeed, we have by definition that
wt(𝑄) ≥ 𝑛𝑑 |𝑄 |−1(𝛿𝑛)−|𝑄 |, and so

wt(𝑄)𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 | ≥ 1
𝛿
𝑑 |𝑍 |−1(𝛿𝑛)−|𝑍 | = (𝛿𝑛)−𝑟−1 · 1

𝛿2𝑛
𝑑𝑟+1 .

Thus, the desired inequality holds if 𝑑𝑟+1 ≥ 𝑛.

Case 2: 𝒁 contains a ★ entry. This means that |𝑍 | ≤ 𝑟 + 1. Then, we have that 𝑍 = (𝑍(1),★,𝑍(2),𝑄),
where 𝑍(2) contains no ★ entries.

We observe that each 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

with 𝑍 ⊆ 𝐶 can be split into 3 parts: 𝐶 = (𝑖,𝐶(1),𝐶(2),𝐶(3)),
where 𝐶(3) ∈ 𝒯 (𝑄) is a length 𝑡 chain, (𝑖,𝐶(1)) is a length |𝑍(1) | chain with head 𝑖, and 𝐶(2) is a length
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𝑟 − 𝑡 − |𝑍(1) | chain whose head is the tail of 𝐶(1) and whose tail is the head of 𝐶(3). By 𝛿-smoothness,∑
𝐶(1):𝑍(1)⊆𝐶(1) wt

ℋ (|𝑍
(1) |)

𝑖

(𝑖,𝐶(1)) ≤ (𝛿𝑛)−|𝑍(1) |.

We either have that (𝑍(2),𝑄) is 𝑄, i.e., 𝑍(2) is empty, or that (𝑍(2),𝑄) is not 𝑄. In the first
case,

∑
𝐶(3)∈𝒯 (𝑄) wtℋ (𝑡)(𝐶(3)) = wt(𝑄) by definition (note that if 𝑡 = 0, then 𝐶(3) is just the single

vertex 𝑣 where 𝑄 = (𝑣), and we have defined wt(𝑄) = 1). In the second case, we observe that by
Definitions 8.2 and 8.4, (𝑍(2),𝑄) cannot be heavy. Indeed, if it was, then either 𝐶(3) ∈ 𝒯 (𝑍(2),𝑄), and

so 𝐶 ∈ ℋ (𝑟+1,(𝑍(2),𝑄))
𝑖

, or else there is some other 𝑄′ with |𝑄′ | = |𝑍(2) | + 𝑡 + 1 with 𝐶(3) ∈ 𝒯 (𝑄′), in

which case we would have 𝐶 ∈ ℋ (𝑟+1,𝑄′)
𝑖

. We note that here we must use that 𝑍 contains at least
one ★, so that |𝑍(2) | + |𝑄 | ≤ 𝑟 + 1. This is because all heavy 𝑄′ have |𝑄′ | ≤ 𝑟 + 1, as they are defined
for the length 𝑟-chains.

Thus, (𝑍(2),𝑄) cannot be heavy. It then follows that
∑
𝐶(3) :𝐶(3)∉𝒯 (𝑄′) ∀𝑄′∈𝑃

𝑡+|𝑍(2) |
wtℋ (𝑡)(𝐶(3)) ≤

𝑛𝑑 |𝑍
(2) |+𝑡(𝛿𝑛)−|𝑍(2) |−𝑡−1 ≤ wt(𝑄)𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) |. We note that any 𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
must have 𝐶(3) ∉

𝒯 (𝑄′) ∀𝑄′ ∈ 𝑃𝑡+|𝑍(2) |, as otherwise we would violate Item (2) in Definition 8.2 since |𝑍(2) | ≥ 1.
To finish the proof, we observe that once 𝐶(1) and 𝐶(3) are chosen, the total weight of all “valid”

𝐶(2), i.e., 𝐶(2)’s that could complete the chain to form 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

, is at most 1/𝛿𝑛. Indeed, this is
because the head of 𝐶(2) is the tail of 𝐶(1) and its tail is the head of 𝐶(3), and the total weight of all
length ℎ chains, for any ℎ, with a fixed head 𝑢 and fixed tail 𝑣 is at most 1/𝛿𝑛 by 𝛿-smoothness. Thus,
in total, we have shown that

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) ≤ (𝛿𝑛)−|𝑍(2) | · (𝛿𝑛)−1 ·wt(𝑄)𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) | =
wt(𝑄) · 𝑑 |𝑍 |−|𝑄 |(𝛿𝑛)−|𝑍 |−1+|𝑄 |. □

9 Spectral Refutation via Kikuchi Matrices

In Section 8, we defined polynomialsΨ(𝑡)(𝑥, 𝑦) and a map from 𝑥 ↦→ 𝑦 such thatΨ(𝑥) = ∑𝑟
𝑡=0 Ψ

(𝑡)(𝑥, 𝑦)
when 𝑦 is the image of 𝑥 under this map. Thus, to prove Lemma 6.6, we need to upper bound
E𝑏[val(∑𝑟

𝑡=0 Ψ
(𝑡)(𝑥, 𝑦))]. In this section, we will use the Kikuchi matrix method to bound this

quantity, proving the second half of Lemma 6.6.

9.1 Step 1: the Cauchy–Schwarz trick

First, we show that we can relate
∑𝑟
𝑡=0 Ψ

(𝑡)(𝑥, 𝑦) to a certain “cross-term” polynomial obtained via
applying the Cauchy–Schwarz inequality.

Lemma 9.1 (Cauchy–Schwarz trick). Let 𝑀 be a maximum directed matching1617 of [𝑘] and let 𝑓𝑀 be the
cross-term polynomial defined as

𝑓
(𝑡)
𝑀

=
∑
{𝑖,𝑗}∈𝑀

𝑏𝑖𝑏 𝑗

∑
𝑄∈𝑃𝑡

1
wt(𝑄)Ψ𝑖,𝑄(𝑥)Ψ𝑗,𝑄(𝑥) ,

𝑓𝑀 =

𝑟∑
𝑡=0

𝑓
(𝑡)
𝑀

.

16A directed matching is a matching, only the edges are additionally directed
17This is a perfect matching if 𝑘 is even, and will leave one element of [𝑘] unmatched if 𝑘 is odd.
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Then for every 𝑥, 𝑦 with ±1 values, it holds that(
𝑟∑
𝑡=0

Ψ(𝑡)(𝑥, 𝑦)
)2

≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘E𝑀[ 𝑓𝑀]
)

,

where the expectation E𝑀 is over a uniformly random maximum directed matching 𝑀.

