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Abstract

The planted clique conjecture states that no polynomial-time algorithm can find a hidden
clique of size k ≪

√
n in an n-vertex Erdős–Rényi random graph with a k-clique planted. In

this paper, we prove the equivalence among many (in fact, most) variants of planted clique
conjectures, such as search versions with a success probability exponentially close to 1 and with
a non-negligible success probability, a worst-case version (the k-clique problem on incompressible
graphs), decision versions with small and large success probabilities, and decision versions with
adversarially chosen k and binomially distributed k. In particular, we establish the equivalence
between the planted clique problem introduced by Jerrum and Kučera and its decision version
suggested by Saks in the 1990s. Moreover, the equivalence among decision versions identifies
the optimality of a simple edge counting algorithm: By counting the number of edges, one can
efficiently distinguish an n-vertex random graph from a random graph with a k-clique planted
with probability Θ(k2/n) for any k ≤

√
n. We show that for any k, no polynomial-time algorithm

can distinguish these two random graphs with probability ≫ k2/n if and only if the planted
clique conjecture holds. The equivalence among search versions identifies the first one-way
function that admits a polynomial-time security-preserving self-reduction from exponentially
weak to strong one-way functions. These results reveal a detection-recovery gap in success
probabilities for the planted clique problem. We also present another equivalence between
the existence of a refutation algorithm for the planted clique problem and an average-case
polynomial-time algorithm for the k-clique problem with respect to the Erdős–Rényi random
graph.
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1 Introduction

The planted k-clique problem, introduced by Jerrum [Jer92] and Kučera [Kuč95], asks to find a
k-clique in an n-vertex random Erdős–Rényi graph with a k-clique planted on average. This is
one of the most popular average-case problems, and its hardness assumptions and their variants
have many applications in various areas, such as average-case complexity [ERSY22], cryptography
[JP00; ABW10; ABIKN23], hardness of approximation [MRS21], game theory [HK11], property
testing [AAKMRX07], mathematical finance [ABBG11], and high-dimensional statistics [BR13a;
BBH18; BB20].

The planted k-clique problem can be formally stated as follows. Let G(n, 1/2) denote the
distribution of the Erdős–Rényi random graph, i.e., a random graph on n vertices where every pair
of vertices is connected by an edge independently with probability 1/2. Let G(n, 1/2, k) denote the
distribution of the random graph obtained by planting an additional clique of size k in G(n, 1/2);
specifically, to sample a graph from G(n, 1/2, k), we choose a uniformly random size-k subset C
of the n vertices, connect every pair of vertices in C by an edge, and connect every other pair of
vertices independently with probability 1/2. We say that a randomized algorithm A finds a k-clique
in G(n, 1/2, k) with probability ε(n) if

Pr
A,G∼G(n,1/2,k)

[
A outputs a clique of size k in G on input G

]
≥ ε(n),

where the probability is over a random graphG drawn from G(n, 1/2, k) and the internal randomness
of A. The task of the planted k-clique problem is to find a k-clique in G(n, 1/2, k) with high
probability ε(n) (say, ε(n) = 1− o(1)).

A state-of-the-art algorithm due to Alon, Krivelevich, and Sudakov [AKS98] solves the planted
k-clique problem in polynomial time for any k ≥ Ω(

√
n). The maximum size of a clique of an

Erdős–Rényi random graph is (2 + o(1)) · log2 n with high probability, and thus it is information-
theoretically possible to solve the planted k-clique problem as long as k ≫ 2 log2 n; i.e., it can be
solved in quasi-polynomial time by using a brute-force search. Yet, no polynomial-time algorithm
that solves the planted k-clique problem for k = o(

√
n) is known, despite that many algorithms

that improve some aspect of [AKS98] have been developed in the literature [FK00; FR10; DM15;
DGP14]. In fact, a large body of research suggests that for k ≪

√
n, the planted k-clique problem

cannot be efficiently solved in restricted computational models, such as a fixed-temperature variant
of simulated annealing [Jer92; CMZ23], constant depth circuits [Ros08], the statistical query model
[FGRVX17], the Lovász–Schrijver semidefinite programming hierarchy [FK03], and the sum-of-
squares hierarchy [BHKKMP19]. This leads us to the celebrated conjecture known as the Planted
Clique Conjecture. There are several ways to formalize the Planted Clique conjecture, each of
which leads to a different mathematical statement. The most standard version of the conjecture is
as follows.

Conjecture 1.1 (The Planted Clique Conjecture with probability ε(n)). For any constant α ∈
(0, 1/2) and for any randomized polynomial-time algorithm A, for all large n ∈ N and for k :=
n1/2−α, A cannot find a k-clique in G(n, 1/2, k) with probability ε(n). By default, we assume
ε(n) := 1/2.

Conjecture 1.1 is often referred to as a search (or recovery) version because it postulates that no
polynomial-time algorithm can recover the hidden k-clique. However, in the literature, it is more
popular to assume a stronger variant of the conjecture: a decision version.

The decision version of the planted clique problem was suggested by Saks [AKS98; KV02].
The problem is defined as follows. Given as input a random graph G that is drawn from either
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G(n, 1/2, k) or G(n, 1/2), the task of an algorithm is to decide which distributions the input graph G
comes from. As in the case of the search version, it is conjectured that no polynomial-time algorithm
can solve the decision version of the planted k-clique problem for k ≪

√
n. The conjecture can be

formally stated as follows.

Conjecture 1.2 (A Decision Version of the Planted Clique Conjecture with advantage ε(n, k)).
For any randomized polynomial-time algorithm A, for any constant α > 0, for all large n ∈ N and
for some k ≥ n1/2−α,∣∣∣∣ Pr

A,G∼G(n,1/2,k)

[
A(G) = 1

]
− Pr

A,G∼G(n,1/2)

[
A(G) = 1

]∣∣∣∣ < ε(n, k),

where A(G) denotes the output of A on input G. In this case, we say that A cannot distinguish
G(n, 1/2, k) and G(n, 1/2) with advantage ε(n, k). By default, we assume ε(n, k) := 1

3 .

Decision versions of the planted clique conjecture are extremely useful for determining the
average-case hardness of many other problems. Under the planted clique conjectures, a growing
body of work shows the average-case hardness of many problems, including sparse principal com-
ponent detection [BR13a; BBH18], submatrix detection [MW15], the certification of the restricted
isometry property [KZ14], community detection [HWX15], and robust sparse mean estimation
[BB20].

We note that there are at least three ways to choose the size k of a planted clique. Conjecture 1.2
is formulated by using the adversarial-k model [AAKMRX07], in which an adversary can choose
any k ≥ n1/2−α so that an algorithm fails to distinguish G(n, 1/2, k) and G(n, 1/2). Another
model is the binomial-k model [HWX15; BJ23], in which k is distributed according to a binomial
distribution. In this model, the task is to distinguish G̃(n, 1/2, k) and G(n, 1/2), where G̃(n, 1/2, k)
is the distribution of the random graph obtained by planting in G(n, 1/2) a clique on a random
subset of vertices each of which is included in the clique independently with probability k

n . In other

words, G̃(n, 1/2, k) ≡ G(n, 1/2,Bin(n, k/n)), where Bin(n, p) denotes the random variable of the
number of success out of n trials, each of which succeeds independently with probability p. Lastly,
one may consider the fixed-k model [MRS21; ERSY22], in which k is fixed to be n1/2−α for some
constant α ∈ (0, 1/2).

Despite its usefulness and popularity of the planted clique conjectures, many fundamental and
basic questions remain open. Could the different ways of choosing the size k of a planted clique
result in different conjectures? Is Conjecture 1.1 equivalent to Conjecture 1.2? How much can the
probability and the advantage in Conjectures 1.1 and 1.2 be increased or decreased? Identifying an
equivalence class for the planted clique conjecture is recognized as a major open problem [BGP23].

We highlight the importance of understanding the optimal advantage of Conjecture 1.2. Al-
though it is common to choose the advantage ε(n, k) of Conjecture 1.2 to be o(1) in the literature
of high-dimensional statistics [BBH18], it is often useful to assume a smaller advantage in the
literature of average-case complexity [ERSY22] and cryptography [ABIKN23]. One recent paper
postulates that the advantage ε(n, k) can be made as small as 1/n [ERSY22, Conjecture 1], under
which the authors of [ERSY22] presented a pseudorandom self-reduction for NP-complete problems.
In fact, it is a (not widely known)1 folklore result that there exists a polynomial-time algorithm that
distinguishes G(n, 1/2, k) and G(n, 1/2) with advantage Θ(k2/n) for every k ≤

√
n: The algorithm

simply counts the number of the edges of a given graph and outputs 1 if and only if there are many
edges; see Appendix B for the details. Thus, [ERSY22, Conjecture 1] is false, which invalidates the

1We became aware of this, thanks to Luca Trevisan’s blog [Tre18].
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results of the paper.2 In order to avoid relying on such a false conjecture, it is important to base a
strong conjecture on another weak and plausible conjecture, such as Conjecture 1.1.

1.1 Our Results

In this paper, we establish the equivalence among many variants of planted clique conjectures,
including Conjectures 1.1 and 1.2. Our results are optimal in many cases. For example, we prove
that the edge counting algorithm is an optimal distinguisher for G̃(n, 1/2, k) and G(n, 1/2) in the
sense that the existence of a polynomial-time algorithm that distinguishes these distributions with
advantage ≫ k2/n for some k falsifies Conjecture 1.1. Since there are many equivalent statements,
we present the statements one by one while explaining the significance as well as the ideas of proofs.

Theorem 1.3. The following (Items 1 to 11) are equivalent.

1. Conjecture 1.1 holds.

2. Conjecture 1.2 holds.

That is, we present a search-to-decision reduction for the planted k-clique problem, where
k ≈

√
n. Previous search-to-decision reductions either assumed a high success probability (1 −

1/n2) [AAKMRX07] or decreased the size k of planted cliques significantly [HS23], and thus could
not show the equivalence between Conjectures 1.1 and 1.2. Our key idea is that the constant
probabilities in Conjectures 1.1 and 1.2 can be significantly amplified to 1 − exp(−nΩ(1)). We
formulate the following statements in the adversarial-k model in order to make them as weak as
possible.

3. (An exponentially weak decision version) For any constants α > 0 and γ > 0, any randomized
polynomial-time algorithm fails to distinguish G(n, 1/2, k) from G(n, 1/2) with advantage 1−
exp(−nγ) for all large n ∈ N and for some k ≥ n1/2−α.

Alon, Andoni, Kaufman, Matulef, Rubinfeld, and Xie [AAKMRX07] presented a search-to-
decision reduction in a low-error regime of the adversarial-k model, which shows that Item 3 is
implied by the following search version.

4. (An exponentially weak search version) For any constants α > 0 and γ > 0, any randomized
polynomial-time algorithm fails to find a k-clique in G(n, 1/2, k) with probability 1−exp(−nγ)
for all large n ∈ N and for some k ≥ n1/2−α.

We view these results as new evidence for the planted clique conjecture because the state-
ments are “close” to the worst-case hardness of the maximum clique problem, which is NP-hard to
approximate within a factor of n1−ε for any constant ε > 0 [H̊as99; Zuc07].

In fact, using the notion of Kolmogorov complexity, we obtain an equivalent statement about
some worst-case hardness of the maximum clique problem. Informally, the Kolmogorov complexity
of a string x ∈ {0, 1}∗ is defined as the size of a shortest program that prints x. The planted clique
conjecture is equivalent to the worst-case hardness of finding a large clique on the instances whose
Kolmogorov complexity is high.

2Our results indicate how to fix the bug: Their conjectures and results are valid if the advantage 1/n is changed
to 1/n0.5−1.5α−γ for k := nα and for any sufficiently small positive constants α and γ; see Item 9 of Theorem 1.3.
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5. (A worst-case search version) There exists a constant α > 0 such that for all γ > 0, for any
randomized polynomial-time algorithm A, for all large n ∈ N and for some k ≥ n1/2−α, there
exists an n-vertex graph G that contains a k-clique and has Kolmogorov complexity at least(
n
2

)
−
(
k
2

)
+ log2

(
n
k

)
− nγ such that

Pr
A
[A outputs a k-clique in G on input G] ≤ 1

2
.

This should be compared with the NP-hardness of approximating the maximum clique prob-
lem [H̊as99], which shows that, unless NP ⊆ BPP, for any constant ε > 0, for any randomized
polynomial-time algorithm A, for k := n1−ε, there exists an n-vertex graph G with a k-clique such
that

Pr
A
[A outputs an nε-clique in G on input G] ≤ 1

2
.

The only essential difference between NP ̸⊆ BPP (which is widely believed) and the planted clique
conjecture (Item 5, which is stronger and less believed) is that, in the latter, instances are promised
to be incompressible, i.e., have high Kolmogorov complexity.

It should be noted that there are barrier results [FF93; BT06b], which show that any worst-case
problem outside NP/poly ∩ coNP/poly cannot be reduced to an average-case analogue of NP via a
nonadaptive reduction. Our proofs avoid this barrier by using a non-black-box reduction, as in the
recent literature on meta-complexity [Hir18; San20; AFMV06; HN23; LP23] (see, e.g., [Hir22] for
a survey).

Next, we explain how much the success probabilities can be decreased. We obtain optimal
results in both search and decision versions. For the search version, the probability that a k-clique
is found in polynomial time is negligible, i.e., smaller than the reciprocal of any polynomial.

6. (A strong search version) For any constants α ∈ (0, 1/2) and c > 0, any randomized
polynomial-time algorithm fails to find a k-clique in G(n, 1/2, k) with probability n−c for all
large n ∈ N and k := n1/2−α.

Item 6 identifies a detection-recovery gap in the success probabilities, which is actively studied
in the literature [SW22; Mar21; KVWX23; BJ23]: Decision versions of the planted clique problem
are “easier” than search versions in that the edge counting algorithm (Appendix B) distinguishes
G(n, 1/2, k) and G(n, 1/2) with a non-negligible advantage, whereas the search version cannot be
solved with a non-negligible success probability under the planted clique conjecture.

For decision versions, we obtain the optimal result in the binomial-k model, i.e., G̃(n, 1/2, k) ≡
G(n, 1/2,Bin(n, k/n)).

7. (A strong decision version in the binomial-k model) For any constant γ > 0, for any ran-
domized polynomial-time algorithm A, for all large n ∈ N and for all k ∈ N, distributions
G̃(n, 1/2, k) and G(n, 1/2) cannot be distinguished by A with advantage k2

n · n
γ.

By a standard concentration inequality, the size Bin(n, k/n) of a planted clique in the binomial-
k model is concentrated around its mean k. Thus, the edge counting algorithm distinguishes
G̃(n, 1/2, k) and G(n, 1/2) with advantage Θ(k2/n) for any k ≤

√
n. Item 7 shows that this

advantage cannot be improved by a factor of nγ for any k ∈ N if and only if the planted clique
conjecture is true.3 We emphasize that Item 7 determines an optimal advantage for all k.

Since the binomial-k model conjecture is stronger than the adversarial-k model conjecture, we
also obtain an optimal result in the latter.

3If k >
√
n, the advantage k2

n
is larger than 1, in which case Item 7 is vacuously true.
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8. (A strong decision version in the adversarial-k model) For any constant γ > 0, for any
randomized polynomial-time algorithm A, for all large n ∈ N and for all k ∈ N, there exists
some k′ ≥ k such that distributions G(n, 1/2, k′) and G(n, 1/2) cannot be distinguished by A

with advantage k2

n · n
γ.

An immediate corollary is that the advantage 1
3 of Conjecture 1.2 can be strengthened to

ε(n, k) = k2

n · n
γ = n−2α+γ for k := n1/2−α and for any small positive constants α and γ.

In the case of the fixed-k model, we obtain an advantage smaller than o(1) for any k ≪ n1/3;
however, for a technical reason, obtaining a small advantage for n1/3 ≤ k ≪ n1/2 is left open.

9. (A strong decision version in the fixed-k model) For all sufficiently small γ > 0, for any
randomized polynomial-time algorithm A, for all large n ∈ N and for all k, distributions
G(n, 1/2, k) and G(n, 1/2) cannot be distinguished by A with advantage ε(n, k), where

ε(n, k) := min

{√
k3

n
· nγ , 1− n−3

}
.

In [MRS21; ERSY22], a planted clique conjecture is formulated as follows: For some constant
α ∈

(
0, 12

)
and for k := nα, distributions G(n, 1/2, k) and G(n, 1/2) cannot be distinguished by an

efficient algorithm with advantage ε. This is implied by Item 9, which, moreover, upper-bounds

the advantage ε =
√

k3

n · n
γ = n−0.5+1.5α+γ for any small α > 0.

We also obtain a small advantage for distinguishing G(n, 1/2, k) and G(n, 1/2, k − 1) for all
k ≪

√
n, which is used to obtain Item 9.

10. (k vs. k−1 in the fixed-k model) For any constant γ > 0, for any randomized polynomial-time
algorithm A, for all large n ∈ N and for all k, distributions G(n, 1/2, k) and G(n, 1/2, k − 1)

cannot be distinguished by A with advantage
√

k2

n · n
γ.

Finally, we strengthen Item 6 to show that even a (2 + β) · log2 n-clique cannot be found in
G(n, 1/2, k) for any constant β > 0, whose task is often referred to as partial recovery [BJ23]. This
result is nearly optimal; see Remark 1.4.

11. (A strong search version; partial recovery) For any positive constants α, β and c, any ran-
domized polynomial-time algorithm fails to find a (2 + β) · log2 n-clique in G(n, 1/2, k) with
probability n−c for all large n ∈ N and k := n1/2−α.

Remark 1.4. Although we stated the equivalence statements for randomized polynomial-time al-
gorithms, we may also obtain similar equivalent statements for non-uniform algorithms and algo-
rithms running in time no(logn). Under the assumption that no no(logn)-time algorithm can solve the
planted clique problem [MRS21], the probability n−c in Item 11 of Theorem 1.3 can be strengthened
to n−o(logn). This is asymptotically optimal because the simple algorithm that outputs a random
subset of size 3 log2 n finds a 3 log2 n-clique in G(n, 1/2, k) with probability n−3 log2 n.

Refutation and Average-Case Polynomial Time

Next, we consider a stronger class of algorithms: a refutation algorithm. A refutation algorithm
for the planted k-clique problem is an algorithm certifying that most graphs G ∼ G(n, 1/2) do
not have any k-clique. This type of an algorithm naturally arises when we consider proof systems,
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such as the sum-of-squares hierarchy [BHKKMP19; Pan21], and was explicitly considered in, e.g.,
[KZ14]. We say that a randomized algorithm A refutes a planted k(n)-clique with probability ε(n) if
PrA[A(G) = 1] ≥ 2

3 for every graphG that has a k(n)-clique and PrG∼G(n,1/2)
[
PrA[A(G) = 0] ≥ 2

3

]
≥

ε(n) for all large n ∈ N. This definition is based on the adversarial-k model, in that the algorithm
accepts every graph G with a k′-clique for some k′ ≥ k. The existence of an efficient refutation
algorithm for the planted k-clique problem forms a different equivalence among statements stronger
than the negation of each item of Theorem 1.3.

Theorem 1.5. The following are equivalent.

1. There exists a randomized polynomial-time algorithm that refutes a planted n1/2−α-clique with
probability n−c for some constants α, c > 0.

2. There exists a randomized polynomial-time algorithm that refutes a planted n1/2−α-clique with
probability 1− exp(−nγ) for some constants α, γ > 0.

3. There exists an average-polynomial-time randomized algorithm for the n1/2−α-clique problem
with respect to the Erdős–Rényi random graph G(n, 1/2) for some constant α > 0.

Here, the k(n)-clique problem is the problem of deciding whether a given n-vertex graph has
a clique of size k(n). An average-polynomial-time randomized algorithm M with respect to a
distributional problem (L,G(n, 1/2)) [Lev86] is an algorithm such that PrM [M(G) = L(G)] ≥ 2

3
for every input G in the support of G(n, 1/2) and there exists a constant ε > 0 such that
EM,G∼G(n,1/2)[tM (G)ε] ≤ O(n) for all n ∈ N, where tM (G) denotes the running time of M on
input G; see the excellent survey of Bogdanov and Trevisan [BT06a] for background on average-
case complexity.

