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For every binary predicate � , there is a search problem ��� for finding, given � , any � such that

�����
	��
� holds. ��� is said to be total if every instance � has a solution � , that is, ���������������������
	��
�
holds. Total search problems are commonplace in computer science, and studying their com-

plexity is therefore an important endeavour. In this dissertation, we present links between the

complexity of solving ��� and the difficulty of proving the totality of ��� in the three logical

formalisms: propositional calculus, quantified propositional calculus (QPC), and theories of

bounded arithmetic. These links allow logical approaches to the complexity of search prob-

lems.

We show several links between the complexity of a type-2 total search problem ��� , where

� is represented by a first-order existential sentence � , and the lengths of proofs of the propo-

sitional translations of � in bounded-depth Frege systems and the Nullstellensatz proof system.

In particular, we prove the first direct links between reducibilities among type-2 search prob-

lems and lengths of propositional proofs. Based on this and the results on propositional proof

complexity, we obtain a number of relative separations among the so-called NP-search classes

such as Polynomial Local Search ( ����� ). Some of the relative separations we obtain are new.

Let � be a QPC proof system and �! #" . We define the $&%' -witnessing problem for � to be:

given an � -proof of a prenex $&%' -formula ( , and a truth assignment to the free variables of ( ,

ii



find a witness for the outermost existential quantifiers of ( . These witnessing problems provide

a tangible link between the proof lengths in QPC and the complexity of search problems,

and we consider them for various parameters. We also introduce and study the new QPC

proof systems ���� and � � , and prove that the $ % � -witnessing problem for each is complete for
��� �

-search problems. Our proof involves proving the � �
�
-versions of Gentzen’s midsequent

theorem and Herbrand’s theorem.

We introduce a second-order theory 	 ��� � of bounded arithmetic, and show that the $�
� -

definable functions of 	 ��� � are precisely the
��� �

-functions. We describe simple transla-

tions of every 	 ��� � -proof into a family of polynomial-size � �� -proofs. From this and similar

translation theorems for other bounded arithmetic theories, we obtain the hardness of the $ %' -
witnessing problem for � for various � and �  #" .
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Chapter 1

Introduction

1.1 Motivations and Background

Search Problems and Logic

Complexity theory is the study of the hardness of various problems, measured in terms of

the required amount of resources (time, space, etc.) on various models of computation. Three

decades of fruitful research followed Cook’s introduction of NP-completeness in 1971 [Coo71],

and since then numerous computational problems have been shown to be complete for, or at

least classified into, various complexity classes. In particular, a great number of combinatorial

problems that arise naturally in practical settings are shown to be NP-complete.

An interesting aspect of complexity theory is its almost exclusive focus on decision prob-

lems, or the problems of deciding whether the input has a certain property, although problems

often arise naturally as search problems, or the problems of finding an object with a certain

property. As a result, search problems have been commonly studied indirectly using their

equivalent decision counterparts. For example, the complexity of finding a 3-colouring of a

graph (if one exists) is studied indirectly via the problem of deciding if the input graph is 3-

colourable. A justification for this indirect approach has been that these search and decision

problems are polynomially equivalent, i.e., they are polynomial-time Turing reducible to each

1



CHAPTER 1. INTRODUCTION 2

other. Note that functions are search problems every instance of which has a unique solution.

However, the past research on the complexity of search problems, in particular total search

problems, has shown that this indirect approach is not completely satisfactory for two reasons.

Here a search problem is said to be total if every instance of it has a solution. For example, the

3-colouring search problem above is not total.

First, the complexity of a total search problem depends on subtle structures of the problem

that are lost when they are transformed to decision problems. For example, Krentel showed

in [Kre88] that the problem of computing the cost of an optimal Traveling Salesman tour of a

given instance is complete for ���
���

while the problem of computing the size of a maximum

clique of a graph is complete for ��� ��� ��� ���	��
 � � � . (See Section 2.1.3 for the definition of

these classes.) Since Krentel proves that ��� ���
properly contains ��� ��� ��� ���
��
 � � � unless the

polynomial-time hierarchy ��� collapses, the Traveling Salesman search problem apparently

is harder than the clique search problem, although their decision counterparts are both complete

for � � .

The second reason why we need a direct approach to search problems is simple: some total

search problems may not have polynomially-equivalent decision counterparts. Evidence in this

direction is obtained by Beame et. al [BCE � 98], who demonstrate specific relativized search

problems that are not polynomially-equivalent to any decision problem. The result of Beame

et. al implies that the complete problems for classes such as Polynomial Local Search ( ����� )

of [JPY88], and Polynomial Pigeonhole Principle ( ����� ) and Polynomial Parity Argument

( ��� � ) of [Pap94b] are unlikely to have equivalent decision problems. We will discuss these

classes in more depth below, but for the moment it suffices to note that they contain a number of

natural, practical problems that arise in computer science and mathematics. Examples include

optimization problems such as the problem of finding a Traveling Salesman tour that is locally

optimal with respect to the 2-OPT heuristic, and problems in game theory such as finding a

Nash equilibrium given payoff matrices for two players.

The study of total search problems is a fruitful research area that is in need of new ap-



CHAPTER 1. INTRODUCTION 3

proaches and techniques, and the way total search problems is defined gives rise to the follow-

ing logical approach to its complexity. If � is a total search problem, then the statement of

� ’s totality ‘every instance � of � has a solution � ’ is a true assertion, and therefore it can be

formulated and proved in suitable formal systems. Now we can ask the following question: in

a given formal system, how hard is it to prove the totality of � ?

The main theme of this dissertation is to link the complexity of total search problems �
and the hardness of proving its totality in the following three logical formalisms: propositional

calculus, quantified propositional calculus, and theories of bounded arithmetic.

Proof Complexity

Proofs are fundamental objects in mathematics, and proof complexity is the quantitative study

of proofs. The proof complexity of a statement is measured as the length of the shortest proof

of the statement in a given proof system. In the seemingly simple case of propositional logic,

the study of proof complexity is already highly nontrivial: in the seminal work of Cook and

Reckhow [CR77], it is shown that there exists a super proof system, i.e., a proof system in

which every tautology has a polynomial-size proof, if and only if � ��� ��� � � . Hence, the

question of the existence of a super proof system is a restatement of a fundamental open prob-

lem of complexity theory. Proof complexity research is also important because it sheds light

on the efficiency of various automatic theorem provers and algorithms for the propositional

satisfiability problem.

A number of proof systems have been introduced and studied, and in this dissertation we

will work with Gentzen’s sequent calculus � � , the bounded-depth version of � � , and the

algebraic proof system Nullstellensatz. More information on these systems as well as proof

complexity in general is found in [BP98, Kra95, Urq95, Bus98c].

In a certain context, a � � -proof can be thought of as a branching program (or a decision

tree if the proof is tree-like) for solving a search problem, and this correspondence between

propositional proofs and computations has been successfully used in obtaining lower bounds
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for various subsystems of � � . This correspondence is most clearly exploited in [Rii01] with

respect to tree-like resolution and in [Kra01] for the system ��� ���
��
 � (also see [Kra95]). For

bounded-depth ��� , this idea is carried out in more sophisticated ways in [PBI93, KPW95,

BP96].

Part of our work explores this proof-computation correspondence in the context of type-2

computation, and as a result we are able to deduce via the existing results in proof complexity

research a number of relative separations among search classes. In particular, our work is the

first to explicitly link reducibilities among search problems with relative hardness of proving

the totality of the search problems in propositional proof systems. We will say more on this

below.

Bounded Arithmetic

Theories of bounded arithmetic are logical theories of arithmetic with bounds on their reason-

ing power. The most intensely studied are Buss’s first-order theories [Bus86, Bus98a]

� ��
� � ��

� � ��
� � ��

�������

and � � ��� 
�� � � 
� . The theory � 
� is essentially the theory of arithmetic with induction allowed

only on 	�
 
 -predicates, and � 
� is obtained by restricting � 
� so that, instead of induction, only

length induction is allowed.

The main motivation for studying these theories is their close connections to complexity

classes, and the notion of definability provides a particularly strong link. A search problem is

$
�
 -definable in theory � if and only if its totality is represented by a � $��
 -sentence and � proves

this sentence. For example, a search problem is $�� � -definable in � �� if and only if it is solvable

in polynomial-time [Bus86], and a search problem is similarly definable in � �� if and only if

it is many-one reducible to a problem in � �&� [BK94, CK98, Mor01]. Also definable search

problems are a crucial tool in obtaining a number of important results for bounded arithmetic,

such as conservativity of theories, separations of relativized theories, and unprovability of cer-

tain combinatorial principles. From a complexity theorist’s point of view, bounded arithmetic
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allows one to study complexity classes using techniques of mathematical logic, which include

proof-theoretic methods and model-theoretic methods. In particular, Chiari and Krajı́ček stud-

ied various total search problems in the context of bounded arithmetic [CK98].

It turns out that Buss’s theories are also connected to proof complexity in the following way:

every bounded theorem � of the relativized theory � � ��� � translates into a family ����� ��	 � �&�
of tautologies with quasipolynomial-size bounded-depth � � -proofs [PW85, Kra95]. Thus,

bounded-depth � � is a nonuniform analogue of � � ��� � , and the unprovability of � follows

from an exponential lower bound on the proof size of ����� � 	 ���&� in bounded-depth � � .

Quantified Propositional Calculus

Quantified propositional calculus (QPC) is obtained by introducing quantifiers into proposi-

tional calculus, where � � ��� ( ����� is equivalent to (�� T ��� � ( � F � and ������� (�� ��� is equivalent

to ( � T ��� ( � F � . Unlike first-order logic, which is strictly more expressive than propositional

calculus, QPC is no more expressive than propositional calculus in the sense that, for every

QPC formula ( , there is a propositional formula that is logically equivalent to ( .

However, in QPC we can express certain properties in a more compact way than in proposi-

tional calculus. For example, assuming an appropriate uniformity condition, every ��� � � � � -

predicate is represented by a polynomial-size family of QPC formulas [Pap94a], while no

��� � � � � -complete predicate is representable by a polynomial-size family of propositional

formulas. The latter fact follows from the characterization of NC
�

by polynomial-size families

of propositional formulas [BIS90] and the fact that NC
�
	 ��� � ��� � .

Thus, an advantage of QPC is that it has enough expressive power to represent everything

in ��� � ��� � in a concise way witout losing the syntactic and semantic simplicity of proposi-

tional calculus. The following is an example QPC formula, which asserts that a QPC formula

(����
 � has a truth value � :

� � ��� � ����� (����
 ����� ��� ����� ( ���
 ��� �
QPC formulas are also known as QBF (Quantified Boolean Formulas), and efficiency of
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decision procedures for the satisfiability of QBFs is an important issue in various research

areas such as formal verification, planning, reasoning about knowledge, and there has been

much effort in designing and implementing QBF solvers that can be used in practice [BST03].

The study of QPC proof complexity is relevant to such effort.

Since the set of valid QPC formulas is complete for PSPACE [Pap94a], the proof com-

plexity of QPC is closely related to PSPACE. Krajı́ček and Pudlák [KP90, Kra95] introduced

the Gentzen-style sequent calculus proof system � for QPC, together with the hierarchy of

fragments

� � ��� 
 � � � 
 � �� � 
 � � � 

�����

where � 
 denotes p-simulation. The results of Krajı́ček and Pudlák demonstrate that these

QPC proof systems are nonuniform analogue of Buss’s theories. Aside from Pollett’s work

that introduces the QPC proof systems � �
 that correspond to the theories � 
� [Pol97], we are

not aware of any other work on the QPC proof complexity and/or its connection to complexity

theory and bounded arithmetic.

1.2 Our Work

This dissertation is concerned with search problems, proof complexity, quantified proposi-

tional calculus, and bounded arithmetic, and how they are connected with each other. Figure

1.1 graphically depicts the relationship among these four research areas. This dissertation is

organized into two Parts: Part I is about the triangle on the right in Figure 1.1, that is, it is on

the connections between search problems and propositional proof complexity, both of which

are in turn related to bounded arithmetic. Part II is on the left triangle, namely, the connections

among QPC, search problems, and bounded arithmetic. In Figure 1.1, the thick arrows link-

ing search problem with propositional proof complexity and quantified propositional calculus

indicate that we are particularly interested in these connections.

The organization of this dissertation is as follows. Part I consists of Chapters 3 and 4. Part
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Part IIPart I

Bounded Arithmetic

Search Problems

Proof Complexity
Quantified Propositional

Proof Complexity

Figure 1.1: Overview of this dissertation. The thick arrows indicate that we are particularly

interested in these connections.

II begins with Chapter 5 and end with Chapter 9. Chapter 2 is a preliminary chapter in which

we present a number of basic definitions and facts that we use in the subsequent chapters. The

following are brief expositions on the contents of each Part.

1.2.1 Part I

Most of the results in Chapter 3 are obtained in our joint work with J. Buresh-Oppenheim, and

the results of Chapter 4 are extensions of our M.Sc results [Mor01]. These have been reported

in a preliminary form in our joint paper [BOM04].

In the papers [JPY88, Pap94b], total search problems are classified according to the com-

binatorial principle in the finite domain that guarantees the totality of the problems. These

classes contain numerous natural problems, some of which are complete. For example, Poly-

nomial Local Search ( ����� ), which is the class of problems efficiently solvable by local search

heuristics, is characterized by the iteration principle “every finite dag has a sink”; and Poly-

nomial Pigeonhole Principle ( ��� � ), which has relevance to cryptographic hash functions,

corresponds to the pigeonhole principle “there is no injective mapping from
� � � " � to

� � � .” The

class Polynomial Parity Argument ( ��� � ) is defined by the parity principle “there is no perfect
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matching in an odd-sized graph” and contains the problems of finding various economic equi-

libria. And its variants ��� ��� and � � ��� � are defined in a similar manner ( � � ��� was

called PSK in [Pap94b], and it is given this name in [BCE � 98]).

Beame, Cook, Edmonds, Impagliazzo, and Pitassi [BCE � 98] reformulate the search classes

in terms of type-2 search problems, or search problems whose input contains not only numbers

and strings (type-0 objects) but also functions and relations (type-1 objects) that are accessed

as oracles. This type-2 approach results in much cleaner definitions of the original type-1

search classes: each class essentially becomes a collection of the type-1 instances of a single

type-2 problem, and hence the relationship among these classes can be studied through the

corresponding type-2 search problems. In many cases we can obtain unconditional separations

of type-2 search problems, which imply oracle separations of the corresponding type-1 search

classes. Many such relative containments and separations among the above five search classes

are obtained via the type-2 methods in [BCE � 98, Mor01].

Since an unrelativized separation of any two of the above search classes implies ���� � � ,

such relative separations are currently the best results we can hope for. However, we would

like to argue that this particular type of oracle result is more meaningful than your garden-

variety oracle result, whose relevance has been repeatedly brought into question (starting with

[BGS75]). This intuition comes from two sources: (i) Each of these type-2 separations implies

that the generic oracle separates the corresponding type-1 classes ([CIY97]). While generic

oracles ([BI87]) are not infallible ([FS88]), they capture the intuition that an “arbitrary” oracle

should not affect the equality of two classes; (ii) Oracle separations of complexity classes are

usually obtained by exploiting the difference in the ways these classes access the oracle, and

hence these results are better understood as separations of oracle access methods and not of

complexity classes [HCC � 92]. This way we can make more sense of ‘oracle separations’

between classes that are actually equal, such as PSPACE and IP [FS88]. On the other hand,

since all the relativized search classes in this dissertation access an oracle in the same way (via

deterministic polynomial-time machines), oracle separations of those classes may better reflect
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the unrelativized world.

In Chapter 3, we extend the framework of [BCE � 98] into the following systematic method

of defining type-2 search problems from combinatorial principles. Let � be a first-order ex-

istential sentence over an arbitrary language such that � holds in every finite structure, and

define ��� to be the corresponding type-2 search problem of finding a witness to � in a finite

structure given as the input. For example, the type-2 problem PIGEON, which characterizes

the class ����� , arises from the sentence

� ����� ��� � ��� �� � ��� ��� �
	 ��� � � �� � � � ����� � � � ��� � 	

which states that, if
�

is not in the image of
�

, then there must exist two elements that are

mapped to the same element by
�

; this is the injective pigeonhole principle, which holds in

every finite structure.

Formulated as above, it is clear that studying the complexity of a type-2 search problem ���
amounts to the study of the ‘computational power’ of the combinatorial principle � , which is

an interesting mathematical endeavour in its own right. In addition to the pigeonhole prin-

ciple above, we present the � -sentences that give rise to the type-2 problems � � � � � � ,

�	��
 � �
����� ��� , and ��� ��� ��������� , which characterize the classes ��� � , ��� ��� , and

� �&� , respectively. We also formulate a new type-2 problem ������� ������� ��� which corre-

sponds to the weak pigeonhole principle.

We describe how to translate an � -sentence � into a family ����� � 	 � ��� � of tautologies of

depth 2. This is the translation due to Paris and Wilkie [PW85] which translates every bounded

theorem of the relativized theory � � ��� � into a family of tautologies with quasipolynomial-size

bounded-depth � � -proofs.

The main results of Chapter 3 connect the complexity of ��� and the proof complexity of

����� ��	 � ��� � . We first obtain two such results for bounded-depth � � . The first and simpler

result (Theorem 3.21) is the following: if ��� is solvable in polynomial-time, then ����� ��	 � ��� �
has quasipolynomial-size ��� -proofs of depth 2. This result formalizes the intuitive idea that
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an algorithm that solves ��� is a highly constructive proof of � , and this is done by showing

how to turn an algorithm for ��� into a depth-2 � � -proof of ����� ��	 � ����� . This result could be

used to obtain a lower bound on the time complexity of ��� via a lower bound on ����� ��	 � ��� � in

depth-2 ��� ; however, such a proof complexity lower bound is usually much harder to obtain

than the complexity lower bound for ��� . This may be more useful in obtaining upper bound

on the proof lengths of � ��� � 	 � ��� � : it now suffices to demonstrate an algorithm that solves

�
� within an appropriate time bound.

The second and more important result for bounded-depth � � is as follows: if ��� ��� ��� ,

then ����� � 	 � �
� � has quasipolynomial-size depth-3 ��� -proofs in which substitution instances

of ����� � 	 � ��� � are allowed as nonlogical axioms. Note that the conclusion essentially states

that the proof complexity of ����� � 	 � ��� � in depth-3 � � does not exceed that of ����� ��	 � ��� � ,
and the proof of this result is a formalization of the intuitive idea that a many-one reduction

from ��� to ��� is itself a constructive proof that
�

implies � . We first prove this result with

a technical assumption that ��� has the instance extension property (Theorem 3.23); however,

we prove that this assumption is not really needed (Theorem 3.24). The instance extension

property is introduced and discussed in Section 3.3.

Similarly, we prove two results for Nullstellensatz. The first result converts a polynomial-

time algorithm for ��� into polylogarithmic-degree Nullstellensatz refutations of � ����� ��	 � ��� �
(Theorem 3.28), and the second result constructs Nullstellensatz derivations of � ����� � 	 � ��� �
from a substitution instance of � ����� � 	 � ��� � (Theorem 3.30). Again we prove the second result

with the assumption of the instance extension property of ��� ; however, for Nullstellensatz, we

do not know whether this assumption can be removed from Theorem 3.30. Note that the proof

of Theorem 3.30 is a generalization of a technique that Beame et. al used in [BCE � 98] to

separate ������� �	� and �
� � � ��� using a Nullstellensatz degree lower bound.

As corollaries to the above results, we obtain relative separations of search classes that were

previously unknown, such as ����� �
	 ��� � � with � a generic oracle. Our result generalizes

the proof techniques of Beame et al. and hence it provides alternative proofs for most of
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their results via the proof complexity separations. Moreover, since the combinatorial principle

characterizing � � � has low-complexity proofs in Nullstellensatz, it follows that the totality of

every ��� � problem has a low-complexity proof. This is interesting because ��� � contains the

witnessing problems for the fixed point theorems of Brouwer, Nash, and Kakutani [Pap94b].

There has been much work (for example, [LTT89, Aar04]) on the efficiency of local search,

whose primary goal is to obtain lower bounds on the number of times a local search heuristics

has to be invoked. In our context, this amounts to obtaining a lower bound on the number

of times � has to be accessed for solving the type-2 problem ��� ��� ��������� ��� 	 "�� � , and, by

Theorems 3.28, we can obtain such a lower bound from the degree lower bound for the iteration

principle (i.e., the housesitting principle) in Nullstellensatz [CEI96, Bus98c]. We do not yet

know how such a lower bound compares with the known lower bounds.

The Nash problem is formulated as follows. Given two integer matrices that represent

payoffs for a two-player game, find a Nash equilibrium. It is known to be in ��� ��� [Pap94b],

but not known to be complete for any class. Papadimitriou calls the Nash problem ‘a most

fundamental computational problem whose complexity is wide open’ [Pap01], and there have

been attempts to obtain good bounds on this problem; for example, see [SvS04]. From our

results, a new approach to this problem emerges: namely, formulating the totality of the Nash

problem as a family of tautologies, and show a lower bound on the size of their depth-2 ��� -

proofs. By our Theorem 3.21, such a proof complexity lower bound translates into a lower

bound on the deterministic time complexity of Nash. Note that, since Nash is in � � ��� and

since �	��
 � �
� � � ��� is easy for Nullstellensatz, the totality of Nash has low-degree proofs

in Nullstellensatz.

Aside from one type-2 separation that Beame et. al obtain via Nullstellensatz degree lower

bounds [BCE � 98], we are not aware of any work explicitly linking reductions among search

problems with the lengths of propositional proofs. However, Buss in [Bus03] obtains upper

bounds and lower bounds on the proof complexity of various combinatorial principles by de-

scribing transformations of a proof of one principle into that of another principle. His proof
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transformations amount to simple reductions between the search problems corresponding to

the principles.

Local search is a widely used approach to various optimization problems. The type-2 prob-

lem ��� ��� ��������� captures the power of local search in the sense that, if type-1 search prob-

lem � is many-one reducible to � � ��� ���
� ��� , then � can be formulated as a local search

problem, and if ��� � � � � � ��������� , then there is no efficient local search heuristic for � .

In Chapter 4, we present a sufficient condition for a type-2 search problem to be nonreducible

to ��� ��� ��������� , which is useful in recognizing search problems for which local search is

unlikely to be useful.

All the known type-2 separations of the form ��� � ��� ��� ��������� in [Mor01] and Chap-

ter 3 follow from this as corollaries. This ‘separation criterion’ is a slightly stronger variant of

Riis’s ‘independence criterion’ for the relativized theory � �� ��� � of bounded arithmetic [Rii93],

and it also generalizes the main result of our M.Sc. thesis [Mor01] (Theorem 3.8) and other

relative separations involving the I-problem (the iteration problem) in [CK98].

More formally, the main result of Chapter 4 is stated as follows: if � is a combinatorial

principle that does not involve the ordering relation, and if � fails in an infinite structure, then

�
� is not many-one reducible to � � �����
�
� � � . Since all the type-2 search problems we

introduced in Chapter 3 satisfy the conditions of the above theorem, it follows that none of

them is many-one reducible to ��� ��� ��������� , and we obtain the oracle separations of the

corresponding search classes, suggesting that efficient local search heuristics do not exist for

the problems in these search classes.

We point out that Krajı́ček has a result (Theorem 4.3) that is similar to but incompara-

ble with ours. Krajı́ček’s result is used to obtain an alternative proof of Riis’s independence

criterion [Kra95], and we show that our result implies it in a similar way.
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1.2.2 Part II

The main topics of Chapters in Part II are QPC and its link to bounded arithmetic via definable

search problems. Some of the results of this Part have appeared in a preliminary form in our

joint paper with Stephen Cook [CM04]. This dissertation contains a number of results that we

have obtained since then, such as the ones in Sections 6.3, 7.4, and 8.3. The following are brief

descriptions of each Chapter and the results that appear in it.

Chapter 5 is an exposition on QPC and its proof complexity. It begins with the basic

definitions of QPC and the QPC sequent calculus systems � , ��
 , and � �
 of Krajı́ček and

Pudlák. Here � 
 is � restricted so that only $�%
 or � %
 formulas can occur in proofs, where a

formula is in $�%
 if it has a prenex form with at most
��� " alternations of quantifiers, beginning

with � , and dually for � %
 . ���
 is � 
 restricted to tree-like proofs. The systems are related to the

polynomial hierarchy (PH) in that the decision problem for truth of $ %
 sentences is complete

for the level 	��� of PH, and similarly for � %
 and ���� .
We modify the definitions of � 
 and � �
 by allowing arbitrary QPC formulas in proofs, but

restricting cut formulas to be $ %
 and restricting the target formulas in � -right and � -left rules to

be quantifier-free. Since the modifications result in two versions of � 
 and � �
 , ones under the

original definitions of Krajı́ček and Pudlák and the others under our modified definitions, the

reader may become concerned that this results in confusion. We argue, in Section 5.1, (i) that

this does not result in any confusion, and (ii) that the modification enables us to ask interesting

questions that did not arise under the original definitions. As a justification for (i), we prove that

the modified systems are polynomially equivalent to the original for proving $ %
�� � %
 formulas.

A justification for (ii) and also a major advantage of the modification is that all � 
 and � �

for

�  �
are complete systems for proving all valid QPC formulas. In particular, we obtain

� � and � �� as new and interesting QPC systems, which are polynomially equivalent to Frege

systems when proving quantifier-free theorems. In fact, we prove that every valid QPC formula

( has a ���� -proof of size doubly exponential in 	 (
	 , and if ( is a $&%
 -sentence then ���
 has a
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proof of ( of size single exponential in 	 (
	 (Theorem 5.9). Also this modification allows us

to ask questions about the complexity of the QPC witnessing problems for various parameter

values (see below), many of which couldn’t be asked under the original definitions. We also

argue that the modified systems are easy to work with: for example, in the modified systems,

the quantifier introduction rules always increase quantifier complexity, while this is not the

case in the original systems.

In intuitive terms, the restriction on the complexity of cut formulas amounts to a restriction

on the complexity of lemmas that are allowed in proofs, and the difference between tree-like

proofs and dag proofs amounts to what kind of induction can be simulated in the system. It

turns out that simulation of induction requires dag proofs while tree-like proofs can simulate

only length induction. We give more explanations in Section 5.2.

In Section 5.3, we prove several theorems on the QPC proof complexity. One useful result is

that every ���
 -proof can be converted, in polynomial-time, into another � �
 -proof in which every

cut formula is prenex $�%
 . This result turns out to be crucial for obtaining the completeness of

the $ %
 � � -witnessing problem for � �
 in Section 6.3. Surprisingly, the question whether the cut

formulas of � 
 can be restricted to prenex $ %
 without decreasing the power of ��
 is connected

to the question whether
� ���	��
 � � witness queries are as powerful as polynomially many witness

queries. A more formal statement is proven in Section 6.3 (Theorem 6.10).

In Section 5.4, we show that much of the proof theory of the QPC sequent calculus can be

carried out in the complexity class (Dlogtime-uniform) TC
�
, which apparently is much smaller

than � . In particular, we show that extracting a propositional ‘Herbrand disjunction’ of a � � -

proof � is in TC
�
. Using this fact, we prove the TC

�
-version of Gentzen’s midsequent theorem

for � �� . Note that it is not clear if Gentzen’s original proof of his midsequent theorem can be

carried out in a class below � . We use these facts to prove that � � and ���� are polynomially

equivalent with respect to prenex $ % � -formulas. Note that a similar p-equivalence between � �

and � � � implies that � �&� is contained in ��� , which is not believed to be true.

Krajı́ček and Pudlák [KP90] show that, for every
�  " , every $ %
 -theorem of � 
� translates
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into a family of $ %
 -formulas with polynomial-size ��
 -proofs, and Krajı́ček [Kra95] proves a

similar statement for � 
� and � �
 . Because of the peculiarities of the translation used, the proofs

of these statements do not generalize to the translation of bounded theorems with more than
� � " quantifier alternations. We point out that, by going through the second-order theories V 

and TV 
 of Cook that we present in Chapter 7, the above theorems nonetheless generalize to

the translation of any bounded theorems of � 
� and � 
� .