Proof. We will first apply the Cauchy–Schwarz inequality to eliminate the 𝑦 variables:(
𝑟∑
𝑡=0

Ψ(𝑡)(𝑥, 𝑦)
)2

=

(
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

𝑦𝑄 ·
√

wt(𝑄)
(
𝑘∑
𝑖=1

𝑏𝑖
Ψ𝑖,𝑄√
wt(𝑄)

))2

≤
(
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

𝑦2
𝑄wt(𝑄)

) ©«
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

(
𝑘∑
𝑖=1

𝑏𝑖
Ψ𝑖,𝑄√
wt(𝑄)

)2ª®¬
≤ ((𝑟 + 1)𝑛) ©«

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

(
𝑘∑
𝑖=1

𝑏𝑖
Ψ𝑖,𝑄√
wt(𝑄)

)2ª®¬
≤ 𝑛(𝑟 + 1) ©«

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

𝑘∑
𝑖,𝑗=1

𝑏𝑖𝑏 𝑗Ψ𝑖,𝑄Ψ𝑗,𝑄
ª®¬

≤ 𝑛(𝑟 + 1) ©«
𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

𝑘∑
𝑖=1

Ψ2
𝑖,𝑄 +

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝑖≠𝑗∈[𝑘]

𝑏𝑖𝑏 𝑗Ψ𝑖,𝑄Ψ𝑗,𝑄
ª®¬ .

By Lemma 8.7, we have that

|Ψ𝑖,𝑄(𝑥)| ≤
∑

𝐶∈ℋ (𝑟+1,𝑄)
𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) ≤ wt(𝑄) · (𝛿𝑛)−1 ,

Hence,
∑𝑟
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑𝑘
𝑖=1 Ψ

2
𝑖,𝑄 ≤

𝑘
𝛿2𝑛2

∑𝑟
𝑡=0

∑
𝑄∈𝑃𝑡 wt(𝑄) ≤ 𝑘(𝑟+1)

𝛿2𝑛
.

To finish the proof, we observe that the probability that a pair (𝑖, 𝑗) is contained in a directed
matching 𝑀 is at least 1

2𝑘 . □

9.2 Step 2: defining the Kikuchi matrices

It thus remains to bound val( 𝑓𝑀) for an arbitrary directed maximum matching 𝑀.
We define the Kikuchi matrices that we consider below.

Definition 9.2. Let 𝑖, 𝑗 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Let 𝑄 ∈ 𝑃𝑡 .
Let 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑢𝑟+1) ∈ ℋ (𝑟+1,𝑄)

𝑖
and 𝐶′ = (𝑗, 𝑣′1, 𝑣′2, 𝑢1, 𝑣′3, 𝑣′4, . . . , 𝑢𝑟+1) ∈ ℋ (𝑟+1,𝑄)

𝑗
.

We let 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 ∈ {0, 1}(

[𝑛]
ℓ )

2𝑟+2

be the matrix with rows and columns by indexed by (2𝑟 + 2)-tuples
of sets (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟) of size exactly ℓ defined as follows.

We set 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 ((𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟), (𝑇0, . . . ,𝑇𝑟 ,𝑇′0 , . . . 𝑇′𝑟 )) equal to 1 if the following holds,

and otherwise we set this entry to be 0. In what follows, we let 𝐶ℎ = {𝑣2ℎ+1, 𝑣2ℎ+2}, and we note
that |𝐶ℎ | = 2 for any chain with nonzero weight, by Definition 3.5.
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1. For ℎ = 0, . . . , 𝑟 − 𝑡, we have 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ and 𝑣2ℎ+1 ∈ 𝑆ℎ , 𝑣2ℎ+2 ∈ 𝑇ℎ .

2. For ℎ = 0, . . . , 𝑟 − 𝑡, we have 𝑆′
ℎ
⊕ 𝑇′

ℎ
= 𝐶′

ℎ
and 𝑣′2ℎ+1 ∈ 𝑆

′
ℎ
, 𝑣′2ℎ+2 ∈ 𝑇

′
ℎ
,

3. For ℎ = 1, . . . , 𝑡, the following holds. Let 𝑤ℎ = 𝐶𝑟−𝑡+ℎ \𝑄ℎ , and 𝑤′
ℎ
= 𝐶′

𝑟−𝑡+ℎ \𝑄ℎ . We have
𝑆𝑟−𝑡+ℎ = 𝑅 ∪ {𝑤ℎ}, 𝑇𝑟−𝑡+ℎ = 𝑅 ∪ {𝑤′

ℎ
}, and 𝑆′

𝑟−𝑡+ℎ = 𝑇
′
𝑟−𝑡+ℎ .18

We let𝐴(𝑡)
𝑖,𝑗 =

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) ·𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 and𝐴𝑖,𝑗 =

∑𝑟
𝑡=0

1
𝐷𝑡
𝐴
(𝑡)
𝑖,𝑗 ,

where 𝐷𝑡 =
(𝑛−2
ℓ−1

)2𝑟+2−𝑡 ·
(𝑛
ℓ

) 𝑡 . For any matching 𝑀 on [𝑘], let 𝐴𝑀 =
∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 . We will abuse

notation and let 𝐴 := 𝐴𝑀 .

The following lemma shows that we can express 𝑓𝑀(𝑥) as a (scaling of a) quadratic form on the
matrix 𝐴(𝑡).

Lemma 9.3. Let 𝑥 ∈ {−1, 1}𝑛 , and let 𝑥′ ∈ {−1, 1}𝑁 , where 𝑁 =
(𝑛
ℓ

)2𝑟+2, denote the vector where
the (𝑆0, 𝑆1, . . . , 𝑆𝑟 , 𝑆′0, 𝑆′1, . . . , 𝑆′𝑟)-th entry of 𝑥′ is

∏𝑟
ℎ=0 𝑥𝑆ℎ𝑥𝑆′ℎ . Let 𝑖, 𝑗 ∈ [𝑘] and 𝑡 ∈ {0, . . . , 𝑟}. Let

𝑄 ∈ 𝑃𝑡 , and let let 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, 𝑣3, 𝑣4, . . . , 𝑢𝑟+1) ∈ ℋ (𝑟+1,𝑄)
𝑖

and 𝐶′ = (𝑗, 𝑣′1, 𝑣′2, 𝑢1, 𝑣′3, 𝑣′4, . . . , 𝑢𝑟+1) ∈
ℋ (𝑟+1,𝑄)
𝑗

. Then,

𝑥′⊤𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 𝑥′ = 𝐷𝑡𝑥𝑣1𝑥𝑣2

𝑟∏
ℎ=1

𝑥{𝑣2ℎ+1,𝑣2ℎ+2}\𝑄ℎ
· 𝑥𝑣′1𝑥𝑣′2

𝑟∏
ℎ=1

𝑥{𝑣′2ℎ+1,𝑣′2ℎ+2}\𝑄ℎ
,

i.e., the product of the monomials associated to 𝐶 and 𝐶′, modded out by 𝑄ℎ , where 𝐷𝑡 =
(𝑛−2
ℓ−1

)2𝑟+2−𝑡 ·
(𝑛
ℓ

) 𝑡 .
Moreover, for any matrix 𝐵(𝐶,𝐶′,𝑄)

𝑖,𝑗 obtained by “zeroing out” exactly 𝛼𝐷𝑡 entries of 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 , the equality

holds with a factor of 1− 𝛼 on the right.
In particular, 𝑥′⊤𝐴𝑥′ = 𝑓𝑀(𝑥).