1.2 Exponentially Weak to Strong One-Way Functions

We present the significance of our results from the viewpoint of cryptography. One of the most
fundamental cryptographic primitives is a one-way function, which is a polynomial-time-computable
function that cannot be inverted on average in polynomial time. There are two notions of one-way
function — strong one-way and weak one-way functions. The former requires that the success
probability of inversion by any polynomial-time algorithm is negligible, whereas the latter requires
that the success probability to be at most 1 − 1/p(n) for some polynomial p. A strong one-way
function is a building block for many important cryptographic primitives, such as a pseudorandom
generator [HILL99]. Yao [Yao82] showed that a weak one-way function f can be transformed into
another strong one-way function g. However, the transformation is not security-preserving [Gol11],
i.e., the input of g is much larger than the input of f . Such a reduction is too inefficient to be used
in practice. To construct an efficient cryptographic primitive, it is important to prove its security
by a security-preserving reduction (see, e.g., [LTW05; BCKR21] and references therein for more
background).

There is a natural construction of a one-way function fk-PC based on the planted clique problem

[JP00]. For a parameter k = k(n), consider a family of functions fk-PC
n : {0, 1}(

n
2)×

([n]
k

)
→ {0, 1}(

n
2)

defined as follows: fk-PC
n takes the adjacency matrix of a graph G over the vertex set [n] :=

{1, · · · , n} and a subset C ⊆ [n] of size k, and outputs the graph obtained by adding all the edges
inside C to G. Then, inverting fk-PC is equivalent to solving the planted k-clique problem. As
an immediate corollary of Theorem 1.3, we obtain that fk-PC is an exponentially weak one-way
function, i.e., cannot be inverted with probability 1 − exp(−nΩ(1)) if and only if fk-PC is a strong
one-way function.
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Corollary 1.6. The function fk-PC is an exponentially weak one-way function for some constant
α ∈ (0, 1/2) and k := n1/2−α if and only if the function fk-PC is a strong one-way function for
some constant α ∈ (0, 1/2) and k := n1/2−α. Moreover, this equivalence is proved by a strongly
security-preserving reduction [Gol11], i.e., it maps an instance for the weak one-way function to
smaller instances for the strong one-way function; see Remark 2.5.

To the best of our knowledge, this is the first one-way function that admits a polynomial-time
security-preserving self-reduction from an exponentially weak one-way function to a strong one-way
function. Note that a generic reduction, such as [Yao82; GILVZ90; CI99; HHR11], transforms an
exponentially weak one-way function to an exponential-time-computable strong one-way function.
Lin, Trevisan, and Wee [LTW05] showed that such an exponential time complexity is necessary for
any fully black-box construction. Our results avoid this barrier by exploiting specific structures of
the planted k-clique problem. Previously, Bogdanov and Rosen [BR13b] presented an exponential-
time self-reduction for a one-way function with constant input locality.

Moreover, the security of the one-way function fk-PC is based on the worst-case hardness of
the maximum k-clique problem on incompressible instances (Item 5 in Theorem 1.3). This gives
an alternative to the lattice-based cryptography [Ajt96], whose security is based on the worst-
case hardness of approximating the shortest vector problem. Compared to lattice-based one-way
functions, an appealing feature of fk-PC is that (the decision version of) the maximum k-clique
problem on incompressible instances is not known to be in coNP, whereas the approximation of
the shortest vector problem is known to be in NP ∩ coNP [AR05]; the latter is inherent for any
black-box reduction techniques [FF93; BT06b; AGGM06; BB15].4

We mention that the function fk-PC itself is not suitable for cryptographic purposes because it
can be inverted in quasi-polynomial time; however, as noted by Juels and Peinado [JP00], one may
consider a higher edge density p ≈ 1 of the Erdős–Rényi random graph G(n, p), in which case the
planted clique problem is conjectured to be exponentially hard.

2 Proof Overview

The proof of Theorem 1.3 is outlined in Figure 1. Our proofs are mainly based on the following
reductions, each of which is fairly simple.

1. A Shrinking Reduction. This takes a large graph G of size N as input and queries a random
induced subgraph G[I] of n vertices for a uniformly random size-n subset I of the N vertices,
where n ≪ N . Here, G[I] denotes the induced subgraph of G on the vertex set I. This
reduction enables us to obtain the strong decision version in the binomial-k model (Item 7 of
Theorem 1.3).

2. An Embedding Reduction. This takes a small graph G of size n as input and queries the large
random graph obtained by planting G at a random position in G(N, 1/2), where n≪ N . This
reduction enables us to obtain the strong search version (Item 6 of Theorem 1.3).

To prove the equivalence among the planted k-clique conjectures for k ≈
√
n, it is crucial to

ensure that n ≤ N ≤ n1+α for a small constant α > 0. Our main technical contribution is to
analyze the reductions almost optimally, by using a concentration inequality for the probability
that a random induced subgraph satisfies a property S, where S is an arbitrary graph property. A

4We also mention that the existence of a one-way function can be characterized by some worst-case hardness
[HN23; LP23]. This result is not proved by a security-preserving reduction because it uses a universal one-way
function, which is quite inefficient.
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Figure 1: Outline of the proof of Theorem 1.3.

graph property is a subset of n-vertex graphs that is invariant under all the n! permutations of the
n vertices. At the core of our proofs is the following concentration inequality.

Theorem 2.1 (see also Theorem 4.4). Let n,N be positive integers, k ∈ N, and S be a graph
property over n-vertex graphs. For a graph G on the vertex set [N ] := {1, · · · , N}, define

f(G) := Pr
I∼([N ]

n )

[
G[I] ∈ S

]
,

where the probability is taken over a size-n subset I of [N ] chosen uniformly at random. Let
µ := EG∼G(N,1/2,k)[f(G)]. Then, for any t ≥ 0,

Pr
G∼G(N,1/2,k)

[
|f(G)− µ| ≥ t

]
≤ 2 exp

(
−N(N − 1)

n(n− 1)
· 2t2

)
.

(The actual concentration inequality is stronger. For example, it holds for any [0, 1]-valued graph
property S; see Theorem 4.4.)

This concentration inequality can be proved by using the result of Gavinsky, Lovett, Saks,
and Srinivasan [GLSS15], which shows a general concentration ineqaulity for read-κ families of
functions.5

2.1 Shrinking Reduction

Using Theorem 2.1, we explain how to obtain the optimal advantage in the decision version of the
planted clique problem.

Theorem 2.2. In the following list, Item 1 =⇒ Item 2 =⇒ Item 3.

1. (the negation of Item 7 of Theorem 1.3) For some constant γ > 0, there exists a randomized
polynomial-time algorithm that, for infinitely many n ∈ N and for some k ∈ N, distinguishes
G̃(n, 1/2, k) and G(n, 1/2) with advantage k2

n · n
γ.

5We note that popular concentration inequalities for the sum of dependent random variables, such as McDiarmid’s
inequality [McD89] and Janson’s inequality [Jan04], show much weaker inequalities than Theorem 2.1 in the setting
of Theorem 2.1.
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2. (the negation of Item 3 of Theorem 1.3 in the fixed-k model) For some constants α ∈ (0, 1/2)
and γ > 0, there exists a randomized polynomial-time algorithm that, for infinitely many
N ∈ N and for K := N1/2−α, distinguishes G(N, 1/2,K) and G(N, 1/2) with advantage
1− exp(−Nγ).

3. (the negation of Item 3 of Theorem 1.3) For some constants α > 0 and γ > 0, there
exists a randomized polynomial-time algorithm that, for infinitely many N ∈ N and for any
K ≥ N1/2−α, distinguishes G(N, 1/2,K) and G(N, 1/2) with advantage 1− exp(−Nγ).

Proof Sketch. Item 1 ⇒ 2: This can be proved by a shrinking reduction. Let A be an algorithm
that distinguishes G̃(n, 1/2, k) from G(n, 1/2) with advantage≫ k2

n . For simplicity, we assume that
A is a deterministic algorithm and a graph property, i.e., invariant under all the permutations of
the n vertices.6 The shrinking reduction R that, using A, distinguishes G(N, 1/2,K) and G(N, 1/2)
with probability 1− exp(−NΩ(1)) operates as follows: Given as input a graph G on N vertices, we
estimate

f(G) := Pr
I∼([N ]

n )
[A(G[I]) = 1],

µ0 := Pr
G0∼G(n,1/2)

[A(G0) = 1]

by random sampling, and output 0 if and only if f(G) ≈ µ0.
The correctness of the shrinking reduction R can be proved as follows. Let

µ1 := Pr
G1∼G̃(n,1/2,k)

[A(G1) = 1].

The assumption on A implies that |µ1 − µ0| ≫ k2

n . The concentration inequality (Theorem 2.1)

shows that, for an appropriate choice of parameters, with probability 1−exp(−NΩ(1)) over a choice
of G ∼ G(N, 1/2), it holds that f(G) ≈ µ0, in which case R rejects G. Thus, R works correctly on
most random graphs G(N, 1/2). It also works correctly on most random graphs G(N, 1/2,K): By
the concentration inequality, with probability 1− exp(−NΩ(1)) over a choice of G ∼ G(N, 1/2,K),
it holds that f(G) ≈ µ′

1, where we define

µ′
1 := Pr

G∼G(N,1/2,K)

I∼([N ]
n )

[A(G[I]) = 1].

We also have µ′
1 ≈ µ1 by choosing K so that k = K · n

N because the distribution of G[I] for

G ∼ G(N, 1/2,K) and I ∼
(
[N ]
n

)
is statistically close to G̃(n, 1/2, k). Since |µ1 − µ0| ≫ k2

n , we
obtain f(G) ≈ µ′

1 ≈ µ1 ̸≈ µ0, in which case the reduction R accepts G.
The parameters can be chosen as follows. Let n and k be parameters such that A succeeds. We

choose K so that k = K · nN , which ensures that the expected size of a planted clique in G(N,K)[I]

over I ∼
(
[N ]
n

)
is k. We also choose N so that K = N1/2−α. For ε = k2

n · n
γ , Theorem 2.1

shows that with probability 1− δ over G ∼ G(N, 1/2), where δ := 2 exp(−2(εN/n)2), it holds that
|f(G)− µ0| ≤ ε. The exponent of δ is proportional to (εN/n)2 = (nγ ·Nk2/n2)2 = n2γ · (K2/N)2 =
n2γ · N−4α ≥ Nγ−4α, where the last inequality holds because n = kN/K = k · N1/2+α ≥

√
N .

Thus, if we choose a constant α := γ/8, the advantage of R is ≈ 1− exp(−Nγ/2).

6This does not lose any generality by considering S(G) := EA,π[A(π(G))], where the expectation is taken over
the internal randomness of A and a uniformly random permutation π of the n vertices of G, using the fact that
Theorem 2.1 holds for any [0, 1]-valued graph property S.
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Item 2 ⇒ 3: We show that the adversarial-k model and the fixed-k model are equivalent in a
low-error regime. The reduction is fairly simple. Given a graph G of n vertices, let Vi denote the
first i vertices of G and let Gi be the random graph obtained by planting G[Vi] in G(n, 1/2) at a
uniformly random size-i subset of the n vertices. It is easy to observe that if G ∼ G(n, 1/2, k′) and
C is the planted k′-clique, then the marginal distribution of Gi is G(n, 1/2, |C ∩ Vi|). In particular,
for every k ≤ k′, there exists i such that the marginal distribution of Gi is G(n, 1/2, k), for which
an algorithm in the fixed-k model works correctly. Details can be found in Section 5.3.

We mention that a somewhat similar reduction is implicit in the work of Hazan and Krauthgamer
[HK11, Lemma 2.2]. The reduction is quite simple and easier to analyze: Given a graph G of N
vertices, it randomly partitions G into n-vertex graphs G1, · · · , GN/n. This reduction can be used
to prove the equivalence between Item 3 (in the binomial-k model) and Item 2 of Theorem 1.3, but
is not sufficient for obtaining the optimal advantage of Item 7. See Appendix E for details.

2.2 Embedding Reduction

To obtain the optimal result for the search version (Item 6 of Theorem 1.3), the shrinking reduction
is not sufficient; otherwise, we would not be able to show a detection-recovery gap. We use a different
reduction to amplify the success probabilities of search algorithms from a non-negligible probability
to a constant probability. From a constant probability, the shrinking reduction can amplify the
probability to 1− exp(−nΩ(1)).

Theorem 2.3. The first bullet implies the second in the following.

• (the negation of Item 6 of Theorem 1.3) There exist constants α ∈ (0, 1/2) and c > 0 and a
randomized polynomial-time algorithm that, for infinitely many N ∈ N and for k := N1/2−α,
finds a k-clique in G(N, 1/2, k) with probability N−c.

• (the negation of Item 1 of Theorem 1.3) There exist a constant α ∈ (0, 1/2) and a randomized
polynomial-time algorithm that, for infinitely many n ∈ N and for k := n1/2−α, finds a
k-clique in G(n, 1/2, k) with probability 1

2 .

Hirahara and Shimizu [HS23] presented an embedding reduction, which embeds a given small
graph of size n in a large random graph of size N . They used the reduction to show hardness self-
amplification for the planted clique problem and proved that the planted clique conjectures remain
equivalent even if the constant probabilities in Conjectures 1.1 and 1.2 are changed to arbitrary
constants. They analyzed their reductions by using the coupling method of Markov chains and
Chebyshev’s inequality. However, Chebyshev’s inequality does not show a strong concentration
inequality, and their analysis is not optimal.

The key to obtaining the optimal search version is to exponentially improve their analysis. The
embedding reduction Remb for parameters n ≤ N operates as follows: Given as input a graph G
of n vertices, it randomly permutes the vertices of G to obtain a graph π(G), chooses a random
graph G′ ∼ G(N, 1/2) and a uniformly random size-n subset I of the N vertices, and outputs the
N -vertex graph obtained by replacing G′[I] with π(G) in G′. We analyze this embedding reduction
by using the following concentration inequality.

Theorem 2.4 (see also Lemma 6.13). Let δ, ε ∈ [0, 1] be parameters such that ε ≥ 4 exp
(
−Nδ2

8n

)
.

Let S be a function that maps an N -vertex graph to a real number in [0, 1] such that

E
G∼G(N,1/2,k)

[S(G)] ≥ ε.

10



Then, it holds that

Pr
G∼G(n,1/2,k)

[
E

Remb

[S(Remb(G))] ≥ ε/2

]
≥ 1− δ,

where the expectation is taken over the internal randomness of Remb.

This result shows that the random variable ERemb
[S(Remb(G))] is concentrated around its mean

EG∼G(n,1/2,k)[ERemb
[S(Remb(G))]] = EG∼G(N,1/2,k)[S(G)] ≥ ε. The previous result of [HS23] showed

the same concentration inequality under the stronger assumption that ε ≥ 4n
Nδ2

, which Theorem 2.4

improves to ε ≥ 4 exp
(
−Nδ2

8n

)
. This improvement is crucial to prove Theorem 2.3 because we set

ε to be N−c for a large constant c, in which case the previous work [HS23] does not show the
concentration inequality.

Theorem 2.4 enables us to prove Theorem 2.3 as follows. Let A be a randomized polynomial-
time algorithm that finds a k-clique in G(N, 1/2, k) with probability N−c for some constant c > 0.
Let S be the function that maps an N -vertex graph G′ to the probability that A successfully
finds a k-clique in G′. Theorem 2.4 shows that, with probability ≥ 1

2 over a random graph G ∼
G(n, 1/2, k), we have PrA,Remb

[A finds a k-clique in Remb(G)] ≥ N−c/2 under the assumption that
N−c ≥ exp(−Ω(N/n)), which is satisfied if we choose n = N/(c′ logN) for a sufficiently large
constant c′. To solve the planted k-clique problem on G ∼ G(n, 1/2, k), we consider the following
algorithm: Given as input an n-vertex graph G, we repeat the following O(N c) times. We run A
on Remb(G); if A outputs a k-clique in Remb(G), then we obtain a k-clique in the original graph G
because the k-clique is unique in Remb(G) with high probability. This algorithm correctly finds a
k-clique in any G such that PrA,Remb

[A finds a k-clique in Remb(G)] ≥ N−c/2.
A brief outline of the proof of Theorem 2.4 is as follows. The main technical lemma is a

concentration inequality analogous to Theorem 2.1 in which the subset I is promised to contain
the planted location of G(n, 1/2, k) (see Theorem 4.5 for the formal statement). This concentration
inequality can be translated into Theorem 2.4 by using the “exchanging lemma” [IJKW10; IJK09;
HS23] (Lemma 3.12). The concentration inequality (Theorem 4.5) can be proved as follows. We
first prove an upper bound of the moment generating function when the planted location is fixed,
and then use Jensen’s inequality to take the average over all planted locations. The upper bound
of the moment generating function can be proved by combining the proof ideas of [GLSS15] and
the transportation method [BLM13, Chapter 8], which is a powerful method to bound the moment
generating function using information-theoretic inequalities; see Appendix A for details.

Remark 2.5. Although the embedding reduction is not security-preserving, the implication from
Item 4 to Item 6 in Theorem 1.3 is proved by the composition of the shrinking reduction and the
embedding reduction, which is security-preserving as mentioned in Corollary 1.6. The reason is that
the shrinking reduction decreases the size n of an instance to n1−α for a small constant α > 0, and
the embedding reduction increases the size n1−α of instances to O(n1−α log n1−α) ≤ n1−α/2, which
is smaller than the size n of the original instance.

2.3 Decision Versions in the Fixed-k Model

It is instructive to compare the shrinking and embedding reductions.

1. The shrinking reduction can amplify the success probability from ω(k
2

n ) to 1 − exp(−nΩ(1))
in the binomial-k model. However, the size of a planted clique in the output of the reduction
on G(n, 1/2, k) is not necessarily fixed and cannot be used in the fixed-k model.
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2. The embedding reduction can amplify the success probability from either ω(k
2

n )1/2 in the
decision version or 1/poly(n) in the search version to 1−n−γ for a sufficiently small constant
γ > 0. The reduction does not change the value of k and can be used in the fixed-k model.
However, the success probability 1 − n−γ is too small to take a union bound, which poses a
technical challenge in the fixed-k model.

Now, we explain how to obtain Item 9 of Theorem 1.3, i.e., the strong decision version in the
fixed-k model. Assume that there exists an efficient algorithm A that distinguishes G(n, 1/2, k)
and G(n, 1/2) with advantage ≫

√
k3

n for some k. The main idea for obtaining Item 9 is to

use A to prove the negation of Item 7, i.e., to distinguish G̃(n, 1/2, k) and G(n, 1/2). Since
Bin(n, k/n) is in k±O(

√
k) with high probability, the algorithm A also distinguishes G̃(n, 1/2, k) =

G(n, 1/2,Bin(n, k/n)) from G(n, 1/2) with probability ≫ k2

n if

Pr[A(G(n, 1/2, k + a)) = 1] ≈ Pr[A(G(n, 1/2, k)) = 1]

for every a ∈ Z such that −O(
√
k) ≤ a ≤ O(

√
k). To this end, we show Item 10, that is, that

G(n, 1/2, k − 1) and G(n, 1/2, k) cannot be distinguished with advantage ≫
√

k2

n . By a hybrid

argument, Item 10 enables us to show that for every |a| ≪
√
k,

|Pr[A(G(n, 1/2, k + a)) = 1]− Pr[A(G(n, 1/2)) = 1]|
≥ |Pr[A(G(n, 1/2, k)) = 1]− Pr[A(G(n, 1/2)) = 1]|
− |Pr[A(G(n, 1/2, k)) = 1]− Pr[A(G(n, 1/2, k + a)) = 1]|

≫
√

k3

n
−
√

k2

n
· a≫ k2

n
.

In this way, we can obtain a contradiction to Item 7. See Theorem 6.16 for the details.
Thus, it remains to prove Item 10. The proof consists of two steps. These steps are based on

beautiful ideas of Feige and Krauthgamer [FK00] and Dekel, Gurel-Gurevich, and Peres [DGP14],
respectively.

Step 1. k versus (k − 1) to Noisy Recovery

Feige and Krauthgamer [FK00] presented a simple search-to-decision reduction from the planted
k-clique problem to the decision problem of distinguishing G(n, 1/2, k) and G(n, 1/2, k − 1) with
advantage 1− n−2. Their reduction makes n queries (G \ v1, · · · , G \ vn) given a graph G = (V,E)
with V = {v1, · · · , vn}; thus, to guarantee that all the queries are answered correctly, the advantage
must be very close to 1.

In our case, however, the advantage cannot be assumed to be sufficiently close to 1. The
embedding reduction can only increase the advantage to 1 − n−α for a small constant α > 0
without decreasing the size k ≈

√
n of a planted clique too much. Because of the small advantage,

we cannot simply use a union bound over all n queries. However, we do show that the reduction
of [FK00] can be used to solve some non-trivial tasks, which we call noisy recovery.