In Chapter 6, we introduce a new kind of total search problem, the QPC witnessing prob-

lems. The QPC witnessing problems provide a tangible link between the complexity of search

problems and the length of proofs in QPC. We obtain a number of results on the complexity

of the QPC witnessing problems, and they are summarized in Chapter 9. Also see Table 9.2

on page 173. Some of the results are derived based on the close connection between QPC and

bounded arithmetic [KP90, Kra95]. However, some of our results do not have any counterparts

in bounded arithmetic; in fact, we will show in Chapter 8 that the connection between QPC

and bounded arithmetic breaks down for proving formulas with a large number of quantifier

alternations.

For �  " , we define the $ %' -witnessing problem for a QPC system � to be: given a

prenex $ %' -formula ( , an � -proof of ( , and a truth assignment to the free variables of ( , find

a witness for the outermost existential quantifiers in ( . This is denoted as
� �������
	
	�� � 	 $ %' � .

Note that, for every � ,
���������
	
	�� � 	 $ %' � is trivially solvable in polynomial-time using an 	 
 ' -

oracle. Thus, the interesting question is how much the presence of an � -proof of ( brings

down the complexity of witnessing ( . For example, consider the $ % � -witnessing problem for a

QPC proof system � . Regardless of � , we can deduce the trivial upper bound of ���
���

. But

our results tell us more:

�
���������
	
	�� � �� 	 $ % � � and

���������
	 	�� � � 	 $ % � � are complete for FNC
�
. (Theorem 6.5)

�
���������
	
	�� � � � 	 $ % � � is complete for ��� . (Theorem 6.2)

�
���������
	
	�� � � 	 $ % � � is complete for

� ������� � . (Theorem 6.2)
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Thus, when � ��� � �� 	 � � 	 � � � 	 � ��� , the presence of an � -proof in the input dramatically

decrease the complexity of witnessing the given $ % � -formula ( , and the amount of the decrease

is larger if � is a weaker proof system. This shows that � -proofs of $ % � -formulas contain

information on how to construct a witness for the endformula ( , and the weaker the system the

more constructive the proofs.

In Section 6.1, we prove that, for
�  " , ���������
	
	�� � �
 	 $ %
 � and

���������
	 	�� � 
�	 $ %
 � are com-

plete for �������	�

� and
� � � �&� � � � 	�
�� , respectively. In the proof, we make use of the results of

Krajı́ček and Pudlák on the provability of the reflection principles for the QPC systems [KP90]

and witnessing theorems for bounded arithmetic [Bus86, BK94].

Next, in Section 6.2, we show that both
���������
	
	�� � �� 	 $ % � � and

���������
	
	�� � � 	 $ % � � are com-

plete for the class FNC
�

of (Dlogtime-uniform) NC
�
-search problems. Our proof uses Buss’s

NC
�

algorithm for the Boolean Formula Value Problem [Bus87, Bus93], as well as the fact that

necessary manipulations of � � -proofs can be done in TC
�
.

Finally, in Section 6.3, we consider the complexity of
���������
	
	�� � 
 	 $ %� � for

�  �
and

��� �
, where � 
 is either ���
 or � 
 . More specifically, we show that, for every

�  " ,
���������
	 	�� ���
 	 $ %
�� � � is complete for ����� �	 ��� ��� 	 � ���	� 
 � � � , which matches the result on the

$
�
�� � -definable search problems of � 
� . We also show that, for every
�  �

and �  � ���
,

���������
	 	�� � 
 	 $ %� � is in �������� 

� ��� ��� 	 � ���
��
 � � � . We prove a hardness result for these witnessing

problems in Chapter 8, but the hardness we obtain does not match this upper bound.

In Section 6.4, we consider propositional systems which allow threshold gates, and extend

them to systems with propositional quantifiers. In particular we define for � � " 	 � 	 � � � the

system � � � ��� � , which allows cuts only on quantifier-free formulas, and in which all quantifier-

free formulas in a proof have depth � � . We prove that the � $ % � -witnessing problem for

� � � ��� � can be solved by a TC
�
-function, and conversely every TC

�
-function is reducible to

such a witnessing problem for some � . For the results in this Section, it is important that TC
�

contains basic parsing operations for QPC sequent calculus, which we prove in Section 5.4.

Buss’s first-order theories � 
� and � 
� of bounded arithmetic are closely related to ��� , and
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they have been the objects of intense study since their introduction in Buss’s 1985 dissertation

published as [Bus86]. Buss’s theories are preceded by the first-order theory ��� � ��� � of

Paris and Wilkie [PW81, WP87] and the equational theories ��	 of Cook [Coo75] for � and

��� ( of Dowd [Dow79], and followed by a number of new theories of bounded arithmetic

corresponding to various complexity classes, such as Arai’s AID [Ara00] for NC
�
, and theories

for NC, NC
�
, logspace, and nondeterministic logspace by Clote and Takeuti [CT92], among

others. A notable aspect of these developments is a great variety of styles in which these

theories are defined: there are equational, first-order, and second-order theories characterizing

complexity classes in different ways. As a result of these developments, our knowledge of the

connections between complexity classes and logic has greatly increased, but it is nontrivial to

compare these theories because of their different flavours.

Based on Zambella’s work on second-order bounded arithmetic theories [Zam96], Cook

[Coo02] has introduced second-order theories V
�

and � � corresponding to ��� � and � , re-

spectively, and his work led to a framework in which second-order theories characterizing

various complexity classes are developed in a unified way [CK03, NC04, Coo04]. The rela-

tively simple syntax of this framework results in a simplification of both the description of the

theories and the proofs of their properties, such as their connections to QPC which will be dis-

cussed in Chapter 8. Moreover, the unified syntax of these theories makes it easy to compare

them.

The main result of Chapter 7 is the introduction of the second-order theory VNC
�

for NC
�
,

which is inspired by Arai’s AID. We obtain VNC
�

by augmenting the base theory V
�

with a

scheme $ 
� - ��� � � � ��� for a tree recursion, and prove that a function is $ 
 � -definable in VNC
�

if

and only if it is an NC
�
-function. We begin Chapter 7 with the presentation of Cook’s theories

V
�
, V 
 , and TV 
 and their syntax.

In Section 7.4, we present alternative proofs for Pollett’s result [Pol99] (Theorem 2.24 in

this dissertation) characterizing the $��� -definable search problems of � 
� and � 
� for
�  " and

�  � ���
. Our proofs are simple and presented in a more general setting. As a result, we



CHAPTER 1. INTRODUCTION 18

obtain new characterizations of the $ 
� -definable search problems for all �  �
of second-

order theories V
�
, VTC

�
of [NC04], VNC

�
, V
�
-Horn of [CK03], and � � � of [Coo04] (also in

Chapter 7 of this dissertation). In fact, this characterization applies to every theory � with V
� �

� � � � � , and it has an interesting consequence on the provability of reflection principles in

bounded arithmetic, which will be discussed in Chapter 8.

In Chapter 8 we discuss the QPC translation of Cook-style second-order theories. We be-

gin with the presentation of a translation [Coo02] of second-order bounded arithmetic formulas

into polynomial-size QPC formulas. Using this translation, we prove that any bounded theo-

rem of V 
 and TV 
 translates into families of valid QPC formulas with polynomial-size � �
 -
and � 
 -proofs, respectively. We also prove a translation of bounded theorems of VNC

�
into

polynomial-size � �� -proofs. These translation theorems generalize similar results for � 
� and � 
�
by Krajı́ček and Pudlák [KP90], since our translation applies to any bounded theorem as op-

posed to $ 

 -theorems. This generality stems from the simple syntax of Cook’s second-order

framework.

Below are some of the results we obtain based on these translation theorems: for every
�  #" and �  � � �

,

�
���������
	
	�� � 
 	 $ %� � is hard for ��� � � � 

� ��� ��� 	 � � " � � ;

�
���������
	
	�� � 
 	 $ %� � cannot be complete for �������� 
�� ��� ��� 	 � � " � � unless ��� collapses; and

� the � -reflection principle for ��
 is not provable in � 
� unless ��� collapses.

The results above show that the close relationship between � 
� and � 
 break down with respect

to proving formulas with more than
� � " -quantifier alternations, which we find surprising. The

statements analogous to the above for � 
� and ���
 also hold.

In Chapter 9, we summarize our results on the QPC witnessing theorems and their defin-

ability in bounded arithmetic. We also provide two Tables (9.1 and 9.2 on pages 172 and 173,

respectively) that summarize what is known about the complexity of QPC witnessing and the

provability of the reflection principles.



Chapter 2

Preliminaries

Throughout this dissertation, we are concerned with the complexity of relations and functions

on the natural numbers
�

. Unless otherwise noted, we assume that natural numbers are repre-

sented in binary, and 	 � 	 denotes the length of � � �
.

Often we identify
�

with the set � � 	 " � � of finite binary strings, assuming appropriate

schemata for encoding one in the other.

2.1 Complexity Theory

2.1.1 Complexity Classes

We are concerned with the complexity classes of relations, functions, and search problems

(defined below) on
�

. We assume that the reader is familiar with the following complexity

classes

� � � 	 TC
� �

NC
� � � � � � ��	 
 � � 	 
 �

������� � 	 
 
 ������� � � � ��� � � � � �

[Pap94a, Joh90] contain more information on these complexity classes. Note that, in the

standard terminology, ��� � , TC
�
, and NC

�
are nonuniform complexity classes, defined in

terms of nonuniform circuit families. Throughout this dissertation, we always work with the

19
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Dlogtime-uniform versions of these classes. Note that Dlogtime-uniform NC
�

coincides with

��� ��� 
���� � , and Dlogtime-uniform � � � is obtained from ��� ��� 
	�
� � by restricting the num-

ber of alternations to be
� � " � . Dlogtime-uniform TC

�
can be defined in a similar manner in

terms of the threshold Turing machine of [PS88] (also see [All99]). From now on, we will

simply write NC
�
, ��� � , and TC

�
to mean the Dlogtime-uniform of these classes.

2.1.2 Descriptive Characterization of �
��� and TC �

Both � � � and TC
�

have elegant, machine-independent characterizations based on descriptive

complexity theory, and below we provide an informal presentation of this characterization.

First, we fix the underlying first-order language ����� to be

����� � � " 	 � 	 � 	�� 	 � 	�� ��� � 	

where
� 	 " 	 � are constant symbols,

� 	�� are function symbols, and � 	�� ��� are predicate sym-

bols. We refer to a first-order formula over ����� as an � �
-formula.

Structures that interprets � �
-sentences are binary strings � ��� � 	 " � � . More specifi-

cally, we interpret
�

to be 	 � 	 , the length of � , and we let the bound variables to range over

� " 	 ����� 	 � � , which is the set of indices of the string � . The symbols
� 	�� 	 � assume the usual

meaning, and � ��� � � � evaluates to true iff the
�
th bit of � is " . It is clear that each � �

-sentence
�

defines the relation � � � � 	 " � � such that � � � iff � 	 � �
, and we say that

�
represents

� . Finally, we fix an appropriate scheme for encoding � strings for �  " in one string so that

an � �
-sentence can represent a � -ary relation.

Theorem 2.1. [BIS90, Imm99] A relation � is in � � � iff it is representable by an � �
-

sentence.

Note that there are other first-order languages � such that the first-order sentences over �

characterize � � � . We only mention ����� because of its obvious connection to the language of

arithmetic.
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� ���
-formulas are obtained by introducing the majority quantifier

�
, where

� � � � ���
means that

� � ��� is true for more than half of the possible � ’s.

Theorem 2.2. [BIS90, Imm99] A relation � is in TC
�

iff it is representable by an � ���
-

sentence.

The following is an easy and useful fact: if
� ��� � is an � ���

-formula with one free variable

� , then there exists another � ���
-formula � ����� such that, for every � � �

, the sentence � � ���
holds iff there are � values of � such that

� ����� holds.

We will use the � ���
characterization of TC

�
in Section 5.4.1.

2.1.3 Complexity Theory of Functions and Search Problems

Let ��� � �	� �
be a � -ary function. Its bit graph ��
 is defined as

��
 � �
	 � 	
� ��� the
�
th bit of � ����� is � 	

where � � � � 	 " � .

Definition 2.3. Let ��� � � � �
be a � -ary function. We say that � is a polynomial-time

function if and only if both of the following are satisfied: (i) there is a polynomial 
 such that

	 � ����� 	 � 
 � 	 � 	 � for all � � �
; and (ii) the bit graph ��
 is in � .

NC
�
-functions, TC

�
-functions, and � � � -functions are defined by replacing � in condition

(ii) above with NC
�
, TC

�
, and ��� � , respectively.

Let ��� ��
	 ��� be an arbitrary � � " -ary relation and for each �� � � �
define

��� � �� � � � ��� ��� �� 	 ��� � �

The search problem ��� is the following problem: given �� � � �
, find any � � � � � �� � . We call

any � with � � � � � ���� a solutions for � � � �� � . We call � a defining relation of ��� , and often

we do not indicate � in the subscript. Throughout this dissertation we are concerned with total
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search problems, or search problems every instance of which has a solution. Note that ��� is

a total search problem if and only if ������� � ���
� �����
	 ��� holds. Note that every � -ary function is

also a total search problem ��� whose defining relation � is such that, for every �� , there is a

unique � with ��� �� 	 ��� .
Let � be a � -ary function and ��� be a search problem defined by a � � " -ary relation � .

We say that � solves � � if the following holds: for every �� � � �
, � � ���� � � � � ���� .

Definition 2.4. We define ��� to be the class of search problems � for which there is a

polynomial-time function that solves � . FNC
�

is the class of search problems that are solved

by an NC
�
-function.

Note that ��� contains search problems whose defining relations are not polynomial-time.

Here is a trivial example: � � � � � ��� if and only if either (i) � � �
or (ii) � � " and � ����� ,

where � is undecidable. However, the following is true: for every � � ��� , there exists a

polynomial-time relation ��� such that

�����
	 ��� � � � � �����

for all �
	�� � �
. Here � � � �
	 �
� is equivalent to the assertion that � is the output of a machine

�
on � , where

�
is a polynomial-time machine that solves � .

Definition 2.5. Let � � and � � be two total search problems. We say that � � is polynomial-time

many-one reducible to � � , and write � � � � � � , if and only if there are two polynomial-time

functions � and � such that, whenever 
 � � � � � ������� , � � 
 �
� � � � ��� .

Many-one ��� � -reduction between two search problems is defined in the same way except

that � and � are required to be � � � -functions.

Note that, if both � � and � � are functions, then � � ��� � � if and only if � � ����� �
� � � � ��� ��������� for some polynomial-time functions � and � .

Let
�  " . Every relation (������ � 	 
 
 is of the form ��� � � 	 � 	 � 
 � 	 � 	 ��� ��� �
	 ��� � , where 
 is

some polynomial and � � � 
 
�� � . A witness query to ( is an oracle query ‘ ( ��� � ?’ such that a
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positive answer is accompanied by a witness, i.e., some � such that ��� � 	 ��� . When we want to

emphasize that a query is not a witness query, we call it a yes-no query.

Let ( � 	�
 
 for some
�  #" and let

�
be a deterministic machine that asks witness queries

to ( . Note that there can be multiple computations of
�

on input � because the positive

answers to a witness query are not unique in general. Let
� � � 
�� ��� � ��� be the set of all outputs

that
�

on � can produce. We say that
�

solves a search problem � if
� � � 
�� ��� ����� � �!� ���

for all � ; that is, no matter how a witness query is answered,
�

on � always halts with a

solution for � ����� .
We say that a Turing machine

�
asks queries nonadaptively if

�
presents all its queries

to an oracle before receiving any answer, and once
�

receives the answers it does not ask any

more query.

Definition 2.6. Let
�  #" .

� ��� � � 	 ��� ��� � is the class of search problems � for which there exists a Turing machine

that solves � in polynomial time using a witness oracle ( � 	 
 
 .
� �������	 ��� ��� 	 � � � � � ��� � is defined similarly to �������	 ��� ��� � except that the Turing machines

that solve the problems in this class are allowed to ask only
� � � � � ��� witness queries.

Throughout this dissertation, � � � � is either 1 or �
��
 � .

� ��� � � 	��� ��� ��� � is defined similarly to ��� � � 	 ��� ��� � except that the Turing machines that solve

the problems in this class have to ask the witness queries nonadaptively. ��� � � 	��� ��� ��� 	 � � � � � ��� �
is defined similarly.

� For each class defined above, there is a class obtained by removing ‘
� ���

’, i.e., by requir-

ing that all queries be yes-no queries instead of witness queries. ��� � � 	 ��� ���	��
 � � � is an

example of such a class.

For more information on the search classes of the above form with yes-no queries, see

[Kre88, BH88, Wag90, JT95, JT97]. The search classes defined using witness queries are used

in [BKT93, Kra93, Kra95, Pol99] in the context of bounded arithmetic; see Section 2.3.
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The following are some of the useful facts about the search classes that we introduced.

Theorem 2.7. Let
�

be 	�
 
 for some
�  #" . The following hold:

(i) ���
�
� ���

� ��� ��� � .
(ii) If � � ���

� ��� ��� 	 � ���	� 
 � � � , then � is solvable by a polynomial-time machine that asks
� ���	��
 � � yes-no queries followed by one witness query.

(iii) � � ��� ��� � � ��� � is exactly the boolean functions in ��� � ��� ��� 	 � � � � � ��� � .
(iv) ��� � ��� ��� 	 � ���	��
 � � � � ��� �

��� ��� ��� � .
(v) ��� � ��� ��� 	 � � " � � � ��� �

��� ��� ��� 	 � � " � � .

Proof. (Ideas) (i) easily follows from the self-reducibility of 	 
 
 . (ii) is shown by Krajı́ček in

[Kra93, Kra95]. (iii) is an easy fact. Both (iv) and (v) follow from the following fact:

���
� ��� ��� 	 � � � � � � ���

�
��� ��� ��� 	 � 
�� � � � for any � � � ���	��
 � �

The above equality can be proven in a completely analogous manner to the following well-

known fact:

� � � � � � � � � � �
��� � � 
�� � � � for any � � � ���	��
 � �

Proofs of the above equality appear in [BH88, Pap94a].

Interestingly, the yes-no version of item (iv) above is not known to hold, that is, we do not

know whether ���
� ��� ���
��
 � � � is equal to ���

�
��� , where

�
is 	 
 
 for

�  " . Selman [Sel94]

proves that, if these classes are equal for
�
� � � , then � � � �!� and � � � ��� � .

2.2 Propositional Calculus and Proof Complexity

2.2.1 Basic Definitions

Throughout this dissertation we let T and F denote the truth values True and False, respectively.

Let � 
 
 � � � � � be the set of propositional variables.
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Definition 2.8. Propositional formulas, or simply formulas, are defined inductively as follows.

(1) The atomic formulas are � T � , � F � , and � 
 
�� for every
� � �

. (2) If
�

and � are formulas,

then so are � � � ��� , � � � ��� , and ��� � � .

Often we do now write all the parentheses. Moreover, although the connectives � and �

have fan-in 2, we often use the unbounded fan-in connectives such as � ( � � ����� � ( � � and
� �
�� � ( 
 as abbreviations for fully parenthesized formulas over connectives of fan-in 2, and

this simplifies our presentation with no loss of generality. Finally, we write ( � � as an

abbreviation of � ( � � . We never use
�

for implication and reserve it for the arrow sign in

sequent calculus (see below).

Definition 2.9. ([CR77]) Let � (�� � be the set of tautologies. A polytime computable function

� that maps � � 	 " � � onto � (�� � is called a proof system, and we say that � is a � -proof of

� � � � .

Let � be a proof system and let � be a � -proof. The size of � , denoted as 	 � 	 , is the total

number of symbols in � , including the bits of the subscripts of the variables.

The following, fundamental theorem of propositional proof complexity was proven by

Cook and Reckhow, connecting the question of proof lengths to open problems of complexity

theory:

Theorem 2.10. ([CR77]) There exists a proof system in which every tautology ( has a proof

of size polynomial in 	 ( 	 if and only if � � � ��� � � .

Cook and Reckhow also introduced the notion of p-simulation, which is a means to compare

proof systems in terms of their power.

Definition 2.11. ([CR77]) Let � � and � � be proof systems. We say that � � p-simulates � � iff

there exists a polytime function � satisfying the following: if � � is a � � -proof of ( , then � � � � �
is a � � -proof of ( . We say that � � and � � are p-equivalent iff they p-simulate each other.
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Definition 2.12. Let � � � � �
. Let � be a proof system and let � � � � � � ��� � be a family

of tautologies. We say that � has � -proofs of size � if � � for every
� � �

has a � -proof

of size at most � � 	 � � 	 � . If � � � � � � � then � is said to have polynomial-size � -proofs, and if

� � � 
 ���������
	 � � � then we say that � has quasipolynomial-size � -proofs.

2.2.2 Sequent Calculus
�
�

The sequent calculus � � is introduced by Gentzen in his 1935 paper [Gen35], and it is con-

sidered one of the most elegant formal systems for first-order logic. In this dissertation, we

mostly work with the propositional fragment of � � and its bounded-depth variants, and this

subsection is devoted to the presentation of these proof systems.

A fundamental object in the propositional sequent calculus ��� is a sequent of the form

( � 	 ����� 	 ( � � � � 	 ����� 	 � �

where ( � 	 ����� 	�( � and � � 	 ����� 	 � � are all propositional formulas, and the intended meaning of

this sequent is

( � � ����� � ( � � � � � ����� � � � �

Any sequence of formulas is called a cedent. The antecedent and succedent refer to the se-

quences of formulas appearing in the right and left of
�

in a sequent, respectively. The sym-

bols � and � are used to denote arbitrary cedents.

Below we describe the inference rules of ��� . Each rule has a lower sequent and one or

two upper sequents separated by a horizontal line, indicating that the lower sequent follows

from the upper sequent(s). First, � � has structural rules:

weakening-left � � � �
(�	�� � � weakening-right � � � �

� � � 	 (

contraction-left � ( 	 (�	��
� �

(�	�� � � contraction-right � � � � 	 (�	 (
� � � 	 (

exchange-left � � � 	 (�	 �!	�� �
� �

� � 	��!	 ( 	�� �
� � exchange-right � �

� � � 	 ( 	��!	�� �� � � � 	�� 	 (�	�� �
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The contraction and exchange rules allow us to treat cedents as sets of formulas.

We introduce the propositional rules below. There are two rules for each connective, intro-

ducing the connective in either side of the arrow sign.

� -left � � � � 	�(
� ( 	�� � � � -right � (�	�� � �

� � � 	 � (

� -left � (�	��
� � �!	�� � �
( � �!	�� � � � -right � � � � 	 ( 	��

� � � 	 ( � �

� -left � (�	�� 	�� � �
( � �!	�� � � � -right � �

� � 	 ( � � � 	��
� � � 	 ( � �

Finally, the following is the cut rule. Note that this is the only rule that allows us to remove

a formula from the existing sequents.

Cut:
(�	�� � � � � � 	�(

� � �

There are three kinds of logical axioms in � � : (i) F
�

, (ii)
�

T, or (iii) ( � ( for any

propositional formula ( . These sequents are trivially valid.

A ��� -proof is a directed acyclic graph whose nodes are sequents and there is a directed

edge from an upper sequent of an inference step to its lower sequent. The sequents that have

no incoming edges are called initial sequents, and in a ��� -proof the initial sequents must be

logical axioms. The following is a more formal definition.

Definition 2.13. A � � -proof is a sequence � � 	 ����� 	 � � of sequents such that either ��
 is a

logical axiom or ��
 is derived from at most two preceding sequents by one of the inference

rules. � � is called the endsequent. If the endsequent is
� ( for ( a formula, then we say that

this is a ��� -proof of ( .

Let � � � ( � 	 ����� 	�( � � be a set of formulas. A ��� -derivation of � from � is a ��� -proof of

� except that sequents of the form
� ( ' for ( ' � � are allowed to appear as initial sequents.

� � is a complete formal system in the sense that formula ( is valid if and only ( has a

��� -proof. ��� is also derivationally complete, which means that ( � � ����� � ( � � � is valid

if and only if � has a ��� -derivation from � � � ( � 	 ����� 	 ( � � .
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For each inference rule, the principal formulas are the formulas in the lower sequent to

which the rule is applied. For example, the principal formula of � -right above is ( � � .

The exchange rules are the only rules with two principal formulas, and cut has no principal

formula. The auxiliary formulas of a rule are the formulas in the upper sequents to which the

rule is applied. For example, the auxiliary formulas of � -right are ( and � . The weakening

rules do not have any auxiliary formula.

Let � be a ��� -proof. For each inference step in � , we say that the lower sequent is the

immediate descendant of the upper sequent(s). The descendant relation is the transitive closure

of the immediate descendent relation. The ancestor relation among the sequents of � is defined

similarly. We also define the descendent-ancestor relation on the formulas occurring in � as

follows. For each inference step in � , its principal formula is defined to be the descendent of

the auxiliary formulas, and the descendent relation of formulas of � is taken to be the transitive

closure of it. The ancestor relation for formulas is defined similarly. We emphasize that the

ancestor-descendent relations for formulas and sequents are two distinct relations that should

not be confused. Let � � 	 � � be two sequents of a proof � and let ( � and ( � be formulas

occurring in � � and � � , respectively. Note that, � � is an ancestor of � � whenever ( � is an

ancestor of ( � . However, the opposite is not true in general and, moreover, even if � � is an

ancestor of � � , it is possible that � � does not contain any ancestor of ( � .
Treelike ��� is � � with the restriction that every proof can be drawn as a tree; more

specifically, a tree-like proof is a proof in which each sequent is used as an upper sequent of an

inference step at most once. Krajı́ček showed that tree-like ��� is as powerful as ��� :

Theorem 2.14. [Kra95] Treelike ��� p-simulates � � .

The depth of a formula is defined as follows. First, if a formula is either atomic or a literal,

then its depth is zero. Let
�

be a formula in which at least one binary connective occurs. Push

the negations within
�

inward by applying De Morgan’s law so that every negation is placed

in front of an atomic formula; call the result
�
� . Let � be the maximum number of times the

connectives change between � and � in any path from the root to a leaf in the tree form of
�

.
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Define the depth of
�

to be � � " . Thus, clauses have depth one, and CNF formulas have depth

two.

Definition 2.15. Let � � � � �
and � � �

, and Let � � � � � � � be a family of tautologies. We

say that the family has depth- � ��� -proofs of size � if, for every
� � �

, ��� has a proof of � �
of size at most � � 	 � � 	 � in which every formula has depth at most � . We say that the family has

bounded-depth � � -proofs if it has depth- � ��� -proofs for some � � �
.

There have been a number of papers on bounded-depth � � . See [BB03, Kra95, MPW00,

BP96, KPW95, PBI93] for more information.

2.3 First-order Theories of Bounded Arithmetic

Many of the definitions and results presented in this subsection are from [Bus86, Kra95,

Bus98a]. Let

� � � � � 	 � 	 � 	�� 	 � � ��� 	 	 � 	 	�� 	 � �

be the language of bounded arithmetic, where
�

is a constant, � is the successor function,

	 � 	 ��� log � �
	 denotes the binary length of � , and ��� � � � � � � 
 � � �
is the smash function. Note

that for every term
� ��� � in the language � � , there exists a constant

�
such that 	 � ����� 	 � � � 	 � 	�� � .

We use � � � � � � � as an abbreviation for ��� ��� � � � � � � � and call existential quantifiers

of this form bounded. Similarly, a bounded universal quantifier is of the form � ��� � � � � and

it abbreviates � ����� � � � � � � � . A quantifier is said to be sharply bounded if it is of the form

��� � � 	 � 	 � or ����� � 	 � 	 � . A formula is said to be bounded if all of its quantifiers are bounded.

A formula is said to be sharply bounded if all of its quantifiers are sharply bounded.

The sets $
�� � � �� are the sets of formulas in which all quantifiers are sharply bounded.