Proof. Let ®𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑟 , 𝑆′0, 𝑆′1, . . . , 𝑆′𝑟) and ®𝑇 = (𝑇0, . . . ,𝑇𝑟 ,𝑇′0 , . . . 𝑇′𝑟 ) be such that𝐴(
®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 ( ®𝑆, ®𝑇) =

1. Then, we have that

𝑥′®𝑆
𝑥′®𝑇

=

𝑟∏
ℎ=0

𝑥𝑆ℎ𝑥𝑇ℎ𝑥𝑆′ℎ𝑥𝑇
′
ℎ
=

𝑟−𝑡∏
ℎ=0

𝑥𝑆ℎ⊕𝑇ℎ𝑥𝑆′ℎ⊕𝑇
′
ℎ

𝑡∏
ℎ=1

𝑥𝑆𝑟−𝑡+ℎ⊕𝑇𝑟−𝑡+ℎ𝑥𝑆′𝑟−𝑡+ℎ⊕𝑇
′
𝑟−𝑡+ℎ

=

𝑟−𝑡∏
ℎ=0

𝑥𝐶ℎ𝑥𝐶′ℎ

𝑡∏
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ
𝑥𝐶′

𝑟−𝑡+ℎ\𝑄ℎ
,

which is equal to the product of monomials on the right-hand side of the equation we wish to show.

It thus remains to argue that 𝐴(
®𝐶, ®𝐶′,𝑄)
𝑖,𝑗 has exactly 𝐷𝑡 nonzero entries. We observe that, for each

ℎ = 0, . . . , 𝑟 − 𝑡, there are exactly
(𝑛−2
ℓ−1

)
pairs (𝑆ℎ ,𝑇ℎ) such that 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ with 𝑣2ℎ+1 ∈ 𝑆ℎ and

18It is possible that one could have 𝑤ℎ = 𝑤′
ℎ

here. In that case, we pick a canonical extra vertex 𝑣, and require that

𝑣 ∉ 𝑅 as well. This is to ensure that the number of choices here for 𝑆𝑟−𝑡+ℎ and 𝑆′
𝑟−𝑡+ℎ is exactly

(𝑛−2
ℓ−1

) (𝑛
ℓ

)
; otherwise it

would be
(𝑛−1
ℓ−1

) (𝑛
ℓ

)
. The difference in the two cases is immaterial but it is convenient to have an exact count.
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𝑣2ℎ+2 ∈ 𝑇ℎ . Indeed, this is because we must simply choose a set of size ℓ − 1 that does not contain
either of 𝑣2ℎ+1 and 𝑣2ℎ+2, and then this determines 𝑆ℎ and 𝑇ℎ .

For ℎ = 1, . . . , 𝑡, there are exactly
(𝑛−2
ℓ−1

)
choices of (𝑆𝑟−𝑡+ℎ ,𝑇𝑟−𝑡+ℎ). Indeed, this is because

𝑆𝑟−𝑡+ℎ must contain 𝑤ℎ and 𝑇𝑟−𝑡+ℎ must contain 𝑤′
ℎ
. Note that if 𝑤ℎ = 𝑤

′
ℎ
, then there are actually(𝑛−1

ℓ−1

)
choices! However, using the slightly modified definition of the matrix in the footnote in

Definition 9.2, we can again force there to be exactly
(𝑛−2
ℓ−1

)
choices. Finally, there are

(𝑛
ℓ

)
choices for

(𝑆′
𝑟−𝑡+ℎ ,𝑇′

𝑟−𝑡+ℎ), as we must have 𝑆′
𝑟−𝑡+ℎ = 𝑇

′
𝑟−𝑡+ℎ .

Combining, we see that 𝐷𝑡 =
(𝑛−2
ℓ−1

)2(𝑟−𝑡+1) · (
(𝑛−2
ℓ−1

) (𝑛
ℓ

)
)𝑡 =

(𝑛−2
ℓ−1

)2𝑟+2−𝑡 (𝑛
ℓ

) 𝑡 , as required. □

9.3 Step 3: finding a regular submatrix of the Kikuchi matrix

By Lemma 9.3, in order to upper bound E𝑏[val(∑𝑟
𝑡=0 𝑓

(𝑡)
𝑀
)], it suffices to bound E𝑏[∥𝐴∥∞→1] ≤

𝑁E𝑏[∥𝐴∥2], where 𝑁 =
(𝑛
ℓ

)2𝑟+2; here, we use that ∥𝐴∥∞→1 ≤ 𝑁 ∥𝐴∥2 always holds.
To bound ∥𝐴∥2, we will write 𝐴 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 and apply Fact 3.11. To do this, we need to

bound ∥𝐴𝑖,𝑗 ∥2, which we shall do by upper bounding the maximum ℓ1-norm of any row/column of
the matrix. In turns out there are some rows that indeed have a large ℓ1-norm. To handle this issue,
we shall zero out the “bad rows”, as follows. To do this, we will need to use the following technical
lemma, proven in Section 10, that bounds the expected ℓ1-norm of a row and the conditional
expectation given that the row has a nonzero entry in a specific matrix 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 .

Lemma 9.4 (First and conditional moment bounds). Fix 𝑟 ≥ 1, 𝑖, 𝑗 ∈ [𝑘], and letℋ (𝑟+1)
𝑖

andℋ (𝑟+1)
𝑗

denote the (𝑟 + 1)-chain hypergraph with heads in 𝑖 and 𝑗 respectively. Let ∪𝑟
𝑡=0 ∪𝑄∈𝑃𝑡 ℋ

(𝑟+1,𝑄)
𝑖

be a
smooth partition ofℋ (𝑟+1)

𝑖
, as defined in Definitions 8.2 and 8.4. Let 𝐴𝑖,𝑗 be the Kikuchi matrix defined in

Definition 9.2, which depends on 𝑟, 𝑖, 𝑗, and the pieces ∪𝑄∈𝑃𝑡ℋ (𝑟+1,𝑄) of the refinement, and the matching
𝑀.

Let ®𝑆 = (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟) ∈
([𝑛]
ℓ

)2𝑟+2
be a row of the matrix, and let deg𝑖,𝑗( ®𝑆) denote the ℓ1-norm

of the ®𝑆-th row of 𝐴𝑖,𝑗 . Then,

E®𝑆[deg𝑖,𝑗( ®𝑆)] ≤
1

𝑁 · 𝛿𝑛 ,

where 𝑁 =
(𝑛
ℓ

)2𝑟+2.
Furthermore, let 𝑡 ∈ {0, . . . , 𝑟}, 𝑄 ∈ 𝑃𝑡 , and 𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
and 𝐶′ ∈ ℋ (𝑟+1,𝑄)

𝑗
. Let 𝒟𝐶,𝐶′,𝑄 denote

the uniform distribution over rows of 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 that contain a nonzero entry. Then, if 𝑑𝑟+1 ≥ 𝑛 and

ℓ ≥ 2𝑑(𝑟 + 1)/𝛿, it holds that

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗( ®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 4
𝑁𝛿𝑛

.