The noisy recovery task for the planted k-clique problem is defined as follows. Given as input a
graph G ∼ G(n, 1/2, k) with a planted k-clique C, the task is to output an induced subgraph G[C ′]
for some subset C ′ of the vertices of G such that |C ′ ∩ C| ≥ (1 − o(1)) · k and |C ′| ≤ n1−α for a
small constant α > 0. That is, the task is to remove a (1 − n−α)-fraction of the vertices from G,
while keeping the clique of size to be ≈ k.

12



Step 2. Noisy Recovery to Exact Recovery

Then, we show that the noisy recovery algorithm can be used to solve the search version of the
planted clique problem. Let A be the noisy recovery algorithm. A näıve attempt to construct a
search algorithm using A would be as follows. Given a graph G ∼ G(n, 1/2, k), we run A on G to
obtain an induced subgraph G′, and then we run existing algorithms, such as [AKS98], to recover
a (1− o(1)) · k-clique in G′. Note that since the number of vertices of G′ is at most n1−α, we can
hope that the existing algorithm can recover a clique of size at least

√
n1−α = n1/2−α/2 ≪ k.

Unfortunately, this näıve approach does not work because of the subtlety of average-case algo-
rithms. Intuitively, the output G′ of the noisy recovery algorithm should be distributed according
to G(n′, 1/2, k′) for some n′ ≪ n and k′ ≈ k, in which case the existing algorithms for the planted
clique problem work correctly. However, there is no guarantee that G′ is distributed according to
such a nice distribution, as the algorithm A is, in principle, adversarial. There are several algo-
rithms, such as [FK00; BKS23], for the planted clique problem in semi-random models, in which
an input graph is corrupted by an adversary; however, the existing algorithms do not seem to be
robust with respect to the noisy recovery algorithm A.

Somewhat surprisingly, the issue can be resolved by a simple and elegant idea of Dekel, Gurel-
Gurevich, and Peres [DGP14] (similar ideas were implicit in earlier works, e.g., [HK11; FR10]). The
main issue is that the “adversary” A is too powerful in that it can see the whole input graph. We
restrict the power of the adversary by randomly partitioning an input graph G into two subgraphs
G1 and G2, and running A only on G1. Let G

′
1 be the output of A on G1. Then, the edges between

G′
1 and G2 in the original graph G are not seen by A, so they can be seen as a purely random

bipartite graph independent of A. This enables us to reduce the task to the following problem:
Given as input a random bipartite graph on the vertex sets V ′

1 and V2, in which a biclique of size
k ≈ n1/2−α′

is planted, where |V ′
1 | ≤ n1−α and |V2| = Θ(n), the task is to find a biclique in the

bipartite graph for small constants α > 2α′ > 0. This can be solved by the simple degree counting
algorithm of Kučera [Kuč95] because

√
|V ′

1 | ≪ k.

2.4 Organization

The rest of the paper is devoted to proving Theorems 1.3 and 1.5.

• In Section 3, we define notations and introduce several tools that are important in our proof.

• In Section 4, we prove the concentration inequality about random induced subgraphs.

• In Section 5, we present reductions for several settings of the planted clique problem. In
particular, we prove the equivalence between Item 3 and Item 4 of Theorem 1.3.

• In Section 6, we use the shrinking reduction and the embedding reduction to prove hardness
amplification results. In particular, we prove the equivalence of Items 2, 3, 7 and 8 (The-
orem 6.6), Items 1 and 4 (Theorem 6.7), Items 1 and 6 (Theorem 6.14), Items 1 and 10
(Theorem 6.15), Items 7 and 9 (Theorem 6.16), and Items 1 and 11 (Theorem 6.17).

• In Section 7, we present hardness amplification for refuting planted cliques and prove Theo-
rem 1.5.

• In Section 8, we present a problem whose worst-case hardness characterizes the Planted Clique
conjecture by proving the equivalence between Items 4 and 5.

• In Section 9, we combine the equivalence results and prove Theorem 1.3.
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3 Preliminaries

All logarithms in this paper are natural logarithms unless otherwise stated. For n ∈ N, we write
[n] = {1, . . . , n}. We use x ∼ D to denote that x is drawn from a distribution D. For a set S, we
also use x ∼ S to denote that x is drawn uniformly at random from S.

A graph G = (V,E) is a pair of a finite set V and E ⊆
(
V
2

)
, where

(
V
2

)
is the set of unordered

pairs from V . For a vertex v ∈ V , let ΓG(v) = {w ∈ V | {v, w} ∈ E} denote the set of neighbors
of v (which does not include v). If G is clear from the context, we simply write Γ(v). For two
graphs G1 = (V1, E1) and G2 = (V2, E2), let G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). For S, T ⊆ V , let

E(S, T ) =
{
{s, t} ∈

(
V
2

) ∣∣∣ s ∈ S, t ∈ T
}

denote the set of edges such that one endpoint is in S

and the other is in T .We usually assume that the vertex set of an n-vertex graph is [n]. For a
graph G = ([n], E) and S = {s1, . . . , st} ⊆ [n] with s1 < · · · < st, let G[S] = ([t], ES) denote
the subgraph induced by S, where ES = {{a, b} | {sa, sb} ∈ E}. For a graph G = (V,E) and a
permutation π : V → V , let π(G) = (V,Eπ) be the graph obtained by shuffling G using π, i.e.,
Eπ = {{π(u), π(v)} | {u, v} ∈ E}.

For n ∈ N and p ∈ [0, 1], let Bin(n, p) denote the binomial distribution where n is the number
of trials and p is the success probability; that is, Pr[Bin(n, p) = k] =

(
n
k

)
pk(1 − p)n−k for any

k ∈ {0, · · · , n}. For n ∈ N, let G(n, 1/2) be the distribution of an n-vertex random graph, where each
pair {u, v} forms an edge independently with probability 1/2. For a finite set C, let KC = (C,

(
C
2

)
)

be the clique on the vertex set C. Let G(n, 1/2, k) be the distribution of G∪KC for G ∼ G(n, 1/2)
and C ∼

([n]
k

)
. We also consider the planted clique whose size is drawn from a binomial distribution.

Let G̃(n, 1/2, k) be the distribution of G ∪ KC , where G ∼ G(n, 1/2) and C ⊆ [n] is the random
subset that contains each i ∈ [n] with probability k/n independently. The set C is called a planted
location. It is well known that G(n, 1/2, k) contains a unique k-clique with high probability (see,
e.g., [HS23, Lemma 6.1]).

Lemma 3.1. For any n, k ∈ N, G ∼ G(n, 1/2, k) contains a unique k-clique with probability at
least 1− 2kn2−k/2.

For distributions D1 and D2, we say that a randomized algorithm A distinguishes D1 and D2

with advantage ε if ∣∣∣∣ Pr
A,x∼D1

[A(x) = 1]− Pr
A,x∼D2

[A(x) = 1]

∣∣∣∣ ≥ ε.

Lemma 3.2 (Jensen’s Inequality). Let X be a Rn-valued random variable and f : Rn → R be a
convex function. Then, E[f(X)] ≥ f(E[X]).

Lemma 3.3 (The Chernoff Bound). Let X1, . . . , Xn ∈ [0, 1] be independent random variables and
µ = 1

n

∑
i∈[n] E[Xi]. Then, for any 0 ≤ t ≤ µ,

Pr

 1

n

∑
i∈[n]

Xi ≥ µ+ t

 ≤ exp

(
−nt2

3µ

)
,

Pr

 1

n

∑
i∈[n]

Xi ≤ µ− t

 ≤ exp

(
−nt2

3µ

)
.

Moreover, for any t ≥ 0, the upper bounds can be replaced by exp
(
−2nt2

)
.
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3.1 Information Theory

For a random variable X, let supp(X) = {x : Pr[X = x] > 0} be the support of X. For random
variables X1 and X2 over Ω, the KL divergence of X1 and X2 is defined as

KL(X1 ∥ X2) =
∑

x∈supp(X1)

Pr[X1 = x] · log Pr[X1 = x]

Pr[X2 = x]
,

where we define KL(X1 ∥ X2) =∞ if supp(X1) ̸⊆ supp(X2). It is well known that the KL divergence
is always non-negative. We sometimes identify a random variable with its distribution. For example,
if µ, ν are distributions of random variables X,Y , then we write KL(µ ∥ ν) to mean KL(X ∥ Y ).

For p, q ∈ [0, 1], let KLb(p ∥ q) = p log p
q + (1− p) log 1−p

1−q denote the KL divergence of the two
Bernoulli random variables with bias p and q. We invoke the following fact, which is a special case
of Pinsker’s inequality.

Fact 3.4. For any p, q ∈ [0, 1], we have KLb(p ∥ q) ≥ 2(p− q)2.

Let (X,Y ) be a random variable over a product space ΩX ×ΩY . For y ∈ ΩY , let X|Y=y denote
the random variable X conditioned on Y = y.

Definition 3.5 (Conditional KL Divergence).

KL(X1|Y1 ∥ X2|Y2) = E
y∼Y1

[KL(X1|Y1=y ∥ X2|Y2=y)]

=
∑
y∈ΩY

Pr[Y1 = y]
∑
x∈ΩX

Pr[X1 = x | Y1 = y] · log Pr[X1 = x | Y1 = y]

Pr[X2 = x | Y2 = y]
.

Lemma 3.6 (Chain Rule of KL Divergence). Let (X1, Y1), (X2, Y2) be random variables over a
product space ΩX × ΩY . Then,

KL((X1, Y1) ∥ (X2, Y2)) = KL(Y1 ∥ Y2) + KL(X1|Y1 ∥ X2|Y2)

Lemma 3.7 (Data Processing Inequality). Let X,Y be random variables over Ω and f be a
probabilistic function over Ω (i.e., f(x) is a random variable for each x ∈ Ω). Then, we have
KL(f(X) ∥ f(Y )) ≤ KL(X ∥ Y ), where f(X) denotes the random variable that is sampled from
f(x) for x ∼ X.

Corollary 3.8. Let X,Y be [0, 1]-valued random variables. Then, KL(X ∥ Y ) ≥ KLb(E[X] ∥ E[Y ]).

Proof. For x ∈ [0, 1], let B(x) be the probabilistic function that outputs 1 with probability x and
0 with probability 1− x. Note that B(X) is identical to the Bernoulli random variable Ber(E[X])
since

Pr[B(X) = 1] =
∑
x

Pr[B(X) = 1 | X = x] · Pr[X = x] =
∑
x

x · Pr[X = x] = E[X].

It follows from the data processing inequality (Lemma 3.7) that

KL(X ∥ Y ) ≥ KL(B(X) ∥ B(Y )) = KLb(E[X] ∥ E[Y ]).

Lemma 3.9 (Conditioning Increases Divergence for Product Measure). Let (X1, Y1), (X2, Y2) be
random variables, and suppose that X2 and Y2 are independent. Then,

KL(X1|Y1 ∥ X2|Y2) ≥ KL(X1 ∥ X2).
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Proof. By the convexity of KL divergence [CT06, Section 2.7], we have

KL(X1|Y1 ∥ X2|Y2) = E
y∼Y1

[KL(X1|Y1=y ∥ X2|Y2=y)]

≥ KL

(
E

y∼Y1

[X1|Y1=y]

∥∥∥∥ E
y∼Y1

[X2|Y2=y]

)
= KL(X1 ∥ X2),

where Ey∼Y1 [X1|Y1=y] denotes the mixture of the distributions X1|Y1=y over y ∼ Y1, which is
identical to the marginal distribution of X1, and Ey∼Y1 [X2|Y2=y] is identical to X2 because of the
independence between X2 and Y2.

3.2 Sampler

Following [IJK09], we introduce the notion of sampler. A (δ, ε)-sampler is a pair of random vari-
ables (X,Y ) such that any function S : supp(Y ) → [0, 1] cannot “distinguish” Y and Y |X=x with
advantage ε for a (1− δ)-fraction of x ∼ X in the following sense.

Definition 3.10. We say that a pair of random variables (X,Y ) is a (δ, ε)-sampler if, for any
function S : supp(Y )→ [0, 1], we have

Pr
x∼X

[|E[S(Y ) | X = x]− E[S(Y )]| ≥ ε] ≤ δ.

We say that a family of random variables X = {Xn}n∈N is samplable in polynomial time if
there exists a polynomial-time randomized algorithm M such that PrM [M(1n) = x] = Pr[Xn = x]
for all n ∈ N and all x. We denote the family X by Xn when it is clear from the context. For
example, G(n, 1/2) is samplable in polynomial time.

Lemma 3.11 (Hardness Amplification for Decision Problems). Let X1, X2 be independent random
variables such that X1 is samplable in polynomial time. Let R be a polynomial-time randomized
algorithm such that, for Yi = R(Xi), the pairs (X1, Y1) and (X2, Y2) are

(
δ
4 ,

ε
6

)
-samplers. Let n be

the size of Xi and N be the size of Yi. Suppose there exists a polynomial-time randomized algorithm
A such that

|Pr[A(Y1) = 1]− Pr[A(Y2) = 1]| ≥ ε,

where the probability is taken over the internal randomness of A and Yi. Then, there exists a
randomized algorithm A′ that runs in time poly(n,N, 1/ε, log(1/δ)) and satisfies

Pr[A′(X1) = 1]− Pr[A′(X2) = 1] ≥ 1− δ.

Proof. Let p(x) = Pr[A(R(x)) = 1] and µi = E[p(Xi)] for each i ∈ {1, 2}. Note that |µ1 − µ2| ≥ ε
by the assumption of A. On input x, the algorithm A′ runs as follows:

1. Let T = cε−2 log(1/δ) for a sufficiently large constant c > 0 and y1, . . . , yT be independent
samples from R(x). Compute p̂(x) := 1

T

∑
i∈[T ]A(yi).

2. Let y′1, . . . , y
′
T be independent samples from Y1. Compute µ̂1 :=

1
T

∑
i∈[T ]A(y′i).

3. If |p̂(x)− µ̂1| ≤ ε
3 , then output 1. Otherwise, output 0.
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In what follows, we prove Pr[A′(X1) = 1] ≥ 1− δ
2 and Pr[A′(X2) = 1] ≤ δ

2 .

By the Chernoff bound (Lemma 3.3), with probability 1 − 4 exp(−Tε2

108 ) ≥ 1 − δ
4 (over the

randomness in Step 1 and 2), we have |p(x)− p̂(x)| ≤ ε
6 and |µ1− µ̂1| ≤ ε

6 . By applying the sampler

property of (Xi, Yi) for S(y) := PrA[A(y) = 1], we have Prx∼Xi

[
|p(x)− µi| > ε

6

]
≤ δ

4 . Therefore,

for a (1− δ/4)-fraction of x ∼ Xi, we have |p̂(x)− µ̂i| ≤ ε
3 with probability 1− δ

4 over the internal

randomness of A′. Thus, we obtain Pr[A′(X1) = 1] ≥
(
1− δ

4

)2 ≥ 1− δ
2 .

Similarly, for a (1−δ/4)-fraction of x ∼ X2, with probability 1− δ
4 over the internal randomness

of A′, we have

ε ≤ |µ1 − µ2|
≤ |µ̂1 − p̂(x)|+ |µ1 − µ̂1|+ |p̂(x)− p(x)|+ |p(x)− µ2|

≤ |µ̂1 − p̂(x)|+ ε

2
.

Thus, we have Pr[A′(X2) = 1] ≤ 1−
(
1− δ

4

)2 ≤ δ
2 .

In the context of hardness amplification [IJKW10; IJK09; HS23], it is often easy to prove that
(Y,X) is a sampler. For example, in the direct product theorem, for an input distribution D, we
consider the pair of inputs (X,Y ) obtained byX ∼ D and then Y = (X1, . . . , Xi−1, X,Xi+1, . . . , Xk)
for (X1, . . . , Xk) ∼ Dk and i ∼ [k]. It is easy to see that (Y,X) is a sampler: Fix a function
S : supp(X) → [0, 1]. For any y = (x1, . . . , xk), we have E[S(X) | Y = y] = 1

k

∑
i∈[k] S(xi). If

y ∼ Dk, then this quantity is the sum of independent random variables, which concentrates around
its mean. In fact, the sampler property of (Y,X) is enough to ensure the sampler property of
(X,Y ). See Appendix C for the proof.

Lemma 3.12 (Exchange Lemma). If (Y,X) is a
(
ε
2 ,

δε
8

)
-sampler, then, (X,Y ) is a (δ, ε)-sampler.

4 Concentration Inequalities

4.1 Concentration of Random Shrinking

For an M -bit string x = (x1, . . . , xM ) ∈ {0, 1}M and a subset of indices I = {i1, . . . , iℓ} ⊆ [M ]
with i1 < · · · < iℓ, let xI = (xi1 , . . . , xiℓ) ∈ {0, 1}ℓ be the substring induced by I. Each subset I is
associated with a function SI : {0, 1}ℓ → [0, 1]. Gavinsky, Lovett, Saks, and Srinivasan [GLSS15]
proved a concentration of the averaging function f(X) = EI [SI(XI)], where X is a random M -bit
string drawn from a product distribution and the expectation is taken over a random subset I. We
state their result in the notation convenient for us.

Theorem 4.1 ([GLSS15]). Let X be a random variable that is drawn from a product distribution D
over {0, 1}M . Let I be a distribution over subsets of [M ], where each I ∈ supp(I) is associated with
a function SI : {0, 1}|I| → [0, 1]. Let ρ := max{PrI∼I [i ∈ I] | i ∈ [M ]}. Define f : {0, 1}M → [0, 1]
by f(x) = EI∼I [SI(xI)]. Let µ = E[f(X)]. Then, for any t ≥ 0, we have

Pr[f(X) ≥ µ+ t] ≤ exp

(
−1

ρ
·KLb(µ+ t ∥ µ)

)
,

Pr[f(X) ≤ µ− t] ≤ exp

(
−1

ρ
·KLb(µ− t ∥ µ)

)
.

For completeness, we include a proof of Theorem 4.1.
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Lemma 4.2. Under the same settings of Theorem 4.1, for every random variable Y such that
supp(Y ) ⊆ supp(X),

E
I∼I

[KL(YI ∥ XI)] ≤ ρ ·KL(Y ∥ X).

Proof. For a string x = (x1, . . . , xn) ∈ {0, 1}ℓ and i ∈ [ℓ], let x≤i = (x1, . . . , xi) ∈ {0, 1}i denote the
prefix of x of length i.

For every subset I = {i1, . . . , iℓ} ⊆ [M ] with i1 < · · · < iℓ, we have

KL(YI ∥ XI) =
∑
j∈[ℓ]

KL
(
Y ≤j
I |Y

≤j−1
I

∥∥∥ X≤j
I |X

≤j−1
I

)
∵ chain rule (Lemma 3.6)

≤
∑
j∈[ℓ]

KL
(
Y ≤j
I |Y

≤ij−1
∥∥∥ X≤j

I |X
≤ij−1

)
∵ D is a product distribution (Lemma 3.9)

=
∑
j∈[ℓ]

KL
(
Y ≤ij |Y ≤ij−1

∥∥ X≤ij |X≤ij−1
)

∵ only the ij-th bit is not conditioned

=
∑
i∈I

KL
(
Y ≤i|Y ≤i−1

∥∥ X≤i|X≤i−1
)
.

By taking the average over I ∼ I, we obtain

E
I∼I

[KL(YI ∥ XI)] ≤ E
I∼I

[∑
i∈I

KL
(
Y ≤i|Y ≤i−1

∥∥ X≤i|X≤i−1
)]

=
∑
i∈[M ]

Pr
I∼I

[i ∈ I] ·KL
(
Y ≤i|Y ≤i−1

∥∥ X≤i|X≤i−1
)

≤
∑
i∈[M ]

ρ ·KL
(
Y ≤i|Y ≤i−1

∥∥ X≤i|X≤i−1
)

= ρ ·KL(Y ∥ X).

Proof of Theorem 4.1. Let E be the event that f(X) ≥ µ + t. We may assume Pr[E] > 0. Let
Y = X|E be X conditioned on E. Observe that

KL(Y ∥ X) =
∑
x∈E

Pr[X = x | E] · log Pr[X = x | E]

Pr[X = x]

=
∑
x∈E

Pr[X = x | E] · log Pr[E | X = x]

Pr[E]

= log
1

Pr[E]
∵ Pr[E | X = x] = 1 for any x ∈ E.

Let Y ′ and X ′ be the random variables SI(YI) and SI(XI) for I ∼ I, respectively. Note that
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µ = EX [f(X)] = EX [EI [SI(XI)]] = EX′ [X ′] and EY ′ [Y ′] = EY [f(Y )] ≥ µ+ t. Thus, we have

log
1

Pr[E]
= KL(Y ∥ X)

≥ 1

ρ
E

I∼I
[KL(YI ∥ XI)] by Lemma 4.2

≥ 1

ρ
E

I∼I
[KL(SI(YI) ∥ SI(XI))] data processing inequality (Lemma 3.7)

≥ 1

ρ
KL

(
Y ′ ∥∥ X ′) the convexity of KL

≥ 1

ρ
KLb

(
E
Y ′

[
Y ′] ∥∥∥∥ E

X′

[
X ′]) Corollary 3.8

≥ 1

ρ
KLb(µ+ t ∥ µ).