For
�  " , $
�
 and � �
 are defined inductively to be the smallest sets of formulas satisfying the

following conditions:

(1) $
�
�� � � � �
�� � � $
�
�� � �
 ;
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(2) Both $ �
 and � �
 are closed under � , � , and sharply bounded quantifiers;

(3) For every ( , if ( � � �
 then � ( � $
�
 ; and if ( � $
�
 then � ( � � �
 ; and

(4) $
�
 and � �
 are closed under existential bounded quantifiers and universal bounded quanti-

fiers, respectively.

Informally, for
�  " , formula ( is in $��
 iff ( has a prenex form ( � such that either ( � has

at most
� � �

alternations of bounded quantifiers or ( � has exactly
� � " alternations of bounded

quantifiers with the outermost bounded quantifier � . Similarly for � �
 except that, if ( � has

exactly
� � " alternations of bounded quantifiers, the outermost one must be � . The classes $ �


and � �
 of bounded formulas are useful because they represent the classes 	 
 
 and � 
 
 at the
�
th

level of ��� , respectively; see Theorem 2.17 below.

Strictly bounded formulas are bounded formulas that starts with a sequence of bounded

quantifiers followed by a sharply bounded formula.

Definition 2.16. The classes of strictly bounded formulas are defined inductively as follows.

First, let �$ �� be the class of sharply bounded formulas and let �� �� � �$ �� . For
�  " , �$ �
 is

the smallest class that contains �$
�
 � � � �� �
 � � closed under bounded existential quantification.

Similarly �� �
 is the class containing �$
�
�� � � �� �
�� � closed under bounded universal quantification.

Let
�

be the standard model of arithmetic, in which nonlogical symbols of � � assume their

standard interpretation. We say that a formula
� � � � 	 ����� 	 � � � represents a relation ����� � 	 ����� 	�� � �

if and only if

� 	 � � � 	 � 	 ����� 	 	 � ��� � ��� � � 	 ����� 	 � � � 	
where, for each

� � � " 	 � � , � 
 � �
and

	 
 is a numeral representing
� 
 .

Theorem 2.17. [Bus86] A predicate � is in 	 
 
 if and only if there exists a $ �
 formula
�

that

represents � .

Let ��( ��� � is the set of axioms that define the meaning of the nonlogical symbols in � � .
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Definition 2.18. Let � be a set of formulas. The � -LIND axioms are the formulas

(�� � ��� ������� � ( ����� � (�� � ��� ��� ������� ( � 	 � 	 �
for all formulas ( � � . Similarly, � -IND axioms are the formulas

(�� � ��� � ����� � (�� ��� � ( � � ��� ��� � ����� (�� ���

for all ( � � .

For
�  �

, � 
� is the theory axiomatized by ��( � � � axioms plus $��
 -LIND, and � 
� is the

theory axiomatized by � ( ��� � plus $ �
 -IND. Finally, � � � � 
�� � � 
� .
In light of Theorem 2.17, the theory � �� is essentially the theory of arithmetic with induction

allowed only on � � predicates and � �� is obtained by restricting � �� so that, instead of induc-

tion, only length induction on � � predicates are allowed. For
�  " , � 
� and � 
� are theories

with induction and length induction on 	 
 
 -predicates, respectively. The main motivation for

studying these theories is their close connections to complexity classes. For example, as we

will state below, � �� proves the totality of every search problems in ��� and therefore �$
� � -define

them.

The theories � 
� and � 
� are related to each other in the following way [Bus86]:

� ��
� � ��

� � ��
� � ��

� �
�

�
������� �

(2.1)

The above hierarchy of theories is referred to as the � � hierarchy. It is a fundamental open

problem whether the � � hierarchy extends infinitely or collapses at a finite level. This question

is related to whether the polynomial-time hierarchy collapses at a finite level:

Theorem 2.19. [KPT91]) For every
�  " , if � 
� � � 
 � �� , then 	 
 
�� � � � � � ��� � 
���� � , which

implies � � ��	 
 
 .
Buss [Bus95] and Zambella [Zam96] proved stronger connections between the collapse of

the � � hierarchy and that of � � .

Although no significant progress has been made in deciding whether the � � hierarchy col-

lapses, the following conservativity relation is known to hold:
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Theorem 2.20. ([Bus90]) For all
�  #" , � 
�� �� is $ �
 � � -conservative over � 
� .

Currently no conservativity of � 
� over � 
� is known. It is believed by some that these

theories are separated by $ � � -statements.

We use the following definition of $��
 -definability of search problems. Buss, Krajı́ček, and

Takeuti uses the same definition in [BKT93].

Definition 2.21. Let � be a search problem. We say � is �$
�
 -definable in theory � if the

following two conditions are met: (i) there is a �$
�
 -formula
� � ��
	 �
� with all free variables

indicated such that
� 	 � � � �� � ������� � � � �� 	 ��� � � � � � ���� � 	

and (ii) � proves � � ���� � ���
� � � ��
	��
� . We call
� � ��
	��
� a �$
�
 -defining formula of � .

We like to make two remarks on the above definition of definability. First, note that we

require that the formula
�

be strict. This is irrelevant if � is either � 
� or � 
� for some
�  #" and

� is being $ �
 -defined in � , since these theories prove that every $ �
 -formula is equivalent to

a �$ �
 -formula. However, it is not known whether � 
� proves the equivalence of $ �
�� � -formulas

with �$
�
�� � -formulas.

Second, when ��� is $
�
 -definable in � , we do not require that a $��
 -defining formula
� � ��
	 �
�

represent the defining relation � ; instead,
� � ��
	 �
� represents a relation � � such that, for all

�
	 � � �
, � � ���
	 ��� implies ��� �
	 ��� . This is consistent with the way we define search classes

in Section 2.1.3. It is possible to restate the results of this dissertation using the notion of

definability that requires

� 	 � ��� �� � � ���
� � � � �� 	 ����� � � � � ���� � 	

which demands that a defining formula of � represent its defining relation. In fact, we de-

veloped such a framework in [Mor01] by introducing the notions of exact solvability, exact

reducibility, and exact definability. However, we decided in favour of Definition 2.21 since it

is simper and since there is no loss of generality.
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Below we state the known facts about the complexity of various definable search problems

of bounded arithmetic. We use the notation
� � � �&� � to denote

� � � ���
� � � � � � � � � � for some � � � � �&� � 	

where ����� is the class defined in [JPY88] that captures local search problems; we will define

� �&� more formally in Chapter 3. We showed in [Mor01] that ����� is not closed under � �

unless � ��� � ��� , which is not believed to be true. Thus,
� ������� � is likely to properly

contain ����� .

Theorem 2.22. Let
�  " .

(i) ([Bus86]) A search problem � is �$ �
 -definable in � 
� if and only if � � ��� � � 	�
�� .
(ii) ([BK94, CK98, Mor01]) A search problem � is �$
�
 -definable in � 
� if and only if � �
� � � �&� � � � 	�
�� .

Theorem 2.23. Let
�  " .

(i) ([Kra93]) A search problem � is �$ �
�� � -definable in � 
� if and only if � � ����� �	 ��� ��� 	 � � log
� � � .

(ii) ([Bus90]) A search problem � is �$ �
�� � -definable in � 
� if and only if � � ����� �	 .

Note that the $ �
 � � -conservativity of � 
�� �� over � 
� (Theorem 2.20) implies that these two

theories �$
�� -define the same class of search problems for every � � ��� " .

Theorem 2.24. ([Pol99]) Let
�  " and let � denote either � 
� or � 
� . For every �  

� � �
, the following holds: a search problem � is �$ �� -definable in � if and only if � �

����� � � 
�� ��� ��� 	 � � " � � .

Table 2.1 on page 34 summarizes the three Theorems above.

Pollett’s result (Theorem 2.24) state that, for every
�  " and �  � � �

, � 
� and � 
� �$
�� -
define the same class of search problems. This does not mean that the two theory has the same

�$
�� -theorems, since search problems may be defined by different formulas in the two theories.
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� ��� � � � �	� 
�� 
��� � �� �� � � � �	� 
�� 
��� � �� �� � � � �	� 
 � 
��� � �� �� � � � �	� 
�� 
��� � �� �� � � � �	� 
 � 
��� � �� �� � � � �	� 
�� 
��� � �� ��

� ��� � � � ��� 
�� 
��� � �� �� � � � ��� 
�� 
��� � �� �� � � � ��� 
 � 
��� � �� �� � � � ��� 
�� 
��� � �� �� � � � ��� 
 � 
��� � ���� �� �� � � � ���

� ��� � � � �� 
�� 
��� � �� �� � � � �� 
�� 
��� � �� �� � � � �� 
 � 
��� � ���� �� �� � � � �� � � � !  " � �# $ � � �	 

� ��% � � &' 
 � 
��� � ���� � � �� � � &' � � & ' " � � # $ � & ' " � �# $ � & '

??

� �)( � � " � � # $ � " � �# $ �

?? ?? ??

* (% + (% * %% + %% * �% + �%

Table 2.1: The complexity of the

, � ��--definable search problems in

* .% and

+ .% for


� / 0 1 � � 2� 3� 4 5

.
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Chapter 3

Type-2 Search Problems and Proof

Complexity

3.1 Type-2 Search Problems

In the papers [JPY88, Pap94b], total search problems are classified according to the combina-

torial principle in the finite domain that guarantees the totality of the problems. These classes

contain numerous natural problems, some of which are complete. For example, Polynomial Lo-

cal Search ( � �&� ), which is the class of problems efficiently solvable by local search heuristics,

is characterized by the iteration principle “every finite dag has a sink”; and Polynomial Pigeon-

hole Principle ( � ��� ), which has relevance to cryptographic hash functions, corresponds to

the pigeonhole principle “there is no injective mapping from
� � � " � to

� � � .” The class Polyno-

mial Parity Argument ( ��� � ) is defined by the parity principle “there is no perfect matching

in an odd-sized graph” and contains the problems of finding various economic equilibria. And

its variants ��� ��� and ��� ��� � are defined in a similar manner ( ��� ��� was called PSK in

[Pap94b], and it is given this name in [BCE � 98]).

Beame et al. [BCE � 98] generalize the notion of search problem so that the instances of

search problem � consist not only of strings, which are type-0 objects, but also functions and

36
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relations, which are type-1 objects. More formally, let � be a type-2 relation with arguments

� � � 	 ����� 	 � � 	��
	 �
� , where � and � are strings and
� 
 for each

� � � " 	 � � is either a string function

or a string relation. � defines a type-2 search problem ��� in the usual way.

The complexity of type-2 relation, functions, and search problems is measured with respect

to a Turing machine that receives the type-0 arguments on its input tape and is allowed to access

the type-1 arguments as oracles [Tow90]. In particular, a type-2 function �!� � � 	 ����� 	 � � 	���� is

said to be polynomial-time computable if it is computed by a deterministic Turing machine in

time polynomial in 	 � 	 with oracle access to
� � 	 ����� 	 � � .

Let � be a type-2 search problem. � can be used as an oracle in the following way. A

Turing machine
�

presents a query to � in the form ��� � 	 ����� 	�� � 	 �
� , where each of � � 	 ����� 	�� �
is a polynomial-time function or relation, and we assume that these are encoded as polynomial-

size circuits that compute the corresponding functions or relations. In the next step
�

receives

in its answer tape some 
 that is a solution for � ��� � 	 ����� 	�� � 	 �
� .
Let � � and � � be two type-2 search problems. We say � � is Turing reducible to � �

and write � � ��� � � iff there exists an oracle Turing machine
�

that, given an instance

� � � 	 ����� 	 � � 	���� of � � , outputs some 
 � � � � � � 	 ����� 	 � � 	���� in polynomial-time using
� � 	 ����� 	 � �

and � � as oracles, where each query to � � is of the form ��� � 	 ����� 	�� � 	 �
� with � � � � � � � and

with each � 
 for each " � � � � , a function or a relation that is polynomial-time computable

using
� � 	 ����� 	 � � as oracles.

� � is many-one reducible to � � , written � � ��� � � , if � � ��� � � by an oracle Turing

machine that asks at most one query to � � . We write � � � � � � if � � and � � are many-one

reducible to each other. Equivalently, � � � � � � iff there exist two type-2 functions � , � such

that

� � � � � � � � � 	 ����� 	 � � 	���� whenever � � � � 	 ����� 	 � � 	���� � ��� � 	 ����� 	�� � 	��
� � � � � � ��� � 	
����� 	�� � 	 ��� 	

where � , � , � � 	 ����� 	�� � are all polynomial-time computable with oracle access to
�

. This defi-

nition of many-one reduction between type-2 search problems is closer to that of type-1 search
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Instances of � � � Instances of � �
� � � 	 ����� 	 � � 	���� � � ��� � 	 ����� 	�� � 	 ���

�

Solutions of � � � � � 	 ����� 	 � � 	������ � Solutions of � � ��� � 	
����� 	�� � 	 ���

Figure 3.1: A many-one reduction from � � to � � . Note that ��	 � and � are all polytime

computable with oracle access to
�

.

problems, introduced in Section 2.1.3 as Definition 2.5. Figure 3.1 is a schematic view of a

many-one reduction from � � to � � .
When � � is type-1, then � � is treated as a type-2 problem with no type-1 arguments.

Definition 3.1. ([BCE � 98]) Let � be a type-2 search problem. Then
� � � � is defined as

� � ��� � � � � � � � is type-1 and � � � � � �

Thus, � �
� � � ��� means that � � is polynomial-time solvable by finding a solution for a

type-1 instance of � that is obtained by fixing the type-1 arguments of � to be polynomial-

time predicates and functions.

For a type-2 search problem � and an oracle ( ,
� � ��� � is the class of type-1 search prob-

lems � � such that � � � � � in a world in which ( can be accessed at unit cost.

Theorem 3.2. ([CIY97]) Let � � and � � be type-2 total search problems whose defining rela-

tions are polynomial-time. The following are equivalent: (i) � � � � � � ; (ii) for all oracles ( ,
� � � � � � � � � � � �

�
; and (iii) there exists a generic oracle � such that

� � � � � � � � � � � �
�

.

3.2 Combinatorial Principles and Search Problems

Beame et al. [BCE � 98] introduce several type-2 search problems that correspond to the com-

binatorial principles that characterize the search classes of [Pap94b]. We extend their approach
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into a systematic method of defining type-2 search problems from combinatorial principles that

are represented as sentences of first-order logic with equality.

3.2.1 Defining a Type-2 Search Problem from an Existential Sentence

Let � be an arbitrary first-order language and let � be a sentence over � of the form

� � ��� � � ����� � � � � � ��� � 	 ����� 	�� � � (3.1)

for some quantifier-free
�

. Let us call such sentences � -sentences. As usual, we assume that the

equality symbol � is in � even though we do not explicitly include it in � . � is interpreted in

a structure
�

which defines the universe of discourse and the meaning of constants, functions,

and relations of � . Some symbols of � may be designated as built-in symbols with which we

associate predetermined interpretation. We require that � be interpreted as true equality, and

therefore � is a built-in predicate. A symbol (function, predicate, or constant) of � that is

not built-in is called an input symbol, since it will become a type-1 input to the corresponding

type-2 search problem.

Definition 3.3. Define a canonical structure to be a structure such that (1) the universe of

discourse is 	 � �
� � 	 ����� 	 � � � " � for some

�  #" ; and (2) every built-in symbol of � assumes

the predetermined interpretation. We abuse the notation and write 	 � to denote the canonical

structure with the set 	 � the universe of discourse.

The requirement that a canonical structure be of size
� � for some

�
is not essential and

it is there to simplify our presentation. We could have done without it but it would require

a slightly more complicated definition of the witnessing problem ��� (see below). The only

built-in symbols we use in this dissertation are � , � , and
�
, which we interpreted as equality,

the standard ordering of numbers, and
� � �

, respectively.

Assume that � holds in every canonical structure. Then the corresponding witness problem

is the following: given a canonical structure 	 � , find a tuple ��� � 	 ����� 	�� ��� � � 	 � �
�

such that
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� � � � 	 ����� 	�� � � holds in 	 � . We formulate the witness problem as the type-2 search problem

�
� whose type-0 argument � specifies the universe of discourse 	 � � � and each of whose type-1

arguments corresponds to an input symbol of � . Built-in symbols are not part of the type-1

arguments, since their interpretations in 	 � � � are already fixed. Finally, since only the length of

� is used to define 	 � � � , we assume without loss of generality that the type-0 argument of ��� is

always of the form " � for
�  #" .

The following is an easy upper bound on the complexity of any type-2 total search problem

�
� , where � is an � -sentence.

Lemma 3.4. If ��� is a total type-2 search problem defined by an � -sentence � , then ��� is in

type-2 ��� ���
.

Proof. Let � � � 	 ����� 	 � � 	 " � � be an instance of ��� . A solution for ���
� � � 	 ����� 	 � � 	 " � � is found

by binary search, asking an � � query “does there exist � � � such that � � ���
� � � 	 ����� 	 � � 	 " � � ?”

for various � � 	 � .

3.2.2 The Five Combinatorial Principles

In this Subsection, we introduce five combinatorial principles that are represented by � -sentences.

They are of particular interest in our study of search problems because four of the five charac-

terize the search classes ����� , ��� � , ��� ��� , and ����� , respectively (see Definition 3.6 be-

low), and the fifth one also captures certain natural search problems; furthermore, a great deal

is known about the proof complexity of the propositional translation of each of the five prin-

ciples. Later, we will derive a number of separations among the corresponding type-2 search

problems via our main results and the existing proof complexity results. For readability we

present these principles in implicational form; it is easy to see that all of them are � -sentences.

Moreover, all of them hold in every canonical structure; in fact, all of them except ����� � �	�
hold in every finite structure, and ����� � �	� holds in every finite structure of even size.
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(1) ������� � � � � � � ������� � � � � � � � � � � � ��� � � �� � � � � � ����� �
This sentence states that, if every element is either lonely (i.e., is matched with itself) or

matched with a unique partner, and if
�

is lonely, then there exists another lonely element. This

is essentially the parity principle ‘no odd-sized graph has a perfect matching’, and it holds in

every structure whose size is even; therefore, it holds in every canonical structure. ������� �	�
is the corresponding search problem.

(2) ������� � � ����� �� � � � � � �
	 �
� � � �� � � � ����� � � � ��� �
This states that if

�
is not in the image of � , then there exist two distinct elements that are

mapped to the same element by � ; this is the injective, functional pigeonhole principle, and the

corresponding search problem is �
����� ��� .

(3) ��� � � 	 � � 	�� � 	�� � �
� � � � �� � � � � � �� � � ��� � ��� � 	 � � � � � � � � 	 � � � �

Let 	 be the universe of a structure that interprets this sentence. Since � is a binary function,

it is a mapping from 	 � 	 to 	 . This sentence states that � is not an injective mapping,

and it holds in any finite universe 	 . This is a weak pigeonhole principle, which is similar

to (2) but the domain size is the square of the range size. We call the corresponding problem

������� ������� ��� .

(4) � � � � � � � � ����� � � ������ � ��� ��� ��� � ��� � ������� � ����� � � ��� � ����� �
This is the iteration principle of [BK94, CK98], and we call the corresponding type-2 problem

� � ��� ���
� ��� . It states that, if � is nondecreasing and � � � � � �
, then there exist � such that

� � ��� � � and � ����� � � ��� ������� . Note that it contains a built-in ordering � . In graph-theoretic

terms, the iteration principle states that every dag � � � 	 	�� � with at least one edge whose

vertices are ordered so that � � 	�� � � � implies � � � has a sink.

(5) ������� � � ����� �� � � � � � ��� � � �� � � � �� � � � � ����� � � � � ��� � � �� � ��� ������� �
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This is another weakening of the pigeonhole principle of (2). It states that, if
�

is not in the

image of � , then � cannot be the inverse of � , and therefore � is not a bijection between
� � �

and
� � � " � . This principle is commonly known as the functional onto-pigeonhole principle,

and the corresponding search problem is �	��
 � �
����� ��� .

Here we present yet another type-2 problem, � ����� � � � � � � � � � � (SOS), and show that

�	��
 � �
����� ��� � � � � � . SOS is originally introduced by Beame et. al [BCE � 98] to

capture the class � � ��� . Its type-1 arguments are two unary functions
	 � � � and 
 � � � . An

instance � 	 � � � 	 
 � � � 	 " � � of � � � defines a directed graph � � � 	 � 	���� , where � � 	�� � � � if

and only if all of the following hold: � �� � ,
	 � � � � � � � � , and 
 � � ��� � � � � . A source is a node

with indegree 0 and outdegree 1, and a sink is a node with indegree 1 and outdegree 0. Note

that both the maximum indegree and the maximum outdegree of � are 1. � � � is defined by

the following combinatorial principle, which we state informally:

�
is a source � ��� ��� � � is either a source other than

�
or a sink � �

Lemma 3.5. ����
 � ������� ��� � � � �!� .

Proof. We first show �	��
 � �
����� ��� � � � � � . Given an instance ����	 ��	 " � � of �	��
 � �
����� ��� ,

set
	 � � � � � ��� � � � � � and 
 � � � � � � � � � � � � for every � � 	 � . We show that every solution for

� � � � 	 � � � � 
 � � � � " � � corresponds to a solution for �	��
 � �
� � � ��� ��� 	 ��	 " � � . Let � � be the di-

rected graph specified by � 	 � � � � 	 
 � � � � 	 " � � . Three cases arise. In the first case, node
�

is not a

source in � � . If node
�

has an incoming edge, then we have � � � � � ��� � � and thus � � � � is a wit-

ness to �	��
 � �
����� ��� . Otherwise node
�

has no outgoing edge and therefore
� �� � � � � � ��� .

In this case,
�

is a witness. The second case is when there is some � � 	 � such that � �� � and

� is a source. Since the indegree of � is 0, we have � �� � � � �� � � � � � ��� , making � a witness

for ����
 � ������� ��� . In the third case, assume that � � 	 � is a sink of � � . Since the outdegree

of � is 0, we have � �� � � � � � ��� , so � is a witness to �	��
 � �
����� ��� .

Next, we show that � � � � � �	��
 � �
� � � ��� . Let � 	 � � � 	 
 � � � 	 " � � be an instance of

� � � , and let � be the directed graph defined by this instance. We define an instance � � � 	 � � 	 " � �
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of �	� 
 � ������� � � as follows. For each � � 	 � , if � is isolated in � , then we set � � � � � �
� � � ��� � � ; otherwise, we set � � � � � � 	 � � � � ��� and � � � � � � 
 � � ��� � � . It suffices to show that

each witness to the ����
 � ������� ��� principle gives rise to a witness to the � � � principle.

Three cases arise. In the first case, we have some � � 	 � such that � � � � � � � . Then either node

0 is not a source or � is a sink. The second case is when we have � �� � such that � �� � � � � � � � ��� .
Then � is a source in � , since it is not isolated and its indegree is zero. In the third case, we

have � �� � ����� ��� � ��� . Then � is a sink in � since � is not isolated and its outdegree is zero.

3.2.3 Search Classes and Combinatorial Principles

Now we are ready to formulate the search classes of [JPY88, Pap94b] in terms of the type-2

search problems. Although we give below the type-2 formulation of these classes as a def-

inition, what we really mean is that these type-2 formulations are equivalent to the original

definitions of these search classes in [JPY88, Pap94b]. In each of the definitions below we

take an intersection with ��� � � , where � � � � is the class of total search problems whose

defining relations are polynomial-time [MP91, Pap94a]. We take the intersection for a tech-

nical reason that ��� � , � ��� , � � ��� , and � �&� are all defined to be subclasses of � � � �
[JPY88, Pap94b, BCE � 98]; however, dropping the intersection will not invalidate any results

on these classes.

Definition 3.6.

(i) ��� � � � � ����� � �	� � � � � � � . ��� � stands for Polynomial Parity Argument.

(ii) � ��� � � � �
����� ��� � � ��� � � . ��� � stands for Polynomial Pigeonhole Principle.

(iii) ��� ��� � � � �	��
 � �
����� ��� � � ��� � � . � � ��� stands for ��� � on Directed graphs.

(iv) ����� � � � � � ��� ���
� ��� � � � � � � . � �&� stands for Polynomial Local Search.

(i) and (ii) above are from [BCE � 98]. ��� � contains the problems of finding various

economic equilibria, some of which are complete. ��� � has relevance in the study of crypto-

graphic hash functions. We believe that the class
� � � � � � �
����� ��� � is also relevant to cryp-
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tographic hash functions, since
� � ��� � � �
� � � ��� � contains the following problem: given a

polynomial-time hash function � that maps
� � elements to

�
elements, find a collision. As

far as we know, this class has not been given a proper name.

As we have already stated, Beame et. al uses the problem SOS to characterize ��� ���
while in item (iii) above we use ����
 � ������� ��� . Note that, by Lemma 3.5,

� � � � �
� �
� � �	��
 � �
����� ��� � . ��� ��� contains the problem of finding a Nash equilibrium given pay-

off matrices of two player game [Pap94b], which Papadimitriou calls ‘a most fundamental

computational problem whose complexity is wide open’ [Pap01]. Note that the Nash problem

is not known to be complete for ��� ��� [Pap94b].

����� is defined to capture the complexity of optimization problems for which efficient

local-search heuristics exist. The close connection between � ��� and the iteration principle is

stated in the context of bounded arithmetic by Chiari and Krajı́ček [CK98], based on the work

by Buss and Krajı́ček [BK94]. Item (iv) above is stated in [Mor01], where its equivalence to

the original definition of � �&� in [JPY88] is proven explicitly. For more information on these

classes, see [JPY88, Yan97] for � ��� and [Pap94b] for the other classes.

Theorem 3.7. ([BCE � 98]) The following hold:

(i) �	� 
 � ������� � � ��� ������� �	� ;

(ii) �	��
 � �
� � � ��� � � ������� ��� ; and

(iii) � � � � � � and �
� � � ��� are incomparable, i.e., neither is many-one reducible to the

other.

The above result completely characterizes the relationship among relativized versions of

��� ��� , ��� � , and � ��� via Theorem 3.2. Item (iii) of Theorem 3.7 also follows from our

main results below (see Section 3.7). Figure 3.2 depicts the relationships among ��� ��� ,

��� � , and ��� � in a generic relativized world. Note that all containments in this figure are

proper.

����� is not discussed in [BCE � 98], and progress for resolving the relative complexity of

� �&� is made in [Mor01]:
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PPAD

PPA

PPP

Figure 3.2: The relationships among ��� ��� , � � � , and ��� � in a generic relativized world

[BCE � 98].

Theorem 3.8. ([Mor01]) �	� 
 � ������� � � is not many-one reducible to ��� ��� ��������� .

Thus, � �&� contains none of ��� � , � � � , and ��� ��� in a generic relativized world. We

will show two different proofs of the above result: one is based on proof complexity lower

bounds (Corollary 3.34) and the other is by the ‘separation criterion’ for ��� ��� ��������� (The-

orem 4.1). It was still unresolved in [Mor01] whether � �&� is contained in any of the other

classes, and we will present below a partial solution to this question. Note that we still cannot

draw � �&� in Figure 3.2, since the relative complexity of � �&� is still not completely resolved.

There is a type-2 problem defined in [BCE � 98] that we do not discuss in this dissertation.

The problem is called SINK, and the motivation for studying this problem is that it character-

izes the class ��� ��� � , which is called PSK in [Pap94b]. � � � �
is defined similarly to � � �

as follows. Its instances are of the form � 	 � � � 	 
 � � � 	 " � � , and as in � �!� these instances define

directed graphs with indegree and outdegree at most one. � � � �
is defined to be the problem

of witnessing the following principle:

�
is a source � � � ��� � � is a sink � �

Thus, � � � �
is a stronger (i.e., more difficult) variant of � � � . In fact, Beame et. al prove that
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� � � � � � � � �
and � � � � � � � � � , and that � � � � ��� �
����� ��� and ������� � � � �

� � � �
.

The reason why we do not deal with � � � �
is that, as far as we know, not much is known

about the proof complexity of the tautology family corresponding to the � � � �
principle, and

thus currently we are not able to derive separations that involve � � � �
via our main results.