Let us now use Lemma 9.4 to argue the following. For a sufficiently large constant Γ, there
exist submatrices 𝐵(𝐶,𝐶′,𝑄)

𝑖,𝑗 , i.e., a {0, 1}-matrix where 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 ( ®𝑆, ®𝑇) = 1 implies 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 ( ®𝑆, ®𝑇) = 1,

such that (1) each 𝐵
(𝐶,𝐶′,𝑄)
𝑖,𝑗 contains exactly 𝐷𝑡/100 nonzero entries, and (2) the ℓ1-norm of any

row/column of 𝐵𝑖,𝑗 (defined analogously to 𝐴𝑖,𝑗) is at most Γ
𝑁 ·𝛿𝑛 .
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We do this as follows. First, we observe that 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 ( ®𝑆, ®𝑇) = 𝐴

(𝐶′,𝐶,𝑄)
𝑗,𝑖 ( ®𝑅, ®𝑊), where ®𝑅 =

(𝑆′0, . . . , 𝑆′𝑟 , 𝑆0, . . . , 𝑆𝑟) and ®𝑊 = (𝑇′0 , . . . ,𝑇′𝑟 ,𝑇0, . . . ,𝑇𝑟). In particular, this symmetry implies that the
bounds on the moments for rows in Lemma 9.4 hold for columns as well.

Let ℬ1 = { ®𝑆 : deg𝑖,𝑗( ®𝑆) ≥ Γ
𝑁 ·𝛿𝑛 } denote the set of bad rows with ℓ1-norm at least Γ

𝑁 ·𝛿𝑛 , and
similarly let ℬ2 be the same but for the columns. Applying Markov’s inequality and the conditional
degree bound, we see that ℬ1 contains at most 𝑂(1/Γ)-fraction of the rows where 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 is

nonzero, and similarly ℬ2 contains at most 𝑂(1/Γ)-fraction of the columns where 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 is

nonzero. Thus, after removing these rows, we still have at least (1 −𝑂(1/Γ))𝐷𝑡 nonzero entries
in 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 . When Γ is a sufficiently large constant, this is at least 1/2, and so we can choose an

arbitrary subset of exactly 𝐷𝑡/2 nonzero entries. We let 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 be the matrix with those nonzero

entries.
The first property is clearly satisfied by construction. The second property is satisfied because

the ℓ1-norm of any row/column of 𝐵𝑖,𝑗 is clearly at most Γ
𝑁 ·𝛿𝑛 , again by construction.

9.4 Step 4: finishing the proof

Let 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 be the matrix produced in Section 9.3.

We let 𝐵(𝑡)
𝑖,𝑗 =

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) ·𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 and 𝐵𝑖,𝑗 =

∑𝑟
𝑡=0

1
𝐷𝑡
𝐵
(𝑡)
𝑖,𝑗 .

For any matching 𝑀 on [𝑘], let 𝐵𝑀 =
∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐵𝑖,𝑗 . We will abuse notation and let 𝐵 := 𝐵𝑀 .

By Lemma 9.3 and the fact that 𝐵(𝐶,𝐶′,𝑄)
𝑖,𝑗 has exactly 𝐷𝑡/2 nonzero entries of 𝐴(𝐶,𝐶′,𝑄)

𝑖,𝑗 in it, we

see that for every 𝑥 ∈ {−1, 1}𝑛 , there exists 𝑥′ ∈ {−1, 1}𝑁 such that 𝑥′⊤𝐵𝑥′ = 1
2 𝑓𝑀(𝑥). We also have

that ∥𝐵𝑖,𝑗 ∥2 ≤ Γ
𝑁 ·𝛿𝑛 , by construction in Section 9.3.

By Fact 3.11, it therefore follows that

E𝑏[val( 𝑓𝑀(𝑥))] ≤ 2E𝑏[𝑁 ∥𝐵∥2] ≤ 𝑁 ·
Γ

𝑁 · 𝛿𝑛 ·𝑂(
√
𝑘 log𝑁) = 𝑂(

√
𝑘ℓ 𝑟 log 𝑛) · 1

𝛿𝑛

Hence,

E𝑏[val(Ψ(𝑥, 𝑦))]2 ≤ E𝑏[val(Ψ(𝑥, 𝑦)2)] ≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘E𝑀[ 𝑓𝑀]
)

≤ 𝑛(𝑟 + 1)
(
𝑘(𝑟 + 1)
𝛿2𝑛

+ 2𝑘𝑂(
√
𝑘ℓ 𝑟 log 𝑛) · 1

𝛿𝑛

)
=
𝑘(𝑟 + 1)

𝛿

(
𝑟 + 1
𝛿
+ 2𝑂(

√
𝑘ℓ 𝑟 log 𝑛)

)
≤ 𝑘(𝑟 + 1)

𝛿
𝑂(

√
𝑘ℓ 𝑟 log 𝑛) ,

as ℓ ≥ 𝑂(𝑟/𝛿) and we can assume that 𝑘 ≥ 1/𝛿 (as otherwise we are already done).

10 Row Pruning: Proof of Lemma 9.4

In this section, we prove Lemma 9.4, restated below.
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Lemma 10.1 (First and conditional moment bounds). Fix 𝑟 ≥ 1, 𝑖, 𝑗 ∈ [𝑘], and letℋ (𝑟+1)
𝑖

andℋ (𝑟+1)
𝑗

denote the (𝑟 + 1)-chain hypergraph with heads in 𝑖 and 𝑗 respectively. Let ∪𝑟
𝑡=0 ∪𝑄∈𝑃𝑡 ℋ

(𝑟+1,𝑄)
𝑖

be a
smooth partition ofℋ (𝑟+1)

𝑖
, as defined in Definitions 8.2 and 8.4. Let 𝐴𝑖,𝑗 be the Kikuchi matrix defined in

Definition 9.2, which depends on 𝑟, 𝑖, 𝑗, and the pieces ∪𝑄∈𝑃𝑡ℋ (𝑟+1,𝑄) of the refinement, and the matching
𝑀.