This completes the proof of the upper tail. The lower tail can be proved in the same way.

We will need an upper bound on the moment generating function, which can be proved by the
transportation method. We defer the proof to Appendix A.

Theorem 4.3. Under the same settings of Theorem 4.1, for any λ ≥ 0, we have

E
[
eλ(f(X)−E[f(X)])

]
≤ exp

(ρ
8
λ2

)
.

4.2 Random Induced Subgraph of a Random Graph

By regarding an N -vertex graph as an
(
N
2

)
-bit string and applying Theorem 4.1, we obtain concen-

tration inequalities regarding G[I] for a random n-vertex set I ⊆ [N ].

Theorem 4.4. Let S be a [0, 1]-valued function over the set of all n-vertex graphs. For an N -vertex
graph G, let f(G) = E[S(π(G[I]))], where the expectation is taken over uniformly random n-subset
I ∼

(
[N ]
n

)
and permutation π : [n]→ [n]. Let µ = EG∼G(N,1/2,k)[f(G)]. Then, for any t ≥ 0,

Pr
G∼G(N,1/2,k)

[f(G)− µ ≥ t] ≤ exp

(
−N2

n2
KLb(µ+ t ∥ µ)

)
,

Pr
G∼G(N,1/2,k)

[f(G)− µ ≤ −t] ≤ exp

(
−N2

n2
KLb(µ− t ∥ µ)

)
.

Proof. For each C ∈
([N ]

k

)
, let G|C denote the distribution of G0 ∪KC for G0 ∼ G(N, 1/2). Since

I ∼
(
[N ]
n

)
is uniformly random and f applies a random permutation π, the expectation EG∼G|C [f(G)]

does not depend on C. Therefore, we have µ = EG∼G(N,1/2,k)[f(G)] = E
C∼([N ]

k )

[
EG∼G|C [f(G)]

]
=

EG∼G|C [f(G)] for any C ∈
([N ]

k

)
.

Note that G|C is a product distribution. By regarding an N -vertex graph as an
(
N
2

)
-bit string

and applying Theorem 4.1 for I being the uniform distribution over
(
[N ]
n

)
, we have

ρ = max

{
Pr
I∼I

[e ⊆ I]

∣∣∣∣ e ∈ (
[N ]

2

)}
=

(
N−2
n−2

)(
N
n

) =
n(n− 1)

N(N − 1)
≤ n2

N2
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and thus

Pr
G∼G|C

[f(G) ≥ µ+ t] ≤ exp

(
−N2

n2
KLb(µ+ t ∥ µ)

)
,

from which the upper tail follows because

Pr
G∼G(N,1/2,k)

[f(G) ≥ µ+ t] = E
C∼([N ]

k )

[
Pr

G∼G|C
[f(G) ≥ µ+ t]

]
≤ exp

(
−N2

n2
KLb(µ+ t ∥ µ)

)
.

The lower tail can be proved in the same way.

To analyze the embedding reduction, we will need the following variant of the concentration
inequality.

Theorem 4.5. Let S be a [0, 1]-valued function over the set of n-vertex graphs. For an N -vertex
graph G ∈ supp(G(N, 1/2, k)), let Ck(G) be the set of k-cliques in G and let f(G) = E[S(π(G[I]))],
where the expectation is taken over C ∼ Ck(G), a uniformly random I ∈

(
[N ]
n

)
such that I ⊇ C, and

a uniformly random permutation π over [n]. Let µ = EG∼G(N,1/2,k)[f(G)]. Then, for any t ≥ 0,

Pr
G∼G(N,1/2,k)

[f(G) + µ ≥ t] ≤ exp

(
−2N

n
t2
)
,

Pr
G∼G(N,1/2,k)

[f(G)− µ ≤ −t] ≤ exp

(
−2N

n
t2
)
.

Proof. For simplicity, write G = G(N, 1/2, k). For fixed C ∈
([N ]

k

)
, let G|C be the distribution of

G0 ∪KC for G0 ∼ G(N, 1/2). For G ∈ supp(G|C), define fC(G) by

fC(G) = E
I∼([N ]

n ),π
[S(π(G[I])) | I ⊇ C] = E

I′∼([N ]\C
n−|C|),π

[
S(π(G[I ′ ∪ C]))

]
.

Note that f(G) = EC∼Ck(G)[fC(G)]. The marginal distribution of π(G[I]) (over the choices of
G ∼ G|C , π, and I) is identical to G(n, 1/2, k) (since the planted location is uniformly random
due to the random shuffle π and edges outside the planted clique are independent). Therefore,

for every C ∈
([N ]

k

)
, we have EG∼G|C [fC(G)] = EG∼G(n,1/2,k)[S(G)] and thus µ = EG∼G [f(G)] =

EG∼G
[
EC∼Ck(G)[fC(G)]

]
= E

C∼([N ]
k )

[
EG∼G|C [fC(G)]

]
= EG∼G(n,1/2,k)[S(G)].

A graph G ∈ supp(G|C) can be identified with a
(
N
2

)
−
(
k
2

)
-bit string that specifies edges outside

C. With this identification, we view G|C as a product distribution over {0, 1}(
N
2 )−(

k
2). Applying

Theorem 4.3 for the uniform distribution I over
([N ]\C

n−k

)
, we obtain

E
G∼GC

[
eλ(fC(G)−µ)

]
≤ exp

( n

8N
λ2

)
for every λ ≥ 0. Here, note that ρ =

(N−k−1
n−k−1)
(N−k
n−k)

= n−k
N−k ≤

n
N since any edge lying between C and
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[N ] \ C appears in G[I ′ ∪ C] for
(
N−k−1
n−k−1

)
times. Therefore, we have

E
G∼G

[
eλ(f(G)−µ)

]
= E

G∼G

[
eλEC∼Ck(G)[fC(G)−µ]

]
≤ E

G∼G,C∼Ck(G)

[
eλ(fC(G)−µ)

]
Jensen’s inequality for x 7→ eλx

= E
C∼([N ]

k )

[
E

G∼G|C

[
eλ(fC(G)−µ)

]]
≤ exp

( n

8N
λ2

)
.

By the standard argument (e.g., [BLM13, Section 2.3]), we obtain the upper tail:

Pr
G∼G

[f(G) ≥ µ+ t] ≤ inf
λ>0

{
Pr
G∼G

[
eλ(f(G)−µ) ≥ eλt

]}
≤ inf

λ>0

{
e−λt E

G∼G

[
eλ(f(G)−µ)

]}
≤ inf

λ>0

{
exp

( n

8N
λ2 − λt

)}
≤ exp

(
−2N

n
t2
)
,

where the last inequality holds by choosing λ = 4N
n t. For the lower tail, apply the upper tail for

the function f ′ := 1− f .

5 Search to Decision Reductions

5.1 Auxiliary Results

We present useful structural properties of G(n, 1/2, k). First, we show how to find the whole clique
given G ∼ G(n, 1/2, k) and a large subset of the planted location. Such a result is already known
in the literature (cf. [DGP14, Lemma 3.4]). For completeness, we present a proof.

Lemma 5.1. Let n ≥ k ≥ ℓ > 0 be any integers. With probability 1 − n exp
(
−2ℓ2

k

)
, the random

graph G ∼ G(n, 1/2, k) with planted location C satisfies the following: For any (k/2 + ℓ)-clique
C0 ⊆ C, any maximal clique containing C0 is equal to C.

Proof. Let Egood be the event on G ∼ G(n, 1/2, k) that any v ∈ [n]\C satisfies |Γ(v)∩C| < k/2+ ℓ.

By the Chernoff bound (Lemma 3.3), we have Pr[Egood] ≥ 1− n exp
(
−2ℓ2

k

)
.

Let C0 be any subset of C such that |C0| ≥ k/2+ℓ. Any vertex v ∈ C \C0 satisfies |Γ(v)∩C0| =
|C0| ≥ k/2+ℓ. On the other hand, conditioned on Egood, any v ̸∈ C satisfies |Γ(v)∩C0| ≤ |Γ(v)∩C| <
k/2 + ℓ. If C0 ∪ {v} forms a clique, then v must be adjacent to all vertices in C0 and we have
|Γ(v) ∩ C0| ≥ k/2 + ℓ. Thus v ∈ C \ C0. This proves the claim.

In the second auxiliary result, we show that any large clique in G(n, 1/2, k) has a overlap of size
at least (1 + β) log2 n with the planted location.
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Lemma 5.2. Let 0 < β < 1/2 be any constant and k ∈ N be a parameter satisfying (2+β) log2 n ≤
k ≤ n1/2−β. Then, with probability 1−n−Ω(β logn), the random graph G ∼ G(n, 1/2, k) with planted

location C ⊆
([n]
k

)
satisfies the following: For any (2+β) log2 n-clique C ′ ⊆ [n], we have |C ∩ C ′| ≥

(1 + β) log2 n.

Proof. Let C ′ be a (2 + β) log2 n-clique such that |C ∩ C ′| = t. Such a clique appears in G with

probability 2−(
(2+β) log2 n

2 )+(t2). Since there are
(
k
t

)
·
(

n−k
(2+β) log2 n−t

)
ways to choose such cliques, by

the union bound over C ′ and t, we have

Pr
G,C

[
∃(2 + β) log2 n-clique C ′ such that

∣∣C ∩ C ′∣∣ < (1 + β) log2 n
]

≤
(1+β) log2 n∑

t=0

(
k

t

)(
n− k

(2 + β) log2 n− t

)
2−(

(2+β) log2 n
2 )+(t2)

≤ n(2+β) log2 n · 2−(
(2+β) log2 n

2 ) ·
(1+β) log2 n∑

t=0

(
k

t

)
n−t2(

t
2)

≤ n−Ω(β logn) ·
k∑

t=0

(
k

t

)
n− 1−β

2
t

= n−Ω(β logn) ·
(
1 + n− 1−β

2

)k

≤ n−Ω(β logn).

In the third inequality, note that

n−t2(
t
2) ≤ 2−t log2 n+

t2

2

≤ 2−t log2 n+
1+β
2

t log2 n (∵ t ≤ (1 + β) log2 n)

= n− 1−β
2 .

5.2 Search to Partial Recovery Reductions

First, we show that, if we can compute a list of (1 + β) log2 n-cliques that contains a subset of the
planted location, then we can find a 3k-clique in G(3n, 1/2, 3k) with a slight loss in the success
probability.

Lemma 5.3. Let β, ε > 0 be any constants and k ≥ 5 log2 n be a parameter. Suppose there exists a
randomized polynomial-time algorithm A that, given G ∼ G(n, 1/2, k) as input, with probability ε,
outputs a list of (1 + β) log2 n-cliques F = {C1, . . . , Cm} such that for some i ∈ [m], the clique Ci

is a subset of the planted location of G. Then, there exists a randomized polynomial-time algorithm
A′ that finds a 3k-clique in G(3n, 1/2, 3k) with probability ε− o(1).

Proof. The algorithm A′, given G ∼ G(3n, 1/2, 3k) as input, runs as follows:

1. Let (L,R) be a partition of [3n] chosen uniformly at random from those partitions satisfying
|L| = n and |R| = 2n. Let GL = G[L] be the induced subgraph.

2. Run A on input GL and let F = {C1, . . . , Cm} be the output of A.
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3. For each Ci ∈ F , do the following:

(a) Let C̃R ⊆ R be the set of vertices adjacent to all vertices in Ci. That is, C̃R =
{v ∈ R | ΓG(v) ⊇ Ci}.

(b) If C̃R is a clique of G, let C̃ be any maximal clique on G containing C̃R.

4. Repeat Steps 1–3 for n times and output the largest clique among those C̃ found in Step 3(b).

We prove the correctness of A′. Let G ∼ G(3n, 1/2, 3k) be the input with planted location C.
For the random partition (L,R) of Step 1, let CL = C ∩ L and CR = C ∩ R. Fix one iteration of
Steps 1–3 and consider the following “good” events:

• Let E1 be the event on G,L,R that the random partition (L,R) of Step 1 satisfies |L ∩ C| = n.

Note that Pr[E1] =
(3kk )(

3n−3k
n−k )

(3nn )
= Ω(n−1/2).

• Let E2 be the event on G,L,R,A that the output F of A at Step 2 contains a (1 + β) log2 n-
clique Ci that is a subset of CL. Conditioned on E1, the marginal distribution of GL is
G(n, 1/2, k); thus Pr[E2 | E1] ≥ ε.

• Let E3a be the event that C̃R = CR for some Ci ∈ F at Step 3(a). Conditioned on E1 and
E2, for some Ci ∈ F , we have Ci ⊆ CL. Fix this Ci. Since any vertex v ∈ CR is adjacent to
all vertices in Ci ⊆ CL, we have CR ⊆ C̃R. On the other hand, for any vertex v ∈ R \ CR,
edges lying between v and L appear with probability 1/2 and are independent to A and any
other edges of G conditioned on L and R. Therefore, by the union bound over v, we have
Pr[E3a | E1, E2] ≥ 1− 2n · 2−(1+β) log2 n ≥ 1− 2n−β.

• Finally, let E3b be the event on G ∼ G(3n, 1/2, 3k) that G satisfies the property of Lemma 5.1
for ℓ = k/2. That is, for any 2k-clique C ′ ⊆ [3n], any maximal clique of G containing C ′ is

C. From Lemma 5.1, we have Pr[E3b] ≥ 1− 3n exp
(
−2(k/2)2

3k

)
> 1− 3n−0.1 since k ≥ 5 log2 n.

We bound the success probability of A′. Suppose the events E3a and E3b occur. Then, C̃R = CR is
a 2k-clique of G and any maximal clique of G containing C̃R ⊆ C is C; thus, A′ find the planted
location C at Step 3. Therefore, we have

Pr[A′ outputs C] ≥ Pr

E3b ∩ ⋃
i∈[n]

{E3a occurs at the i-th iteration of Step 4}

.
Note that E3b is the event on G ∼ G(3n, 1/2, 3k) and Pr[E3b] ≥ 1− o(1). Conditioned on the event
E1, we have

Pr[E3a | E1] ≥
Pr[E3a ∩ E1 ∩ E2]

Pr[E1 ∩ E2]
· Pr[E1 ∩ E2]

Pr[E1]
= Pr[E3a | E1, E2] · Pr[E2 | E1]
≥ ε− o(1).

Since A′ repeats Steps 1–3 for n times, the event E1 occurs at least once during the repetition with
probability 1 − (1 − O(n−1/2))n = 1 − o(1). If E1 occurs at the i-th iteration, E3a occurs at this
iteration with probability Pr[E3a | E1] ≥ ε− o(1). Therefore, we have

Pr
[
A′ outputs C

]
≥ ε− o(1).
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Now we prove the search-to-partial-recovery reduction. Specifically, we show that, if we can
find a (2 + β) log2 n-clique in G(n, 1/2, k) with k ≥ 5 log2 n (not necessarily a subset of the planted
clique), then we can recover the whole planted clique in a slightly larger random graph with a slight
loss in the success probability.

Lemma 5.4. Let β, ε > 0 be constants and k ≥ 5 log2 n be a parameter. If there exists a randomized
polynomial-time algorithm A that finds a (2+β) log2 n-clique in G(n, 1/2, k) with probability ε, then
there exists a randomized polynomial-time algorithm A′ that finds a 3k-clique in G(3n, 1/2, 3k) with
probability ε− o(1).

Proof. Let B be the auxiliary algorithm that, given G ∼ G(n, 1/2, k) as input, runs as follows:

1. Run A on G and let C0 be the output of A.

2. If C0 is a (2 + β) log2 n-clique of G, output F = {C ′ ⊆ C0 | |C ′| = (1 + β) log2 n}.

Let G ∼ G(n, 1/2, k) be the input with planted location C. We claim that, with probability ε−o(1),
the output F of B contains a (1+β) log2 n-clique that is a subset of C. Let E1 be the event that A
outputs a (2 + β) log2 n-clique at Step 1. By the assumption on A, we have Pr[E1] ≥ ε. Let E2 be
the event that the input G ∼ G(n, 1/2, k) satisfies the property of Lemma 5.2. From Lemma 5.2,
we have Pr[E2] ≥ 1− o(1). If E1 ∩ E2 occurs, the output F of B satisfies the desired property. This
occurs with probability Pr[E1 ∩ E2] ≥ ε− o(1).

Since B satisfies the condition of Lemma 5.3, from Lemma 5.3, there exists a randomized
polynomial-time algorithm that finds a 3k-clique in G(3n, 1/2, 3k) with probability ε− o(1).

Remark 5.5. From the proof of Lemmas 5.3 and 5.4, it is not hard to see that if the algorithm A
of Lemma 5.4 is oblivious to the clique size k (i.e., the execution of A does not depend on value of
k), then so does A′. Therefore, if A finds a (2+β) log2 n-clique in G(n, 1/2, k′) for all k′ ≥ 5 log2 n,
then A′ finds a 3k-clique in G(3n, 1/2, 3k′) for all k′ ≥ 5 log2 n.

5.3 Planted Clique of Adversarial Size

Here, we present the equivalence between the adversarial-k model and the fixed-k model. At the
core of the proof, we consider the resampling procedure defined as follows.

Definition 5.6. Let Resample(G,F ) be the randomized algorithm that takes a graph G = (V,E)
and F ⊆

(
V
2

)
as input and flips the existence of every vertex pair f ∈ F independently with

probability 1/2.

We start with proving the equivalence for the decision versions.

Lemma 5.7. If there exists a polynomial-time randomized algorithm that distinguishes G(n, 1/2, k)
and G(n, 1/2) with advantage 1 − δ

2n , then, there exists a polynomial-time randomized algorithm
that, for all k′ ≥ k, distinguishes G(n, 1/2, k′) and G(n, 1/2) with advantage 1− δ.

Proof. Let A be the algorithm that distinguish G(n, 1/2, k) and G(n, 1/2). Without loss of gener-
ality, we may drop the absolute value and assume E[A(G(n, 1/2, k))] − E[A(G(n, 1/2))] ≥ 1 − δ

2n ,
where the expectations are taken over the random graph and the internal randomness of A. Since
A(G(n, 1/2, k)) ≤ 1, we have E[A(G(n, 1/2))] ≤ δ

2n and similarly E[A(G(n, 1/2, k))] ≥ 1− δ
2n .

Let A′ be the algorithm that, given G = ([n], E) as input, runs as follows:

1. For each i = 1, . . . , n, do the following:
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(a) Let πi : [n]→ [n] be a uniformly random permutation.

(b) Let Gi ← πi(Resample(G,E([i], [n]))).

(c) If A(Gi) = 1, then output 1 and terminate.

2. Output 0.

We prove the correctness of A′. If an input G is drawn from G(n, 1/2), then the marginal
distribution of each Gi is G(n, 1/2). Thus, by the union bound over i ∈ [n], we have that
Pr[A′(G(n, 1/2)) = 0] ≥ 1− δ

2 .

Suppose G ∼ G(n, 1/2, k′) and let C ∼
(
V
k′

)
be the k′-clique planted in G and Ci = C \ [i] for

every i ∈ {0, · · · , n}. We claim that the marginal distribution of each Gi conditioned on the size
|Ci| is G(n, 1/2, |Ci|). Indeed, each Ci forms a clique in Gi and the marginal distribution of Ci is
uniform due to the random permutation πi. Moreover, each pair {u, v} with u ̸∈ Ci forms an edge
of Gi with probability 1/2 independent of any other pairs. Therefore, the marginal distribution of
each Gi is G(n, 1/2, |Ci|). Let i ∈ {0, . . . , n} be the first index such that |Ci| = k (i is a random
variable). Note that such i must exist since |C0| = |C| = k′ ≥ k and |Cn| = 0. Then, we obtain
Pr[A′(G(n, 1/2, k′)) = 1] = Pr[

⋃n
i=0{A(Gi) = 1}] ≥ Pr[A(Gi) = 1] ≥ 1− δ

2n . In the last inequality,
note that the marginal distribution of Gi is G(n, 1/2, k).

It follows that E[A′(G(n, 1/2, k))]− E[A′(G(n, 1/2))] ≥ 1− δ.

Next, we present the case of the search versions. First, we show how to find a (k + ℓ)-clique in
G(n, 1/2, k + ℓ) for any constant ℓ given an algorithm finding a k-clique in G(n, 1/2, k).