Finally, let us point out that

� � � � � � �	��
 � �
� � � ��� �

where �	��
 � �
� � � ��� � is defined by the � -sentence

� ����� � � ����� �� � � � ��� ��� � � �� � � � ������� � 	

which is obtained from the �	��
 � �
� � � ��� principle by dropping the condition ��� ��� � � ��
� � � �� � � � � ����� � . The above equivalence is proven in a way completely analogous to Lemma

3.5.

3.3 The Instance Extension Property

In this Section, we introduce the instance extension property and show that, if type-2 search

problem � has this property, then any polynomial-time many-one reduction to � has a simple

form. This property turns out to be important in connecting the complexity of search problems

and the proof complexity of tautologies in the Nullstellensatz proof system.

Let ��� be a type-2 search problem defined by an � -sentence � . Intuitively, we say that ���
has the instance extension property if every instance of ��� can be extended to an arbitrarily

large instance so that the solutions in the larger instance correspond to the solutions in the

original instance.

Definition 3.9. Let ��� � � � 	 ����� 	 � � 	 " � � be a type-2 search problem defined by an � -sentence

� . We say that ��� has the instance extension property iff the following holds: for every
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3V

2V

Figure 3.3: Extending an instance 	 � of � ����� �	� to 	 � .

polynomial 
 such that � � � � 
 � � �  �
, there exist functions � 	�� � 	 ����� 	�� � such that, if

� �

�
�
��� � 	 ����� 	�� � 	 " 
 � � � � , then � � � � � ��� � � � 	 ����� 	 � � 	 " � � , where � and � 
 for each " � � � �
are polynomial-time computable using

� 
 as an oracle.

Lemma 3.10. ������� �	� , ������� � � , ��� ��� ��������� , and �	� 
 � ������� � � have the in-

stance extension property.

Proof. Let 
 be a polynomial such that 
 � � � � �
for every

�  " . An instance ����	 " � � of

����� � � � can be extended to ��� � 	 " 
 � � � � as follows. For each � � 	 
 � � � , if � � 	 � , then

� � � � � � � � � � ; otherwise, if � is even then � � � � � � � � " and if � is odd then � � � � � � � � " .
Every lonely node of 	 
 � � � is in 	 � , since every node outside 	 � is matched with some other

node. Figure 3.3 shows how an instance 	 � of ������� �	� is extended to an instance 	 � .

Instances ����	 " � � of �
����� ��� and � � �����
�
� � � are all extended into larger instances

��� � 	 " 
 � � � � in the following way: � � � � � � � � � � if � � 	 � , and � � � � � � � otherwise. For

�	��
 � �
����� ��� , we also set � � � � � � � � ��� for � � 	 � and � � � ��� � � otherwise.

We do not know whether � � � � ������� � � has the instance extension property.

The following result shows that, if
�

has the instance extension property, then every many-

one reduction to ��� is of a relatively simple form.
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Lemma 3.11. Let � � and � � be two total search problems defined by some � -sentences. As-

sume that � � ��� � � . If � � has the instance extension property, then � � is many-one reducible

to � � by an oracle Turing machine
�

that does not ask any query to
�

before asking a query

to � � .

Proof. For simplicity, assume that both � � and � � take one unary function as their type-1

argument. We write
�

and � to denote the type-1 argument of � � and � � , respectively. Let

� � � � � � by a reduction
�

which, given � � 	 " � � , first asks polynomially many queries to
�

before producing a query � � ��� 	 " � � to � � . Then there exists a polynomial 
 such that

� � 
 � � � for all
�

and all possible computations of
�

. We assume without loss of generality

that 
 � � � � �
.

Define another reduction
�

� as follows. Given � � 	 " � � , it asks a query � � ��� � 	 " 
 � � � � to

� � without asking any query to
�

, where � � is computed by a polynomial-time oracle machine
�����

as follows. Given � � 	 
 � � � ,
�����

first simulates
�

on � � 	 " � � until it composes a � � -query

� � ��� 	 " � � . By the instance extension property of � � , � can be extended to a larger instance

� � � ��� 	 " 
 � � � � . Finally,
�����

computes � � � � � 	 
 � � � and set � � � � � ��� � � � . Essentially what

is happening here is that the query � is simulating � � , which is an extension of � , and � is the

query that
�

would have asked given � � 	 " � � .

Note that a solution 
 � for � � � � � is basically a solution for � � ��� � � . The function � of the

instance extension property extracts from 
 a solution 
 for � � � � � . Then
�

� can simulate the

computation of
�

after
�

receives an answer to its � � -query.

Assume that � � � � � � and � � has the instance extension property. The above Lemma

states that there is a reduction from � � to � � such that the function � in Figure 3.1 on page 38

does not ask any query to
�

.
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3.4 Propositional Translations of Type-2 Problems

Let � be an � -sentence over language � . We say that � is basic if the following conditions

are met: it is in prenex form; its quantifier-free part is in DNF; and it contains no nesting of

symbols of � . In particular, if � is basic, then every atomic formula in � is of the form ��� ���� ,
� � � � ���� , or � � � , where � is a predicate symbol and � is a function symbol.

Let �
� be a type-2 search problem defined by a basic � -sentence � of the form

� ��� � � ��� � �
����� � � � � � ��� � 	 ����� 	�� � � �

For each
�  " , we define a propositional tautology � ��� � 	 � ��� 	 � � asserting that � holds in

every canonical structure 	 � . It is the result of a standard translation of � into propositional

formulas due to Paris and Wilkie [PW85]. The following is a more detailed description of

the translation. There will be a set of variables in � ��� � 	 � ��� 	 � � for each type-1 argument
�

for �
� . If
�

is an � -ary relation, then, for each � -tuple �� in the domain of
�

, there is a

propositional variable � ��� , which is intended to assert that
� � �� � is true. If

�
is a function, we

add propositional variables for the relation � ��� 
�� � � � : that is, for each �� in the domain of
�

and

each
�

in the range 	 � of
�

, we add � ����� 	 , which asserts that
� � �� � � �

.

Let
� � 	 ����� 	 � � be the function symbols of � that are not built-in. Then ����� � 	 � ��� 	 � � is

defined as

� ��� � 	 � �
� 	 � � �
� � � � ����
 
 � � � � ��� 
 � 	 � 
���
 
�� � � � � � �

which intuitively asserts that � holds in 	 � if
� � 	 ����� 	 � � are total and well-defined. First, � �

is of the following form:

� � ��� � �
�

� � ������� � � � �����
�
� ��� � 	 ����� 	�� � � 	 (3.2)

where
�
� is in DNF with each atomic formula replaced by its corresponding propositional

variable or propositional constants. If an atom either contains any built-in predicate or function,

or of the form � � � , then it is replaced with either
� � � � or � � � 	 � , depending on their truth

value in the canonical structure 	 � .
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� ��
 
 � � � is a CNF formula stating that
� � 	 ����� 	 � � are total; more specifically, � ��
 
�� � � is the

following CNF formula:

� ��
 
�� � � � �

 ��� � � ���

��� ��� � � � � 	 �
�
	 ��� �

� � 	���� 	

We denote by � � � � 	 � �� � the clause
� 	 � ��� �

� 	���� 	 . Similarly, � � 
 � 	 � 
 ��
 
 � � � is the following CNF

formula:

�

 ��� � � ���

��� �	� � � � � 	 �
�
	�
� 	 � � �

� 	���� 	 � � � � 	���� 	 � �

��� 
 � 	 � 
 ��
 
�� � � asserts that every function of � are well-defined.

We define � ��� � 	 � ��� � as the family

����� ��	 � ����� � � ����� � 	 � �
� 	 � � � � � �
�

In the next section, we will connect the complexity of ��� with the proof complexity of

����� ��	 � ��� � .
Finally, we describe how � ��� � 	 � ��� � is defined for � that is not basic.

Lemma 3.12. For every � -sentence � , there is another � -sentence
�
� over the same language

such that (i) � � is basic, and (ii) ����� � �
� � .

Proof. If � is not basic, we construct a basic � � as follows. Pick any atomic subformula
�

of � with nesting of symbols, say � � � � � ������� . Replace
�

with � ��
 � � 
 � � ����� � � � � � 
 � �
if
�

is unnegated and with � � 
 � � 
 � � ����� � � � � � 
 � � if
�

is negated. Treat the other cases

� � ��� � � � ��� and ����� ������� in a similar way, and repeat this process until all nestings of functions

and predicates are removed. Then make the whole sentence prenex with the quantifier-free part

in DNF, and call the resulting � -sentence � � . It is clear that ����� � �
� � .

If � is not basic, then we define � ��� � 	 � ��� � � � ��� � 	 � �
� � � for some � � that is constructed

as in the above proof.

Below we sum up in the form of a lemma some of the most important properties of the

propositional translation that we introduced.
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Lemma 3.13. Let � be an � -sentence over an arbitrary language. The following hold. (i) The

number of variables in ����� � 	 � ��� 	 � � is polynomial in
�
�
� � . (ii) The size of ����� ��	 � ��� 	 � �

is polynomial in
�

. (iii) The depth of ����� ��	 � ��� 	 � � is two.

Translation Example : Here we describe ����� � 	 � �
� � � ��� 	 � � as an example of how all this

translation works, where
�  " is arbitrary. First, we transform the ������� � � principle on

page 41 into basic form, and the result is

� � �
	�� � 	�
 � � � ����� � � � � � �� � � � � ����� � 
 � � � � � � � 
 � � � (3.3)

For each pair � � 	�� � � � 	 � ��� , we have a variable � 
� � � asserting that � � � � � � . Let
� � �
	�� � 	�
 �

denote the quantifier-free part of (3.3). Then � ��� � 	 � �
����� ��� 	 � � is the following DNF

formula:

�

 � ���

� 

 � � �
�

 
� '

�
� �����

� 

 � � � � 
' � �
� ��� �

� � �

�
�

 �����

�'
�����

� � 

 � '
� ��� �

� � �
�

�

 � ���

�
' 
� ' � �



 � ' � � 

 � ' �
� ��� �

� � �

where (1) is � ���	��

� � , (2) is the negation of � ��
 
�� ���	��
�� � � , and (3) is the negation of

� � 
 � 	 � 
 ��
 
�� ���	��

� � � . This is a standard formulation of the functional pigeonhole principle.

As the above Example shows, ����� � 	 � �
� � � ��� � is essentially the functional pigeonhole

principle, and the proof complexity of the functional pigeonhole principle has been intensely

studied; see [PBI93, KPW95, BCE � 98, Raz98]. Similarly, ����� ��	 � ����� � � � � corresponds to

the parity principle ��( � � of [BP96] in the sense that they have the same proof complexity (up

to an application of a polynomial), and � ��� � 	 � � � � � ��������� � is essentially the housesitting

principle of [CEI96, Bus98c]. ����� � 	 � � � � � �
����� ��� � similarly corresponds to the weak

pigeonhole principle whose proof complexity is fairly well known. Finally, we will later show

that � ��� � 	 � ����
 � ������� ��� � has a very low proof complexity in Nullstellensatz (Lemma

3.33).
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3.5 Search Trees and Reduction

Let � � ��� �� � � � ���� with
� � �� � quantifier-free be an � -sentence over an arbitrary language � .

Assume for simplicity that the only input symbol of � is a unary function
�

.

Let
�

be a Turing machine that solves ��� in time
� � � � . For each

�
,
�

gives rise to a

search tree � � , which encodes all possible computations of
�

on � � 	 " � � in terms of
�

. More

specifically, each internal node of � � denotes a query to
�

, and this node has an outgoing edge

for each of
�

possible ways the query can be answered. Each path � of � � corresponds to

a computation of
�

, and the leaf of � is labeled with the output of
�

in the corresponding

computation.

There is a natural correspondence between � and a partial function ��� � 	 �
� 	 � with

	�� � � � ���
� 	 � � � � � . Let � be a path of � � and assume that it is labeled with a tuple �� of

elements of 	 � . That the tree � � solves ���
� � 	 " � � is more formally stated as follows: for every

path � of � � , its leaf label �� is a solution for ���
� � 	 " � � specified by ��� , where the notion of

��� specifying a solution is defined as below:

Definition 3.14. Let � be a language of which a unary function
�

is the only input symbol. Let

� � ��� ���� � � ���� be an � -sentence over � . Let
�  " be arbitrary and assume that � � � 	 �

� 	 �
be a partial function. We say that � � specifies a solution �� for ��� � � 	 " � � iff �� is a tuple of

elements of 	 � such that, for every total extension
� � of � � , the sentence

� � ���� holds in the

structure � 	 � 	
� � � . We also say that � � specifies a witness �� for � in 	 � .

More generally, if the input symbols of � are functions
� � 	 ����� 	 � � , then we say that partial

functions �
�
�
����� 	 �

�
� specify a solution �� for ���
� � � 	 ����� 	 � � 	 " � � iff the following holds: if, for

each
� � � " 	 � � , � 
 �� is a total extension of �



� , then

� � ���� holds in the structure � 	 � 	
� � �� 	

����� 	 � � �� � .
If � contains relations, we use their characteristic functions and apply the same definition

above.

The height of � � is defined to be the length of the longest paths from the root to a leaf node,

and the size of � � is the number of nodes of � � . From now on, the size and height of � � are
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measured in terms of the size
�
�
� � of the underlying set 	 � . Thus, in general, if

�
runs in

time
� � � � then the height of � � is � � ���
��
 � � and its size is at most

��� �������	� � . In particular, if
�

runs in polynomial time, then � � is of height polylogarithmic in
�

and size quasipolynomial

in
�

.

Let �
� and ��� be type-2 search problems defined by � -sentences � and
�

, and assume that

the input symbols of ��� and � � are functions
� � 	 ����� 	 � � and � � 	 ����� 	�� � , respectively. Assume

that �
� � � ��� by a reduction
�

. Often it becomes useful to split
�

into two polytime

oracle Turing machines
� � and

�
� in the following way:

� � is identical to
�

except that it

terminates when
�

has produced a query � � ��� � 	 ����� 	�� � 	 " � � to � � ; and
�
� simulates the

computation of
�

after it has received an answer
�

to the query � . More intuitively,
� � and

�
� are computing � and � of Figure 3.1 on page 38, respectively. Note that

�
� ’s behaviour

depends on a computation of
� � , since obviously

�
’s behaviour after the ��� -query depends

on its own behaviour before the query. Thus, in order to specify the computations of
�
� in

terms of
�

, the following need to be fixed: (i) the original inputs to
�

; (ii) a computation path

of
� � and a query � to ��� which is asked at the end of the computation; and (iii)

�
such that

� � ��� ��� � .

Let �
�
�� be a search tree encoding the computations of

� � on � � � 	 ����� 	 � � 	 " � � ; note that

its leaves are labeled with queries to ��� . Let � be an arbitrary path of �
�
�� and � be its leaf

label. Then for every
� � ��� ��� � we define the search tree �

�



�
� �&	 � � describing all possible

computations of
�
� given � and

�
. Since

�
on any computation path outputs a solution for

�
� , the following condition is satisfied: If � � is a path in �
�
�� ending with a query � to ��� ,

and if � � is a path in �
�



� � � � 	 � � with
� � ��� ��� � , then � � � and � � 
 together specify a witness

to � in 	 � .

Note that, if
�

has the instance extension property, then, by Lemma 3.11, �
�
�� consists of

a single leaf node and therefore every path � in �
�



� � � � specifies a solution for ��� if � is the

query that
�

asks on " � and
� � ��� ��� � .

Finally, recall that, if the reduction
�

asks a query ��� � 	 ����� 	�� � 	 " � � to � � , then � � 
 � � �
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for some polynomial 
 and each � 
 is polynomial-time computable using oracles
� � 	 ����� 	 � � .

For each �� � � � � ��� 
 � , we define �
�
	 � �� �� to be the search tree for the polynomial-time algorithm

computing � 
 � ���� in terms of
� � 	 ����� 	 � � . The leaves of �

�
	 � �� �� are labeled with � 
 � �� � � �

for

some
� � ��� � ��� 
�� .

3.6 Relationship between Search Problems and Proof Com-

plexity

In this section we present our results connecting the complexity of ��� and the proof complexity

of � ��� � 	 � �
� � . In order to simplify our presentation, we make the following assumption:

� � is over language � whose only input symbol is a unary function.

However, all the results of this section hold without this assumption.

3.6.1 Bounded-depth
�
�

: Lemmas

Let � be an � -sentence and let
�

be a Turing machine solving ��� in time
� � � � . Assume for

simplicity that a unary function
�

is the only input symbol of � . As described in the preceding

section,
�

gives rise to the family � � � � � � � . Consider the propositional variables � ���� 	 of

����� ��	 � ��� � . Each path � of � � uniquely corresponds to the conjunction � � of variables such

that a literal � ���� 	 appears in � � iff � contains an edge that sets
� � � � to be

�
. We will abuse

the notation and simply write � to denote both a path of � � and its corresponding conjunction.

Definition 3.15. Let
�  " and � � be a tree defined as above. We define � � 	 ��� � � � to be the

DNF formula
�
� � � � , where � is the set of all paths in � � . The size of � � 	 ��� � � � is polynomial

in the size of � � .

The following lemmas show that certain important facts about the computations of
�

have

short � � -proofs of depth 2. We will use the following three lemmas many times in the next
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subsection. First, we show that depth-2 ��� has short proofs of the fact that, if
�

is total, then

at least one path in � � is consistent with
�

.

Lemma 3.16. Let � ,
�

, and � � � � � � � be defined as above. For each
�

, the sequent of the form

� ��
 
 � � � � � � 	 ��� � � �
has a depth-2 � � -proof whose size is polynomial in the size of the above sequent.

Proof. For every node � of � � , define � � � � � �
� to be the cedent of all paths of � � that go

through node � , and
� � � �
	 ���
� to be the cedent of all

�
-queries that are asked in the subtree

rooted at � . Let � � be the set of variables corresponding to the path from the root to � . We

define � � to be the sequent

� � � � � 	 �
� � � � � 
 � � � �

� � � �� � � �
� � � � � ���
� �

It suffices to derive � � with � the root node.

We argue that the sequent � � for every node � of � � has a desired depth-2 ��� -proof; in

fact, the derivation is essentially an upside-down copy of � � itself. First, let � be a leaf node.

Then � � is

� � � � � � � ���
� 	
which has a trivial derivation. Now suppose that � is a nonleaf node labeled with, say, a query
� � � � . Node � has a child node � 
 for each

� � 	 � , which is reachable by the edge specifying
� � � � � �

. Then � � 	 is of the following form:

� �
��� 
 	 � � 	 �

� � � � � 
 � � � 	 �
� � � �� � � �

� � � � � � � 
��

By weakening and � -left, we derive

� �
��� 
 	 � � 	 �

� � � � � � 
 � � � � - � �
� � � �� � � �

� � � � � � �
� � (3.4)

Using the sequents (3.4) for every ��
 , we derive

�

 � ���

� �
� � 
 	 � � 	 �

� � � � � � 
 � � � � - � �
� � � �� � � �

� � � � � � �
�

by � -left. Since
� 
 ��� � �

�
��� 
 is � � � �� �

� � , we are done.
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The next lemma essentially shows that depth-2 � � has short proofs of the fact that, if
�

is

well-defined, no two paths of � � cannot be simultaneously consistent with
�

.

Lemma 3.17. Let � ,
�

, and � � � � � � � be defined as above, and let
�  " be arbitrary. Let � �

and � � be two nonempty, disjoint sets of paths of � � and define
� 

�

�
� � � 	 � for

� � � " 	 � � .
Then the sequent of the form

��� 
 � 	 � 
���
 
�� � � 	
� � 	 � � �

has depth-2 ��� -proof whose size is polynomial in the size of the sequent.

Proof. Let
� �
� � � �� � ����� � �� � , and let

� � � � � �� � ����� ������ � . Pick arbitrary paths � �
 and � �'
from

� �
and

� � , respectively. Then � �
 and � �' must disagree on at least one query since they

correspond to two different paths in the same tree. Assume that � �
 contains
� � � 
 ' � � � 
 ' and

that � �' ,
� � � 
 ' � � �

�
 ' with
� 
 ' �� �

�
 ' . Then both of the following have trivial derivations:

� �
 	 � �' � � � �� 	 �
� 	 	 �

and � �
 	 � �' � � � �� 	 �
� 	 �	 �

�

From these sequents we derive

� � ��� 	 �
� 	 	 �

� � � ��� 	 �
� 	 �	 �

	 � �
 	 � �' � � (3.5)

From the sequents (3.5) for every
� � � " 	 	 � and � � � " 	 � � , we derive

� � � �
� �� 	 �

� � 	 	 �
� � � �

� �� 	 �
� � 	 �	 �

� 
 ��� � � � � � ' ��� � � � � 	
� � 	 � � � �

by weakening and � -left. Using weakening and � -left only, we derive

� � 
 � 	 � 
���
 
�� � � 	
� � 	 � � � �

Note that, by definition, every path � of � � is a conjunction of positive literals.

Definition 3.18. Let � be a path of some search tree � � , which is a conjunction of some

positive literals. Then a variant of � is defined to be any conjunction � � of literals (positive
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or negative) satisfying the following: (i) � and � � contain an equal number of literals; (ii)

all positive literals of � � are present in � ; and (iii) for each negative literal � � ���� 	 of � � , �

contains a positive literal � ���� 	 � for some
�
� �� �

.

The following lemma states that, assuming that
�

is well-founded, bounded-depth ��� can

convert paths into any of their variants.

Lemma 3.19. Let
�  " and let � � be defined as in Lemmas 3.16 and 3.17. Let � be an

arbitrary path of � � and � � be a variant of � . Then the sequent

� � 
 � 	 � 
 ��
 
�� � � 	 �
� � �

has depth-2 ��� -proof whose size is polynomial in the size of the sequent.

Proof. Let � be a path of � � and assume that � � is a variant of � obtained by substituting

� � �
� � � 	 � 	

����� 	 � � �
� � � 	 � for � �

� � � 	
�
� 	
����� 	 � �

� � � 	
�
� , respectively. For each

� � � " 	 � � ,

� � 
 � 	 � 
 ��
 
 � � � 	 �
�
� 	 � 	 	

� � � �
� � 	 �	

has short derivations. From these sequents, we derive

� � 
 � 	 � 
���
 
�� � � 	 �
�
� � � 	

�
� 	
����� 	 � �

� � � 	
�
�
� � � �

� � � 	 � �
����� � � � �

� � � 	 �

by weakening and � -right. It is easy to derive the desired sequent from the above.

Let ( and � be arbitrary conjunctions of literals. We say that ( contains � if every literal

of � occurs in ( . Let � be a path of � � and assume that �� is the solution output at the

end of the computation corresponding to � . Thus, for every total extension
� � of the partial

function ��� ,
� � ���� is true in structure � 	 � 	

� � � , where
� � ���� is a quantifier-free formula such

that � ��� � � � � �� � � � ���� . As in (3.2), let
�
� � �� � be the propositional DNF formula obtained by

replacing the atomic formulas of
� � �� � by either a logical constant or a variable in an appropriate

way.
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Lemma 3.20. Let
�  " and � � , � , and

�
� � �� � be defined as the paragraph above. Then there

is a variant � � of � that contains a term of
�
� � �� � .

Proof. Assume that
�
� � �� � is of the form

�
� � �� � ��� � � � � �

����� � � �
where � 
 � �� � for each

� � � " 	 � � is a term, i.e., a conjunction of literals.

Assume, for the sake of contradiction, that, for every
� � � " 	 � � , the term � 
 is not contained

in any variant of � . Thus, for every ��
 , at least one of the following holds: (i) ��
 contains a

positive literal � ���� 	 that does not occur in � ; and (ii) ��
 contains a negative literal � � ���� 	 such

that, for every
�
�
� 	 � , � ���� 	 � does not occur in � . Define a total extension

� � of � � as follows.

For each � 
 , if condition (i) holds, then
� � � � � � 
 for some 
 �� �

; and if condition (ii) holds,

then
� � � � � � �

. The rest of
� � is defined in an arbitrary way. It is clear that �� is not a solution

in structure � 	 � 	
� � � , and a contradiction is reached.

3.6.2 Bounded-Depth
�
�

: Results

We now present one of our main results that connect the complexity of search problems and

the proof complexity of the corresponding combinatorial principles in bounded-depth � � . We

first describe a simpler result relating the time complexity of ��� and the proof complexity of

����� ��	 � ��� � , where � is an � -sentence that holds in every canonical structure. This is based

on the intuitive idea that an algorithm that solves ��� is a highly constructive proof of � . We

formalize this idea by showing how to turn an algorithm for ��� into a bounded-depth ��� -

proof of ����� ��	 � ��� � . This is not difficult, since we have already shown in the preceding

section that bounded-depth ��� has short proofs of some of the important properties of the

search tree � � .

Theorem 3.21. Let � be an � -sentence, and let
�

be a deterministic Turing machine that

solves ��� in time
� � � � . Then ����� � 	 � ��� 	 � � has depth-2 ��� -proofs whose size is polynomial

in � � � � � � 	�� � � , where � � is the size of ����� � 	 � ��� 	 � � and � � is the size of � � .
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Proof. It suffices to prove that

� � 
 � 	 � 
���
 
�� � � 	�� ��
 
�� � �
� � � (3.6)

has a depth-2 � � proof of the desired size for every
�  " .

Let � be an arbitrary path of � � . By Lemma 3.20, � has a variant � � that contains a term

of � � , and therefore we have a short derivation of

� � � � � �

On the other hand,

� � 
 � 	 � 
 ��
 
�� � � 	 �
� � �

has short ��� -proofs by Lemma 3.19. From these two sequent, we derive by a cut on � � the

sequent

� � 
 � 	 � 
���
 
�� � � 	 �
� � � (3.7)

Using the sequent (3.7) for each path � of � � , we can derive

��� 
 � 	 � 
���
 
�� � � 	 �
� 	 ��� � � �

� � � (3.8)

by � -left only. The desired sequent (3.6) follows by a cut from (3.8) and

� ��
 
 � � � � � � 	 ��� � � �

which has short proofs by Lemma 3.16.

Clearly, the assumption of Theorem 3.21 can be weakened to the existence of a nonuniform

family of trees � � solving ��� .

Theorem 3.21 could be used to obtain a lower bound on the height (and, in turn, size) of

� � via a lower bound on ����� ��	 � ��� � in depth-2 � � ; however, it is often much harder to show

a proof complexity lower bound than a lower bound for the complexity of ��� . Theorem 3.21

may be more useful in obtaining upper bound on the proof lengths of ����� ��	 � ��� � : it now

suffices to demonstrate an algorithm that solves ��� .
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Now we present the first main result of this Chapter. The intuitive idea behind this is that

a many-one reduction from ��� to � � is itself a constructive proof that
�

implies � , and we

formalize this idea in bounded-depth ��� . We adopt the following definition for comparing

the proof complexity of different families of propositional formulas.

Definition 3.22. Let � 	�� be two families of propositional formulas. We say � has a quasipoly-

nomial � � ��� reduction to � , written � � 
 � ����� , if � has quasipolynomial-size, bounded-

depth ��� -proofs in which any substitution instance of � is allowed as an initial sequent.

If � � 
 � ����� , then the existence of bounded-depth quasipolynomial-size � � -proofs of

� implies that � also has quasipolynomial-size ��� -proofs of bounded depth. We present

a result connecting a many-one reduction between search problems and a quasipolynomial

� � ��� reduction between combinatorial principles.

Theorem 3.23. Let � and
�

be two first-order � -sentences, and assume that ��� has the

instance extension property. If ��� ��� ��� , then ����� � 	 � ��� � � 
 � ��� �����
� 	 � ��� � .

Proof. For simplicity, we assume that the type-1 arguments of ��� and � � are unary functions
�

and � , respectively. A proof for a more general case is analogous. We use � with subscripts

to denote the variables of ����� � 	 � ��� � and � with subscripts for the variables of ����� ��	 � ��� � .
Since

�
satisfies the instance extension property, by Lemma 3.11, ��� � � ��� by a

polynomial-time oracle Turing machine
�

whose query � � ��� 	 " � � only depends on
�

, the

length of the string argument of ��� .