Let ®𝑆 = (𝑆0, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟) ∈
([𝑛]
ℓ

)2𝑟+2
be a row of the matrix, and let deg𝑖,𝑗( ®𝑆) denote the ℓ1-norm

of the ®𝑆-th row of 𝐴𝑖,𝑗 . Then,

E®𝑆[deg𝑖,𝑗( ®𝑆)] ≤
1

𝑁 · 𝛿𝑛 ,

where 𝑁 =
(𝑛
ℓ

)2𝑟+2.
Furthermore, let 𝑡 ∈ {0, . . . , 𝑟}, 𝑄 ∈ 𝑃𝑡 , and 𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
and 𝐶′ ∈ ℋ (𝑟+1,𝑄)

𝑗
. Let 𝒟𝐶,𝐶′,𝑄 denote

the uniform distribution over rows of 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 that contain a nonzero entry. Then, if 𝑑𝑟+1 ≥ 𝑛 and

ℓ ≥ 2𝑑(𝑟 + 1)/𝛿, it holds that

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗( ®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 4
𝑁𝛿𝑛

.

Proof. We begin by estimating the first moment, i.e., E®𝑆[deg𝑖,𝑗( ®𝑆)]. By definition, we have that

E®𝑆[deg𝑖,𝑗( ®𝑆)] =
1
𝑁

𝑟∑
𝑡=0

1
𝐷𝑡

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) ·𝐷𝑡

=
1
𝑁

𝑟∑
𝑡=0

∑
𝑄∈𝑃𝑡

1
wt(𝑄)

∑
𝐶∈ℋ (𝑟+1,𝑄)

𝑖
,𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑖

(𝐶)wtℋ (𝑟+1)
𝑗

(𝐶′) .

We note that the latter quantity is simply equal to 1
𝑁

∑
𝐶∈ℋ (𝑟+1)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶)∑
𝐶′∈ℋ (𝑟+1,𝑄)

𝑗
:𝐶∈ℋ (𝑟+1,𝑄)

𝑖

1
wt(𝑄) ·

wtℋ (𝑟+1)
𝑗

(𝐶′), where the second sum is over 𝐶′ ∈ ℋ (𝑟+1,𝑄)
𝑗

where 𝑄 is determined by the choice of 𝐶.

We note that for any 𝑄,
∑
𝐶′∈ℋ (𝑟+1,𝑄)

𝑗

wtℋ (𝑟+1)
𝑗

(𝐶′) ≤ wt(𝑄)
𝛿𝑛 , and hence we conclude that

E®𝑆[deg𝑖,𝑗( ®𝑆)] ≤
1
𝑁

∑
𝐶∈ℋ (𝑟+1)

𝑖

wtℋ (𝑟+1)
𝑖

(𝐶) 1
𝛿𝑛
≤ 1
𝑁 · 𝛿𝑛 .

Next, we estimate the conditional first moment. Fix a 𝑄 ∈ 𝑃𝑡 for some 0 ≤ 𝑡 ≤ 𝑟, and let
𝐶 ∈ ℋ (𝑟+1,𝑄)

𝑖
,𝐶′ ∈ ℋ (𝑟+1,𝑄)

𝑗
. We now bound E®𝑆∼𝒟𝐶,𝐶′,𝑄

[deg𝑖,𝑗( ®𝑆)], where 𝒟𝐶,𝐶′,𝑄 is the uniform

distribution over all rows ®𝑆 such that 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 has a nonzero entry. We note that there are exactly

𝐷𝑡 such rows.
We shall proceed in two steps. First, we consider a fixed (𝐷,𝐷′,𝑄′) with 𝐷 ∈ ℋ (𝑟+1,𝑄′)

𝑖
,𝐷′ ∈

ℋ (𝑟+1,𝑄′)
𝑗

. Let |𝑄′ | = 𝑡′+ 1. We will upper bound the number of rows ®𝑆 where 𝐴(𝐶,𝐶′,𝑄)
𝑖,𝑗 and 𝐴(𝐷,𝐷′,𝑄′)

𝑖,𝑗 ,
normalized by the factor of 1/𝐷𝑡′. This will depend on the number of shared vertices 𝑧 between
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these two pairs of chains, for an appropriate definition of shared vertices. Then, we will, for each
choice of 𝑧, bound the total weight of the number of chains (𝐷,𝐷′,𝑄′) have “intersection 𝑧” with
(𝐶,𝐶′,𝑄), which will conclude the argument.

Step 1: bounding the normalized number of entries for a fixed (𝑫,𝑫′,𝑸′). To begin, we will
define the number of “shared vertices” between two pairs of chains (𝐶,𝐶′,𝑄) and (𝐷,𝐷′,𝑄′).

Definition 10.2 (Left vertices). Let (𝐶,𝐶′,𝑄) be such that 𝑄 ∈ 𝑃𝑡 and 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

,𝐶′ ∈ ℋ (𝑟+1,𝑄)
𝑗

.
Let 𝐶 = (𝑖, 𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑟+1) and 𝐶′ = (𝑗, 𝑣′1, 𝑣′2, 𝑢′1, . . . , 𝑢′

𝑟+1). The tuple of left vertices of (𝐶,𝐶′,𝑄)
is the sequence (𝑣1, 𝑣3, 𝑣5, . . . , 𝑣2(𝑟−𝑡)+1,𝑤1, . . . ,𝑤𝑡 , 𝑣′1, 𝑣′3, . . . , 𝑣′2(𝑟−𝑡)+1), where 𝐶ℎ = {𝑣2ℎ+1, 𝑣2ℎ+2} =
{𝑤ℎ ,𝑄ℎ}. We denote this sequence by 𝐿(𝐶,𝐶′,𝑄).

Remark 10.3. The reason for the above definition is the following. If ®𝑆 is a row where the matrix
𝐴
(𝐶,𝐶′,𝑄)
𝑖,𝑗 has a nonzero entry, then the entries of 𝐿(𝐶,𝐶′,𝑄) (in order) are contained in the sets
(𝑆0, . . . , 𝑆𝑟−𝑡 , 𝑆𝑟−𝑡+1, . . . , 𝑆𝑟 , 𝑆′0, . . . , 𝑆′𝑟−𝑡), e.g., 𝑣1 ∈ 𝑆0, 𝑣3 ∈ 𝑆1, 𝑤1 ∈ 𝑆𝑟−𝑡+1, etc.

Definition 10.4 (Intersection patterns). Let (𝐶,𝐶′,𝑄) and (𝐷,𝐷′,𝑄′) be such that 𝐶 ∈ ℋ (𝑟+1,𝑄)
𝑖

,𝐶′ ∈
ℋ (𝑟+1,𝑄)
𝑗

and 𝐷 ∈ ℋ (𝑟+1,𝑄′)
𝑖

,𝐷′ ∈ ℋ (𝑟+1,𝑄′)
𝑗

.

The intersection pattern of (𝐶,𝐶′,𝑄) and (𝐷,𝐷′,𝑄′), given by 𝑍 ∈ {0, 1}2𝑟+2−𝑡 , is defined as
𝑍ℎ = 1 if 𝐿(𝐶,𝐶′,𝑄)ℎ = 𝐿(𝐷,𝐷′,𝑄′)ℎ , and it is 0 otherwise. Note that the sequences 𝐿(𝐶,𝐶′,𝑄)
and 𝐿(𝐷,𝐷′,𝑄′)may not have the same length; if ℎ is “out of bounds” for 𝐿(𝐷,𝐷′,𝑄′), then we set
𝑍ℎ = 0.