Lemma 5.8. Let ℓ ∈ N, β > 0 be any constant and k ≥ (2 + β) log2 n. Suppose there exists a
randomized polynomial-time algorithm A that runs in time T and finds a k-clique in G(n, 1/2, k)
with probability ε. Then, there exists a randomized polynomial-time algorithm A′ that, for all
k ≤ k′ ≤ k + ℓ, runs in time T ·O(nℓ) and finds a k′-clique in G(n, 1/2, k′) with probability ε.

Proof. The algorithm A′ on input G ∼ G(n, 1/2, k′) enumerates all vertex subset S ⊆ [n] of |S| ≤ ℓ
and runs A on input GS := Resample(G,E(S, [n])). If A outputs a clique CS and S ∪ CS forms a
clique in G, let C̃S = S ∪ CS . Then, A

′ outputs a largest clique among all C̃S .
Let G ∼ G(n, 1/2, k′) be the input and C be the planted location. Since G ∼ G(n, 1/2, k′) and

k ≤ k′ ≤ k + ℓ, for some S ∈
([n]
≤ℓ

)
, the marginal distribution of GS is G(n, 1/2, k) whose planted

location is CS = C \ S (here, we used the condition k ≥ (2 + β) log2 n to ensure that GS contains
a unique k-clique that is a subset of C). For such S, A outputs CS = C \ S with probability ε and
thus we have C = CS ∪ S.

Remark 5.9. Since A′ of Lemma 5.8 is oblivious to the clique size k, if A finds planted cliques in
the adversarial-k model, then so does A′ (see Remark 5.5).

We now prove the equivalence of the fixed-k and adversarial-k models for the search versions.

Lemma 5.10. Let k ≥ 5 log2 n and ε > 0 be a constant. Suppose there exists a random-
ized polynomial-time algorithm A that finds a k-clique in G(n, 1/2, k) with probability ε. Then,
there exists a randomized polynomial-time algorithm A′ that, for all k′ ≥ 3k, finds a k′-clique in
G(3n, 1/2, k′) with probability ε− o(1).

Proof. Let k′ ≥ k and Resample(G,F ) be the algorithm of Definition 5.6. Consider the following
auxiliary algorithm B: On input G ∼ G(n, 1/2, k′),

1. For each i = 1, . . . , n, do the following:
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(a) Let πi be a uniformly random permutation over [n].

(b) Let Gi ← πi(Resample(G,E([i], [n])).

(c) If A outputs a k-clique S of Gi on input Gi, output π
−1
i (S) and terminate.

2. Output ⊥.

We claim that, for all k′ ≥ k, B finds a k-clique in G ∼ G(n, 1/2, k′) with probability ε− kn2−k/2.
Let G ∼ G(n, 1/2, k′) be the input and C be the planted location. Let i ∈ {0, . . . , n} be the first
index such that |C \ [i]| = k. Then, the marginal distribution of Gi is G(n, 1/2, k). Thus, with
probability ε, we obtain a k-clique C ′ in Gi at Step 1-(c). From Lemma 3.1, Gi contains a unique
k-clique with probability 1 − kn2−k/2. Thus, A outputs πi(C \ [i]) at Step 1-(c) with probability
ε − kn2−k/2, where πi is the random permutation in Step 1-(a). Note that this output of B is a
k-clique of G ∼ G(n, 1/2, k′). Therefore, for all k′ ≥ k, B finds a k-clique in G ∼ G(n, 1/2, k′) with
probability ε− o(1).

Since k ≥ 5 log2 n, from Lemma 5.4, there exists a randomized polynomial-time algorithm
B′ that, for all k′ ≥ k, finds a 3k′-clique in G(3n, 1/2, 3k′) with probability ε − o(1) (see also
Remark 5.5). Then, from Lemma 5.8, there exists a randomized polynomial-time algorithm A′

that, for all k′ ≥ k and all i ∈ {0, 1, 2}, finds a (3k′+ i)-clique in G(3n, 1/2, 3k′ + i) with probability
ε− o(1).

5.4 Search to Decision Reduction by Alon et al.

We present the search to decision reduction by Alon, Andoni, Kaufman, Matulef, Rubinfeld, and
Xie [AAKMRX07]. They proved that, if one can distinguish G(n, 1/2, k′) and G(n, 1/2) for all
k′ ≥ k/3 with advantage 1 − 1/n, then one can find a k-clique in G(n, 1/2, k). For completeness,
we present a proof of the result in Appendix D.1.

Lemma 5.11 ([AAKMRX07]). Let k ≥ 18 log n for a sufficiently large constant c > 0. Sup-
pose there exists a randomized polynomial-time algorithm A that, for all k′ ≥ k/3, distinguishes
G(n, 1/2, k′) and G(n, 1/2) with advantage 1− δ

n . Then, there exists a randomized polynomial-time

algorithm A′ that, for every k′ ≥ k, finds a k′-clique in G(n, 1/2, k′) with probability 1−2δ−ne−k/18.

Using this search-to-decision reduction, we show the equivalence between decision and search
versions of planted clique conjectures in a low-error regime.

Theorem 5.12. Items 3 and 4 of Theorem 1.3 are equivalent. That is, the following are equivalent.

¬3. For some constants α > 0 and c > 0, there exists a randomized polynomial-time algorithm
A such that, for infinitely many n and for any k ≥ n1/2−α, A distinguishes G(n, 1/2, k) and
G(n, 1/2) with advantage 1− e−nc

.

¬4. For some constants α, γ > 0, there exists a randomized polynomial-time algorithm B such
that, for infinitely many n and any k ≥ n1/2−α, B finds a k-clique in G(n, 1/2, k) with
probability 1− e−nγ

.

Proof. The direction ¬4⇒¬3 is straightforward: Let B be the algorithm of ¬4. Let A be the
following algorithm: On input G (an n-vertex graph), if B outputs a clique of size at least n1/2−α,
A outputs 1. Otherwise, A outputs 0. For any k′ ≥ n1/2−α and G ∼ G(n, 1/2, k′), we have
A(G) = 1 with probability 1 − e−nγ

. For G ∼ G(n, 1/2), we have A(G) = 1 with probability at

most Pr[G(n, 1/2) contains an n1/2−α-clique] ≤ 2−Ω(n1/2−α). Therefore, A has advantage 1− e−nγ′
,

where γ′ < min{1/2− α, γ} is any constant.
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The opposite direction follows from Lemma 5.11. Since we can distinguish G(n, 1/2, k) and
G(n, 1/2) for any k ≥ n1/2−α with advantage 1−e−nγ

, we can find a 3n1/2−α-clique with probability

1− e−Ω(nγ) − e−Ω(n1/2−α).

5.5 Distinguishing k- and (k − 1)-Clique

In this section, we show how to find the planted clique using a distinguisher for G(n, 1/2, k) and
G(n, 1/2, k − 1).

Lemma 5.13. Let k, δ be such that k ≥ max{5
√
6δn log n, 5 log2 n}. Suppose there exists a ran-

domized polynomial-time algorithm A that distinguishes G(n, 1/2, k) and G(n, 1/2, k − 1) with ad-
vantage 1− δ. Then, there exists a randomized polynomial-time algorithm A′ that finds a 3k-clique
in G(3n, 1/2, 3k) with probability 2/3− o(1).

The proof of Lemma 5.13 consists of the following two steps:

Step 1. Noisy Recovery to Decision Reduction. For a graph G ∼ G(n, 1/2, k) with a
planted location C, a vertex set S ⊆ [n] is said to be γ-noisy recovery if |S ∩ C| ≥ (1 − γ)k and
|S \ C| ≤ γn. Note that outputting a uniformly random vertex subset attains γ ≈ 1

2 ; thus we
always assume γ ≤ 1

2 . We show that, if we can distinguish G(n, 1/2, k) and G(n, 1/2, k − 1) with a
high advantage, then we can compute a noisy recovery. The idea is based on [FK00].

Lemma 5.14. Suppose there exists a randomized polynomial-time algorithm A that distinguishes
G(n, 1/2, k) and G(n, 1/2, k − 1) with advantage 1− δ. Then, there exists a randomized polynomial-
time algorithm A′ that, on an input G ∼ G(n, 1/2, k), outputs a 6δ-noisy recovery with probability
2/3.

Proof. Let A be the algorithm that distinguishes G(n, 1/2, k) and G(n, 1/2, k − 1). For simplicity,
suppose that EG(n,1/2,k)[A]−EG(n,1/2,k−1)[A] ≥ 1− δ. Note that PrA,G∼G(n,1/2,k)[A(G) = 0] ≤ δ and
PrA,G∼G(n,1/2,k−1)[A(G) = 0] ≥ 1− δ. Let A′ be the algorithm that, on input G ∼ G(n, 1/2, k),

1. Initialize S ← ∅.

2. For each u ∈ [n], let Gu be the graph obtained from G by resampling edges incident to u.
Specifically, for each v ∈ [n] \ {u}, flip the existence of an edge {u, v} in G independently
with probability 1/2.

3. For each u ∈ [n], if A(Gu) = 0, let S ← S ∪ {u}.

4. Output S.

Let C ⊆ [n] be the location of the planted clique of G. Conditioned on u ∈ C, the marginal
distribution of Gu is G(n, 1/2, k − 1) and thus Pr[u ∈ S | u ∈ C] = PrA,G∼G(n,1/2,k−1)[A(G) = 0] ≥
1− δ; in particular, E[|C \ S|] ≤ δn. By the Markov inequality, we have Pr[|C ∩ S| ≤ (1− 6δ)k] =

Pr[|C \ S| ≥ 6δk] ≤ E[|C\S|]
6δn ≤ 1

6 .
Similarly, conditioned on u ̸∈ C, the marginal distribution of Gu is G(n, 1/2, k) and thus

Pr[u ∈ S | u ̸∈ C] = PrA,G∼G(n,1/2,k)[A(G) = 0] ≤ δ. By the Markov inequality, we have Pr[|S\C| ≥
6δn] ≤ E[|S\C|]

6δn ≤ 1
6 .

By the union bound over these two cases, with probability 2/3, we have |C ∩ S| ≥ (1 − 6δ)k
and |S \ C| ≤ 6δn.
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Step 2. Partial Recovery to Noisy Recovery Reduction. We show that, if we can compute
a noisy recovery, then we can compute a large subset of the planted location. The algorithm is
similar to the recovery algorithm of Lemma 5.4: It randomly divides the vertex set [3n] into two sets
L and R of sizes n and 2n, respectively, runs the noisy recovery algorithm on the induced subgraph
G[L], computes a 2k-clique CR of G[R] via degree counting, and finally outputs the maximal clique
containing CR.

Lemma 5.15. Let k ∈ N, γ ∈ (0, 1/2] be parameters satisfying k ≥ max
{
5
√
γn log n, 5 log2 n

}
.

Suppose there exists a randomized polynomial-time algorithm A that, on input size n, computes a γ-
noisy recovery of G ∼ G(n, 1/2, k) with probability 2/3. Then, there exists a randomized polynomial-
time algorithm A′ that finds a 3k-clique in G(3n, 1/2, 3k) with probability 2/3− o(1).

Proof. The algorithm A′, given G ∼ G(3n, 1/2, 3k) as input, runs as follows:

1. Let (L,R) be a partition of [3n] chosen uniformly at random from those partitions satisfying
|L| = n and |R| = 2n. Let GL = G[L] be the induced subgraph.

2. Run A on input GL and let L′ ⊆ L be the output.

3. Let C̃R ⊆ R be the set of vertices of R having at least |L′|
2 +

√
|L′| log n neighbors in L′.

4. If C̃R ⊆ [3n] is a 2k-clique of G, output any maximal clique of G containing C̃R and terminate.

5. Repeat Step 1–4 for n times. If A′ did not terminate, output ⊥.

We prove the correctness of A′. Let G ∼ G(3n, 1/2, 3k) be the input with planted location C. For
the random partition (L,R) of Step 1, let CL = C ∩L and CR = C ∩R. Fix one iteration of Steps
1–4 and consider the following “good” events:

• Let E1 be the event on G,L,R that the random partition (L,R) of Step 1 satisfies |L∩C| = n.

Note that Pr[E1] =
(3kk )(

3n−3k
n−k )

(3nn )
= Ω(n−1/2).

• Let E2 be the event on G,L,R,A that L′ is a γ-noisy recovery of GL at Step 2. Conditioned
on E1, the marginal distribution of GL is G(n, 1/2, k); thus Pr[E2 | E1] ≥ 2/3.

• Let E3 be the event on G,L,R,A that C̃R = CR. Let v ∈ CR. Conditioned on (L,R),
the edges of G lying between L′ and R occurs independently to GL and GR (note that the
execution of A on input GL is independent of these edges). Therefore, for any v ∈ R \ CR,

the Chernoff bound (Lemma 3.3) yields Pr
[
|ΓG(v) ∩ L′| ≥ |L′|

2 +
√
|L′| log n

]
≤ n−2. On the

other hand, for v ∈ CR, with probability 1− n−2 conditioned on E1 and E2, we have∣∣ΓG(v) ∩ L′∣∣ = ∣∣L′ ∩ CL

∣∣+ ∣∣ΓG(v) ∩ (L′ \ CL)
∣∣

=
∣∣L′ ∩ CL

∣∣+ |L′ \ CL|
2

−
√
|L′ \ CL| log n by the Chernoff bound

=
|L′|
2

+
|L′ ∩ CL|

2
−
√
|L′ \ CL| log n

≥ |L
′|
2

+ (1− γ)k −
√

γn log n ∵ L′ is a γ-noisy recovery

≥ |L
′|
2

+
√

(γn+ k) log n ∵ γ ≤ 1/2 and k ≥ 5
√

γn log n

≥ |L
′|
2

+
√
|L′| log n ∵ |L′| ≤ γn+ k.
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Therefore, by the union bound over v ∈ R, we have Pr[E3 | E1, E2] ≥ 1−O(n−1).

• Let E4 be the event on G that G ∼ G(3n, 1/2, 3k) satisfies the property of Lemma 5.1 for
ℓ = k/2. That is, for any 2k-clique C0 ⊆ C, we can obtain C by taking any maximal clique of

G containing C0. From Lemma 5.1, we have Pr[E4] ≥ 1− 3n exp
(
−2·(k/2)2

3k

)
= 1− o(1) (here,

we used k ≥ 5 log2 n).

We bound the success probability of A′. If E3 and E4 occur, then C̃R ⊆ C of Step 3 is a 2k-
clique of G and thus, A′ outputs C at Step 4. Therefore, it suffices to show that E3∩E4 occurs with
probability 2/3 − o(1) at least once during the repetition of Step 5. Note that Pr[E4] = 1 − o(1).
Fix an iteration. Conditioned on E1,

Pr[E3 | E1] ≥
Pr[E1 ∩ E2 ∩ E3]

Pr[E1]

=
Pr[E1 ∩ E2 ∩ E3]

Pr[E1 ∩ E2]
· Pr[E1 ∩ E2]

Pr[E1]
= Pr[E3 | E1, E2] · Pr[E2 | E1]
= 1− o(1)

and we obtain

Pr
[
A′ outputs C

]
≥ Pr

E4 and
⋃
i∈[n]

{E3 at i-th iteration of Step 5}


≥ Pr

 ⋃
i∈[n]

{E3 at i-th iteration}

− Pr[¬E4]

≥ Pr[E3 | E1] · Pr

 ⋃
i∈[n]

{E1 at i-th iteration}

− o(1)

≥ 2

3
− o(1).

In the last inequality, since Pr[E1] ≥ Ω(n−1/2) and the choice of (L,R) is independently random at

every iteration, we have Pr
[⋃

i∈[n]{E1 at i-th iteration}
]
≥ 1 − (1 − O(n−1/2))n ≥ 1 − o(1). This

proves the claim.

Proof of Lemma 5.13. Suppose A distinguishes G(n, 1/2, k) and G(n, 1/2, k − 1) with advantage
1− δ. From Lemma 5.14, there exists a randomized polynomial-time algorithm A1 that computes
a 6δ-noisy recovery of G ∼ G(n, 1/2, k) with probability 2/3. From Lemma 5.15, there exists a
randomized polynomial-time algorithm A2 that finds a 3k-clique in G(3n, 1/2, 3k) with probability
2/3− o(1).

6 Hardness Amplification

6.1 Shrinking Reduction

We start with a formal definition of the shrinking reduction.
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Definition 6.1. Define Rshr as a randomized algorithm that outputs π(G[I]) given an N -vertex
graph G as input, where I ∼

(
[N ]
n

)
is a uniformly random n-subset and π : [n]→ [n] is a uniformly

random permutation.

We prove that Rshr yields samplers and then prove hardness amplification results of planted
clique conjectures.

Theorem 6.2. Let N,n, ε, δ be parameters satisfying δ ≥ 8 exp
(
−N2ε2

18n2

)
. Suppose there exists a

randomized polynomial-time algorithm A that distinguishes G(n, 1/2) and G̃(n, 1/2, k) with advan-
tage ε. Then, there exists a randomized algorithm A′(G;n) that, given an N -vertex graph G as
input and n as a nonuniform advice, distinguishes G(N, 1/2) and G(N, 1/2, k′) with advantage 1−δ
in time poly(N, 1/ε, log(1/δ)), where k′ = N

n k.

Remark 6.3. The nonuniform advice n of A can be eliminated by using the fact that (the search
version of) the planted clique problem admits a selector [Hir15]. Specifically, consider the following
nonuniform variant of ¬1 of Theorem 1.3:

¬1’ There exist a constant α ∈ (0, 1/2) and a randomized polynomial-time algorithm A that, for
infinitely many n, given some advice string αn ∈ {0, 1}O(logn), finds a k-clique in G(n, 1/2, k)
with probability 1/2, where k := n1/2−α.

It is easy to observe the equivalence between ¬1 and ¬1’. Given a nonuniform randomized algorithm
A that takes O(log n) bits of advice, we may define a uniform algorithm SA that takes a graph G
of n vertices as input and, for all advice strings α ∈ {0, 1}O(logn), computes A(G;α) and outputs
the first k-clique of G that is found by A′(G;α). The oracle algorithm S(-) is called a selector, and
is known to characterize the property that O(log n) bits of advice can be eliminated [Hir15].

For two computational problems L1 and L2 such that L1 is reducible to L2 and vice versa, if
L1 admits a selector, then L2 also admits a selector [Hir15]. Thus, by our reductions that show
the equivalence among many variants of planted clique problems, all the variants admit selectors,
which imply that O(log n) bits of advice can be eliminated.

We first show that Rshr yields samplers.

Lemma 6.4. Let X ∼ G(N, 1/2, k) and Y = Rshr(X) be random variables. Then, for any ε > 0

and δ ≥ 2 exp
(
−2N2

n2 ε2
)
, (X,Y ) is a (δ, ε)-sampler.

Proof. Let S : supp(Y )→ [0, 1] be any function. For G ∈ supp(X), let f(G) = E[S(Y ) | X = G] =
ERshr

[S(Rshr(G))] = Eπ,I [π(G[I])]. From Theorem 4.4 and Fact 3.4, we have

Pr
G∼G(N,1/2,k)

[|f(G)− E[S(Y ) | X = G]| ≥ ε] = Pr
G∼G(N,1/2,k)

[|f(G)− E[f(G)]| ≥ ε]

≤ 2 exp

(
−2N2

n2
ε2
)

≤ δ

and obtain the claim.

Let k′ = N
n k. Let G(N, 1/2, k′) is G(n, 1/2,HG(N, k′, n)) be the distribution of the n-vertex

graph obtained by ℓ ∼ HG(N, k′, n) and then outputting G(n, 1/2, ℓ), where HG(N, k′, n) denotes

the hypergeometric distribution, i.e., Prℓ∼HG(N,k′,n)[ℓ = i] =
(k

′
i )(

N−k′
n−i )

(Nn)
. Note that the distribution
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of Y = Rshr(X) for X ∼ G(N, 1/2, k′) is G(n, 1/2,HG(N, k′, n)), which receives a k-clique in
expectation.

To prove Theorem 6.2, we recall the following known result about the statistical distance be-
tween the distribution and the binomial distribution.

Lemma 6.5 (Theorem (4) of [DF80]). For any N, k, n, dTV(HG(N, k, n),Bin(n, k/N)) ≤ n
N .

Proof of Theorem 6.2. Let X1 ∼ G(N, 1/2), Y1 = Rshr(X1), X2 ∼ G(N, 1/2, k′), and Y2 = Rshr(X2)
be random variables. For simplicity, write Gbin = G̃(n, 1/2, k) and Ghg = G(n, 1/2,HG(N, k′, n)).
Note that the marginal distributions of Y1 and Y2 are G(n, 1/2) and Ghg, respectively.