Fix
�

arbitrarily. Recall the definition in Section 3.5 of the search tree �
�
� � �
� computing the

value of � � � � . For each
� � 	 � , we partition the paths of �

�
� � �
� into two sets � and � � , where

� consists of all the paths whose leaves are labeled � � � � � �
, and � � contains all the other

paths. We define
� � �!���

�
��� 	 � � �

� � � � and
� � � ���	�

�
��� 	 � � �

� � �
� � .

We write ����� � 	 � � � 	�� � � � � � � to denote the substitution instance of ����� ��	 � ��� 	�� � in

which the literals �
�
��� 	 and �	�

�
��� 	 are replaced by the DNF formulas

� � � �
�
�
��� 	 � and

� � � ���	�
�
��� 	 � ,

respectively. Note that, because of Lemmas 3.16 and 3.17, � � proves the equivalence of
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� � �!���
�
��� 	 � and � � � � ���	�

�
��� 	 � from � ��
 
 � � � and � � 
 � 	 � 
 ��
 
�� � � ; thus, we will ignore the syn-

tactic difference of the two.

We claim that ��� has bounded-depth quasi-polynomial size proofs of

����� � 	 � ��� 	�� � � � � � � � ����� ��	 � �
� 	 � � (3.9)

from which the theorem follows. Note that this sequent has depth 3, and no formula of higher

depth will appear in the proof. Denote ����� ��	 � ��� 	 � � and ����� � 	 � � � 	�� � as

� � ��
 
 � � � � � � 
 � 	 � 
���
 
�� � � � � � � and � � ��
 
�� � � � � � 
 � 	 � 
 ��
 
�� � � � � � � 	

respectively. Then it suffices to show that the following three sequents have quasi-polynomial

size depth-3 ��� proofs:

� ( � � ��
 
�� � � � � ��
 
�� � � � � � � �
�
� � ��� 
 � 	 � 
���
 
�� � �

� ��� 
 � 	 � 
���
 
�� � �
� � � � �

� � � ����
 
�� � � 	���� 
 � 	 � 
���
 
�� � � 	�� �
� � � � � � � �

Below we show that each of the above sequents have bounded-depth ��� proofs of appropriate

size.

(A) If
�

is total, then so is � . Since � ��
 
 � � � is the conjunction of � � �
�
� ��� for every � � 	 � ,

it is enough to show that

����
 
�� � � � � � �
�
� � � � � � � �

has a ��� proof of an appropriate size and depth. This is immediate from Lemma 3.16, since

� � �
�
� � � � � � � � is simply � � 	 ��� �

�
� � �
� � .

(B) If
�

is well-defined, then � is well-defined. Recall that � � 
 � 	 � 
 ��
 
�� � � is the conjunction

of � �
�
��� 	 ���	�

�
��� 	 � for every

� 	 � �
� 	 � with

� �� �
� . Thus, it suffices to derive

� � 
 � 	 � 
 ��
 
�� � �
� � �
�

�
��� 	 � � � � � � 	 � ���

�
��� 	 � � � � � � � � (3.10)

This is immediate from Lemma 3.17, since �
�
��� 	 � � � � � and �

�
��� 	 � � � � � � are disjoint sets of paths

of �
�
� � �
� .
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(C) If we find a solution to ��� , then we can find one for ��� . Recall that
�

is in DNF and

therefore � � is also in DNF. Let
�

be a term of � � of the form
�
�
� � �

� 
 ��� � � � � � 
 , where each

literal � 
 is either the variable �
�
� 	 � 	 	 or its negation. Note that

�
is asserting that a specific tuple

�
 is a witness to
�

in 	 � .

Our goal is to show that the following sequent has quasipolynomial-size, bounded-depth

��� proofs:

����
 
�� � � 	���� 
 � 	 � 
���
 
�� � � 	
� � � � � � � � � (3.11)

Note that sequent (C) is derivable from sequents (3.11) for every term
�

of � � by � -left.

For each
� � � " 	 � � , let � 
 � �

�
� � 	 �� . Define � to be the set of conjunctions

� �
� � � � � �	�	� � � � � 	 � � � � � 	 ����� 	 � � � � � � 	

where � 
 � ��
 means that � 
 is a path in � 
 . The sequent
� � is essentially

� � � 	 ��� � � , where

� is the tree that starts with � � whose leaves are replaced with copies of � � whose leaves are

replaced with � � , and so on. By Lemma 3.16, we have the sequent

� ��
 
�� � � � � (3.12)

A path is inconsistent if it contains both � ���� 	 and � ���� 	 � for some � and
� �� �

� . Our

next goal is to remove all the inconsistent paths from the succedent of (3.12). This is done as

follows. Let � be an inconsistent path. Then � can be written as � � � � ���� 	 � � ���� 	 � . By Lemma

3.19, we have

� � 
 	 � � 
���
 
 	 � � � �
���� 	 ��� ���� 	 � � � � � � ���� 	 � � � � ���� 	 � �

Since � ��� � ���� 	 � ��� � ���� 	 � � has short proofs from logical axioms, we derive

� � 
 	 � � 
���
 
 	 � � � �
���� 	 � � ���� 	 � � �

By a cut on � � � � � � ���� 	 � � ���� 	 � , we remove � from the succedent of (3.12). Thus, we have

� ��
 
 � � � 	 � � 
 � 	 � 
 ��
 
�� � �
� � � (3.13)



CHAPTER 3. TYPE-2 SEARCH PROBLEMS AND PROOF COMPLEXITY 63

where � � denotes the set of all consistent paths of � .

Recall that
�
�

� 
 � � � � � � 
 and it is asserting that some �
 is a witness to
�

. For every path

� � � � � � ����� � � � � of � � , we say that � makes �
 a solution iff, for every
� � � " 	 � � , � 


witnesses � 
 ; that is, � 
 is labeled with � � � 
�� � � 
 if � 
 is a positive literal �
�
� 	 � 	 	 and � � � 
�� � �

�

for

� 
 �� �
�
 if � 
 is a negative literal �	�

�
� 	 � 	 	 . Now we partition � � into two sets � � � ��� and

� � � � � � �
� , where � �� �
� consists of all the paths that makes �
 a solution and � � � � � � ��� contains the

rest of the paths.

Let � � � � � ��� and recall that �
�



�
� �
 � is the search tree that encodes all possible compu-

tations of
�

after it receives �
 � � � ��� 	 " � � . Let � be an arbitrary path of �
�



�
� �
 � . If � is

inconsistent with � , then the sequent �&	 � � �
has trivial proofs. If � is consistent with � ,

then, by the definition of
�
� , � specifies a solution for ��� , and by the method of Lemma 3.19

and Theorem 3.21 we derive � � 
 � 	 � 
���
 
�� � � 	 �&	 �
� � � . Thus, from these sequents for � , we

derive

� � 
 � 	 � 
���
 
�� � � 	 �&	 �
� 	 ��� �

�



�
��� � � � � � (3.14)

by weakening and � -left. Since we have (3.14) for each � � � � � ��� , we can derive

� � 
 � 	 � 
���
 
�� � � 	
�

� � � ��� 	�� � 	 ��� �
�



�
��� � � � � � (3.15)

where
�

� � � ��� is the disjunction of the paths in � � � ��� . By Lemma 3.16 we have

� ��
 
�� � � � � � 	 ��� �
�



�
��� � � . From this sequent and sequents (3.13) and (3.15), we derive

� ��
 
�� � � 	�� � 
 � 	 � 
���
 
�� � �
� � � 	 � � � � � � �
� (3.16)

Let � � � � � � ����� � � � � be a path in � � � � � � ��� . Since � does not make �
 a solution, it

follows that there is
� � � " 	 � � such that � 
 is inconsistent with every term in � 
 � � � � � . Thus, the

sequent

� 
�	 � 
 � � � � � �

has short proofs by repeated applications of � -left, and from this it is easy to derive

� 
�	 � � � � � � �
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by weakening and � -left. Since we have this sequent for every � � � � � � � � ��� , by repeated

applications of � -left we can derive

� � � � � � ��� 	
� � � � � � � (3.17)

Finally, a cut on � � � � � � ��� using (3.16) and (3.17) produces (3.11).

In Section 3.7, we obtain relative separations of search classes, one of which is previously

unknown, via Theorem 3.23. We also discuss its connections to bounded arithmetic in Section

3.7.

Finally, we sketch how to prove a slightly stronger form of Theorem 3.23 which does not

assume that � � has the instance extension property.

Theorem 3.24. Theorem 3.23 continues to hold without the assumptions that � � has the in-

stance extension property.

Proof. Assume that ��� ��� ��� by a reduction
�

that asks polynomially many queries to
�

before asking a query to � � . Let
�  " be arbitrary and let

� � be a deterministic machine

that simulates
�

until it produces a query to ��� , and let �
�
�� be the corresponding search

tree. Let � � 	 ����� 	 � � be all the paths of �
�
�� , and for each

� � � " 	 � � , let � 
 � ��� 
 	 " � 	 � be the

corresponding ��� -query. Note that � is the number of paths of � � , which is quasipolynomial

in
�

. The query � 
 gives rise to the tautology ����� � 	 � ��� 	�� 
 � � � � � 
 � that asserts the totality of

��� ��� 
�	 " � 	 � . We claim that

����� ��	 � � � 	 � � � � � � � � � 	 ����� 	 � ��� � 	 � ��� 	 � � � � � � � � � � � ��� � 	 � �
� 	 � � (3.18)

has short ��� proofs of bounded depth. Let us write ����� � 	 � ��� 	�� 
 � � � � � � as

� � 
��
 
�� � � � � 
� 
 � 	 � 
 ��
 
 � � � � � 
� 	

where the superscript
�

indicates the dependency on path � 
 of �
�
�� . It is not hard to see that

sequent (3.18) has a short derivation from the following sequents:
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(
� 
 ) � ��
 
�� � � 	�� � 
 � 	 � 
 ��
 
 � � �

� � 
��
 
�� � � � � 
� 
 � 	 � 
���
 
�� � � for each
� � � " 	 � � ; and

( � ) � �� 	 ����� 	�� �� 	�����
 
 � � � 	 ��� 
 � 	 � 
 ��
 
�� � �
� � � .

The short proofs for (
� 
 )’s are already constructed in the proof of Theorem 3.23. (E) has the

following derivation, where � denotes � � ��
 
�� � � 	���� 
 � 	 � 
 ��
 
 � � � � and the double line abbreviates

multiple applications of weakening followed by a cut:

� � 	�� �� 	�� � � �
� � 	�� �� 	��

� � �

� � 	�� �� 	 � � � �
� � � � 	 ����� 	 � �

weakening
� �� 	�� � � � 	 � � 	 ����� 	 � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �� 	�� � � � 	 � � 	 ����� 	 � � � �����
� �� 	 ����� 	 � �� 	�� � � � 	 � � 	 � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �� 	 ����� 	�� �� 	�� � � � 	 � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �� 	 ����� 	�� �� 	 � � � �
Note that the upper right sequent of the above derivations is � � � � 	 ��� �

�
�� � , for which

we have bounded-depth � � proofs by Lemma 3.16. Thus, it remains to show that, for each
� � � " 	 � � , the sequent

� 
 	�� 
� 	�� � � �

has short proofs. This is done in a way analogous to the case (C) of the proof of Theorem

3.23.

3.6.3 Nullstellensatz: Preliminaries

We saw above connections between the complexity of search problems and the proof lengths of

combinatorial principles in bounded-depth ��� . We present similar connections with respect

to another proof system, Nullstellensatz.

Nullstellensatz is an algebraic proof system (actually, a refutation system) that operats on

polynomials. Let � be a field and let �� be a set of variables. Given polynomials � � 	 ����� 	 � � 	 
 �

� � �� � , a Nullstellensatz derivation of 
 from � � 	 ����� 	 � � is another set of polynomials � � 	 ����� 	 � � �

� � �� � such that

� � � � � �	�	� � � � � � � 
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identically. Nullstellensatz refutation of � � 	 ����� 	 � � is a Nullstellensatz derivation of 1 from

� � 	 ����� 	 � � . The following shows why this is called a refutation:

Theorem 3.25. Let � be an arbitrary field, and let � � 	 ����� 	 � � � � � �� � . Then the equations

� � � � 	 ����� 	 � � � �
do not have a solution in the algebraic closure of � if and only if there is

a Nullstellensatz refutation of � � 	 ����� 	 � � .

Via a standard translation of propositional formulas into polynomials (see below), Null-

stellensatz is turned into a refutation system showing that the given propositional formula is

unsatisfiable. The complexity measure of Nullstellensatz refutations is the degree, which is the

maximum over the degrees of � 
 � 
 . See [CEI96, Raz98, Bus98c] for more information on Null-

stellensatz. Nullstellensatz is derivationally sound and complete over any field � in the sense

that 
 can be derived iff it is in the ideal generated by � � 	 ����� 	 � � . Throughout this section, we

work in an arbitrary field.

Let � be a basic � -sentence. We show how to construct a family of unsatisfiable sets of

polynomials. Let
�  " be arbitrary and consider the following unsatisfiable CNF formula

expressing the negation of � ��� � 	 � ��� 	 � � :

� ��
 
�� � � � � � 
 � 	 � 
 ��
 
�� � � � � � � 	

where � � � is the CNF formula obtained from � � � by pushing negations inward.

We convert the above CNF formula into an unsatisfiable set 
 ��� � ��� ��� 	 � � such that


 � � � ��� �
� 	 � � � 
 ��� � � � � 
 � � � ��
 
�� � � � 
 � � � � 
 � 	 � 
 ��
 
 � � � � 
 ��� � ��� �
�

The negation sign in front of ��� is meant to indicate that 
 � � � � � ��� 	 � � is asserting that there

is no solution for ��� in 	 � .

� The variables of 
 � � � � � ��� 	 � � are the variables of � ��� � 	 � ��� 	 � � .
� The set 
 � � � � � contains a polynomial for each clause

�
of � � � that is obtained in the

following way: each literal of
�

forms a linear factor of the polynomial, where a positive

literal � becomes a factor � " � � � and a negative literal � � becomes a factor � .
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� For each clause � � � � 	� � �� � of � ��
 
�� � � , 
���� � ��
 
 � � � contains a polynomial

�

	 � ���
� ����� 	 � "

� Similarly, 
 � � � � 
 � 	 � 
 ��
 
�� � � consists of polynomials

� ����� 	 � ����� 	 �

for each clause � � ����� 	 � � � ����� 	 � of � � 
 � 	 � 
���
 
�� � � .
� Finally, 
���� � ��� � is there to force each variable � to take on 0/1 values; i.e., there is a

polynomial

� � � �
for each variable � .

We define 
 ��� � ��� ��� � as


 � � � � � ��� � � � 
���� � ��� ����	 � � � � � �
�

If � is not basic, we define 
 � � � � � ��� � in the way analogous to ����� ��	 � ��� � . Note that the

maximum degree of 
 � � � � � ��� � is a constnat that depends on � .

3.6.4 Nullstellensatz: Results

Let � ,
�

, � � � � be as in section 3.6.1. For each path � in � � , we form a monomial as follows:

if the query
� � ��� � �

appears in � , then the variable � ���� 	 appears in the monomial. Clearly,

the degree of the monomial is the length of � . We will abuse notation and use � to refer to both

the path and the monomial. We associate a polynomial, 
 ��� � � � � � with the tree � � —namely,

the sum of the monomials for each path in � � . The polynomial 
 � � � � � � � has degree equal to

the height of the tree � � .

Lemma 3.26. Let � ,
�

, � � � � be as above. For each
�

, the polynomial 
 ��� � � � � �
� " has a

Nullstellensatz derivation from 
 ��� � ��
 
 of degree at most the height of � � .
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Proof. Fix
�

. We prove induction on the height of � � that 
 � � � � � � � has a derivation of degree

at most the height of � � . If � � is of height 1, then � � has one internal node connected to
�

leaves. Let � be the query. Then


 � � � � � � �
� " �

�

	 �����
� ����� 	 � " 	

which is a polynomial in 
���� � ��
 
�� � � .
Suppose that � � has height � � " . Consider the tree � � , the subtree of � � where every path

from the root is truncated at length � � " . By induction, 
 � � � � � � � � " has a Nullstellensatz

derivation of degree � � " . Consider any leaf � of � � that is not a leaf of � and assume it queries
�

on � in � � . Let � �� be the tree � � with every � � -child of � added on. Then


 ��� � � � �� � � 
 ��� � � � � � � � � � �

	 �����
� ����� 	 � " � 	

where � � is the path from the root to � . We know 
 � � � � � � �
� 
���� � � � � � is just the sum of


 � � � � � �� � � 
 ��� � � � � � for all such leaves � . Hence 
 � � � � � � � has a degree � Nullstellensatz

derivation.

Let � be a path (i.e., a monomial) of some search tree � � specifying a solution �� for ��� ,

where � �
� � � ��� �� � � � ���� . We define a mutant of � to be any polynomial of the form � � � ,

where � is of the form � " � � �� � � 	
�
� � �	�	� � "

� � ������ 	 �� � such that, for each
� � � " 	�� � , the variable

� �� 	 � 	 	 is a factor of � with
� 
 �� �

�
 . We also define � to be a mutant of itself.

Let � � be a mutant of a path � . We say that � � contains a polynomial � if every linear

factor of � is also a linear factor of � � .

Lemma 3.27. Let � be a path of � � specifying a solution �� for ��� , where � is defined as

above. Then then � has a mutant � � that contains a polynomial from 
 ��� � � � .

Proof. This follows from the same argument as in the proof of the similar Lemma for bounded-

depth ��� (Lemma 3.20).

The following is a Nullstellensatz analogue of Theorem 3.21, linking the time complexity

of ��� and the degree of Nullstellensatz refutations of 
 � � � � � ��� � .
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Theorem 3.28. Let � be an � -sentence, and let
�

be a deterministic Turing machine that

solves ��� in time
� � � � . Then 
 � � � ��� ��� 	 � � has Nullstellensatz refutations of degree

� ���
��
 � � .

Proof. (Sketch) This is proven analogously to Theorem 3.21 for depth-2 � � . By Lemma 3.26,

there is a derivation of 
���� � � � � �
� " . Our goal is to cancel out each path � of 
 � � � � � � � . By

Lemma 3.27, each path � of 
���� � � � � � has a mutant � � that contains a polynomial from 
 � � � � � ,

from which one instance of � � is easily derived.

It suffices to show how to derive another instance of � � . Assume that � � is of the form

� � � " � � � � �	�	� � " � � � � , where variable � 
 is a factor of � for each
� � � " 	�� � . It is easy to

see that there exists a polynomial � derivable from 
 � � � � 
 � 	 � 
 ��
 
�� � � such that � � � �
� � .

Definition 3.29. Let � be a field and let �� and �� be infinite sets of variables. Let � � be an

infinite family of finite subsets of � � �� � and let � � be an infinite family of finite subsets of � � �� � .
We say that � � has a polylogarithmic Nullstellensatz reduction to � � and write � � ��� � � � if,

for any ( � � � there is a � � � � and a set of polynomials
�
��� � � ��� � � �

�
�
� � � �� � such that

each polynomial in � � � � ��� � has a polylogarithmic-degree Nullstellensatz derivation from ( ,

where � � � � ��� � is the substitution instance of � in which every variable � of � is replaced by

a polynomial ��� .

If � ��� � � , then the existence of polylog-degree Nullstellensatz refutations of � implies

that � also has polylog-degree refutations. We relate a many-one reduction between search

problems and a polylogarithmic Nullstellensatz reduction between combinatorial principles

encoded as sets of polynomials.

Theorem 3.30. Let � and
�

be two first-order � -sentences and assume that � � has the in-

stance extension property. If ��� � � ��� , then 
 � � � � �
� � ��� � 
 ��� � � ��� � over any field.

Proof. As usual, for simplicity, we assume that the type-1 arguments of ��� and ��� are

unary functions
�

and � , respectively. We use � with subscripts to denote the variables of

����� ��	 � ��� � and � with subscripts for the variables of ����� ��	 � ��� � .
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Since
�

satisfies the instance extension property, by Lemma 3.11, ��� � � ��� by a

polynomial-time oracle Turing machine
�

whose query � � ��� � 	 ����� 	�� � � 	 " � � only depends

on " � , the string argument of ��� . Fix
�

arbitrary. Recall that 
 ��� � � �
�
� � �
� � is the sum of all

paths of the tree �
�
� � �
� computing the value of � � � � . For each

� � 	 � , define 
 ��� � �
�
�
��� 	 � to be

the sum of all paths of �
�
� � �
� asserting that � � � � � �

, and define 
 � � � � " � �
�
��� 	 � to be the sum

of all other paths of �
�
� � �
� . Thus,


 � � � � �
�
� � �
� � � 
 � � � ���

�
��� 	 � � 
 � � � � " � �

�
��� 	 � �

Because of Lemma 3.26, there is an equivalence in Nullstellensatz between " � 
 � � � ���
�
��� 	 �

and 
 � � � � " � �
�
��� 	 � . Therefore, we will ignore the syntactic difference between the two.

Define 
 � � � � ��� 	�� � � � � � � as the result of substituting for each variable �
�
��� 	 the polynomial


 � � � ���
�
��� 	 � .

Below we show that Nullstellensatz derives from 
���� � ��� ��� 	 � � the substitution instance


 � � � � � ��� 	�� � � � � � � and that the derivation is of degree polylogarithmic in
�

. It suffices to

show that, for each polynomial � in 
���� � ��� ��� 	�� � , its substitution instance �
� � � � � has a

polylogarithmic degree derivation from the polynomials of 
 ��� � ��� ��� 	 � � . Four cases arise.

(A) If
�

is total, then so is � . If � is 
 � � � ��
 
�� � � ��� � � ��� , then �
� � � � � is 
 ��� � � �

�
� � �
� � � " ,

which has a desired derivation by Lemma 3.26.

(B) If
�

is well-defined, then so is � . Let � is in 
���� � � 
 � 	 � 
 ��
 
�� � � . Then � is of the form

�
�
��� 	 �

�
��� 	 � for some

� �� �
� . Every term

�
in �

� � � � � is the product of two different paths in

�
�
� � �
� , so something in 
 � � � � 
 � 	 � 
 ��
 
�� � � is a factor of this term.

(C) If we find a solution to ��� , then we can find one for ��� . This is analogous to the

corresponding case in the proof of Theorem 3.23. Note that we handle mutants of paths in the

way we did in the proof of Theorem 3.28.

(D) The variables of 
 � � � ��� � � � are boolean. Let �
� 
 � � � ��� � of the form �

�
��� 	 � ���� � � � � 	 � .

But then �
� � � � � is just 
 � � � ���

�
��� 	 � 
 ��� � � " � �

�
��� 	 � , so every term is the product to two different

paths in the same tree. Hence, every term is derivable from something in 
 � � � � 
 � 	 � 
���
 
�� � � .
It is clear that none of these four cases involves high degree polynomials in any way.
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We do not know how to prove Theorem 3.30 without assuming that
�

has the instance

extension property.

3.7 Search Problem Separations via Proof Complexity

First we show a number of proof complexity separations which, together with Theorems 3.23

and 3.30, imply separations of type-2 search problems. As we stated at the end of Section 3.4,

the proof complexity of ����� ��	 ��������� ��� � , � ��� � 	 � ��� � � �
� � � ��� � , ����� ��	 � � � � � � � � ,
and ����� � 	 � ��� � � �
� � � ��� � are known from the proof complexity research.

Lemma 3.31. The following separations hold:

(a) ����� ��	 ��������� ��� � �� 
 � ��� �����
��	 � ������� ������� ��� � .

(b) ����� ��	 � � � � � � � � �� 
 � ��� �����
��	 ��������� ��� � .

(c) ����� ��	 � �
� � � ��� � �� 
 � ��� �����
� 	 � � � �����
�
� � � � .

(d) ����� ��	 � � � � � � � � �� 
 � ��� �����
��	 � ��� ��� ��������� � .

Proof. Maciel et. al [MPW00] show that � ��� � 	 � ��� � � �
� � � ��� � has quasipolynomial-size

bounded-depth ��� -proofs, and Lemma 3.32 below shows that ����� ��	 � � � ��� ���
� ��� � has

polynomial-size bounded-depth � � -proofs. It is shown in [PBI93, KPW95] that ����� ��	 ��������� ��� �
requires exponential-size proofs in bounded-depth ��� , and therefore (a) and (c) holds. Beame

and Pitassi [BP96] prove (b), and their result also implies (d).

Lemma 3.32. ����� � 	 � � � �����
�
� � � � has depth-2 ��� -proofs of size polynomial in
�

.

Proof. Fix arbitrary
�  #" and let

�
�
� � . We show a resolution refutation of the negation of

����� ��	 � ��� ��� ��������� 	 � � , which is a CNF formula consisting of the following clauses:

(i) � � � � �

(ii) � � 
 � ' for all
� 	 � such that � � �

(iii) � � 
 � ' ��� � ' � ' for all
� 	 � such that

� � �
(iv)

� ��� ' � � � � � 
 � ' for every
�
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(v) � � 
 � ' � � � 
 � � for all
� 	 � 	 � with � ����

For every
�  " , define ( 
 to be the clause

� ' ��
 � � ' � ' . ( � is derivable from clauses (i), (iii),

and (iv) for
�
�
�
. Similarly, for every

�  " , the clause � 
 � 
 � ( 
�� � is derived using (ii), (iii),

and (iv). Thus, for every
�  �

, ( 
 is derived by resolving ( 
�� � and � 
�� � � 
�� � � ( 
 on � 
 � � � 
�� � .
Finally, the empty clause is derived from ( � � � � � � � and � � � � , which is derived from (ii)

and (iv).

It is easy to convert this resolution refutation into a bounded-depth � � -proof of roughly

the same size.

Lemma 3.33. The following separations hold:

(a) 
 � � � � � �
����� ��� � ���� � 
 ��� � ��� �	��
 � �
����� ��� � over any field � .

(b) 
 � � � � � � � � � ��������� � ���� � 
���� � ��� �	��
 � �
� � � ��� � over any field � .

(c) 
 � � � � � ������� � � � ���� � 
 � � � ��� ����� � �	� � over any field � of characteristic
�
.

(d) 
 � � � � � � � � � ��������� � ���� � 
���� � ��� � � � � � � � over any field � of characteristic
�
.

Proof. [BCE � 98, Raz98] prove that 
 ��� � � �
� � � ��� � requires
� � � � -degree Nullstellensatz

refutations over any field. [CEI96, Bus98c] prove the same for 
���� � � � � ��� ���
� ��� � (they

call the principle “housesitting”).

On the other hand, 
 � � � � ����
 � ������� ��� � has constant-degree Nullstellensatz refutations

over any field. We have the following polynomials (let � 
 ' say that pigeon
�

maps to hole �
and let � 
 ' say that hole

�
maps to pigeon � for

� � � 	 � � � ):

(i) � � � � �' � � � 
 ' � � " for all
�

(ii) � � � � �' � � � 
 ' � � " for all
� �� �

(iii) � 
 � for all
�

(iv) � 
 ' � " � � ' 
 � for any
� 	 �

(v) � 
 ' � " � � ' 
 � for any
� 	 �

(vi) � 
 ' � 
 ' � for any
� 	 � �� � �

Begin by converting each ��
 ' in (ii) to � ' 
 using (iv) and (v). Now sum up all polynomials in

(i) and subtract all polynomials in (ii). What remains is � � �
 � � � 
 � � � " . Now we can simply
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cancel each � 
 � using (iii).

Finally, 
 � � � � ������� �	� � has constant-degree Nullstellensatz refutations over character-

istic 2. We have the following polynomials (let � 
 ' say that node
�

maps to node � for
� � � 	 � � � ):

(i) � 
 ' � � 
 ' � ' 
 for all
� �� �

(ii) � 
 
 for all
� �� �

(iii) " � � � �

(iv)
� � � �' � � � 
 ' � � " for any

�

(v) � 
 ' � 
 ' � for any
� 	 � �� � �

Begin by summing up all polynomials in (i), (ii) and (iv): this yields � � � � �
 � � � � 
 � � " . If we

add � � ' � � � � � � ' � " � � � � � to this, we get simply 1.