We now fix (𝐷,𝐷′,𝑄′) and count the number of rows as a function of the intersection pattern
𝑍. Let 𝑡′ = |𝑄′ | − 1. We have two cases. In the first case, 𝑡 ≥ 𝑡′, which implies that |𝐿(𝐶,𝐶′,𝑄)| ≤
|𝐿(𝐷,𝐷′,𝑄)|. We observe that in order for a row ®𝑆 to have a nonzero entry for both pairs of chains,
the following must hold:

1. for ℎ = 1, . . . , 𝑟 + 2 (the first 𝑟 + 1 sets), we have {𝐿(𝐶,𝐶′,𝑄)ℎ , 𝐿(𝐷,𝐷′,𝑄)ℎ} ⊆ 𝑆ℎ ,

2. for ℎ = 𝑟 + 2, . . . , 2𝑟 + 3 − 𝑡 (the next 𝑟 + 1 − 𝑡 sets), we have {𝐿(𝐶,𝐶′,𝑄)ℎ , 𝐿(𝐷,𝐷′,𝑄)ℎ} ⊆
𝑆′
ℎ−(𝑟+2),

3. for ℎ = 2𝑟 + 3− 𝑡, . . . , 2𝑟 + 2− 𝑡′ (the next 𝑡 − 𝑡′ sets), we have 𝐿(𝐷,𝐷′,𝑄)ℎ ∈ 𝑆′ℎ−(𝑟+2),

4. for ℎ = 2𝑟 + 2− 𝑡′ + 1, . . . , 2𝑟 + 2 (the final 𝑡′ sets), we have 𝑆′
ℎ−(𝑟+2) is arbitrary.

We observe that for each intersection point, i.e., an ℎ such that 𝐿(𝐶,𝐶′,𝑄)ℎ = 𝐿(𝐷,𝐷′,𝑄)ℎ , there
are

( 𝑛
ℓ−1

)
choices for the corresponding set, as it needs to only contain one vertex. For each

nonintersection point, i.e., an ℎ ∈ {1, . . . , 2𝑟 + 2 − 𝑡} where 𝐿(𝐶,𝐶′,𝑄)ℎ ≠ 𝐿(𝐷,𝐷′,𝑄)ℎ , we have( 𝑛
ℓ−2

)
choices, because the set needs to contain both vertices. Finally, we have

( 𝑛
ℓ−1

)
choices for each

of the 𝑡 − 𝑡′ sets in the third case, and
(𝑛
ℓ

)
choices for the last 𝑡 sets in the final case. In total, we have( 𝑛

ℓ−1

) 𝑧 ( 𝑛
ℓ−2

)2𝑟+2−𝑡−𝑧 ( 𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′.
In the second case, 𝑡 ≤ 𝑡′. We observe that by swapping the roles of 𝑡 and 𝑡′ above, we get a

bound of
( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

)2𝑟+2−𝑡′−𝑧 ( 𝑛
ℓ−1

) 𝑡′−𝑡 (𝑛
ℓ

) 𝑡 .
51



Now, although the above counts are different, we observe that they are within constant factors
of each other. Indeed, we have( 𝑛

ℓ−2

)−𝑡′ ( 𝑛
ℓ−1

) 𝑡′−𝑡 (𝑛
ℓ

) 𝑡( 𝑛
ℓ−2

)−𝑡 ( 𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′ = ((
𝑛

ℓ − 2

)−1 (
𝑛

ℓ − 1

)2 (
𝑛

ℓ

)−1
) 𝑡′−𝑡

=

(
ℓ (𝑛 − ℓ + 2)

(ℓ − 1)(𝑛 − ℓ + 1)

) 𝑡′−𝑡
=

(
1+ 𝑛 − 1
(ℓ − 1)(𝑛 − ℓ + 1)

) 𝑡′−𝑡
,

and this ratio is between 1
2 and 2 since |𝑡′ − 𝑡 | ≤ 𝑟 and 𝑛−1

(ℓ−1)(𝑛−ℓ+1) ≥
2
ℓ ≥ 1

Γ𝑟 for a sufficiently large
constant Γ.

Next, we observe that while we have an upper bound of 2 ·
( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

)2𝑟+2−𝑡 ( 𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′ on the
number of rows, which depends on 𝑡′, each entry has a scaling factor of 1

𝐷𝑡′
. We now give an upper

bound on the normalized number of entries that does not depend on 𝑡′. We have

2

( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

)2𝑟+2−𝑡−𝑧 ( 𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′
𝐷𝑡′

= 2

( 𝑛
ℓ−1

) 𝑧 ( 𝑛
ℓ−2

)2𝑟+2−𝑡−𝑧 ( 𝑛
ℓ−1

) 𝑡−𝑡′ (𝑛
ℓ

) 𝑡′(𝑛−2
ℓ−1

)2𝑟+2−𝑡′ ·
(𝑛
ℓ

) 𝑡′ = 2
( ( 𝑛
ℓ−2

)( 𝑛
ℓ−1

) )2𝑟+2−𝑡−𝑧

·
( ( 𝑛

ℓ−1

)(𝑛−2
ℓ−1

) )2𝑟+2−𝑡′

= 2
(
ℓ − 1

𝑛 − ℓ + 2

)2𝑟+2−𝑡−𝑧
·
(

𝑛(𝑛 − 1)
(𝑛 − ℓ + 1)(𝑛 − ℓ )

)2𝑟+2−𝑡′

≤ 2
(
ℓ

𝑛

)2𝑟+2−𝑡−𝑧
·
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
.

Step 2: bounding the weight of (𝑫,𝑫′,𝑸′) with a fixed intersection pattern 𝒁. Let us fix the
intersection pattern 𝑍 and then determine the total weight of all (𝐷,𝐷′,𝑄′)with 𝐷 ∈ ℋ (𝑟+1,𝑄′)

𝑖
,𝐷′ ∈

ℋ (𝑟+1,𝑄′)
𝑗

with these intersection points. To do this, we will apply Lemma 8.7.

First, we observe that fixing an intersection pattern induces a 𝑍(1) ∈ {[𝑛] ∪ {★}}𝑟+1 × {★}, simply
by filling in 𝑍(1)’s non-★ entries with the appropriate vertices of 𝐿(𝐶,𝐶′,𝑄). We note that such a
𝑍(1) never has the tail filled in, as the tail is not a potential intersection point. By Lemma 8.7, this
implies that the total weight of 𝐷 that contain 𝑍(1) is at most (𝛿𝑛)−|𝑍(1) |.