Since the only difference between Gbin and Ghg is the distribution of the size of the planted clique,
from Lemma 6.5, we have dTV(Gbin,Ghg) ≤ n

N . Therefore, if an algorithm A distinguishes G(n, 1/2)
and Gbin with advantage ε, then A also distinguishes G(n, 1/2) and Ghg with advantage ε− n

N ≥
ε
2 .

Here, note that we may assume ε ≥ 2n
N ; otherwise, we would have δ ≥ 8 exp

(
−N2ε2

18n2

)
> 8e−2/9 > 1.

From Lemma 6.4, both (X1, Y1) and (X2, Y2) are
(
δ
4 ,

ε
6

)
-samplers (note that Lemma 6.4 holds

even if k = 0). Therefore, from Lemma 3.11, we can distinguishX1 andX2 with advantage 1−δ.

Now we prove the equivalence results of planted clique conjectures.

Theorem 6.6. Items 2, 3, 7 and 8 of Theorem 1.3 are equivalent. That is, the following are
equivalent.

¬2. For some constant α > 0 there exists a randomized polynomial-time algorithm A that, for
infinitely many N and for any K ≥ N1/2−α, distinguishes G(N, 1/2,K) and G(N, 1/2) with
advantage 1/3.

¬3. For some constants α > 0 and c > 0, there exists a randomized polynomial-time algorithm
A that, for infinitely many N and for any K ≥ N1/2−α, distinguishes G(N, 1/2,K) and
G(N, 1/2) with advantage 1− e−Nc

.

¬7. For some constant γ > 0, There exists a randomized polynomial-time algorithm A that, for
infinitely many n and for some k ∈ N, distinguishes G̃(n, 1/2, k) and G(n, 1/2) with advantage
k2

n · n
γ.

¬8. For some constant γ > 0, there exists a randomized polynomial-time algorithm A that, for
infinitely many n and for some k, distinguishes G(n, 1/2, k′) and G(n, 1/2) with advantage
k2

n · n
γ for any k′ ≥ k.

Proof. We prove ¬3 ⇒ ¬2 ⇒ ¬8 ⇒ ¬7 ⇒ ¬3.

Proof of ¬3⇒¬2. Assume ¬3 and let α, c > 0 be the constants and A be the algorithm of ¬3.
Then, the algorithm A also satisfies the condition of ¬2.

Proof of ¬2⇒¬8. Assume ¬2 and let α > 0 be the constant and A be the algorithm of ¬2. Set
γ = α and k = n1/2−α. For infinitely many n, A distinguishes G(n, 1/2, k′) and G(n, 1/2) with

advantage 1/3 ≥ k2

n · n
γ = n−α for every k′ ≥ k. This proves ¬8.
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Proof of ¬8⇒¬7. Assume ¬8 and let γ > 0 be the constant and A be the algorithm of ¬8.
Let n, k be such that A distinguishes G(n, 1/2, k′) and G(n, 1/2) with advantage k2

n · n
γ for any

k′ ≥ k. Let k∗ = max{k, (log n)2}. By the Chernoff bound (Lemma 3.3), G̃(n, 1/2, 2k∗) contains
a clique of size at least k∗ with probability 1 − 2−Ω(k∗) = 1 − n−ω(1). Since A distinguishes
G(n, 1/2, k′) and G(n, 1/2) for any k′ ≥ 2k∗, A distinguishes G̃(n, 1/2, 2k∗) and G(n, 1/2) with

advantage k2

n · n
γ − n−ω(1) = k2

n · n
γ−o(1).

Proof of ¬7⇒¬3. Assume ¬7 and let γ > 0 be the constant and A be the algorithm of ¬7. Let
n, k be such that A distinguishes G̃(n, 1/2, k) and G(n, 1/2) with advantage k2

n ·n
γ . Let α, c > 0 be

constants that will be specified later. Take K,N ∈ N such that K = N
n k = N1/2−α. In particular,

we have N =
(
n
k

) 2
1+2α and K =

(
n
k

) 1−2α
1+2α . We set α and c such that δ ≥ 8 exp

(
−N2ε2

18n2

)
holds for

δ = e−Nc
and ε = k2

n · n
γ . We can choose as α = γ

5 and c = γ
6 since

N2ε2

n2
= N2 · k

4

n4
· n2γ

= N−4α · n2γ

≥ Nγ−4α since N =
(n
k

) 2
1+2α ≤ n2

≥ N c+γ/30 ≥ N c+Ω(1).

From Theorem 6.2 and Lemma 5.7, there exists a randomized polynomial-time algorithm A′ that,
on input size N , distinguishes G(N, 1/2,K ′) and G(N, 1/2) with advantage 1−O(Nδ) ≥ 1−e−NΩ(1)

for any K ′ ≥ K. Note that we can remove the nonuniform advice n (Remark 6.3).

Theorem 6.7. Items 1 and 4 of Theorem 1.3 are equivalent. That is, the following are equivalent.

¬1. There exist a constant α ∈ (0, 1/2) and a randomized polynomial-time algorithm that, for
infinitely many n, finds an n1/2−α-clique in G(n, 1/2, n1/2−α) with probability 1/2.

¬4. There exist constants α, γ > 0 and a randomized polynomial-time algorithm that, for infinitely
many n ∈ N and for any k ≥ n1/2−α, finds a k-clique in G(n, 1/2, k) with probability 1−e−nγ

.

Proof. Note that ¬4⇒¬1 is trivial. In what follows, we prove the opposite direction.
Let α > 0 be the constant and A be the algorithm of ¬1. From Lemma 5.10, we may assume

that A finds a k′-clique in G(n, 1/2, k′) with probability 1/2 − o(1) for infinitely many n and for
every k′ ≥ k1 := n1/2−α. Using A, we can distinguish G(n, 1/2, k′) and G(n, 1/2) for all k′ ≥ k1
with advantage 1/2− o(1). To see this, consider the algorithm A1 that, on an input G, outputs 1
if and only if A(G) finds a clique of G of size at least k1. Then, for any k′ ≥ k1, we have

E
A1,G∼G(n,1/2,k)

[
A′

1(G)
]
≥ 1

2
− o(1),

E
A1,G∼G(n,1/2)

[
A′

1(G)
]
≤ Pr

G∼G(n,1/2)
[G contains an k1-clique] = o(1).

Therefore, A1 distinguishes G(n, 1/2, k′) and G(n, 1/2) with advantage 1/2− o(1) for all k′ ≥ k1.
Let k′1 = 2k1. We claim that A1 indeed distinguishes G̃(n, 1/2, k′1) (planted clique in the

binomial-k model) and G(n, 1/2) with advantage 1/2− o(1). Let C be the planted location of G ∼
G̃(n, 1/2, k′1). By the Chernoff bound (Lemma 3.3), we have Pr[|C| < k1] = Pr[Bin(n, 2k1/n) < k1] =
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o(1). Conditioned on |C| ≥ k1, A1 distinguishes G(n, 1/2, |C|) and G(n, 1/2) with advantage
1/2− o(1). Therefore, A1 distinguishes G̃(n, 1/2, k′1) and G(n, 1/2) with advantage 1/2− o(1).

Let β > 0 be a parameter that will be specified later. From Theorem 6.2 (for δ = e−Nβ
and ε =

1/2) and Lemma 5.7, there exist N = O
(
n
ε

√
log(1/δ)

)
= O

(
n1+β/2

)
and a randomized algorithm

A2 that runs in time poly(N) and distinguishes G(N, 1/2, k′) and G(N, 1/2) with advantage 1 −
O(Ne−Nβ

) for all k′ ≥ k2 :=
N
n k

′
1. Note that we can remove the nonuniform advice n (Remark 6.3).

Set β = α and let k3 := 3k2 = 2N
n · n

1/2−α = O
(
n1/2−α/2

)
. From Lemma 5.11, there exists a

randomized polynomial-time algorithm A3 that, for infinitely many N and every k′ ≥ k3, finds a
k′-clique in G(N, 1/2, k′) with probability 1− e−Ω(Nβ) − e−Ω(k3). This implies ¬4.

6.2 Embedding Reduction

In this part, we consider a reduction that, given a graph G, randomly embeds G into a large
Erdős–Rényi graph. Formally, we consider an algorithm Remb that, given an n-vertex graph G and
a parameter N ∈ N, runs as follows:

1. Sample I = {v1, . . . , vn} ∼
(
[N ]
n

)
(suppose v1 < · · · < vn), uniformly random permutation π

over [n], and G′ ∼ G(N, 1/2).

2. Replace G′[I] with π(G). Specifically, for every 1 ≤ i < j ≤ n, let G′[vi, vj ] ← G[π(i), π(j)]
(here, we identify a graph with its adjacency matrix).

3. Output G′.

We prove two hardness amplification results for planted clique problems using Remb.

Theorem 6.8. Let n,N, δ, ε be parameters such that ε ≥ 4 exp
(
−Nδ2

8n

)
. Suppose there exists a

randomized polynomial-time algorithm A that finds a k-clique in G(N, 1/2, k) with probability ε.
Then, there exists a randomized algorithm A′ that, given an n-vertex graph as input and N as
nonuniform advice, runs in time poly(n,N, 1/ε, log(1/δ)), and satisfies

Pr
A′,G∼G(n,1/2,k)

[
A′(G,N) is a k-clique in G

]
≥ 1− 2δ.

Theorem 6.9. Let n,N, δ, ε be parameters such that ε ≥ 24 exp
(
− δ2ε2N

18432n

)
. Let k1, k2 ≥ 0.

Suppose there exists a randomized polynomial-time algorithm that, on input size N , distinguishes
G(N, 1/2, k1) and G(N, 1/2, k2) with advantage ε. Then, there exists a randomized algorithm A′ that
is given an n-vertex graph as input and N as nonuniform advice, runs in time poly(n,N, 1/ε, log(1/δ)),
and distinguishes G(n, 1/2, k1) and G(n, 1/2, k2) with advantage 1− δ.

Remark 6.10. We can remove the nonuniform advice N of Theorems 6.8 and 6.9. See Remark 6.3
for details.

To prove the hardness amplification results, we first show that Remb exhibits a certain kind of
sampler property. To state it more formally, we introduce the notion of one-sided multiplicative
sampler as follows.

Definition 6.11 (Definition 3.4 of [HS23]). A pair of random variables (X,Y ) is a one-sided multi-
plicative (δ, c)-sampler for density ε if, for any function S : supp(Y )→ [0, 1] such that E[S(Y )] ≥ ε,
we have

Pr
x∼X

[E[S(Y ) | X = x] ≤ (1− c)E[S(Y )]] ≤ δ.
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As well as Lemma 3.12, an exchange lemma for one-sided multiplicative samplers is known
[HS23, Lemma 3.7]. For completeness, we prove it in Appendix C.

Lemma 6.12. If (Y,X) is a one-sided multiplicative
(
cε
2 ,

c
2

)
-sampler for density δ, then (X,Y ) is

a one-sided multiplicative (δ, c)-sampler for density ε.

The sampler property of Remb can be stated as follows.

Lemma 6.13. Let (X,Y ) be a pair of random variables obtained by X ∼ G(n, 1/2, k) and then
Y = Remb(X).

1. For any δ > 0 and ε ≥ 4 exp
(
−Nδ2

8n

)
, (X,Y ) is a one-sided multiplicative

(
δ, 12

)
-sampler for

density ε.

2. For any δ > 0 and ε ≥ 4 exp
(
−Nδ2ε2

32n

)
, (X,Y ) is a (δ, ε)-sampler.

Proof. For any [0, 1]-valued function S over supp(X), let f : supp(Y )→ [0, 1] be the function defined
by f(y) = E[S(X) | Y = y]. For a graph G and k ∈ N, let Ck(G) be the set of k-cliques in G.

Consider the distribution of X conditioned on Y = y. We claim that X|Y=y can be obtained
by choosing a k-clique C ∈ Ck(y) and an n-vertex subset I ⊆ [N ] uniformly at random condi-
tioned on C ⊆ I and then outputting the induced subgraph y[I]. Note that G(n, 1/2, k)(G) =
|Ck(G)|
(nk)

· 2−(
n
2)+(

k
2) (see, e.g., [JP00, Lemma 1]). Since Pr[Y = y | X = x] = Pr[Remb(x) = y] =

2−(
n
2)+(

k
2) Pr[π(y[I]) = x] (the probability is taken over I ∼

(
[N ]
n

)
and uniformly random permuta-

tion π : [n]→ [n]), we have

Pr[X = x | Y = y] =
G(n, 1/2, k)(x)
G(N, 1/2, k)(y)

· Pr[Y = y | X = x]

=
|Ck(x)|(

n
k

) ·
(
N
k

)
|Ck(y)|

· Pr
I,π

[π(y[I]) = x]

=
PrI,C∼(Ik),π

[C ∈ Ck(y) and π(y[I]) = x]

Pr
C∼([N ]

k )
[C ∈ Ck(y)]

=
Pr

C∼([N ]
k ),I,π

[C ∈ Ck(y) and π(y[I]) = x | I ⊇ C]

Pr
C∼([N ]

k )
[C ∈ Ck(y)]

= Pr
C∼Ck(G),I,π

[π(y[I]) = x | I ⊇ C].

Therefore, we have f(y) = EC∼Ck(y),I,π[S(π(y[I])) | I ⊇ C].

Proof of Item 1. Suppose E[S(X)] = E[f(Y )] ≥ δ. Then, from Theorem 4.5 and Fact 3.4, we
obtain

Pr

[
f(Y ) ≤ 3

4
E[f(Y )]

]
≤ exp

(
−2N

n
· E[f(Y )]2

16

)
≤ exp

(
−Nδ2

8n

)
≤ ε

4
.

In other words, (Y,X) is a one-sided multiplicative
(
ε
4 ,

1
4

)
-sampler for density δ. From Lemma 6.12,

(X,Y ) is a
(
δ, 12

)
-sampler for density ε.
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Proof of Item 2. From Theorem 4.5 and Fact 3.4, we obtain

Pr

[
|f(Y )− E[f(Y )]| ≥ δε

8

]
≤ 2 exp

(
−Nδ2ε2

32n

)
≤ ε

2
.

In other words, (Y,X) is a
(
ε
2 ,

δε
8

)
-sampler. From Lemma 3.12, (X,Y ) is a (δ, ε)-sampler.

Proof of Theorem 6.8. Let (X,Y ) be the pair of random variables obtained byX ∼ G(n, 1/2, k) and
then Y = Remb(X). From Lemma 6.13 (item 1), (X,Y ) is a one-sided multiplicative

(
δ, 12

)
-sampler

for density ε. Let S : supp(Y )→ [0, 1] be the function defined by

S(y) = Pr
A
[A(y) is a k-clique of y].

By assumption on A, we have E[S(Y )] ≥ ε. The sampler property of (X,Y ) implies

Pr
x∼G(n,1/2,k)

[
E[S(Y ) | X = x] ≤ ε

2

]
= Pr

x∼G(n,1/2,k)

[
Pr

A,y=Remb(x)
[A(y) is a k-clique of y] ≤ ε

2

]
≤ δ.

Let A′ be the following algorithm: On input x ∼ G(n, 1/2, k) and N , let y = Remb(x). If A finds a
k-clique of y, recover a k-clique of x by inverting the random shuffle π and the embedding function
i 7→ vi for I = {v1, . . . , vn} (Step 1 and 2 of Remb). Repeat this for 2 log(1/δ)

ε times and if A′ does
not output any k-clique during this iteration, output ⊥ and terminate.

We prove the correctness. For a (1−δ)-fraction of x, A(y) outputs a k-clique with probability at
least ε/2 (randomness is over A and Remb). Therefore, PrA′,x[A

′(x) is a k-clique of x] ≥ (1− δ)2 ≥
1− 2δ.

Proof of Theorem 6.9. Let (Xi, Yi) be the pair of random variables obtained by Xi ∼ G(n, 1/2, ki)
and then Yi = Remb(Xi) (i = 1, 2). From Lemma 6.13, both (X1, Y1) and (X2, Y2) are

(
δ
4 ,

ε
6

)
-

samplers. Note that the marginal distributions of Yi is G(N, 1/2, ki). From Lemma 3.11, we obtain
the claim.

Theorem 6.14. Items 1 and 6 of Theorem 1.3 are equivalent. That is, the following are equivalent.

¬1. There exist a constant α ∈ (0, 1/2) and a randomized polynomial-time algorithm that finds an
n1/2−α-clique in G(n, 1/2, n1/2−α) with probability 1/2 for infinitely many n.

¬6. For some constants α ∈ (0, 1/2), c > 0, there exists a randomized polynomial-time algorithm
that, for infinitely many N , finds an N1/2−α-clique in G(N, 1/2, N1/2−α) with probability N−c.

Proof. Note that ¬1⇒¬6 is trivial. We prove the opposite direction. Let α ∈ (0, 1/2), c > 0 be the
constant and A be the algorithm of ¬6. Suppose A finds an N1/2−α-clique in G(N, 1/2, N1/2−α)

with probability N−c. Let ε = N−c and δ = 1/3. Let n ∈ N be such that ε ≥ 4 exp
(
−Nδ2

8n

)
. We can

take such n to be n = Ω(N/ logN). From Theorem 6.8 (and by removing the nonuniform advice),
we can find a k-clique in G(n, 1/2, k) with probability 2/3, where k = N1/2−α = n1/2−α+o(1). This
proves ¬6⇒¬1.

Theorem 6.15. Items 1 and 10 of Theorem 1.3 are equivalent. That is, the following are equivalent.

¬1 For some constant α ∈ (0, 1/2), there exists a randomized polynomial-time algorithm A that,
for infinitely many n and for k := n1/2−α, finds a k-clique in G(n, 1/2, k) with probability 1/2.
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¬10 For some constant γ > 0, there exists a randomized polynomial-time algorithm B that, for
infinitely many N , and for some k ∈ N, distinguishes G(N, 1/2, k) and G(N, 1/2, k − 1) with

advantage k2

N ·N
γ.

Proof. We prove ¬1⇒¬10. Let α > 0 be the constant and A be the algorithm of ¬1. Let n ∈ N and
k = n1/2−α be such that A finds a k-clique in G(n, 1/2, k) with probability 1/2. We can distinguish
G(n, 1/2, k) and G(n, 1/2, k − 1) by the following algorithm B: On an input G, B outputs 1 if and
only if A finds a k-clique of G. To see this, note that

Pr
G∼G(n,1/2,k),B

[B(G) = 1] = Pr
G∼G(n,1/2,k),A

[A(G) is a k-clique of G] ≥ 1

2
,

Pr
G∼G(n,1/2,k−1),A′

[A′(G) = 1] ≤ Pr
G∼G(n,1/2,k−1)

[G contains a k-clique] ≤ o(1).

In the last inequality, we used Lemma 3.1 (if G(n, 1/2, k − 1) contains a k-clique, then the planted
(k − 1)-clique is not unique). Therefore, B satisfies the condition of ¬10.

Now we prove ¬10⇒¬1. Let γ be the constant and B be the algorithm of ¬10. Let N, k ∈ N be

such that B distinguishes G(N, 1/2, k) and G(N, 1/2) with advantage
√

k2

N ·N
γ . Let ε =

√
k2

N ·N
γ

and δ = n−γ . Let α = γ/4, n =
⌊√

N
⌋
, and k = n1/2−α. Then, we have δ2ε2N

n =
(

N
nα+γ

)2
= N

3
8
γ

and thus ε = N−O(1) ≥ 24 exp
(
− δ2ε2N

18432n

)
= e−NΩ(1)

and k = n1/2−α ≥ 5
√
6δn log n for sufficiently

large N . From Theorem 6.9, we can distinguish G(n, 1/2, k) and G(n, 1/2, k − 1) with advantage
1 − δ in randomized polynomial time, given N as a nonuniform advice. We can eliminate the

nonuniform advice N by, given n, enumerating all possible N such that n =
⌊√

N
⌋
(there are at

most poly(n) candidates for such N) and then approximate the advantage within an additive error
o(δ). In other words, there exist a constant α > 0 and a randomized polynomial-time algorithm B′

that, for infinitely many n, B′ distinguishes G(n, 1/2, k) and G(n, 1/2, k − 1) with advantage 1− δ.
From Lemma 5.13, we can find a 3k-clique in G(n, 1/2, 3k) with probability 2/3− o(1); this implies
¬1.

Theorem 6.16. Items 7 and 9 of Theorem 1.3 are equivalent. That is, the following are equivalent:

¬7. For some constant γ > 0, there exists a randomized polynomial-time algorithm A that, for
infinitely many n and for some k, distinguishes G̃(n, 1/2, k) and G(n, 1/2) with advantage
k2

n · n
γ.