Below we state the relative separations of search classes that follow from Theorems 3.23

and 3.30 and Lemmas 3.31 and 3.33. As usual, the oracle separations of the search classes

follow from the type-2 separations by Theorem 3.2.

Corollary 3.34. The following separations hold ( � is any generic oracle):

(a) ([BCE � 98]) ������� ��� ���� ������� �	� and �����
�
�� � � �

�

(b) ([BCE � 98]) � � � � � � ���� �
� � � ��� and ��� �
�
�� � ���

�

(c) ([BCE � 98]) �
� � � ��� ���� �	��
 � �
� � � ��� and ��� �
�
�� ��� ��� �

(d) [Mor01] � ����� �	� ���� ��� ��� ��������� and ��� �
�
�� ����� �

(e) [Mor01] ������� ��� ���� � � ��� ���
� ��� and � ���
�
�� � �&� �

(f)[Mor01] �	��
 � �
����� ��� ���� ��� ��� ��������� and ��� ���
� 	 ����� �

(g) �
� � � ��� ���� � � � � �
����� ���
(h) � � ��� ���
� ��� ���� ����� � �	� and � �&�

�
�� ��� �

�

Thus, almost all known relative separations of search classes are obtained in Corollary 3.34

via proof complexity separations, and we obtain two previously unknown separations (g) and
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(h). Note that we do not know whether ������� ������� ��� has the instance extension property,

and therefore for (h) the generalization of Theorem 3.23 to Theorem 3.24 is vital.

Theories of bounded arithmetic is closely related to computational complexity and proof

complexity, and our results connecting these two areas naturally have a consequence on bounded

arithmetic as well. For an � -sentence � , we denote by ��� � the $
� � ��� � -formula obtained by

bounding all existential quantifiers in � by a free variable � . Note that � is the only free

variable of � � � .

Theorem 3.35. Let
�

be an � -sentence over a language � , which is disjoint from the language

� � of bounded arithmetic. If the relativized bounded arithmetic theory � � ���&� proves ������� � � � ,
then ������� � � � � � � and ������� �	� � � ��� . In fact, ��� � � � � for any � such that

every bounded-depth ��� -proof of ����� ��	 � �&� requires exponential size.

Proof. The idea is that, if � � � � � proves ����� � � , then from the proof we can construct quasi-

polynomial-size bounded-depth ��� of ����� � 	 � ��� � ([PW85, Kra95]). From Theorem 3.23

it follows that, if � � � � �
� , then ����� � 	 � � � has subexponential-size bounded-depth ���

proofs, which contradicts the assumption.

3.8 Remarks

We have obtained a number of search problem separations from proof complexity separations

and our Theorems 3.23 and 3.30. Note that our proofs of these separations do not depend on

the fact that the substitution instance of ����� ��	 � ��� � and 
 � � � � � � � � are uniformly generated

by a Turing machine that reduces ��� to � � . Hence, all the search problem separations in this

paper hold to exclude reductions by nonuniform polynomial-size circuits. The same is true for

the separations obtained in [BCE � 98, Mor01].

In the proof of Theorem 3.23, we constructed, from a many-one reduction from ��� to ��� ,

‘small’ depth-3 proofs of ����� � 	 ���&� using ����� � 	 � � � as an axiom scheme. The depth-3 proofs
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we construct are tree-like, and in fact they have depth 2.5 under the terminology of [MPW00],

since every formula in the proofs we construct has polylogarithmic fan-in at the lowest level.

There has been much work (for example, [LTT89, Aar04]) on the efficiency of local search,

whose primary goal is to obtain lower bounds on the number of times a local search heuristics

has to be invoked. In our context, this is a pursuit of a lower bound on the number of times

� has to be accessed for solving ��� ��� ��������� ��� 	 " � � . Since Theorems 3.28 links the time

complexity of � � � � ��������� with the proof complexity of ����� � 	 � ��� ��� ��������� � (i.e., the

housesitting principle) in Nullstellensatz, we can obtain such a lower bound [CEI96, Bus98c]

from the degree lower bound for Nullstellensatz. We do not know how such a lower bound

compares with the known lower bounds.

The Nash problem is formulated as follows. Given two integer matrices that represent

payoffs for a two-player game, find a Nash equilibrium. It is known to be in ��� ��� [Pap94b],

but not known to be complete for any class. Papadimitriou calls the Nash problem ‘a most

fundamental computational problem whose complexity is wide open’ [Pap01], and there have

been attempts to obtain good bounds on this problem; for example, [SvS04]. From our results,

a new approach to this problem emerges: namely, formulating the totality of the Nash problem

as a family of tautologies, and show a lower bound on the size of their depth-2 ��� -proofs.

By our Theorem 3.21, such a proof complexity lower bound translates into a lower bound

on the deterministic time complexity of Nash. Note that, since Nash is in ��� ��� and since

�	��
 � �
����� ��� is easy for Nullstellensatz, the totality of Nash has low-degree proofs in

Nullstellensatz.

All the separations we obtained in this paper are with respect to many-one reducibility.

Since all the known separations from [BCE � 98, Mor01] are known to hold with respect to Tur-

ing reducibility, it is an interesting open problem to see if this stronger separation is obtainable

directly from proof complexity separation.

As we remarked above, we do not know whether Theorem 3.30 holds without the assump-

tion that
�

has the instance extension property. Note that, without this assumption, basically
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we need to show that the negation of (3.18) has small-degree Nullstellensatz refutations; How-

ever, we do not know how to express the negation of (3.18) as a set of polynomials of a small

degree. It seems that Nullstellensatz is not sufficiently expressive for this case to go through.

We made progress toward resolving the relative complexity of ����� by showing

� � ��� ���
� ��� � � � ����� �	� . We are interested in knowing whether � � ��� ���
� ��� is

many-one reducible to ������� ��� or not, which still remains open. One difficulty is that the

iteration principle is easy for almost all proof systems except for Nullstellensatz, while the

pigeonhole principle is hard for Nullstellensatz.

From Theorem 3.30 and the fact that 
 � � � � � ������� �	� � has constant-degree Nullstellen-

satz refutations, it follows that the totality of every � � � problem has low-degree Nullstel-

lensatz proofs. This indicates that the fixed point theorems of Brouwer, Nash, and Kakutani,

whose corresponding search problems are in ��� � , have low-complexity proofs.

Aside from one type-2 separation that Beame et. al obtain via Nullstellensatz degree lower

bounds [BCE � 98], we do not know of any other work that explicitly link reductions among

search problems with proof complexity. However, Buss in [Bus03] obtains upper and lower

bounds on the proof complexity of various combinatorial principles by describing transfor-

mations of a proof of one principle into that of another principle. In our context, his proof

transformations are in fact many-one reductions between the corresponding search problems.

Theorems 3.23 and 3.30 construct propositional refutations from reductions. Does the con-

verse hold? Is it true that if the translation of a search problem has a simple ��� or Null-

stellensatz refutation, then the search problem is reducible to, say, � � �����
�
� � � (which is

easy for ��� ) or � � � � � � (which is easy for Nullstellensatz)? The following is one possible

approach to obtain an upper bound on the complexity of ��� from the existence of proofs for

����� ��	 � ��� � . It is well known that a resolution refutation of an unsatisfiable CNF formula �
gives rise to a branching program � whose internal nodes query the variables of � such that

� ’s output is a clause of � that is falsified by the given truth assignment. Thus, a resolution

refutation for � ����� ��	 � ��� 	 � � gives rise to a branching program solving ��� on instances of
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size
�

. However, this reasoning does not quite work because, in our context, the complexity

of ��� in measured in terms of
�

while the proof (or refutation) lengths of � ����� � 	 � ��� 	 � � are

measured in terms of
�
�
� � . Thus, for example, a linear-size refutation of � ����� ��	 � ��� 	 � �

only gives rise to a branching program for ��� whose size is exponential in
�

, which is not very

useful.

However, we can extend the above line of reasoning by imposing a certain uniformity con-

dition in the following way. Suppose that there is a resolution refutation � of � � ��� � 	 � ��� 	 � �
and that the size of � is

� �
�

� � � for some � � �
. Now suppose that � is uniform in the

sense that the following ��� is polynomial-time: given
� � �

, output � 	 � � �
and a variable

� such that clause
�

of � is derived from clauses � , � by resolving � . It is easy to see that

the existence of such � implies the existence of an algorithm for ��� whose running time is

polynomial in the length of the longest path in � ; the idea is simulate the branching program

corresponding to � , which is implicitly described by ��� . Note that clause
�

itself may not be

computed in polynomial-time, since its size may be superpolynomial in
�

. This uniformity

condition is similar, but not equivalent, to the notion of implicit proofs by Krajı́ček [Kra04].

It is an interesting open problem to explore the connections between algorithms for �	� and

proofs for ����� � 	 � ��� � that have implicit descriptions.



Chapter 4

The Limitations of Local Search

Heuristics

Local search is a widely used approach to various optimization problems, and
� � � � � � ��������� �

is essentially the class of search problems for which an efficient (i.e., polynomial-time) local

search heuristic exists. Thus, if � � � ��� ��� ��������� , then � �� � � � �&� � and therefore

there is no efficient local search heuristic for � , i.e., � cannot be formulated as a local search

problem. See [JPY88, Yan97] for more information on local search and � �&� .

In this chapter we present a sufficient condition for a type-2 search problem � to be nonre-

ducible to � � �����
�
� � � , and such � cannot be formulated as a local search problem. More-

over, it follows that
� � � � � � � � ������� � � for generic oracles � and also that local search

is unlikely to be useful for solving the complete problems of
� � � � . Thus, our result in this

Chapter shows the limitations of local search heuristics, which have been quite successful in

approximating various hard optimization problems [JPY88, Yan97]. This is motivated by the

helpful comments on [Mor01] by Søren Riis.

It will be easy to see that all of �
����� ��� , ����� � � � , �	��
 � �
� � � ��� , and ��� � � �
� � � ���
� � ��� ���
� ��� satisfy the sufficient condition and thus we obtain alternative proofs of Theo-

rem 3.8 and items (d) and (e) of Corollary 3.34. This ‘separation criterion’ is a generalization

78
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of the main result of our M.Sc thesis [Mor01], and it is also a stronger variant of Riis’s inde-

pendence criterion for the relativized theory � �� ��� � of bounded arithmetic [Rii93].

In [Mor01], we proved that � � � � � ��� ��� ��������� . Our proof depended on only one

property of the � � � problem, and we realized that, as long as a type-2 search problem satis-

fies this property, we can easily show that ��� � ��� ��� ��������� . The property of � � � is the

following. Consider a two-player game between Solver and Spoiler. Solver is a type-2 Turing

machine that, given � 	 � � � 	 
 � � � 	 " � � , tries to find a solution for � � � by querying
	 � � � and


 � � � ; Solver thus explores the underlying dag � , looking for either a source other than
�

or

a sink. Spoiler’s job is to answer all the queries by Solver while avoiding creating a solution

for � �!� . It is easy to see that, if Solver is a polynomial-time machine, then Spoiler succeeds,

i.e., � � � is not in type-2 ��� . But a stronger property holds: Spoiler still wins even if we give

an advantage to Solver by fixing the values of
	 � � � and 
 � � � on polynomially many nodes,

although we are not allowed to create any solution. This property, namely the existence of a

winning strategy for Spoiler even if Solver is helped by fixing the values of the type-1 argu-

ments of � for polynomially many elements of 	 � without creating a solution, is essentially

what is needed to show that ��� � � � � � ��������� .

It is not hard to see that all the type-2 problem we discussed in Chapter 3 except � � �����
�
� � �
has the above property, and hence none of them is many-one reducible to ��� ��� ��������� . Note

that ��� ��� ��������� itself does not have the property. Suppose that we help Solver by fixing,

for each
�

, � � � � � � � � � � � " . (Recall that
� � � " is the largest element in 	 � .) Then Solver

can simply query � � � � � " � : if Spoiler answers it with
� � � " then

� � � � is a solution, otherwise
� � � " itself becomes a solution.

The following is our strategy for proving the separation criterion for � � �����
�
� � � . We

first show a sufficient condition
�

for a type-2 search problem � to have the desirable property,

which we will call the safety property. Then we prove that, if � has the safety property,

then � � � � � � � ��������� . It then follows that the condition
�

is a sufficient condition for

��� � ��� ��� ��������� .
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4.1 A Separation Criterion for
�����

Theorem 4.1. Let � be a first-order language such that � does not contain any built-in symbol

other than � and
�
. Let � be an � -sentence over � . If � fails in an infinite structure, then

�
� � � ��� ��� ��������� �

Proof. For simplicity, we fix the language � to be � � � � 	 � � , where
�

is a unary function,

and assume that � is an � -sentence over � of the form ��� �� � � � ���� , and it is in basic form. The

case for languages with arbitrarily many input symbols is analogous to the current case. Let
�
� � � 	 � � � be an infinite structure in which � fails.

For each
�  " , we call a partial function � � � 	 �

� 	 � a restriction. Let � � � � � � � be a

family of restrictions. The size of restriction � � is 	�� � � ��� � � 	 and is written 	 � � 	 . We say that

� � � � � is a polysize family if 	 � � 	 �
� � � � � . We say that � � is safe for � if there exists a partial

one-one mapping � � 	 �
� � such that (i) � � � � � � � � � � ��� � � �

� � ��� � � ; and (ii) � � � � � �
�

implies
� � � � � � ��� � � � � � . Note that, if � � is safe for � and 	 � � 	 � �

�
, then � � does not

specify any solution for ��� in the sense of Definition 3.14 on page 3.14.

We claim that, if � � is a safe restriction and � � 	 � � 	 � �
�

, then we can answer � queries

to
�

consistently with � � so that � � augmented with the answers is still safe. We call this the

safety property of � , and state it more formally as follows: If � � � � � � � is a polysize family of

safe restrictions, and if � � � � � is a family of search trees of height polylogarithmic in
�

, then,

for all sufficiently large
�

, � � contains a path � such that � � and ��� are consistent and � � � ���

is safe for � .

The above claim is proven as follows. Let
�

be sufficiently large so that 	 � � 	 plus the depth

of � � is less than, say,
�
� �

�

� . Let � � 	 �
� � be a mapping that witnesses the safety of � � . We

traverse � � from the root to a leaf by answering the queries to
�

consistently with � � so that,

in the end, � � � ��� is safe for � , where � is the path that we have traversed. Let
� � � � be the

query that the current node asks. Two cases arise:

Case 1: � � � � � � � � . Let � � and � � denote � � � � � � and
� � � � ��� , respectively. If � � �
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� � � � � � , then there is � � 	 � with � � ��� � � � ; we set
� � � � � � . If � � �� � � � � � � , then choose

an arbitrary � � � 	 � and set
� � � � � � � and � � � � � � � � .

Case 2: � �� � � � � � � . Then choose an arbitrary � � � 	 � and set
� � � � � � � and � � � � � �

� � � � � � � ��� .
In the above proof, choosing an arbitrary � � works because of the assumption that � does

not have any built-in symbol other than
�

and � . If � has a built-in symbol, say � , then we

must choose � � so that setting
� � � � � � � is consistent with � with respect to the elements in

� � � � � � . However, if there is no built-in symbol, then we are free to choose any � � � 	 � with

no fear of being inconsistent.

The safety property has been implicit in separation proofs in [Bus86, Kra95, BCE � 98,

CK98, Mor01].

Now assume for the sake of contradiction that ��� � � ��� ��� ��������� . Since ��� ��� ���������
has the instance extension property (Lemma 3.10), there is a reduction

�
from ��� to

� � ��� ���
� ��� that does not ask any query before a query ��� 	 " � � to ��� ��� ��������� (Lemma

3.11)..

Claim 4.2. There exists a polysize family � � � � � of restrictions such that, for sufficiently large
�

, the following hold: (1) � � is safe for � ; and (2) � � contains the answers to all the queries

to
�

and ��� ��� ��������� made by
�

on � � 	 " � � .

Suppose Claim 4.2 holds and consider
�

on � � 	 " � � for
�

sufficiently large. We answer all

the queries to
�

and ��� ��� ��������� according to � � asserted to exist by the Claim. At the end

of its computation,
�

needs to output some � as a solution for ��� on this instance, although

no solution for ��� has been specified. Hence, after
�

outputs some �� , we can construct a

total extension
� � of � � so that

� � �� � is false in structure � 	 � 	
� � � . This completes the proof of

Theorem 4.1 from Claim 4.2.

It remains to prove Claim 4.2. Fix
�

sufficiently large and let � � ��� 	 " � � be the query

that
�

asks to ��� ��� ��������� . We want to construct a safe restriction � � so that a solution

for � � � � ��������� ��� 	 " � � is specified. Recall that, for each � � 	 � , �
�
� � �
� is the search tree
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corresponding to the computations of � ����� ; we denote it as � ����� . We say a path � of � ����� is

safe if the corresponding restriction � � is safe. For each � � 	 � , let � � � � 
 ����� be the set of

all safe paths of � ����� . Because of the safety property of � , � � � � 
 � ��� is nonempty for every

� � 	 � . There are three cases to consider:

Case (i): � � � � 
 �
� � contains a path � with leaf label � � � � � � . This path defines a solution

for � � ��� ���
� ��� . We give the solution to
�

and set � � � � ��� .

Case (ii): For some � � 	 � , � � � � 
 ����� contains a path � with leaf label � � ��� � � for

some ��� � . This path also defines a solution for � � � � ��������� , so we give the solution to
�

and set � � � � ��� .

Case (iii): The above two cases do not hold. Since the first case does not hold, every path

in � � � � 
 �
� � corresponds to a computation of

� �
with � � � � � �

. Similarly, since the second

case does not hold, every path in � � � � 
 � "
� � leads to � � " � � � " � . Hence, by the least number

principle, there exists � � 	 � such that: (a) � � � � 
 ����� contains a path � that leads to � � ��� � �
for some � � � ; and (b) for all 
 � � , every path in � � � � 
 � 
 � leads to � � 
 � � 
 . Let � � � � 
 ���
�
as the set of paths � � of � � ��� such that � �

�
is consistent with � � and ��� � ���

�
is safe for � .

By the safety property of � , � � � � 
 ���
� is not empty. Let ��� be any path in � ��� � 
 � ��� . Set � �

to be � �
� � ����� and return � to

�
as a solution for its � � �����
�
� � � -query. Note that � is a

solution because � ����� � � and � ���
� � � . This concludes the construction of � � .

Let
�

be the answer to the query to ��� ��� ��������� that is constructed as above. Recall

that �
�



� � � � is the search tree encoding all possible computations of
�
� in this case. By the

safety property of � , there exists a path � in �
�



� � � � such that ��� and � � are consistent and

��� � � � is safe. Setting � � � � ��� � � � makes Claim 4.2 hold.

Note that the conclusion of Theorem 4.1 implies that
� � ��� � � 	 � ��� � for any generic

oracle � by Theorem 3.2.

The reader may be familiar with the following result of Krajı́ček (Theorem 11.3.1 of

[Kra95]):

Theorem 4.3. [Kra95] Let � be a first-order language with no function (built-in or not) and
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no built-in predicate. Let � be a � � -sentence over � . If � fails in an infinite structure, then the

type-2 problem ��� is not in type-2 ���
���

.

In this dissertation, we only work with type-2 search problems whose totality is represented

by sentences using one or more function symbols, and therefore Theorem 4.3 does not apply to

them. However, it is easy to formulate their totality by sentences over relational languages. The

idea is to introduce the graph ��
 for each function � . For example, the injective, functional

pigeonhole principle can be stated as follows:

� ����� ��������� 
 ���
	 ����� � ����� � ��
 ���
	 � � � � � ��� � ���
������
 � � � �� � � ��
 � �
	�
 � � ��
 ����	�
 � �

Note that the above sentence is not a � -sentence but a � � -sentence. Let ������� � � �
be the

corresponding type-2 search problem. The superscript � stands for ‘Relational language’.

Theorem 4.3 applies to �
� � � ��� � and we conclude that ������� ��� � is not in type-2

���
���

. However, Theorem 4.3 still does not say anything about the complexity of �
� � � ��� .

The problem is that �
� � � ��� and ������� � � � are not equivalent, and in fact ������� � � �

is strictly harder than �
� � � ��� , since �
� � � ��� is in type-2 ��� ���
by Lemma 3.4. (Note

that �
� � � ��� � � ������� � � � is obvious.) On the other hand, from our Theorem 4.1 we

can deduce that �
����� ��� is not reducible to � � ��� ���
� ��� , a fact which does not follow

from Theorem 4.3. Thus, Theorems 4.1 and 4.3 are incomparable.

4.2 Connections to Bounded Arithmetic

Riis proves in [Rii93] the following independence criterion for the relativized theory � �� ��� � .
Riis’s proof is model-theoretic, and Krajı́ček shows a complexity-theoretic proof of Riis’s result

in [Kra95] using Theorem 4.3. Note that this independence criterion does not require � to be

relational.

Although our Theorem 4.1 is incomparable to Theorem 4.3, Riis’s result also follows from

it.
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Theorem 4.4. [Rii93] Let � be a language that is disjoint with the language of bounded arith-

metic, and let � � � � �� � � � ���� be a sentence over � of arbitrary quantifier-complexity. If � fails

in an infinite structure, then the relativized bounded arithmetic theory � �� � � � does not prove

� � � .

Proof. Krajı́ček has a proof of this theorem based on Theorem 4.3 in [Kra95]. Since our proof

is almost identical to his, we only sketch the idea. Let � be of the form

� � � ��� � ����� � � � ��� � � � � � 	 � � 	 ����� 	�� � 	�� � �
with

�
quantifier-free. Define a herbrandization � � of � as

� � � � � �
����� � � � � ��� � 	 � � � � 	�� � � 	 ����� 	�� � 	 � � � � 	�� � 	 ����� 	�� � ��� 	

where � � 	 ����� 	 � � are new functions. Let
�

be an infinite structure in which � is false. By

defining � � 	 ����� 	 � � appropriately,
�

can be extended to
�
� in which � � fails; thus, ����� is not

reducible to � � ��� ���
� ��� by Theorem 4.1.

Let � � � � � � � � 	 ����� 	 � � � . Since � � � � ��������� characterizes the $ � � ��� � � -consequences

of � �� � � � � ([CK98]), � �� ��� � � does not prove

� � � � � � � � � � ����� � � � � �

� � � � � 	�� � � � � � ����� � � � ��� 	�� � 	 ����� 	�� � � � � �
� ��� � 	 � � � � 	�� � � 	 ����� 	�� � 	 � � � � 	�� � 	 ����� 	�� � ��� � �

Let
�

be a model of � �� ��� � � in which the above formula fails. Then ��� � fails in this model.

From Theorem 4.4 it follows that any type-2 search problem � satisfying the assump-

tions of Theorem 4.1 is not �$
� � -definable in the relativized � �� � � � . Then � is not �$
� � -definable

in � �� ��� � because � �� ���&� is $
�� -conservative over � �� � � � . The intuitive meaning of this is that

� �� ���&� is unable to show that � is reducible to � � � � ��������� . However, ��� � ��� ��� ���������
does not follow since there may be a many-one reduction which is not formalizable in � �� ��� � .
Thus, Theorem 4.1 is a stronger version of Theorem 4.4.
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4.3 Remarks

In [Rii01] Riis proves that the assumption of our Theorem 4.1 implies that � ����� � 	 � ��� 	 � � re-

quires exponential-size refutations in tree-like resolution. Krajı́ček in [Kra01] proves a similar,

stronger result for the refutation system � � ���	� 
 � instead of tree-like resolution, where � � ���	��
 �
is essentially tree-like � � with a restriction that every cut formula be a conjunction of � lit-

erals, where � is logarithmic in the size of � ����� � 	 � ��� 	 � � . In the terminology of [MPW00],

� � ���
��
 � is essentially tree-like ��� with cuts only on depth-0.5 formulas.

It would be nice to prove Theorem 4.1 from proof complexity lower bounds, and Krajı́ček’s

result is an obvious candidate. However, Krajı́ček’s result is not strong enough to derive The-

orem 4.1. Below we explain why.

Let � be an � -sentence satisfying the assumptions of Theorem 4.1. Then Krajı́ček’s result

implies that � ����� ��	 � ��� 	 � � requires exponential-size ��� -refutations with cut restricted to

depth-0.5 formulas. Theorem 4.1 follows if we succeed in constructing subexponential-size

refutations of � ����� ��	 � ��� 	 � � in � � ���	��
 � by assuming that ��� � � � ��� ���
� ��� . However,

there are two difficulties. By modifying the proof of Theorem 3.23, it is not hard to construct

subexponential-size ��� -derivation of a substitution instance � ����� ��	 � ��� ��� ��������� 	�� � � � � � �
from � ����� ��	 � ��� 	 � � , where � and the substitution

� � � � � depends on the reduction of ��� to

� � ��� ���
� ��� . The first difficulty is that this derivation already requires cuts on depth-1.5

formulas (i.e., DNFs with polylogarithmic size terms), and we do not know how the depth of

cut formulas can be reduced to 0.5.

The second problem is that, even if we could derive � � ��� � 	 � � � � � ��������� 	�� � � � � � �
from � ����� � 	 � ��� 	 � � in � � with cuts only on depth-0.5 formulas, we do not know how to

construct subexponential-size refutation of � � ��� � 	 � � � � � ��������� 	�� � � � � � � with cuts only

on depth-0.5 formulas. If we apply the substitution
� � � � � to the polynomial-size resolution

refutation of � ����� � 	 � ��� ��� ��������� 	�� � (see the proof of Lemma 3.32), each resolution

step on variable � becomes a cut on the DNF formula
� � � �
��� , which has depth 1.5.

Note that the refutation version of Theorem 3.23 can be found in our joint paper [BOM04].
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Chapter 5

Quantified Propositional Calculus

5.1 Quantified Propositional Calculus: Basic Definitions

Quantified Propositional Calculus (QPC) is obtained by introducing quantifiers into proposi-

tional calculus, where ��� ��� (�� ��� is equivalent to (�� T � � (�� F � and � ����� (�� ��� is equivalent to

(�� T � � (�� F � . An advantage of QPC is that it has enough expressive power to represent every-

thing in ��� � ��� � in a concise way without losing the syntactic and semantic simplicity of

propositional calculus. The following is an example QPC formula, which asserts that a QPC

formula ( ���
 � has a truth value � :

��� ��� � ����� (����
 ����� ��� ��� � ( ���
 � � (5.1)

QPC formulas are also known as QBF (Quantified Boolean Formulas), and efficiency of

decision procedures for the satisfiability of QBF formulas is an important issue in various

research areas such as formal verification, planning, reasoning about knowledge, and there

has been much effort in designing and implementing QBF solvers that can be used in practice

[BST03]. The study of QPC proof complexity is relevant to such effort.

Let � 
 
 � � � � � and � � 
 � � � � � be the sets of 
 -variables and � -variables, respectively.

We use the 
 -variables to denote free variables and the � -variables to denote bound variables.

The following is a definition of the syntax of QPC below, which extends Definition 2.8 of

87
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propositional calculus.

Definition 5.1. Formulas are defined inductively as follows. (1) The atomic formulas are � T � ,
� F � , and � 
 
�� and � � 
 � for every

� � �
. (2) If

�
and � are formulas, then so are � � � � � , � � ����� ,

and ��� � � . (3) If
�

is a formula, then for every
� � �

, both ��� � 
 � � and � ��� 
 � ) are formulas.

Often we do not write all the parentheses. Note that we parenthesize the atomic formulas

since it somewhat simplifies parsing operations for QPC in Section 5.4.1. The semantics of

QPC formulas is defined in an obvious way.

Definition 5.2. A formula ( is said to be proper and called a QPC formula iff every occurrence

of an � -variable in ( is bound.

It is clear from the above that propositional formulas of Definition 2.8 are quantifier-free

QPC formulas.