Next, we bound the total weight of all 𝐷′ that are valid for a fixed 𝐷. We observe that
𝐷 ∈ ℋ (𝑟+1,𝑄′)

𝑖
for some 𝑖, and hence 𝐷′ must be inℋ (𝑟+1,𝑄′)

𝑗
. We note that 𝑍 induces an intersection

pattern 𝑍(2) on 𝐷′, and moreover 𝑍(2) does not intersect with the “𝑄′-part” of the chain 𝐷′, namely
the links that contain vertices from 𝑄′. So, it follows that 𝐷′ contains (𝑍(2),𝑄′).

By Lemma 8.7, we have that the total weight of all 𝐷′ is at most wt(𝑄)𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) |−1. As each
entry in 𝐴(𝐷,𝐷′,𝑄′)

𝑖,𝑗 is scaled down by a factor of wt(𝑄′), the normalized weight is therefore at most

𝑑 |𝑍
(2) |(𝛿𝑛)−|𝑍(2) |−1.
In total, we get a bound of (𝛿𝑛)−|𝑍(1) | · 𝑑 |𝑍(2) |(𝛿𝑛)−|𝑍(2) |−1, which is at most 𝑑 |𝑍 |(𝛿𝑛)−|𝑍 |−1. Here,

we use that |𝑍 | = |𝑍(1) | + |𝑍(2) |.
Putting it all together. By combining steps (1) and (2) (and paying an additional

(2𝑟+2−𝑡
𝑧

)
factor to

choose the nonzero entries of 𝑍), we thus obtain the final bound of

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗( ®𝑆)] ≤

1
𝐷𝑡

2𝑟+2−𝑡∑
𝑧=0

(
2𝑟 + 2− 𝑡

𝑧

)
·
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
· 2

(
ℓ

𝑛

)2𝑟+2−𝑡−𝑧
· 𝑑𝑧(𝛿𝑛)−𝑧−1
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≤
(
1+ 𝑂(ℓ 𝑟)

𝑛

)
2
𝐷𝑡

(
ℓ

𝑛

)2𝑟+2−𝑡
·

2𝑟+2−𝑡∑
𝑧=0

(2𝑟 + 2− 𝑡)𝑧 ·
(
ℓ

𝑛

)−𝑧
· 𝑑𝑧(𝛿𝑛)−𝑧−1

=

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
2

𝐷𝑡 · 𝛿𝑛

(
ℓ

𝑛

)2𝑟+2−𝑡
·

2𝑟+2−𝑡∑
𝑧=0

(
(2𝑟 + 2− 𝑡) · 𝑑

𝛿ℓ

) 𝑧
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4

𝐷𝑡 · 𝛿𝑛

(
ℓ

𝑛

)2𝑟+2−𝑡
,

where we use that ℓ ≥ 2𝑑(2𝑟 + 2)/𝛿.
To finish the proof, we need to compute 𝐷𝑡

𝑁 . We have that

𝐷𝑡

𝑁
=

(𝑛−2
ℓ−1

)2𝑟+2−𝑡 ·
(𝑛
ℓ

) 𝑡(𝑛
ℓ

)2𝑟+2
=

( (𝑛−2
ℓ−1

)(𝑛
ℓ

) )2𝑟+2−𝑡

=

(
ℓ (𝑛 − ℓ )
𝑛(𝑛 − 1)

)2𝑟+2−𝑡

≥
(
ℓ

𝑛

)2𝑟+2−𝑡
·
(
1− ℓ − 1

𝑛 − 1

)2𝑟+2−𝑡
≥

(
ℓ

𝑛

)2𝑟+2−𝑡 (
1− (ℓ − 1)(2𝑟 + 2)

𝑛 − 1

)
=

(
ℓ

𝑛

)2𝑟+2−𝑡 (
1− 𝑂(ℓ 𝑟)

𝑛

)
,

Thus,

E®𝑆∼𝒟𝐶,𝐶′,𝑄
[deg𝑖,𝑗( ®𝑆)] ≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4

𝐷𝑡 · 𝛿𝑛

(
ℓ

𝑛

)2𝑟+2−𝑡
≤

(
1+ 𝑂(ℓ 𝑟)

𝑛

)
4

𝑁 · 𝛿𝑛 ,

which finishes the proof. □
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A The Case of Imperfect Completeness in Theorem 2

In this appendix, we prove Theorem 2 when the code has completeness 1− 𝜀. The proof is essentially
identical to the proof in the perfect completeness case presented in Sections 5 to 10, with only minor
changes that we describe here.

First, we observe that the reduction in Section 5.1 holds with the following minor change: the
decoding function 𝑓𝑣1,𝑎1,𝑣2,𝑎2(𝑎3) for 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3)might not be deterministic. This means
that the function 𝑓𝑣1,𝑎1,𝑣2,𝑎2(𝑎3) is a convex combination of the deterministic functions specified in
Section 5.1, and so we may need to add multiple copies of 𝐶 = (𝑣1, 𝑎1, 𝑣2, 𝑎2, 𝑣3) with different
weights to handle the different deterministic functions in the convex combination. This only
introduces some minor issues with notation.

The key change that we need to make lies in Claim 5.7. We no longer have that the chain
polynomials correctly decode 𝑥𝑢 for every 𝑥 ∈ 𝒞. In fact, we can see that, by the “chain decoder”
interpretation of the adaptive chains given in Section 2.3, the chain polynomial computes the
advantage of the chain decoder Dec𝑥𝑟+1(𝑢)when decoding 𝑥𝑢 , namely E[𝑥𝑢Dec𝑥𝑟+1(𝑢)], where the
expectation is over the internal randomness of the chain decoder. In this case, by union bound, the
chain decoder is correct with probability at least 1− (𝑟 + 1)𝜀, and so E[𝑥𝑢Dec𝑥𝑟+1(𝑢)] ≥ 1− 2(𝑟 + 1)𝜀.

Now, when we use Lemma 5.9 to refute the chain polynomial instances, we set parameters
as follows. Let 𝜂 > 0 to be chosen later, and set 𝑟0 be such that 𝑟0 + 1 = ⌊ 1

2𝜀 − 𝜂⌋ and 𝑟1 be such
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that 𝑟1 = 𝛾
√

log2 𝑛 for some constant 𝛾 to be chosen later. We then let 𝑟 = min(𝑟0, 𝑟1). Note that by
choice of 𝑟, 1

2𝜀 − 𝜂 ≥ 𝑟 + 1, and so 1− 2(𝑟 + 1)𝜀 ≥ 2𝜂𝜀.
Now, we set 𝑑 to be such that 𝑑𝑟+1 ≥ 𝑛, so we have to set 𝑑 = 𝑛1/𝑟+1. Finally, we set ℓ = 𝑑𝑟/𝛿.