¬9. For some constant γ > 0, there exists a randomized polynomial-time algorithm B that, for
infinitely many n and for some k, distinguishes G(n, 1/2, k) and G(n, 1/2) with advantage
ε(n, k), where

ε(n, k) := min

{√
k3

n
· nγ , 1− n−3

}
.

Proof. We prove ¬7⇒¬9. From Theorem 6.6, Items 3 and 7 are equivalent. Therefore, there exists
a randomized polynomial-time algorithm that satisfies the condition of ¬3. This algorithm also
satisfies the condition of ¬9.

We prove ¬9⇒¬7. Let γ > 0 be the constant and B be the algorithm of ¬9. Suppose that, for
infinitely many n, there exists k > n

1
3
(1−2γ) such that B distinguishes G(n, 1/2, k) and G(n, 1/2)

with advantage ε(n, k) = 1−n−3. From Lemma 5.7, we can distinguish G(n, 1/2, k′) and G(n, 1/2)
with advantage 1 − O(n−2) for every k′ ≥ k. Then, from Lemma 5.11, we can find a 3k-clique
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in G(n, 1/2, 3k) with probability 1 − O(1/n). This implies ¬1, which is equivalent to ¬7 from
Theorems 5.12, 6.6 and 6.7.

Therefore, we may assume that, for infinitely many n, there exists k ≤ n
1
3
(1−2γ) such that B

distinguishes G(n, 1/2, k) and G(n, 1/2) with advantage
√

k3

n ·n
γ . We consider two cases: Whether

Item 10 holds or not. Suppose Item 10 does not hold. Then, from Theorem 6.15, we obtain ¬1,
which is equivalent to ¬7 from Theorems 5.12, 6.6 and 6.7.

Suppose that Item 10 holds. We claim that the algorithm B satisfies the condition of ¬7.
Let n, k be such that k ≤ n

1
3
(1−2γ) and B distinguishes G(n, 1/2, k) and G(n, 1/2) with advantage√

k3

n ·n
γ . For ℓ ≥ 0, let pℓ := E[B(G(n, 1/2, ℓ))]. By assumption on B, we have |pk−p0| ≥

√
k3

n ·n
γ .

Let σ :=
√
3k log n. By the Chernoff bound (Lemma 3.3), we have Pr[|Bin(n, k/n)− k| > σ] ≤ 2

n .
By Item 10, for any k − σ ≤ ℓ ≤ k + σ and any constant γ′ > 0, we have

|pℓ − pk| ≤
√

max{ℓ, k}2
n

· nγ′ · |ℓ− k| ≤
√

3k(k + σ)2 log n

n
· nγ′ ≤

√
k3

n
· nγ′+o(1).

Then, we have∣∣∣∣ E
ℓ∼Bin(n,k/n)

[pℓ − p0]

∣∣∣∣ ≥ |pk − p0| −
∣∣∣∣ E
ℓ∼Bin(n,k/n)

[pℓ − pk]

∣∣∣∣
≥

√
k3

n
· nγ −

√
k3

n
· nγ′+o(1) − 2

n

≥ (1− o(1)) ·
√

k3

n
· nγ (for any fixed γ′ < γ).

This shows that B satisfies the condition of ¬7.
Therefore, we obtain ¬9⇒(¬10 or (10 and ¬9))⇒ ¬7, which proves Theorem 6.16.

We also show that the embedding reduction works well for partial recovery.

Theorem 6.17. Items 1 and 11 of Theorem 1.3 are equivalent. That is, the following are equivalent.

¬1 There exist a constant α ∈ (0, 1/2) and a randomized polynomial-time algorithm that, for
infinitely many n, finds an n1/2−α-clique in G(n, 1/2, n1/2−α) with probability 1/2.

¬11 There exist positive constants α, β and c, and a randomized polynomial-time algorithm that,
for infinitely many N , finds a (2+β) log2N -clique in G(N, 1/2, N1/2−α) with probability N−c.

Proof. The direction ¬1 ⇒ ¬11 is straightforward. We prove the opposite direction 11 ⇒ 1 by
boosting the success probability from N−c to 2/3 and then apply Lemma 5.4.

Let α, β and c be positive the constants and A be the algorithm of ¬11. Let N ∈ N be
input size on which A finds a (2+ β) log2N -clique in G(N, 1/2, N1/2−α) with probability N−c. Let

δ = 1/3, ε = N−c and n ∈ N be such that ε ≥ 4 exp
(
−Nδ2

8n

)
holds. We can take such n to be

n = Ω(N/ logN) so that the right hand side of the inequality becomes exp(−nΩ(1))≪ n−O(1) = ε.
Let B be the nonuniform algorithm that, given G (an n-vertex graph) as input and N as

nonuniform advice, runs as follows:

1. Run A on input G′ = Remb(G) and let I = {v1, . . . , vn} ⊆ [N ] and π : [n]→ [n] be the subset
and permutation used in Remb. Let φ : [n]→ I be the mapping φ : i 7→ vπ(i).
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2. If A outputs a (2+β) log2N -clique C0 ⊆ [N ] of G′, let F ′ be the list of (1+β) log2N -cliques

of G′ that is contained in C0 ∩ I. That is, F ′ =
{
C̃ ⊆ C0 ∩ I

∣∣∣ ∣∣∣C̃∣∣∣ = (1 + β) log2N
}
. Then,

output F :=
{
ϕ−1

(
C̃
) ∣∣∣ C̃ ∈ F ′

}
.

3. Repeat Step 1 and 2 for ⌈log n/ε⌉ times.

We say that B succeeds if B outputs a list of (1+ β) log2N -clique that contains a subset of the
planted location C of G. We bound the probability that B succeeds on input G ∼ G(n, 1/2, k). Let
G ∼ G(n, 1/2, k) be the input of B with planted location C. Fix an iteration of Step 3 and let E1
be the event on A,G′ that A outputs a (2 + β) log2N -clique on input G′ and E2 be the event on
G′ that G′ satisfies the property of Lemma 5.2. That is, any (2+β) log2N -clique C0 of G′ satisfies
|C ′ ∩ C0| ≥ (1 + β) log2N , where C ′ is the planted location of G′. Note that the planted location
of G′ at Step 2 is ϕ(C). If E1 ∩ E2 occurs, then the (2 + β) log2N -clique C0 obtained by A at Step
2 satisfies |C0 ∩ ϕ(C)| ≥ (1 + β) log2N . Then, F ′ contains a (1+ β) log2N -clique C̃ of G′ that is a
subset of the planted location ϕ(C). Therefore, we have

Pr[B succeeds] ≥ Pr[E1 ∩ E2 occurs at some iteration of Step 3].

We bound the probability that E1 ∩ E2 occurs at some iteration of Step 3. From Lemma 5.2
(note that (2 +min{α, β}) log2 n ≤ k ≤ N1/2−min{α,β}) and the union bound over the repetition of
Step 3, we have Pr[E2 occurs at every iteration of Step 3] ≥ 1−N−ω(1). Let (X,Y ) be the pair of
random variables obtained by X ∼ G(n, 1/2, k) and then Y = Remb(X). From Lemma 6.13, the
pair (X,Y ) is a one-sided multiplicative

(
1
3 ,

1
2

)
-sampler for density ε. Therefore, for a 2

3 -fraction
of G ∼ G(n, 1/2, k), we have Pr[E1] ≥ ε/2. Call such G good. Note that PrG[G is good] ≥ 2

3 .
For any fixed good G, we have PrA,G′ [E1 | G] ≥ ε/2. Because of the repetition of Step 3, we have
Pr[E1 occurs at some iteration of Step 3 | G] ≥ 1− (1− ε/2)logn/ε ≥ 1− o(1). Therefore, we obtain

Pr[E1 ∩ E2 occurs at some iteration of Step 3]

≥ Pr[E1 occurs at some iteration of Step 3 | G is good] Pr[G is good]−N−ω(1)

≥ 2

3
− o(1)

and thus B succeeds with probability 2/3− o(1). Since we can eliminate the nonuniform advice of
B (see Remark 6.3), from Lemma 5.3 (note that log2N = (1+ o(1)) log2 n), we can find a k-clique
in G(n, 1/2, k) for k = N1/2−α = n1/2−α+o(1) with probability 2/3− o(1). This proves ¬1.

7 Refutation and Average-Case Polynomial Time

In this section, we prove Theorem 1.5. We first show how to boost the success probability of
refutation algorithms.

Lemma 7.1. Items 1 and 2 of Theorem 1.5 are equivalent. That is, the following are equivalent.

1. There exists a randomized polynomial-time algorithm that refutes a planted n1/2−α-clique with
probability n−c for some constants α, c > 0.

2. There exists a randomized polynomial-time algorithm that refutes a planted n1/2−α-clique with
probability 1− exp(−nγ) for some constants α, γ > 0.

Proof. Note that 2⇒1 is trivial. In what follows, we prove the opposite direction. The proof
consists of two steps. In the first step, we boost the success probability from n−c to 1/2. In the
second step, we further boost the success probability from 1/2 to 1− e−nc

.
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Step 1. Let A be the algorithm that refutes a planted n1/2−α-clique with probability n−c. By
repetition, we may assume without loss of generality that PrA[A(G) = 1] ≥ 1−2−n for any n-vertex
graph that contains a k-clique.

Let N = N(n) be a function that satisfies N−c ≥ 4 exp
(
− N

32n

)
for all large n. We can choose

as N = O(n(log n)2) since then the right hand side of the inequality becomes n−Ω(logn) ≪ N−c.
Let (X,Y ) be the pair of random variables obtained by X ∼ G(n, 1/2) and then Y = Remb(X).
From Lemma 6.13, (X,Y ) is a one-sided multiplicative

(
1
2 ,

1
2

)
-sampler for density N−c. Since

Pr[A(Y ) = 0] ≥ N−c, the sampler property of (X,Y ) implies

Pr
x∼G(n,1/2)

[
Pr

A,y=Remb(x)
[A(y) = 0] ≤ N−c

2

]
≤ 1

2
.

Let A1 be the following algorithm: On an input x (an n-vertex graph),

1. Compute any N that satisfies N−c ≥ 4 exp
(
− N

32n

)
(since we can take N = poly(n), this can

be done in time poly(n)).

2. For i = 1, . . . , 10N c, do the following:

(a) Let y = Remb(x)

(b) If A(y) = 0, output 0.

3. Output 1.

Let k = N1/2−α = n1/2−α+o(1). If x contains a k-clique, then so does y and thus we have Pr[A(y) =
1] ≥ 1− 2−N . By the union bound over i = 1, . . . , 10N c, we have PrA1 [A1(x) = 1] = 1− o(1). On
the other hand, for a 1/2-fraction of x ∼ G(n, 1/2), in Step 1(b), we have Pr[A(y) = 0] ≥ N−c/2.
For such x, we have PrA1 [A1(x) = 1] ≤ (1 − N−c/2)10N

c ≤ 1/3. Therefore, A1 refutes planted
n1/2−α+o(1)-clique with probability 1/2 over G(n, 1/2).

Step 2. Let γ > 0 be a parameter that will be chosen later. Let A2 be the algorithm that, given
an N -vertex graph x as input, runs as follows:

1. Set n = N1− γ
2 /c′, where c′ is a sufficiently large constant.

2. For i = 1, . . . , 100, do the following:

(a) Let y = Rshr(x).

(b) If A1(y) = 0, output 0 and terminate.

3. If A′ does not terminate, output 1.

By the choice of n at Step 1, the random variables (X,Y ) for X ∼ G(N, 1/2) and Y = Rshr(X) is an(
e−Nγ

, 1/4
)
-sampler. Thus, for a

(
1− e−Nγ)

-fraction of x ∼ G(N, 1/2), we have Pry=Rshr(x)[A(y) =
0] ≥ 1/4. For such x, A′ outputs 0 with probability 1− (3/4)100 ≥ 2/3.

Let k = n1/2−α+o(1) so that A1 refutes planted k-clique with probability 1/2 over G(n, 1/2).
Suppose x contains a k′-clique K ⊆ [N ], where k′ = 2N

n k = N1/2−(α− γ
4
−αγ

2 )+o(1). Then, each y of
Step 1(a) contains a clique of size HG(N, k′, n) (the hypergeometric distribution). From Lemma 6.5
and the Chernoff bound (Lemma 3.3), we have

Pr
[
HG(N, k′, n) < k

]
≤ Pr[Bin(n, k′/N) < k] +

n

N
≤ exp(−k/6) + n

N
= o(1).
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Conditioned on y contains a k-clique, we have A1(y) = 0 with probability o(1) (here, we boost the
probability of A1 from 2/3 to 1−o(1) by repetition). Therefore, for any x that contains a k′-clique,
we have Pr[A2(x) = 0] = 100 · o(1) = o(1).

From Step 1 and 2 with setting γ = α, there exists a randomized polynomial-time algorithm
that refutes planted k′′-clique with probability 1 − e−nγ

, where k′′ = n1/2−α′
and α′ < α/4 is any

constant. This proves ¬2.

We now prove Theorem 1.5.

Proof of Theorem 1.5. We prove 2⇒3⇒1. Note that Items 1 and 2 are equivalent from Lemma 7.1.

Proof of 2⇒3. Let A be the algorithm of Item 2. Let α, γ > 0 be the constants such that A
refutes a planted n1/2−α-clique with probability 1−e−nγ

. Let nd be an upper bound of the running
time of A on n-vertex graphs. Let A′ be the algorithm that, given an n-vertex graph G as input,
runs as follows:

1. If A(G) = 0, output 0 and terminate.

2. Let γ0 := γ/2.

3. For i = 1, 2, . . . , do the following:

(a) Let γi := min{2γi−1 − γ/3, 1/2− α}.
(b) Check if G contains an nγi-clique by enumerating all nγi-subsets of [n].

(c) If not, output 0 and terminate.

(d) If γi = 1/2− α, break the loop.

4. Output 1.

For simplicity, we first assume that A is a deterministic algorithm. Let T (G) be the running time
of A′ on input G. Since γ > 0, the iteration of Step 3 ends in O(log(1/γ)) rounds; thus T (G) <∞
for any G. Moreover, A′ always outputs the correct answer: If G contains a n1/2−α-clique, A′

outputs 1. Otherwise, A′ outputs 0.
Consider the expected running time of A′. For a (1 − e−nγ

)-fraction of G ∼ G(n, 1/2), the
algorithm A′ terminates at Step 1 and thus T (G) = O(nd). For the remainingG, A′ proceeds to Step
3. The first iteration of Step 3 runs in time

(
n

nγ1

)
= exp

(
O(n2γ/3 log n)

)
. Suppose A′ proceeds to the

i-th loop of Step 3 for i ≥ 2, which takes time exp(O(nγi log n)). Then, G must contain an nγi−1-

clique. This occurs with probability
(

n
nγi−1

)
2−(

n
γi−1

2 ) = exp(−Ω(n2γi−1)) = exp
(
−Ω(nγi+γ/3)

)
.

Let ε = 1/d. Then, we have

E
G∼G(n,1/2)

[T (G)ε] ≤ (1− e−nγ
) ·O(ndε)

+ e−nγ · exp
(
ε ·O(n2γ/3 log n)

)
+

O(log(1/γ))∑
i=1

exp
(
ε ·O(nγi log n− Ω(nγi+γ/3)

)
= O(n).

That is, A′ runs in average-case polynomial time.
If A is a randomized algorithm, by repetition, we may assume that A outputs the correct answer

with probability 1 − 2−nc
for sufficiently large constant c. Since T (G) ≤ 2O(n) for any n-vertex

graph G and for any internal randomness of A′, we have EG,A[T (G)ε] ≤ O(n)+2−nc ·2O(n) = O(n).
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Proof of 3⇒1. Let A be an average-polynomial-time randomized algorithm for the clique prob-
lem and T (G) be the running time of A on input G. Let ε > 0 be the constant such that
EG∼G(n,1/2),A[T (G)ε] ≤ O(n). Let d = O(1/ε) be a sufficiently large constant and A′ be the follow-

ing algorithm: On an input G (an n-vertex graph), emulate A for nd time on input G. If A outputs
b ∈ {0, 1}, output b. Otherwise, output 1. Note that PrG,A

[
T (G) > nd

]
≤ n−dε EG,A[T (G)ε] = o(1).

Let k = n1/2−α. If G contains a k-clique, then we have PrA′ [A′(G) = 0] ≤ PrA[A(G) = 0] ≤ 1/3.
For G ∼ G(n, 1/2), we have

Pr
G∼G(n,1/2),A′

[A′(G) = 0] ≥ 1− Pr
A,G

[T (G) > nd]− Pr
G
[G contains a k-clique] ≥ 1− o(1).

Therefore, A′ refutes a planted k-clique with probability 1− o(1).

8 A Worst-Case Version of the Planted Clique Problem

In this section, we present a problem whose worst-case hardness characterizes the Planted Clique
conjecture. The Kolmogorov complexity K(x) of a string x is defined as the minimum length
of a string d ∈ {0, 1}∗ such that U(d) = x for a universal Turing machine; see [LV19] for more
background.

Theorem 8.1. Item 4 of Theorem 1.3 is equivalent to Item 5 of Theorem 1.3. That is, the following
are equivalent.

¬4. For some constants α > 0 and γ > 0, there exists a randomized polynomial-time algorithm A
that finds a k-clique in G(n, 1/2, k) with probability 1 − 2−nγ

for infinitely many n ∈ N and
for any k ≥ n1/2−α.

¬5. For some constants α > 0 and γ > 0, there exists a randomized polynomial-time algorithm A
such that for infinitely many n ∈ N and for any k ≥ n1/2−α, for any n-vertex graph G that
contains a k-clique and has Kolmogorov complexity at least

(
n
2

)
−
(
k
2

)
+ log2

(
n
k

)
− nγ, it holds

that

Pr
A
[A outputs a k-clique in G on input G] >

1

2
.

The main idea for the proof is that the set of inputs on which an algorithm errs is small. Thus,
by enumerating all the inputs in the error set, one can obtain a short description of any input in
the set. Taking the contrapositive, the algorithm must be successful on any incompressible input.
We use only basic properties of Kolmogorov complexity, one of which is the coding theorem.

Lemma 8.2 (Coding Theorem; see, e.g., [LV19]). For any computable family D = {Dn}n∈N of
distributions, for any n and any x ∈ supp(Dn),

K(x) ≤ − log2Dn(x) +O(log n).

Proof of Theorem 8.1. We first prove ¬4 ⇒ ¬5. Assume ¬4, and fix n and k ∈ N such that

Pr
A,G∼G(n,1/2,k)

[A(G) is not a k-clique of G] ≤ 2−nγ
.

Let m := ⟨n, k⟩, where ⟨·, ·⟩ is the bijection defined as ⟨n, k⟩ :=
∑n+k

i=0 i + n. Let Em be the set of
all the graphs G ∈ supp(G(n, 1/2, k)) such that

Pr
A
[A(G) is not a k-clique of G] ≤ 1

2
.
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By Markov’s inequality, we have PrG∼G(n,1/2,k)[G ∈ Em] ≤ 2 · 2−nγ
. We claim that any G ∈ Em

satisfies K(G) ≤ θ for some threshold θ to be chosen. The statement is obvious if Em = ∅, and thus
we assume Em ̸= ∅. Let Dm be the distribution of the random variable G conditioned on G ∈ Em

for G ∼ G(n, 1/2, k). For a fixed graph G ∈ Em, the probability that G is sampled according to
Dm is

Dm(G) =
Pr[G = G′]

Pr[G′ ∈ Em]
≥ 2−(

n
2)+(

k
2) · 1(

n
k

) · 2nγ−1.

Thus, by Lemma 8.2,

K(G) ≤ − log2Dm(G) +O(logm)

≤
(
n

2

)
−
(
k

2

)
+ log2

(
n

k

)
− nγ +O(logm)

≤
(
n

2

)
−

(
k

2

)
+ log2

(
n

k

)
− nγ/2 =: θ,

where the last inequality holds for all large n ∈ N. This completes the proof that any G ∈ Em

satisfies K(G) ≤ θ. By the contrapositive of this statement, for any G such that G contains a
k-clique and K(G) > θ, it holds that G ̸∈ Em, i.e.,

Pr
A
[A(G) is a k-clique of G] >

1

2
.