Both $�%� and � %� denote the set of propositional formulas. For
�  " , $&%
 is the set of QPC

formulas that has a prenex form with at most
� � " quantifier alternations beginning with � ,

and � %
 is the dual of $ %
 . Note that $ %
�� � � � %
 and � %
 � � � $ %
 for all
�  " . For example,

the formula (5.1) is in $�% � iff (����
 � is quantifier-free; more generally, for every
�  �

, it is

in $ %
�� � if (����
 � � $ %
 � � %
 . It is a well-known fact [Wra77, Joh90, Pap94a] that, for every
�  " , the evaluation problems for $�%
 -sentences and � %
 -sentences are complete for 	 
 
 and

� 
 
 , respectively.

The notions of QPC proof systems is obtained in a natural way the definition of proposi-

tional proof systems.

Definition 5.3. Let � � and � � be QPC proof systems, and let 	 be a set of QPC formulas. We

say that � � p-simulates � � with respect to (w.r.t.) 	 iff there is a polynomial-time function �
such that, whenever � is a � � -proof of ( � 	 , � � � � is a � � -proof of ( .

The following is an easy generalization of a fundamental theorem of propositional proof

complexity by Cook and Reckhow [CR77], connecting the question of proof lengths to open

problems of complexity theory:
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Theorem 5.4. (i) There exists a proof system � in which every valid QPC formula ( has a

proof of size polynomial in 	 ( 	 iff � � � ��� � � � � . (ii) For every
�  �

, there exists a

proof system � in which every valid $ %
 -formula ( has a proof of size polynomial in 	 (
	 iff

� � � � � � ��� .
Note that � � � ���� ��� for some

�  �
if and only if � � � � � .

In [KP90], Krajı́ček and Pudlák introduced Gentzen-style sequent calculus systems for

QPC which we call � ��� , � ��� 
 , and � � ���
 , for
�  �

. Note that these systems are known

without the prefix � � (for Krajı́ček-Pudlák); we added the prefix, since we are modifying

these systems below and call them � , ��
 , and ���
 .

Definition 5.5. ([KP90]) � � � is obtained by augmenting ��� with the following new infer-

ence rules:

� -left � (�� � � 	�� � �
� � ( ����� 	 � � � � -right � � � � 	�(��
� �

� � � 	 � � ( �����

� -left � ( �
��� 	�� � �
��� ( ����� 	 � � � � -right � � � � 	 (������

� � � 	 ��� ( �����
where � is an eigenvariable not occurring in the bottom sequent and � is any proper formula.

We also allow as an initial sequent any sequent of the form ( � ( for any QPC formula

( .

We call � the target of the corresponding � -right or � -left step. For each of the above

quantifier rules, the auxiliary formula is the formula that occurs only in the upper sequent (i.e.,

either (������ or ( � � � ) and the principal formula is the formula that appears only in the lower

sequent (i.e., either ��� (�� ��� or � � (������ ).

Definition 5.6. ([KP90, Kra95]) For
�  �

, � � ��
 is obtained by requiring that all formulas

in a � � � -proof be $ %
 � � %
 . � � ���
 is � � � 
 restricted to tree-like proofs. Note that � ��� �

and � ������ are the propositional proof systems � � and tree-like ��� , respectively.

For example, Figure 5.1 is a � � � � � -proof of the formula (5.1) on page 87, where ( ���
 � is

assumed to be quantifier-free. The proof is not a � � � �� -proof, since, although it is tree-like, it
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�
T ( � (

� � � � � � � � � � � � �( � T � (
� � � � � � � � � � � � � � � � � � � � �( � � T � ( ��� ��� T ��� ( � � -right( � � � ��� � ����� ( � � � � ����� ( � �

F
� ( � (

� � � � � � � � � � � � �� � F ��� ( 	 (
� � � � � � � � � � � � � � � � � � � � �� � F � ( ��� � � F ��� ( � 	 (

� � � � � � � � � � � � � � � � � � � � � � � � � � -right� ��� ��� � ����� ( ��� ��� ��� � ( � � 	 (
Cut on (����
 �� ��� ��� � � ��� ( ��� ��� ����� ( � �

Figure 5.1: A sequent calculus proof of the formula (5.1) on page 87, where ( ���
 � is quantifier-

free. We suppress the free variables �
 in the proof. This proof is a � � � � � -proof, and it is also

a � �� -proof; however, it is not a � � � �� -proof.

contains quantified formulas.

The restriction that � � ��
 and � � ���
 can only reason about $�%
 -formulas does not seem

very natural. Moreover, the known correspondences between � 
� and � � � 
 and between � 
�
and � � ���
 (Theorem 5.29 below) are not optimal; for example, � 
� can reason about formu-

las with more than
� � " quantifier alternations while � 
� -proofs of such formulas cannot, by

definition, be translated into � � ��
 -proofs.

We remedy the situation by modifying the definition of � � ��
 and � � ���
 to obtain the

systems which we call � 
 and ���
 .

Definition 5.7. � is obtained by augmenting ��� with the four quantifier-introduction rules,

with the additional restriction that the target of every � -left and � -right step be quantifier-free.

For
�  �

, � 
 is � with cuts restricted to $ %
 � � %
 -formulas. ���
 is the tree-like version of � 
 .

Note that the proof in Figure 5.1 on page 90 is a � �� -proof, since the cut formula (����
 � is

quantifier-free. Note that � �� -proofs are allowed to contain quantified formulas.

We have changed the system ��
 which Krajı́ček and Pudlák defined in [KP90], and the

reader may be concerned that the modification may result in confusion. First, we would like to

argue that our modification need not cause any confusion. The reason is that, for every
�  " ,

� � � 
 and � 
 (under our Definition 5.7) are p-equivalent w.r.t. $ %
 � � 
 
 -formulas (Lemma

5.10 below). Thus, every QPC formula has the same proof complexity (up to an application of
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a polynomial) in � � ��
 and � 
 . And similarly for � ��� �
 and � 
 .

Moreover, we argue that we gain a lot by modifying � ����
 into � 
 . The biggest advantage

is that the modification enables us to ask new questions that could not be formulated under

the original formulations. More specifically, for every
�  �

, ��
 is now a complete proof

system for the whole QPC, as opposed to � � ��
 , which is a proof system for only $&%
 � � %
 -
formulas. This allows us to ask questions on the power of the systems � 
 and ���
 with respect

to formulas that have more than
� � " quantifier alternations. For example, under our definition,

we can discuss the proof lengths of QPC formulas in � � and � �� , while we cannot ask such a

question for � ������ and � ��� � , since quantified formulas are not allowed to appear in the

proofs in the latter systems. In Theorem 5.9, we show that every valid QPC sentence has an

exponential-size � -proof while the best upper bound for � �� is doubly exponential, and now we

can ask the question: can we separate � and � �� by quantified formulas? Furthermore, the fact

that � 
 and � �
 are complete proof systems for QPC allows us to extend the known connections

between bounded arithmetic theories and QPC sequent calculus (Theorems 5.29 and 5.30), and

it also gives rise to the question on the complexity of the QPC witnessing problems for various

formulas and systems (see Chapter 6). In particular, many of our results on the complexity

of the QPC witnessing problems cannot be stated under the original definitions of � � � 
 and

� � ���
 .

Our modification not only has many advantages but also it is natural. The definition of � 

and � �
 by restricting the complexity of cut formulas is in the spirit of traditional proof theory,

and it is motivated by the way Pitassi defines the bounded-depth propositional PK system by

restricting the depth of cut formulas [Pit02]. The restriction that the target of � -left and � -right

rules of � be quantifier-free ensures that all quantifier-introduction rules increase the quantifier

complexity of the auxiliary formula, as opposed to those rules of � � � , which can result in a

decrease of the quantifier complexity.
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5.2 The Reasoning Power of the QPC Calculus Systems

We have defined the systems ��
 and � �
 syntactically; here we would like to present some

intuition on what kind of reasoning can be carried out and what kind of QPC tautologies have

or are expected to have short (i.e., polynomial in the size of the endsequent) proofs in each of

these systems. These systems are defined by changing two parameters: the power of cut, and

whether a proof is required to be tree-like. We describe intuitive meaning of these parameters.

The power of cut formulas is related to the power of lemmas that we are allowed to use.

When we prove a theorem � using a lemma � , we first prove that � is true and then we prove

that � implies � . In sequent calculus, this is represented as a proof of
� � from the two

sequents
� � and � � � :

� � �

� �
Weakening� � 	 �
Cut on �� �

Let
�  �

and let � 
 be either � 
 or � �
 . The above description means that � 
 has a short proof

of theorem � if the two sequents
� � and � � � has short proofs. Although our characteri-

zation of the reasoning power of � 
 is still incomplete, we can summarize it as follows:

� � 
 is a QPC proof system simulating human reasoning that uses as lemmas $ %
 -formulas

that have short proofs in � 
 .
For every circuit

�
, there is a propositional formula

� � ���
 	 �� � such that (i) the size of
� �

is polynomial in the size of
�

; (ii) �
 are variables corresponding to the input gates of
�

; (iii)

�� are variables corresponding to the internal gates of
�

; and (iv)
� � is a Horn formula. Such

a formula is constructed by a standard method showing that the satisfiability for propositional

Horn formulas is complete for � . In [KP90, Kra95], it is proven that � � � has polynomial-size

proofs of

������ � � � ���
 	 �� � � (5.2)

Note that the above $�% � -formula asserts the existence of the internal values of a circuit, whose

discovery is a complete problem for ��� . Thus, � � � has short proofs of the existence of any
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object that can be constructed in polynomial-time. This fact gives a more concrete statement

on the reasoning power of � � � :

� � � � is a QPC proof system that can reason about polynomial-time constructible objects.

Recall that the difference between tree-like proofs and dag proofs is that, in a dag proof,

a derived sequent can be used as an upper sequent as many times as need, while in a tree-like

proof it has to be derived from scratch every time it is used. This is still a syntactic description

and it does not tell us much what kind of natural reasoning can be carried out in a dag proof

but not in a tree-like proof. The following is a more intuitive description of the different power

of tree-like and dag proofs.

We first formulate this example in first-order arithmetic. Let ( ����� be a first-order formula

representing a relation on
�

. Assume that we have the following sequents:
� (�� � � , and

������� � ( � � � � (�� � � " � � . Suppose that we want to derive
� (����
� for some � � �

. A natural

thing to do in a tree-like proof is to proceed in the following way. First, instantiate ������� � ( � � � �

(�� � � " � � so that we have (�� � � � (�� ��� " � for each
� � � � 	 � � " � . Next, for each

�
that is a

multiple of 2, derive ( � � � � (�� ��� � � by

(�� � � � (�� � � " � ( � ��� " � � ( � � � � �
Cut on (�� ��� " �( � � � � (�� ��� � �

Subsequently, for each
�

that is a multiple of 4, derive (�� � � � ( � � ��� � from

(�� � � � (�� � ��� � and (�� ����� � � ( � ����� �

by a cut on (�� � � � � . Proceed in this way until we derive (�� � � � (�� ��� . Then
� ( � �
� is

derived from this sequent and
� ( � � � by a cut on ( � � � .

There are two properties of this tree-like proof that we would like to point out: first, all the

cut formulas are of the form ( � � � for some
� � �

, and this proof is a tree of height
� ���	��
 �
�

and contains
� ���
� sequents. What this means is that, even if we have (�� � � � ( � � � " � for

every
� � �

, a tree-like sequent calculus system has a short proof of
� ( � �
� of the above form

for small � only, and it is not clear if there is a proof shorter than this.
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Next, we show how to construct a dag proof of (�� ��� . The construction proceeds as follows.

Suppose that we have ������� � ( ����� � ( ��� ��� 
 � � for some
�
. Initially, we have it for

�
�
�
.

Instantiate it so that we have two sequents

(�� � � � (�� � � � 
 � and (�� � � � 
 � � (���� � � 
�� � �

where � is a free variable. Derive ( � � � � ( � � ��� 
 � � � , from which we conclude

������� � ( ����� � ( ��� � � 
 � � � � . Note that this is a dag proof and not tree-like since the sequent

������� � ( ����� � ( ��� � � 
 � � has to be instantiated twice, i.e., it has to be used at least twice. In

this dag proof, all cut formulas are of the form ( � � � � 
 � If the endsequent is (�� ��� , then the

proof has only
� ���	��
 ��� sequents.

The above example shows the following: in proofs of size
� � � � , a tree-like system can

derive

( � � ��� ������� � ( ����� � ( ��� � " � � � (�� � �
while a dag system can derive

(�� � � � � ����� � (������ � (���� � " � � � ( � � � � �

Thus, the difference between tree-like dag proofs amounts to the difference between ( -IND

and ( -LIND (see Definition 2.18, page 31) in bounded arithmetic, interpreting
�

as the binary

length of � such that we want to prove ( � �
� . Let
�  �

. Since ��
 and � �
 can cut $ %
 -formulas,

it follows that, informally speaking,

� � �
 simulates $
�
 -LIND in short proofs, and

� � 
 simulates $ �
 -IND in short proofs.

Combining all of the above, the power of ��
 and ���
 , for
�  �

, is summarized as the

following, informal statements:

� � �
 is a QPC proof system that simulates reasoning that uses length-induction (LIND) on

$ %
 -formulas, and
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� � 
 is a QPC proof system that simulates reasoning that uses induction (IND) on $ %
 -
formulas.

The above statements means that � �
 and � 
 simulate � 
� and � 
� , respectively, in some precise

sense, and this is formally proven in [KP90] for ��
 and in [Kra95] for � �
 . We simply stated

their arguments in an informal way.

From the above and the results on the definable search problems in bounded arithmetic

(Theorem 2.22), we can derive the following, informal statements on the power of � 
 and � �

for

�  #" :

� � �
 can simulate reasoning that involves objects that are computable in polynomial-time

using a 	�
 
�� � -oracle; and

� � 
 can simulate reasoning that involves objects that are solutions for a � �&� -problem

with 	 
 
�� � -oracle.

We can consider � as a propositional proof system by focusing our attention to � -proofs

with propositional endsequents, and similarly for ��
 and � �
 for
�  �

. Then, by definition,

� �� is tree-like ��� and � � is ��� , and by Krajı́ček’s result in [Kra95] (Theorem 2.14), � ��

and � � are p-equivalent w.r.t. propositional tautologies. Moreover, Krajı́ček also shows that

� � � is p-equivalent to any extended Frege system w.r.t. propositional tautologies. This makes

sense, since extended Frege systems are proof systems that reason about small circuits, which

characterize polynomial-time, while we have argued that � � � is also a proof system that deals

with polynomial-time computable objects.

We know the following hold, where � 
�� � 

 and � 
�� � 

 denotes p-simulation and p-equivalence,

respectively, w.r.t. propositional tautologies:

� �� � 
�� � 

 � � � 
�� � 

 � � � � 
�� � 

 � � � 
�� � 


����� � 
�� � 

 � �
 � 
�� � 

 � 
 � 
�� � 



����� � 
�� � 

 �

Currently it is open whether � � � and � � are p-equivalent; in fact, it is open whether any p-

simulation in the above can be made p-equivalence.
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5.3 Basic QPC Proof Complexity

In this Section, we prove some basic results in QPC proof complexity. The following lemma

is useful in the subsequent discussions.

Lemma 5.8. Let � � (������ and � be QPC formulas and (������ be the result of substituting �
for all occurrences of � in (������ . The following four sequents have cut-free � �� -proofs of size
� � 	 ( �
��� 	 � � :
(T1): �!	 ( �
��� � (�� T � ,
(T2): (������ � ( � F � 	�� ,

(T3): �!	 ( � T � � (������ , and

(T4): (�� F � � � 	 (������ .

Proof. Simultaneous induction on the structure of (������ .

First of all, we prove upper bounds on the length of proofs in � and its variants.

Theorem 5.9. (i) Every valid QPC sequent � has a cut-free � �� proof of size
� � ����� ��� � . (ii)

([Coo03]) Every valid sequent � of QPC sentences has a � -proof of size
� � � � � � � . (iii) Let

�  �
. Every valid sequent consisting of $ %
 � � %
 -sentences has a � �
 -proof of size

� � � � � � � .

Proof. Item (i) is proven by the usual method for of the completeness of sequent calculus

systems as follows. We maintain a tree of sequents whose root node is � and whose edges

correspond to inference steps. Leaves are active if they are not logical axioms; otherwise they

are inactive. Starting with the tree with single node � which is an active leaf, we repeatedly

apply the following procedure: pick an active leaf � and pick an arbitrary, nonatomic formula

( of � . Using the inference rule that introduces the outermost connective of ( , grow the tree

upward by attaching one or more upper sequents to � as new active leaves. � itself becomes

inactive. For example, if � is � � � � 	�� � � 	�� , then the new leaves are

� � � � 	��!	�� � and � � � � 	 � 	�� �
�
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Note that there are appropriate exchange steps between � and the new leaves.

In the above procedure, if the inference step for � is � -left or � -right, the new leaf is

obtained simply by introducing a new eigenvariable that doesn’t occur elsewhere in the current

tree. If the inference step is � -right, then the new leaf is obtained as follows:

� � � 	 � � T � 	 � � F �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �#� -right

� � � 	 ��� ��� � ����� 	 ��� ��� � �����
contraction-right

� � � 	 � � ��� � �����

And � -left is handled similarly.

Let
�

and � be the numbers of connectives and quantifiers that occur in � , respectively. The

above procedure generates at most
� � � �

sequents, each of which is length
� � � % 	 � 	 � . Thus, the

resulting cut-free proof is of size
� � ��� � ��� � .

Cook in [Coo03] showed (ii), and here we sketch his proof. The idea is to modify the

above procedure so that no free variable occurs in active leaves. Suppose we picked an active

leaf � and a sentence ( of � . If ( starts with a propositional connective, then apply the same

procedure as above. Suppose that ( is of the form � � ��� � � ��� and is in the succedent of � . Since

( is a sentence, it is either true or false. If it is true, then there is a truth value � � �
T 	 F � such

that
� � � � is a true sentence. Thus, a new active leaf is the sequent obtained by replacing ( with

� � � � . If ( is false, then we simply derive ( from
� � T � . The case for � -left is handled similarly.

The cases for � -right and � -left are modified as follows. Suppose that � is � � � 	 ��� � ����� ,
where ( is the sentence ��� � � ��� . The new active leaves are constructed in the following way.

Note that double lines indicate that we are omitting multiple applications of structural rules.

� � F � � � 	 � � � � � � � 	 � � F �
� � � � � � � � � � � � � � � � � � � � � � � � � cut on

� � F �
� � � 	 � ����� 	
�

� 	 � � T � � � ��� � � � � 	 � � T �
� � � � � � � � � � � � � � � � � � � � � � � � � cut on

� � T �
� 	 � � � 	 � � � �

cut on �
� � � 	 � � � � � -right

� � � 	 ������� � �����
By Lemma 5.8, we have short proofs of the sequents

� � F � � � 	 � ����� and � 	 � � T � � � � � � .
Thus, the new active leaves are � � � 	 � � F � and � � � 	 � � T � .
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Cook’s procedure generates a tree-like � -proof with
� � � � � � � sequents, each of which is of

size
� � 	 � 	 � , and hence (ii) holds. Moreover, if � is a $ %
 � � %
 -sentence, then all the cut formulas

are either $ %
 or � %
 , and therefore (iii) follows.

The following Lemma shows that our systems are natural extensions of Krajı́ček and Pudlák’s

systems.

Lemma 5.10. � and � ��� are p-equivalent. Moreover, for every
�  " , � � � 
 and � � ���


are p-equivalent to � 
 and ���
 , respectively, w.r.t. $ %
 � � %
 .

Proof. We prove that � � ��
 and � 
 are p-equivalent for every
�  �

. The proof is identical

for � � ���
 versus ���
 and � ��� versus � .

� ��� 
 obviously p-simulates � 
 with respect to proving valid $&%
 � � %
 -formulas. For the

other direction, it suffices to show that ��
 can simulate � -right and � -left steps in � ����
 with

quantified targets. For the � -right case, let � be the sequent � � � 	 � � (�� ��� which is derived

from � � � 	�(��
� � with � quantified. ��
 simulates this step by multiple inference steps in

the following way using the sequents of the form (T1) and (T2) of Lemma 5.8:

� ��" � �!	 ( �
��� � (�� T � � -right
�!	�(��
� � � � � (�� ���

� � � � (��
� � � (�� F � 	��
� � � � � � � � � � � � � � � � � � � � -right(������ � � � ( ����� 	 �

Cut( �
��� � � � (������
� � � � � � � � � � � � � � � � �(������ 	 � � � 	 � � (������

� � � 	 ( �
���
� � � � � � � � � � � � � � � ���

� � � 	 � � ( ����� 	�(��
� �
Cut

� � � 	 � � ( �����

� 
 can cut (������ since, by the definition of � ����
 , (������ is $ %
 � � %
 . Note that the targets of

� -right steps in the above proof are constants T and F.

The simulation of � -left steps in � � ��
 by � 
 is done in an analogous way using (T3) and

(T4) of Lemma 5.8.

In fact, the proof of Lemma 5.10 shows the following:
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Theorem 5.11. Let ( � be � with an additional restriction that the target of � -right and � -left

be atomic. Then ( � p-simulates � w.r.t. QPC. Similarly, for every
�  �

, ( � 
 and ( ���

p-simulate � 
 and � �
 w.r.t. $ %
 � � %
 , respectively.

It is not known whether ( ��
 and ( ���
 p-simulate � 
 and � �
 w.r.t. $ %
�� � , respectively. For

this reason, we allow non-atomic targets in Definition 5.7.

Let � be a � -proof. Free variables of � that occur in the endsequent are called parameter

variables. Below we follow Buss [Bus86, Bus98b] in defining the free variable normal form

of proofs, which is slightly stronger than Takeuti’s regular proofs [Tak87].

Definition 5.12. ([Bus86, Bus98b]) Let � be a tree-like � -proof. We say that � is in free

variable normal form if the following conditions are met: (i) no parameter variable is used

as an eigenvariable; and (ii) every nonparameter variable is used as an eigenvariable exactly

once in � .

If � is a tree-like proof in free variable normal form, it follows that, for every nonparameter

variable � , the sequents containing an occurrence of � form a subtree of � whose root is the

upper sequent of the inference in which � is used as the eigenvariable. Any tree-like proof

can be converted into free variable normal form by renaming bound variables and replacing

nonparameter variables � with the logical constant T if � is never used as an eigenvariable.

Throughout this dissertation, we assume that all tree-like QPC proofs are in free variable nor-

mal form.

Let ( be an arbitrary QPC formula. A prenexification of ( is any prenex formula (��
equivalent to ( that is obtained from ( by moving the quantifiers to the front in an appropriate

manner. In general, ( has multiple prenexifications; however, if ( is already prenex or ( is

quantifier-free, then ( has a unique prenexification, which is ( itself.

Let ( � be an arbitrary prenexification of ( . We write ( � as �����( � , where

���� ��� � � � � � �
����� � � � �
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is a sequence of quantifiers with each ��
 � � � 	 � � and ( � is quantifier-free. The dual of ���� is

a sequence � � �� of quantifiers such that, for every
� � � " 	 � � , � �
 is � if � 
 is � , and � �
 is � if

� 
 is � .

Theorem 5.13. Let
�  " . Define �� �
 to be � �
 with an additional restriction that all cut

formulas be prenex $ %
 . Then �� �
 is p-equivalent to � �
 w.r.t. QPC formulas.

Proof. Let
�  " be arbitrary. Let � � � � 	 ����� 	 � � be a ���
 -proof. Since � is tree-like, every

formula in � is an ancestor of either an endformula or a cut formula but not both.

Let ( be a cut formula of � . Assume without loss of generality that ( is $ %
 , since otherwise

we can simply insert the � -steps just before the cut step so that the cut formula is � ( . Fix an

arbitrary prenexification ( � of ( with ( � � $ %
 . Denote ( � as ���� ( � , where ( � is quantifier-

free. Let � be an ancestor of ( . Then there is a subformula � of ( such that � is the result of

substituting propositional formulas for � -variables that occur free in � ; we say � corresponds

to � . For every ancestor � of ( , we fix a prenexification � � ��� � � � �� � � with � � quantifier-free

so that it satisfies the following: (i) if � corresponds to a subformula � of ( that is within the

scope of an even number of negations, then � �� is a subsequence of ���� ; and (ii) if � is within

the scope of an odd number of negations, then � �� is a subsequence of � � �� .

For each
�
, define sequent � �
 by replacing every ancestor � of ( in ��
 with � � . We show

that � �� ����� 	 � �
 for each
� � � " 	 � � can be converted into a � �
 -proof with only a polynomial

blowup in the proof size by induction on
�
. It suffices to show show to derive � �
 from preceding

sequents when ��
 is the lower sequent of an inference step whose principal formula is an

ancestor � of ( such that � is not identical to � � .
The cases in which ��
 is derived by exchange or contraction are trivial. If � is introduced

into � 
 by weakening, � �
 is obtained by a weakening step introducing � � . The cases for

quantifier rules are also easy because of the way we define � � .
Suppose that the step deriving ��
 is � -left:

� � ' � � � � 	��� � 
 � � �!	 � � �
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Then � � ��� � � � �� � � and ��� ��� � ��� � � � � �� � � � , where � � �� is the dual of � �� . � �
 is derived

from � �' as follows:

��� � � ����!	 � � �� � � �
� � � � � � � � � � � � � � � � �� ���� 	 � � �� � � 	�� � �

� � � 	 � �� � � � �' �
� � � � � � � � � � � � � � � � �� � �� � �!	�� � � 	 � �� �

Cut on � �� �� � �
 � � � �� � � 	�� � �

Note that the sequent marked
��� � has short cut-free proof. The case for � -right is analogous.

The cases for � -right, � -left, � -right, and � -left are all similar. We present below the

� -right case. Assume that ��
 is derived from � ' an � � :
� � ' � � � � 	�� � � � 	 � � � � �� � 
 � � � � 	�� � �

Then the prenexifications � � , � � , and �
� � � � � are of the following form:

� � ��� � � � �� � �
� � ��� � � ����

�
�

�
� � � � � �
� � � ���
 ��� � � � � �

where both � �� and ���� are subsequences of ���
 . Then � �
 is derived first from � �' and another

sequent that we mark ‘
�

’:

��� � � �� � � 	�� � � 	 ���
 �
� � � � � �
� � � 	 � ���� �

� � �' �
� � � � � � � � � � � � � � � � � � � � �

� � � 	 ���
 ��� � � � � � 	 � ���� �
Cut on � �

� � � 	 ���
 ��� � � � � �

The sequent
�

follows from � �� as below:

��� � ���� � � 	 � �� � �
� ���
 ��� � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

���� � � 	 � ���� � 	�� � � 	 ���
 �
� � � � � �
� � � 	 ���� � � � � �� �

� � � � � � � � � � � � � � � � � � � � � � � � � �� ���� � 	 � � � 	 ���
 �
� � � � � � 	 ���� � �
Cut on

� ���� � � ���� � 	 � � � 	 ���
 ��� � � � � �
Note that the sequent � � � has a short cut-free proof.

By repeating the above procedure for every cut formula and all of its ancestors, we can

construct � � in which all cut formulas are prenex $&%
 . Clearly the size of � � is polynomial in

	 � 	 .
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Proving an analogous assertion for ��
 is more complicated since, in a ��
 -proof, a formula

can be an ancestor of both an endformula and a cut formula. In fact, we prove in Section 6.3

that, if Theorem 5.13 holds for ��
 , then there is a complexity-theoretic consequence (Theorem

6.10). Nonetheless, we expect the following to hold: for every
�  " , every � 
 -proof � of a

prenex formula can be converted into another � 
 -proof � � of the same formula such that (i) all

cut formulas in � � are prenex; and (ii) the size of � � is polynomial in 	 � 	 .

5.4 TC
�

and the Proof Theory for QPC

Much of the existing work on the relationship between QPC sequent calculus and bounded

arithmetic [KP90, Kra95] depends on the fact that many of the parsing operations for sequent

calculus proofs are polynomial-time and in fact definable in � �� ; see Section 5.5.