Following the calculations, we thus get that either

𝜂2𝜀2𝑘 ≤ 𝑟22𝑂(𝑟)𝑂(ℓ 𝑟 log 𝑛) = 𝑂(1)
𝛿

𝑟62𝑂(𝑟)𝑑 log 𝑛 ,

or

𝜂4𝑒𝑝𝑠4𝑘 ≤ 𝑟6

𝛿2
2𝑂(𝑟)𝑂(ℓ 𝑟 log 𝑛) = 𝑟8

𝛿3
2𝑂(𝑟)𝑑 log 𝑛 .

The second equation is always the dominant term. If 𝜀 ≤ 𝛾/
√

log2 𝑛, then we observe that we are
simply in the same parameter regime as in the perfect completeness, and we get the same bound. If
𝜀 ≥ 2𝛾/

√
log2 𝑛, then we have that

𝑘 ≤ 𝑟8

𝛿3𝜂4𝜀4
2𝑂(𝑟)𝑛

1
𝑟+1 log 𝑛 .

Taking 𝛾 large enough and 𝜂 = 𝑂(1/log 𝑛) implies that (𝛿3𝜀4𝑘) ≤ �̃�(𝑛 1
𝑟+1 ). This finishes the proof,

as 𝑟 + 1 = ⌊ 1
2𝜀 − 𝜂⌋. Note that the final log(1/𝛿) loss comes from Fact 3.4.

B Design 3-LCCs over F2 from Reed–Muller Codes

In this appendix, we give a simple folklore construction of a design 3-LCCs (Definition 3.8) using
Reed–Muller codes.

Lemma B.1 (Design 3-LCCs over F2 from Reed–Muller Codes). Let 𝑡 be an integer, and let 𝑘 =

1+ 𝑡 +
(𝑡
2

)
. Then, there is a design 3-LCC with blocklength 𝑛 = 4𝑡 of dimension 𝑘. In particular, 𝑛 ≤ 22

√
2𝑘 .

To prove this lemma, we will need the following fact about polynomials over F4.

Fact B.2. Let 𝑓 (𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 be a degree-2 polynomial over F4. Then,

∑
𝛽∈F4

𝑓 (𝛽) = 0.

Proof. Recall that the field F4 is equivalent to the polynomial ring F2[𝛽] modulo the equation
𝛽2 + 𝛽 + 1 = 0. We have

𝑓 (0) = 𝛼0

𝑓 (1) = 𝛼0 + 𝛼1 + 𝛼2

𝑓 (𝛽) = 𝛼0 + 𝛼1𝛽 + 𝛼2𝛽
2

𝑓 (1+ 𝛽) = 𝛼0 + 𝛼1(1+ 𝛽) + 𝛼2(1+ 𝛽)2

=⇒ 𝑓 (0) + 𝑓 (1) + 𝑓 (𝛽) + 𝑓 (1+ 𝛽) = 𝛼0 · 4+ 𝛼1 · 2(1+ 𝛽) + 𝛼2(1+ 𝛽2 + (1+ 2𝛽 + 𝛽2))
= 0 ,

as 2 = 0 in F4. □
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Proof of Lemma B.1. We will define the code in two stages. First, we will define, via an encoding
map, a code over F4 with the desired dimension argue that it is a design 3-LCC. Then, we will use
this code to construct a code over F2.

Let𝒱 denote the vector space of degree ≤ 2 polynomials over F4 in 𝑡 variables 𝑥1, . . . , 𝑥𝑡 . We
note that𝒱 has dimension 𝑘.

For each 𝑏 ∈ F𝑘
4 , we encode 𝑏 by (1) letting 𝑓𝑏(𝑥1, . . . , 𝑥𝑡) be the degree-2 polynomial with

coefficients given by 𝑏, and (2) evaluating 𝑓𝑏 over all 𝑥 ∈ F𝑡
4; this yields an output 𝑍 ∈ F4

4𝑡 = F𝑛
4 ,

which is the encoding Enc(𝑏). We note that Enc is clearly an F4 linear map.
We now argue that this encoding map is a design 3-LCC. Indeed, we need to define a system of

constraints such that for every pair 𝑥(0), 𝑥(1) ∈ F𝑡
4, there is a unique constraint containing 𝑥(0), 𝑥(1).

Let 𝑥(𝛽) = 𝑥(0) + 𝛽(𝑥(1) − 𝑥(0)) and 𝑥(1+𝛽) = 𝑥(0) + (1 + 𝛽)(𝑥(1) − 𝑥(0)). We note that 𝑥(0), 𝑥(1), 𝑥(𝛽)

and 𝑥(1+𝛽) is the line 𝐿(𝑡) = 𝑥(0) + 𝜆(𝑥(1) − 𝑥(0)) containing 𝑥(0), 𝑥(1). Fix 𝑏 ∈ F𝑘
4 , and let 𝑓𝑏 be the

corresponding polynomial. We know that 𝑔(𝜆) = 𝑓𝑏(𝐿(𝜆)) is a degree-2 univariate polynomial in
𝜆. Hence, by Fact B.2, it follows that 𝑓𝑏(𝑥(0)) + 𝑓𝑏(𝑥(1)) + 𝑓𝑏(𝑥(𝛽)) + 𝑓𝑏(𝑥(1+𝛽)) = 0. Hence, for each
pair 𝑥(0), 𝑥(1) ∈ F𝑡

4, there exists a constraint containing this pair, and moreover, because two points
determine a line, any constraint containing this pair must be exactly this line. Thus, the code given
by Enc is a design 3-LCC.

We now use the above code to construct a binary code. Let Tr : F4 → F2 be the trace map. We
let𝒱′ be the image of𝒱 under Tr (applied element-wise to each vector in𝒱). We note that because
𝒱 has dimension 𝑘 over F4 is a linear code, it is systematic, meaning that there is a subset 𝑆 ⊆ F𝑡

4
such that𝒱|𝑆 = F𝑘

4 . Therefore, because the trace map is identity on F2, it follows that𝒱′ |𝑆 = F𝑘
2 ,

i.e., that𝒱′ has dimension 𝑘 also.
To finish the proof, we need to argue that 𝒱′ is a design 3-LCC. Let 𝑔 ∈ 𝒱′. We will show

that for each line 𝑥(0), 𝑥(1), 𝑥(𝛽), 𝑥(1+𝛽) in F𝑡
4 as defined earlier, it holds that 𝑔(𝑥(0)) + 𝑔(𝑥(1)) + 𝑔(𝑥(𝛽)) +

𝑔(𝑥(1+𝛽)) = 0. Indeed, we have that 𝑔 = Tr( 𝑓 ) for some 𝑓 ∈ 𝒱, and that 𝑓 (𝑥(0)) + 𝑓 (𝑥(1)) + 𝑓 (𝑥(𝛽)) +
𝑓 (𝑥(1+𝛽)) = 0. Because all the coefficients in the linear constraint are 1, i.e., they are in F2, the
constraint still holds after applying Tr(·), as this is an F2-linear map. Thus, the constraint holds,
which finishes the proof. □
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