This proves the negation of Item 5 for the constant γ/2.
Next, we prove the converse, i.e., ¬ 5 ⇒ ¬ 4. Assume the negation of Item 5. We may assume

without loss of generality that α < 1/2. By repeating A, one can amplify the success probability
1
2 ; thus, without loss of generality, we may assume that the success probability of A is 2−nγ

. It

suffices to show that with probability 1 − 2−nγ′
over G ∼ G(n, 1/2, k), it holds that K(G) ≥ θ

for some constant γ′ > 0. From Lemma 3.1, the probability that G(n, 1/2, k) does not contain a
unique k-clique is at most 2kn2−k/2. Let E be the set of graphs G such that G contains a unique

k-clique. The probability that K(G) < θ and G ∈ E is at most 2θ · 2−(
n
2)+(

k
2)/

(
n
k

)
≤ 2−nγ

by taking
a union bound over all programs of length < θ. Thus, the probability that K(G) < θ is at most

2−nγ
+ 2kn2−k/2 ≤ 2−nγ′

, where γ′ := min{γ, 1/2− α}/2.

Remark 8.3. Since decision reduces to search, one can obtain an equivalent statement that Π ̸∈
i.o.BPP based on the promise problem Π = (ΠYes,ΠNo) defined as follows. ΠYes consists of (G, k)
such that G is an n-vertex graph that contains a clique of size k ≥ n1/2−α and K(G) ≥

(
n
2

)
−
(
k
2

)
+

log2
(
n
k

)
− nγ. ΠNo consists of (G, k) such that G does not contain a clique of size k.

9 Putting It All Together

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. We already proved the following equivalence results.

• From Theorem 5.12, Items 3 and 4 are equivalent.

• From Theorem 6.6, Items 2, 3, 7 and 8 are equivalent.

• From Theorem 6.7, Items 1 and 4 are equivalent.
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• From Theorem 6.14, Items 1 and 6 are equivalent.

• From Theorem 8.1, Items 4 and 5 are equivalent.

• From Theorem 6.15, Items 1 and 10 are equivalent.

• From Theorem 6.16, Items 7 and 9 are equivalent.

• From Theorem 6.17, Items 1 and 11 are equivalent.

Therefore, Items 1 to 11 are equivalent.
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A Concentration from the Transportation Method

We prove a variant of Theorem 4.1 using the transportation method.

Theorem 4.3. Under the same settings of Theorem 4.1, for any λ ≥ 0, we have

E
[
eλ(f(X)−E[f(X)])

]
≤ exp

(ρ
8
λ2

)
.

The proof of Theorem 4.3 is based on the following transportation method. For completeness,
we include a proof here.

Lemma A.1 (Special Case of Lemma 4.18 of [BLM13]). Let X be a random variable that takes
values in a finite set Ω and v > 0 be a parameter. Let f : Ω → R be a function. Suppose that for
any random variable Y whose support is contained in the support of X,

E[f(Y )]− E[f(X)] ≤
√
2v ·KL(Y ∥ X), (1)

where KL(Y ∥ X) denotes the Kullback–Leibler divergence between Y and X. Then, for every
λ > 0, we have

E
[
eλ(f(X)−E[f(X)])

]
≤ exp

(
vλ2

2

)
.

Proof. Fix any λ > 0 and define a random variable U by

U = λ(f(X)− E[f(X)])−max
Y
{λ(E[f(Y )]− E[f(X)])−KL(Y ∥ X)},

where the maximum is taken over all random variables Y such that supp(Y ) ⊆ supp(X). Note that
the set of distributions over a finite set is compact. Let µ be the distribution of X. The proof
consists of three steps.
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1. For any nonnegative random variable Z with Eµ[Z] = 1, Eµ[UZ] ≤ Eµ[Z logZ].

2. logEµ[e
U ] ≤ 0.

3. logE
[
eλ(f(X)−E[f(X)])

]
≤ vλ2

2 .

Step 1. Let Z be any nonnegative random variable such that Eµ[Z] = 1 and Y ′ be the random
variable such that Pr[Y ′ = x] = µ(x) · Z(x). Note that

∑
x Pr[Y

′ = x] = Eµ[Z] = 1 and Y ′ ≪ X.
Then, we have

E
µ
[UZ] ≤ E

µ

[(
λ(f(X)− E[f(X)])− λ(E[f(Y ′)]− E[f(X)]) + KL

(
Y ′ ∥∥ X

))
· Z

]
= λ

(
E
µ
[f(X)Z]− E[f(Y ′)]E

µ
[Z]

)
+KL

(
Y ′ ∥∥ X

)
· E
µ
[Z]

= KL
(
Y ′ ∥∥ X

)
= E

µ
[Z logZ].

Step 2. By substituting Z = eU/Eµ[e
U ] to Eµ[UZ] ≤ Eµ[Z logZ], we obtain

1

E[eU ]
E[UeU ] ≤ 1

E[eU ]
E[eU log(eU/E[eU ])]

=
E[UeU ]− E[eU ] logE[eU ]

E[eU ]
.

Since E
[
eU

]
> 0, we have logE

[
eU

]
≤ 0.

Step 3. Since logE
[
eU

]
≤ 0, we have

logE
[
eλ(f(X)−E[f(X)]

]
≤ max

Y≪X
{λ(E[f(Y )]− E[f(X)])−KL(Y ∥ X)}

≤ λ
√
2vKL(Y ∥ X)−KL(Y ∥ X)

= −
(√

KL(Y ∥ X)− λ

√
v

2

)2

+
v

2
λ2

≤ v

2
λ2.

Proof of Theorem 4.3. Let Y be a random variable such that supp(Y ) ⊆ supp(X). Denote by
dTV(·, ·) the total variation distance. Then, we have

E[f(Y )]− E[f(X)] = E
I∼I

[E[SI(YI)− SI(XI)]]

≤ E
I∼I

[dTV(YI , XI)] SI is [0, 1]-valued

≤ E
I∼I

[√
KL(YI ∥ XI)

2

]
Pinsker’s inequality

≤
√

EI [KL(YI ∥ XI)]

2
concavity of

√
·

≤
√

ρ

2
KL(Y ∥ X),
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where the last inequality follows from Lemma 4.2. Applying Lemma A.1 for v = ρ
4 , we obtain the

result.

B A Decision Algorithm by Edge Counting

We show how to distinguish G(n, 1/2, k) and G(n, 1/2) with advantage Ω(k2/n).

Proposition B.1. Let A be the algorithm that, given a graph G as input, outputs 1 if and only if
the number of the edges in G is at least n2

4 + k2

4 . Then, A distinguishes G(n, 1/2, k) and G(n, 1/2)
with advantage Ω

(
k2

n

)
for every n ∈ N and every k ≤

√
n.

Proof. Let M be the number of edges of the given graph. If G ∼ G(n, 1/2, k), then M −
(
k
2

)
∼

Bin
((

n
2

)
−
(
k
2

)
, 1/2

)
. Therefore, we have Pr[A(G(n, 1/2, k)) = 1] = 1

2 − o(1).

Let Φ(c) = 1√
2π

∫ c
−∞ e−x2/2dx denote the cumulative distribution function of the standard

normal distribution. If G ∼ G(n, 1/2), then M ∼ Bin
((

n
2

)
, 1/2

)
. By the Berry–Esseen theo-

rem7, with probability 1 − Φ(c) − O(1/n), we have M ≥ n2

2 + c
√

n2

2 . If we set c =
√
2k2

4n , then

Pr[A(G(n, 1/2)) = 1] = 1− Φ(c) +O(1/n).
Then, c = o(1) and by the Taylor expansion, we obtain Φ(c) = Φ(0) + Φ′(0)c + O(c2) =

1
2 + c√

2π
+O(c2). Therefore, the advantage of A is c√

2π
−O(c2)−O(1/n) = Ω

(
k2

n

)
.

C Proof of Exchange Lemma

In this section, we prove the exchange lemma for samplers, which asserts that if (Y,X) is a sampler,
then so is (X,Y ).

Lemma 3.12 (Exchange Lemma). If (Y,X) is a
(
ε
2 ,

δε
8

)
-sampler, then, (X,Y ) is a (δ, ε)-sampler.

Proof. We first show that (X,Y ) is a “one-side” sampler, that is, for any function S : supp(Y ) →
[0, 1],

Pr
x∼X

[E[S(Y ) | X = x]− E[S(Y )] ≤ −ε] ≤ δ

2
. (2)

Then, we prove the “two-side” version using (2).
Let δ′ = ε

2 and ε′ = δε
8 and thus (Y,X) is a (δ′, ε′)-sampler. Fix a function S : supp(Y )→ [0, 1]

and define a function H : supp(X)→ {0, 1} by

H(x) = 1 ⇐⇒ E[S(Y ) | X = x]− E[S(Y )] ≤ −ε.

By definition of H, we have

E[H(X)S(Y )] = E[S(Y ) | H(X) = 1]E[H(X)]

≤ (E[S(Y )]− ε)E[H(X)].

7The Berry–Esseen theorem asserts that
∣∣∣Pr[Bin(ℓ, p)− ℓp ≤ x

√
ℓp(1− p)

]
− Φ(x)

∣∣∣ = O
(
ℓ−1/2

)
(cf. Theorem

A.1 of [DGP14]).
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On the other hand, since (Y,X) is a (δ′, ε′)-sampler, for a (1 − δ′)-fraction of y ∼ Y , we have
E[H(X) | Y = y] > E[H(X)]− ε′. Let T ⊆ supp(Y ) be the set of such y. Then, we have

E[H(X)S(Y )] ≥
∑
y∈T

E[H(X) | Y = y]S(y) Pr[Y = y]

≥
(
E[H(X)]− ε′

)
(E[S(Y )]− Pr[Y ∈ T ])

≥
(
E[H(X)]− ε′

)(
E[S(Y )]− δ′

)
.

Therefore, we obtain

E[H(X)](E[S(Y )]− ε) >
(
E[H(X)]− ε′

)(
E[S(Y )]− δ′

)
. (3)

To prove (2), it suffices to show that E[H(X)] ≤ δ
2 . Suppose for contradiction that E[H(X)] ≥ δ

2 .
Note that we may assume that E[S(Y )] ≥ ε (otherwise, (2) is trivial).

If E[S(Y )] = ε, then we obtain(
E[H(X)]− δε

8

)(
E[S(Y )]− ε

2

)
< 0,

which contradicts with E[H(X)] ≥ δ
2 .

If E[S(Y )] > ε, then we obtain

(E[H(X)]− ε′)(E[S(Y )]− δ′)

E[H(X)](E[S(Y )]− ε)
=

(
1− δε

8E[H(X)]

)(
1 +

ε/2

E[S(Y )]− ε

)
≥

(
1− ε

4

)(
1 +

ε

2

)
≥ 1,

which contradicts with (3). This proves (2).
Now we prove that (X,Y ) is a (δ, ε)-sampler. Fix S : supp(Y )→ [0, 1] and apply (2) for S and

1− S. Then, we have

Pr
x∼X

[E[S(Y ) | X = x]− E[S(Y )] ≤ −ε] ≤ δ

2
,

Pr
x∼X

[−E[S(Y ) | X = x] + E[S(Y )] ≤ −ε] ≤ δ

2
.

By the union bound, we obtain the claim.

We also prove the exchange lemma for one-sided multiplicative samplers. This result is known
in [HS23, Lemma 3.7].

Lemma 6.12. If (Y,X) is a one-sided multiplicative
(
cε
2 ,

c
2

)
-sampler for density δ, then (X,Y ) is

a one-sided multiplicative (δ, c)-sampler for density ε.

Proof. Let c′ = c
2 , δ

′ = cε
2 , and ε′ = δ. Fix a function S : supp(Y ) → [0, 1] with E[S(Y )] ≥ ε and

define H : supp(X)→ {0, 1} by

H(x) = 1 ⇐⇒ E[S(Y ) | X = x] ≤ (1− c)E[S(Y )].
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It suffices to show that E[H(X)] ≤ δ. Suppose for contradiction that E[H(X)] > δ. By definition
of H, we have

E[S(Y )H(X)] = E[H(X)]E[S(Y ) | H(X) = 1] ≤ (1− c)E[H(X)]E[S(Y )].

On the other hand, since (Y,X) is a one-sided multiplicative (δ′, c′)-sampler for density ε′, for a
(1− δ′)-fraction of y ∼ Y , we have E[H(X) | Y = y] ≥ (1− c′)E[H(X)]. Let T be the set of such
y ∈ supp(Y ). Then, we have

E[S(Y )H(X)] ≥
∑
y∈T

E[H(X) | Y = y]S(y) Pr[Y = y]

≥ (1− c′)E[H(X)](E[S(Y )]− Pr[Y ∈ T ])

≥ (1− c′)E[H(X)](E[S(Y )]− δ′)

≥ (1− c′)

(
1− δ′

ε

)
E[H(X)]E[S(Y )].

Therefore, we obtain

(1− c′)

(
1− δ′

ε

)
≤ 1− c.

However, by the choice of parameters,

(1− c′)

(
1− δ′

ε

)
=

(
1− c

2

)2
> 1− c

and we obtain the contradiction. Therefore, we have E[H(X)] ≤ δ.

D Proof of Previous Results

D.1 Search to Decision Reduction by Alon et al.

Lemma 5.11 ([AAKMRX07]). Let k ≥ 18 log n for a sufficiently large constant c > 0. Sup-
pose there exists a randomized polynomial-time algorithm A that, for all k′ ≥ k/3, distinguishes
G(n, 1/2, k′) and G(n, 1/2) with advantage 1− δ

n . Then, there exists a randomized polynomial-time

algorithm A′ that, for every k′ ≥ k, finds a k′-clique in G(n, 1/2, k′) with probability 1−2δ−ne−k/18.

Proof. Suppose for simplicity that the algorithm A satisfies, for all k′ ≥ k/3,

E
A,G∼G(n,1/2,k′)

[A(G)]− E
A,G∼G(n,1/2)

[A(G)] ≥ 1− δ

n
.

Let Resample(G,F ) be the algorithm of Definition 5.6. Our algorithm A′ runs as follows on input
G ∼ G(n, 1/2, k):

1. Let S ← ∅.

2. For each i = 1, . . . , n, do the following:

(a) Let πi be a uniformly random permutation over [n].

(b) Let Gi ← πi(Resample(G,E(U,U))), where U = {i} ∪ ΓG(i).

(c) If A(Gi) = 0, let S ← S ∪ {i}.
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3. Output S.

We prove the correctness of A′. Let G ∼ G(n, 1/2, k′) be the input and C be the planted
location. Consider the marginal distribution of each Gi.

Conditioned on i ∈ C, the marginal distribution of each Gi is G(n, 1/2) since the edges inside
C are resampled. Therefore, the output S satisfies

Pr[i ∈ S | i ∈ C] = Pr[A(Gi) = 0 | i ∈ C] = Pr
G∼G(n,1/2)

[A(G) = 0] ≥ 1− δ

n
.

Let dC(i) = |C \ ΓG(i)|. Conditioned on i ̸∈ C and dC(i), the marginal distribution of Gi

is identical to G(n, 1/2, dC(i)) since edges inside C ∩ ΓG(i) are resampled and the location of the
remaining clique C\ΓG(i) is uniformly random in Gi due to the random shuffle πi. Moreover, for i ̸∈
C, the marginal distribution of dC(i) is Bin(k

′, 1/2) (over the random choice of G ∼ G(n, 1/2, k′)).
By the Chernoff bound (Lemma 3.3), we have Pr[dC(i) ≤ k/3 | i ̸∈ C] ≤ Pr[Bin(k, 1/2) ≤ k/3] ≤
e−k/18. Therefore, the output S satisfies

Pr[i ∈ S | i ̸∈ C] = Pr[A(Gi) = 0 | i ̸∈ C]

≤ Pr[A(Gi) = 0 | dC(i) ≥ k/3 and i ̸∈ C] + e−k/18

≤ δ

n
+ e−k/18.

By the union bound over i ∈ [n], we have Pr[A′(G) = C] ≤ 1− 2δ − ne−k/18.

E Boosting via Random Partition

We present a simple boosting technique, which is inspired by the proof of Hazan and Krauthgamer
[HK11, Lemma 2.2]. This technique transforms an algorithm that distinguishes G(n, 1/2, k/t) from
G(n, 1/2) with advantage ε ≫ 1/

√
k into another algorithm that distinguishes G(n, 1/2, k) from

G(n, 1/2) with advantage≈ 1, where t ∈ N is a parameter that will be specified later.

Definition E.1. An algorithm A predicts G(n, 1/2, k) and G(n, 1/2) with advantage γ if

Pr
G∼G(n,1/2,k),A

[A(G) = 1] ≥ 1 + γ

2
and Pr

G∼G(n,1/2),A
[A(G) = 0] ≥ 1 + γ

2
.

For a given graph G = (V,E), we partition V into t parts V1, . . . , Vt randomly. By the Chernoff
bound, each part has size |Vi| ≈ n/t. For each induced subgraph G[Vi], we add n − |Vi| vertices
with random edges and then shuffle vertices by a random permutation. Let Gi be the resulting
graph (see Figure 2).

We briefly explain how to amplify the success probability. If G ∼ G(n, 1/2), then G1, . . . , Gt ∼
G(n, 1/2) are independent. If G ∼ G(n, 1/2, k), then the distribution of each Gi is G(n, 1/2, ℓ)
for ℓ ≈ k/t. Moreover, conditioned on the size of planted cliques in G1, . . . , Gt, these t graphs
are independent. Therefore, if A(Gi) correctly decides G ∼ G(n, 1/2, k/t) or G ∼ G(n, 1/2) with
success probability 1/2 + ε, by taking the majority among A(G1), . . . , A(Gt), we can amplify the
success probability to 1− e−Θ(ε2t). This argument is formalized as follows.

Theorem E.2. Let t ∈ N be a parameter. Suppose there exists a randomized polynomial-time
algorithm that predicts G(n, 1/2, k′) and G(n, k′) with advantage ε for all k′ ≥ k

2t . Then, there exists
a randomized polynomial-time algorithm that distinguishes G(n, 1/2, k) and G(n, k) with advantage
1− e−Θ(ε2t) − e−Θ(k/t).
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Remark E.3. Theorem E.2 makes sense if ε−2 ≪ t ≪ k. In other words, we can apply Theo-
rem E.2 if the advantage satisfies ε≫ 1/

√
k.

Proof of Theorem E.2. Let A be the algorithm that distinguishes G(n, 1/2, k′) from G(n, 1/2) with
advantage ε(n) for all k′ ≥ k

2t . Our aim is to construct another algorithm A′ that distinguishes
G(n, 1/2, k) and G(n, k) with a high advantage.

G[Vi]

G

Gi

add random 
edges

shuffle 
randomly

Figure 2: Graphs G1, . . . , Gt produced by A′(G). The size of planted clique in each Gi is concen-
trated on k/t.

Let A′ be the algorithm that, given an n-vertex graph G = ([n], E) as input, runs as follows:

1. Let V1, . . . , Vt ⊆ [n] be a random partition of [n]. Formally, for each v ∈ [n] is assigned to Vi

for independently random i ∼ [t].

2. For every i ∈ [t], let Gi = πi(Resample(G,E(Vi, [n]))), where πi is a uniformly random
permutation over [n] and Resample is the algorithm of Definition 5.6.

3. Output the majority among A(G1), . . . , A(Gt).

Suppose G ∼ G(n, 1/2). Since V1, . . . , Vt are disjoint, the marginal distribution of (G1, . . . , Gt)
is the t-wise direct product of G(n, 1/2). Therefore, by the Chernoff bound, A′(G) outputs 0 with
probability 1− e−Θ(ε2t) over the choice of G ∼ G(n, 1/2) and the internal randomness of A′.

Suppose that the input G is drawn from G(n, 1/2, k) and let C be the planted location. Let
V1, . . . , Vt be the random partition considered in Step 1 and let Ci = C∩Vi. Conditioned on |Ci| for
all i = 1, . . . , t, the location of each Ci in Gi is independently and uniformly distributed. Similarly,
edges of Gi outside Ci are uniformly distributed. Therefore, Gi ∼ G(n, 1/2, |Ci|) are independent
conditioned on |Ci|.

54



Let E be the event that |Vi| ≥ k
2t for all i ∈ [t]. By the Chernoff bound and union bound over

i ∈ [t], the event E occurs with probability 1 − t · e−
k
8t . Let Zi = A(Gi) be the binary random

variable. Since A predicts G(n, 1/2, k′) and G(n, 1/2) with advantage ε for all k′ ≥ k
2t , conditioned

on E , the random variables Z1, . . . , Zt are indepednent and E[Zi] ≥ 1+ε
2 . Therefore, we obtain

Pr

[
Z1 + · · ·+ Zt ≤

t

2

∣∣∣∣C]
≤ Pr

[
Z1 + · · ·+ Zt ≤

t

2

∣∣∣∣E]+ t · exp
(
− k

8t

)
≤ exp

(
−ε2t

64

)
+ t · exp

(
− k

8t

)
.

The claim follows by taking the expectation over C ∼
([n]
k

)
.
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