The goal of this section is to show that such parsing operations as well as other proof-

theoretic operations for QPC belong to TC
�
, a class apparently much smaller than � . First, in

Section 5.4.1, we demonstrate that many basic parsing operations are in TC
�
. Based on this

fact, we prove the TC
�
-versions of Gentzen’s midsequent theorem and Herbrand’s theorem

for � � and ���� . This is an interesting metamathematical statement in its own right, but it is

also useful in the study of the witnessing problem for � � in Chapter 6 and its relationship to

the second-order theory VNC
�

of bounded arithmetic in Chapter 8. Also the result in Section

6.4 on the complexity of the � $ % � -witnessing problems directly depend on the results of this

Section.

Note that the standard proofs of Gentzen’s midsequent theorem and Herbrand’s theorem

for the first-order sequent calculus � � are based on cut elimination [Bus98b], which involves

an exponential blow-up of proofs size. However, in the current context, there is no need for us

to carry out cut-elimination in TC
�
, since the proofs in � � and � �� already satisfy the necessary

property that all cut formulas be quantifier-free.

We believe that many of the results in this Section can be formalized in a suitable theory
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corresponding to TC
�
, such as VTC

�
of Nguyen and Cook [NC04]. Proving this assertion is

out of the scope of this dissertation, and we leave it as a conjecture.

5.4.1 Parsing Operations

Since we are concerned with a low-level complexity class TC
�
, we need to be more specific

about how QPC syntax is encoded. We fix the alphabet ��� � � so that � -proofs are represented

as strings over it:

��� � � � �
T 	 F 	 
 	��
	 � 	 " 	 � 	 � 	 ��	 ��	 ��	 � 	 � 	 � 	 � � � � � 	�� � 	

where
� � � � � denotes the comma. The symbols

�
and " are used to denote the indices of

variables. A variable 
 
 is written as 
�� � with
� � � � 	 " � � , where � is string concatenation,

and similarly for � 
 . Formulas and sequents are encoded as strings over ����� � without the sharp

symbol (#). � -proofs are representable as � � � � � �
����� � � � ; that is, a sequence of sequents

separated by the sharp (#) symbol such that every � 
 is either an initial sequent or derived from

at most two preceding sequents by an appropriate inference rule. We call this the sequence

representation of proofs. Later we will discuss how to represent tree-like proofs as strings over

��� � � , since parsing tree-like proofs in TC
�

causes subtle problems. We also fix an encoding

scheme for truth assignments.

Throughout this subsection, � will always denote a finite string over ��� � � and
�
� 	�� 	 .

For " � � � �
,
� 
 is the

�
th symbol of � , i.e.,

� �
� � �
� � � �

����� �
�
�

For " � � � � � �
, we write � � � 	 � � to denote the substring

� 
 ����� � ' of � . If � � �
then � � � 	 � �

is empty.

Our goal is to show that various relations of the form � � � � � � ��� � � � � belongs to TC
�
.

An example of such � is ��� � 	 � 	�� � which is true iff � � � 	 � � encodes a QPC formula. We use

the method of descriptive complexity of Section 2.1.2: in order to show that ��� � 	 � 	�� � is in
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TC
�
, we argue that there is an � ���

formula
� � � 	 � � that represents � . Note that the number

arguments of � correspond to the free variables of
�

, and (the binary encoding of) the string

argument � is implicitly described by the � ��� predicate of � ���
.

To simplify the presentation, we will write ‘
�

is TC
�
-recognizable’ to mean that the rela-

tion ��� � 	 � 	�� � is in TC
�
, where ��� � 	 � 	�� � holds iff �

� � 	 � � is an encoding of
�

. Here
�

could

be a formula, QPC formula, � -proof and so on.

Buss in [Bus91] shows that NC
�

can parse propositional formulas and also recognize Frege

proofs. His proofs actually show that these can be done in TC
�
. It is easy to extend this fact to

the QPC case:

Lemma 5.14. Formulas, QPC formulas, and sequents are all TC
�
-recognizable.

Proof. (Sketch) In order to show that formulas are TC
�
-recognizable, it suffices to ensure that

(i) �
� � 	 � � is correctly parenthesized, and that (ii) there is no substring of �

� � 	 � � of length 2 that

is impossible in a formula. Examples of impossible substrings are 
 � , ��� , � � , etc. Condition

(i) holds iff (i-a) �
� � 	 � � contains an equal number of occurrences of ‘(’ and ‘)’; and (i-b) for all

� � � � 	 � � " � , the number of occurrences of ‘(’ in � � � 	 � � exceeds that of ‘)’. It is easy to see

that both (i-a) and (i-b) are � ���
-expressible.

For QPC formulas, we only need to check that �
� � 	 � � is a formula and that every occurrence

of an � -variable � � in �
� � 	 � � is within the scope of either � � � or ��� � . Checking whether � � is

in the scope of a quantifier can be done by counting the numbers of parentheses, and therefore

QPC formulas are TC
�
-recognizable.

We omit a proof for sequents, which is easily seen to be � ���
-expressible.

Based on Lemma 5.14, it is easy to see that � � -proofs are TC
�
-recognizable, since all we

need to do is to verify in TC
�
, for each inference step, the simple syntactic relationship between

the auxiliary formulas and the principal formula. Recognizing � -proofs is a bit more tricky

because of the more complex relationship between the auxiliary formula and the principal

formula of a quantifier rule, especially � -right and � -right. More specifically, for � -right and
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� -left, we need to show that it is TC
�

to verify that the auxiliary formula ( and the principal

formula � � � ( � � satisfies the following: there is a propositional subformula � of ( such that, if

we replace every occurrence of � in ( � with � , the result is identical to ( . Note that verifying

this condition requires working on internal structure of formulas.

We introduce the notion of identifier of a subformula. Let ( be a formula. For each sub-

formula � of ( , we define its identifier ( �
�

) as the string over � " 	 � � that uniquely determines

its location within ( as a path from the root of ( to the root of � , thinking of ( as a tree.

Definition 5.15. Let ( be a formula. For every subformula � of ( , �
� � �
� � is defined induc-

tively as follows. (1) �
� � ��( � is the empty string � ; (2) if � is �
� ��� � � � with � � � ��	 � � , then

� � � ��� � � is � � � �
��� � " and � � � ��� � � is � � � �
��� � � ; and (3) if � is either ��� � � � or � � ��� � � ,
then � � �
� � � is � � � �
��� � " .

For example, if ( is � � � � �
� � ��� � ����� , then �
� � �
� � � " " and �

� � � � � � " � " .

Lemma 5.16. The following is a TC
�
-function: given � 	 � 	 � 	 � 	
� such that

� � � � � � � and

� � � 	 � � and � � � 	
� � encode formulas ( and � , respectively, output � � � �
��� .

Proof. It suffices to show that the bit graph of �
� � ����� is in TC

�
. First, the

�
th symbol of

� � � ����� is nonempty iff there exists � 	�� satisfying (i) �
� � 	�� � is a subformula of ( ; (ii) � is

a subformula of �
� � 	�� � ; and (iii) the number of ‘(’ in � � � 	 � � " � minus the number of ‘)’ in

� � � 	 � � " � is equal to
�
.

Suppose that the
�
th bit of � � � �
� � is nonempty. Then the

�
th bit is ‘2’ iff

� � � � � � ��	 � � .

Now we can prove the following.

Theorem 5.17. The following are TC
�
-recognizable: � -proofs, and ��
 -proofs for every

�  �
.

Proof. We prove that ��
 -proofs are TC
�
-recognizable, since the case for � -proofs is com-

pletely analogous. Our goal is to show that there is an � ���
formula

� � � 	 � � which holds if

and only if � � � 	 � � is a � 
 -proof. By Lemma 5.14, we already have an � ���
formula that holds
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iff �
� � 	 � � is of the form � � � � � �

����� � � � , where each � 
 is a sequent. It remains to show that

the following relation is FOM-expressible: for every sequent � � in the proof, either � � is an

initial sequent or � � follows from one or two preceding sequent(s). The only nontrivial case is

recognizing � � that follows from � ' with � � � by a quantifier-introduction rule.

We describe how to decide, given � � 	 �
� , whether � � follows from � ' by an application

of the � -right rule. It is easy to write an FOM formula asserting that the two sequents are

identical except for the principal and auxiliary formulas and that the principal formula is of

the form � � � 
 ( � . Let ( � stand for the auxiliary formula. We need to verify that there is a

propositional subformula � of ( � such that ( � is identical to the result of substituting � for

every occurrence of � in ( . This is expressed in FOM as follows: there exists a propositional

subformula � of ( � such that, for all subformula
�

of ( , there exists a subformula
�
� of ( �

with �
� � � � � � � � � � � � � � such that the following hold:

- if
�

is the atomic formula � ��
�� , then
�
� is � ;

- if
�

is atomic but not ��� 
 � , then
�

and
�
� are identical; and

- if
�

is not atomic, then
�

and
�
� have the same outer connective.

Note that the above conditions are expressible in � ���
. The � -left rule is handled analogously.

For � -left and � -right, we need to ensure that the eigenvariable condition holds, which is easily

done in FOM.

There are some proof-theoretic operations that seem unlikely to be in TC
�
. In particular,

there are three such operations: (i) recognition of tree-like proofs; (ii) recognition of ancestors

of the given sequent in a proof; and (iii) recognition of ancestors of the given formula in a

proof. For (i), we do not know how to verify that each sequent in a proof is used as an upper

sequent at most once. The reason we suspect that (ii) and (iii) are not in TC
�

is that the

reachability in directed acyclic graphs is complete for nondeterministic logspace, and (ii) and

(iii) are basically the reachability problems whose edges are defined by inference steps.

In order to bypass the difficulty of detecting ‘tree-likeness’ of a proof in sequence repre-

sentation, we fix a special encoding for tree-like proofs.
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Definition 5.18. Let � be a tree-like proof with � its endsequent. The bracket representation

� � of � is defined inductively as follows. If � consists of a single initial sequent � , then � �
is
� � � . If � ends with a step deriving � from � � , then � � is

� � � � � � . If � ends with a step

deriving � from � � and � � � , � � is
� � � � � � � � � � .

The size of � � is linear in 	 � 	 . Another advantage of this encoding is that TC
�

can recognize

ancestors of a sequent in a bracket representation proof by counting the number of brackets.

This is crucial in the TC
�

midsequent theorem that we prove in the next subsection. The

following is easily seen to hold:

Theorem 5.19. For every
�  �

, � �
 -proofs in bracket representation are TC
�
-recognizable.

The proofs of Theorems 5.17 and 5.19 easily generalize to the TC
�
-recognizability of first-

order sequent calculus proofs whose underlying language and nonlogical axioms are TC
�
-

recognizable. We know from our email correspondence with Samuel Buss that this fact has

been known to Buss and possibly a few others, but, as far as we know, it has not been explicitly

stated in print. TC
�

is widely believed to be the smallest complexity class in which counting is

possible. Since parsing operations require counting in general, apparently TC
�

is the smallest

class containing those parsing operations.

In his comments on a preliminary version of this dissertation, Jan Krajı́ček asked whether

the complexity of parsing and other proof-theoretic operations could be further reduced to � � �

by imposing more structure on the representations of proofs. This is quite plausible, but we do

not pursue this direction in this dissertation.

5.4.2 Herbrand’s Theorem and the TC � Midsequent Theorem for
���

�
� � � � and � � ���� are quantifier-free propositional proof systems ( � � and tree-like ��� , re-

spectively), and thus our � � and ���� are, as far as we know, new quantified proof systems for the

whole QPC that have never been studied. Since the cut formulas of � � and � �� are quantifier-

free, they are similar to first-order theories � axiomatized by purely universal formulas, all of
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whose theorems have � � derivations with all cuts on quantifier-free formulas by cut elimina-

tion [Tak87, Bus98b] (also see Theorem 7.20). Therefore, it is reasonable to attempt to obtain

for � � and ���� the counterparts of the proof-theoretic statements regarding such theories � .

In this section we will prove Gentzen’s midsequent theorem for � �� and related statements,

such as Herbrand’s theorem. That these statements hold for the QPC systems is not surprising.

Our focus is on the lengths of proofs and the complexity of the operations that transform

proofs into certain normal forms, which traditional proof theory has not paid much attention

to. Based on the results of the preceding subsection, we will show the complexity of these

proof transformations to be TC
�
. As we stated in the opening remarks of Section 5.4, we do

not carry out cut elimination in TC
�
. Our proofs in this section depend crucially on the fact

that every cut formula in � �� is quantifier-free.

Definition 5.20. Let � be a sequent calculus proof of a quantified formula ( in either predicate

calculus or QPC. We say that � is a midsequent proof if there is a quantifier-free sequent � in

� satisfying the following: (i) no quantified formula appears in the derivation of � in � ; and

(ii) the endsequent is derived from � using contraction, exchange, � -right, and � -right only.

Gentzen proved, in his 1935 paper which introduced the sequent calculus � � , the midse-

quent theorem for first-order logic. The definition of � � is found in Chapter 7 (as Definition

7.18).

Theorem 5.21. ([Gen35]) If ( is a valid first-order formula in prenex form, then there is a

midsequent � � -proof of ( .

Proof. (Sketch) Since ( is a valid prenex formula, it has a cut-free � � -proof � [Tak87,

Bus98b]. Gentzen demonstrates an algorithm to convert � into a midsequent proof � � . In-

tuitively, his algorithm pushes quantifier steps in � downward so that no propositional step

occurs below a quantifier step. We present a simple example. Suppose that � contains � -right

steps followed by � -left step:
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�!	 � � � 	 ( � � � � -right
� 	�� � � 	 � � (������

� 	�� � � 	 ( � � � � � -right� 	�� � � 	 � � (�� ���
� -left

� � � 	 � � � 	 � � (������
We modify the proof above so that � -right steps occur below the � -left step:

� 	�� � � 	 (�� � � � 	�� � � 	 (�� � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � -left

� � � 	�� � � 	 ( � � � 	 (�� � � �
� � � � � � � � � � � � � � � � � � � � � �#� -right
� � � 	�� � � 	 ( � � � 	 � � (������
� � � � � � � � � � � � � � � � � � � � � � � � � -right
� � � 	�� � � 	 � � ( ����� 	 � � (������

contraction-right
� � � 	�� � � 	 � � ( �����

The double lines in the above proof indicate that we omitted multiple applications of structural

rules.

By repeatedly applying the above procedure, all quantifier introduction steps can be pushed

downward so that the result is a midsequent proof � � : see [Gen35, Tak87] for more details.

Clearly, the midsequent theorem holds for � , and this fact has been pointed out by Krajı́ček

in [Kra95]. Note that Gentzen’s construction of � � from � in the above proof is polynomial-

time in 	 � 	 . Because of the sequential manner in which this construction works, it is not clear

if this can be done in a smaller complexity class. Using a different idea, we show below that

there is a TC
�
-function that, given � , outputs a midsequent proof of the same endsequent.

The � -Prototypes and Herbrand Disjunctions

Recall that all the cut formulas in a � � -proof are quantifier-free. It follows that, if the an-

tecedent of the endsequent is quantifier-free, then the proof contains neither � -left nor � -left

step.

Definition 5.22. Suppose that � is a � � -proof of a quantified QPC formula ( in prenex form.

If a quantifier-free formula ( � is the auxiliary formula of a quantifier-introduction step, then

we call it a � -prototype of ( , and we call this quantifier-introduction step the critical step of

( � . We define the Herbrand � -disjunction to be the sequent

� ( � 	 ����� 	 ( �
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F(D1,D2,D3)

F(C1,C2,C3)F(B1,B2,B3)

x   y   z F(x,y,z)

EEE

Figure 5.2: A ���� -proof of a prenex $ % � -formula � �����
��
 �!� �
	 ��	 
 � .

where ( � 	 ����� 	 ( � are all the � -prototypes of ( .

It is easy to see that � -prototypes are TC
�
-recognizable. As an example, consider a � �� -

proof � of a prenex $ % � -formula ( of the form

� �����
��
 �!� �
	 ��	 
 �

that is depicted in Figure 5.2, where �!� �
	 ��	�
 � is quantifier-free. In � , there are three formu-

las, � �
�!" 	 � � 	���� � , � � � " 	 ��� 	 � � � , and � � � " 	 � � 	 �
� � , that are quantifier-free ancestors to

which � -right is applied; that is, each of these three formulas is a � -prototype of the endfor-

mula. The Herbrand � -disjunction is the sequent

� �!���!" 	�� � 	���� � 	�� � � " 	 ��� 	 � � � 	�� � � " 	 � � 	 �
� �

and we will later prove that this sequent is valid and has a short ��� -proof (Lemma 5.25).

Assume that � is a � � -proof of the sequent
� ( where ( is of the form

� � � � ����� � � � � � ���
 	�� � 	 ����� 	�� � � (5.3)

with � 
 � � � 	 � � for each
� � � " 	 � � and � quantifier-free. Then, for every � -prototype ( � of

( , there exists a unique sequence � � 	 ����� 	�� � of propositional formulas such that

( � ��� � � �!���

 	�� � 	 ����� 	�� � � �



CHAPTER 5. QUANTIFIED PROPOSITIONAL CALCULUS 111

Intuitively, each � 
 is either the target of the � -right step or the eigenvariable of the � -right

step that introduces the bound variable ��
 into ( � . In Figure 5.2, �!" , � � , and ��� are the first,

second, and third component of the � -prototype ( �
�!" 	 � � 	���� � , respectively.

Definition 5.23. Let � , ( , ( � , and � � 	 ����� 	�� � be as in the preceding paragraph. For each
� � � " 	 � � , we call � 
 the

�
th component of ( � .

Let ( � be a � -prototype of ( of the form (5.3). For
� � � " 	 � � , the

�
th component of ( � is

the propositional formula � that occurs as a subformula of ( � such that, for every occurrence

of � in ( � , there exists an occurrence of ����
 � in � satisfying � � � � �
� � � � � � ��� 
 � . Thus,
�
th

components are TC
�
-recognizable.

Before proving that some proof-theoretic operations, including the construction of a mid-

sequent proof, can be done in TC
�
, we state a useful lemma:

Lemma 5.24. There is a TC
�
-function � satisfying the following: if � � and � � are two sequents

such that � � can be derived from � � using structural rules only, then � � � � 	 � � � is such a deriva-

tion. The derivation can be either in sequence representation or in bracket representation.

Proof. (Sketch) TC
�

can easily verify that � � does follow from � � by structural rules only.

Also there is a TC
�
-function that, given � � � 	 � � � , outputs a sequence � � 	 ����� 	 � � of sequents

such that: (i) � � ��� � � � � , (ii) � � ��� � � � � , and (iii) for each
� � � � 	 � � , � 
 follows from � 
�� � by

one application of either contraction or weakening as well as multiple exchange steps before

and after it. Finally, it is easy to see that there is another TC
�

function that, given � � 	 ����� 	 � � ,
inserts necessary exchange steps between ��
 ’s so that the output is a desired proof of � � from

� � . Since the class of TC
�
-functions is closed under composition, the claim holds.

The following lemma will be useful in both the midsequent theorem and Section 6.2 when

we study the complexity of the $&% � -witnessing problem of � � .

Lemma 5.25. Let � be a � � -proof of a sequent
� ( with ( a quantified QPC formula in

prenex form. Then the Herbrand � -disjunction is valid, and there is a TC
�
-function � such

that � � � � is a � � -proof of the Herbrand � -disjunction.
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Proof. Assume that � is the sequence � � 	 ����� 	 � � of sequents, where � � is
� ( . We construct

a polynomial-size ��� -proof of the Herbrand � -disjunction as follows. For every
� � � " 	 � � ,

if sequent ��
 is ��
 � � 
 , then define � �
 to be � 
 � � �
 , where � �
 is obtained from � 

by removing all quantified formulas and adding all � -prototypes ( � 	 ����� 	 ( � . Note that ��

contains no quantified formula, and � �� is the Herbrand � -disjunction.

We argue that every � �
 has a PK-proof of size polynomial in 	 � 	 by induction on
�
. If

� 
 contains no quantified formula, then ��
 �
� � � � �
 and there is nothing to prove. Assume

that � 
 contains a quantified formula. The only nontrivial case is when � 
 is derived from � '

which does not contain a quantified formula, and this happens only in weakening or quantifier

introduction. In either case, � �
 follows from � �' by introducing ( � 	 ����� 	 ( � by weakening.

We argue that the above construction is TC
�
. First, there is a TC

�
-function that, given

� , outputs a sequence � �� 	 ����� 	 � �� . This sequence can be easily converted to a ��� -proof by

a TC
�
, since it only requires removing redundant sequents and inserting necessary structural

steps between sequents, as in Lemma 5.24.

We emphasize that, in Lemma 5.25, the validity of the Herbrand � -disjunction in depends

crucially on the fact that all cut formulas in � � -proofs are quantifier-free.

Below we state and prove a TC
�

midsequent theorem for � �� .

Theorem 5.26. (The TC
�

Midsequent Theorem for � �� ) Let � be a � �� -proof of a prenex formula

( . Then there exists a � �� -proof � � of ( such that � � is a midsequent proof whose size is

polynomial in 	 � 	 . Moreover, there is a TC
�
-function that, given � , outputs such a midsequent

proof � � .

Proof. Let ( be of the form

� � � � ����� � � � � � ���
 	�� � 	 ����� 	�� � �

with � quantifier-free and ��
 � � � 	 � � for each
� � � " 	 � � . Let ( � 	 ����� 	 ( � be all the � -

prototypes. By Lemma 5.25, there is a TC
�
-function � such that � � � � is a � � -proof of the
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Herbrand � -disjunction

� � ��� � �
� ( � 	 ����� 	 ( � �

It suffices to show that there is a TC
�
-function � such that � � � � is a � �� -proof of

� ( from � �

using contraction, exchange, � -right and � -right rules only.

Assume that � is in bracket representation and consists of
�

sequents � � 	 ����� 	 � � . For every
� � � " 	 � � , we say that ��
 is at level � if there are � inference steps between ��
 and the endsequent

� � . Let � � be the maximum level in � . Thus, � � is at level zero. Note that � � is TC
�
-computable.

Also, for each � � � � 	 � � � , the sequents at level � are TC
�
-recognizable.

For each � � � � 	 � � � , we define the sequent � � � � to be

� � � � � 	�� � � �

where ��� � � is the cedent of all quantified formulas that occur in a sequent at level � , and � � � �
is the cedent containing all � -prototypes ( � such that the lower sequent of the critical step of

( � is at level � � with � � � � . Thus, � � � � contains � -prototypes and quantified descendents of

� -prototypes only.

Let � be the sequence � � � � � 	 � � � � � " � 	 ����� 	 � � " � 	 � � � � of sequents. Note that � � � � � is

identical to � � up to applications of exchanges and that � � � � is identical to the endformula.

Moreover, for every � � � " 	 � � � , for every formula � in � � � � , at least one the following holds:

(i) � is present in � � � � " � ; or � is not present in � � � � " � but it follows from a formula � �

in � � � � " � by either � -right or � -right. Moreover, if � follows from � � by � -right, then every

occurrence of the eigenvariable � is in � � ; in particular, � occurs neither in � � � � nor in � � � � " �
outside � � .

It is easy to see that there is a TC
�
-function � such that, given � � � � � " � 	 � � � � as an in-

put, outputs a � �� -proof of � � � � from � � � � " � by inserting multiple applications of exchange,

contraction, � -right, and � -right. The TC
�
-function � can be constructed using � .

If � is a � � -proof instead of � �� -proof, our proof above does not work, since the Herbrand

� -disjunction � � may contain two � -prototypes ( � and ( � such that an eigenvariable � occurs
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in both. If this is the case, there is no � � -proof of the endformula from � � because � -right

rule on � can be applied neither to ( � nor ( � . Thus, it is open whether a � � -proof of a prenex

formula can be converted to a midsequent proof without an exponential blowup of the proof

size. If all quantifier-introduction steps in � are � -right, then this problem never arises, and

thus we can prove the following weaker statement for � � :

Theorem 5.27. There is a TC
�
-function � such that, if � is a � � -proof of a prenex $�% � -formula

( , then � � � � is a midsequent proof of ( .

Proof. Since the endformula is $ % � , all quantifier-introduction steps in � are � -right. From the

Herbrand � -disjunction
� ( � 	 ����� 	 ( � we can easily derive a sequent containing � copies of

( by repeated applications of � -right rule.

It is shown by Krajı́ček that tree-like ��� p-simulates dag-like ��� ([Kra95], Theorem 2.14

in this dissertation) and therefore � �� p-simulates � � w.r.t. propositional tautologies. Based on

this and the above results, we obtain a stronger p-simulation for � �� and � � .

Theorem 5.28. � �� p-simulates � � w.r.t. prenex $�% � -formulas.

Proof. Let � be a � � -proof of a sequent � containing one prenex $ % � -formula. Apply Theorem

5.27 to obtain � � that proves � from the Herbrand � -disjunction � � . Since the subproof � � of

� � rooted at � � is a � � -proof, and tree-like ��� p-simulates ��� [Kra95], we can convert � �

into a tree-like ��� -proof � � with only polynomial size increase. Finally, replace � � in � � with

� � ; the result is a � �� -proof of � .

Theorem 5.28 is interesting because we later show that a similar p-simulation for � � and

� � � implies
� � � �&� � � ��� (see Theorem 6.2), which is not believed to be true. It is open

whether Theorem 5.28 can be generalized to a p-simulation of � � by ���� for proving all prenex

formulas. In fact, it is open whether � �� can p-simulate � � for $ %� -formulas. Since we are not

able to prove Theorem 5.26 for � � , the above argument does not work for a more general case.
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5.5 Connections to Bounded Arithmetic

Krajı́ček and Pudlák in [KP90] define a translation of bounded formulas of first-order bounded

arithmetic into families of QPC formulas. We do not give the details of the translation here,

and we only state some of its important properties. For simplicity, let ( � � � be a bounded

formula with one free variable � . Then, for each
� � �

, Krajı́ček and Pudlák define a QPC

formula 	 	 (�� � � 	 	 � satisfying the following: (i) the size of 	 	 ( � � � 	 	 � is polynomial in
�

; (ii) the

free variable � of (���� � is represented as an
�

-bit binary string by a vector of 
 -variables of

length
�

; (iii) each bound variable of (���� � is similarly represented by a vector of � -variables

of polynomial length; and (iv) for
�  " , if (���� � � $��
 , then 	 	 (�� � � 	 	 � � $ %
 ; and (v)

	 	 ( � � � 	 	 � is valid if and only if
� 	 � � � � � � 	 � 	 � � � ( � � � � �

Based on the above translation, Krajı́ček and Pudlák showed a close connection between

� 
� and � 
 [KP90], and subsequently Krajı́ček demonstrated a similar connection between � 
�
and � �
 [Kra95].

Theorem 5.29. ([KP90, Kra95]) For
�  #" , if ( is a $��
 theorem of � 
� , then the corresponding

family of valid $ %
 -formulas 	 	 (
	 	 � has polynomial-size � 
 -proofs which can be constructed in

time polynomial in
�

. Similarly for � 
� and ���
 .

Proof. (Idea) Let
�  " . If ( is a $��
 -proof of � 
� , then there is an � � +LIND-proof � of (

from the axioms of � 
� such that all cut formulas are $��
 ; see Theorem 7.21. Given
�

, construct

a � �
 -proof � � of 	 	 (
	 	 � by first translating every sequent in � into a QPC sequent, and simulate

each inference step in � by multiple steps in � �
 . All steps except the length induction step is

easy. The length induction step is simulated in the way described in Section 5.2. Note that the

simulation of � -right and � -left requires a cut on the translation of the auxiliary formula. This

is ok, since in � every � -right and � -left step has a $ �
 � � �
 -formula as its auxiliary formula.

Similarly for $ �
 -theorems of � 
� and � 
 .

The above result is tight with respect to the quantifier complexity of ( , since its proof does
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not work for bounded theorems of � 
� or � 
� that are not $ %
 . More specifically, if ( is not $ �
 ,
then the � � +LIND-proof of ( contains � -right or � -left steps whose auxiliary formulas are not

$
�
 � � �
 . Since the above proof requires a cut on such a formula, this step cannot be simulated

in � �
 . This is a direct consequence of the properties of the translation method, and we do not

see how, using the same translation method, the above translation theorem can be generalized

to a translation of any bounded theorem of � 
� and � 
� . Nonetheless, using the second-order

translations described in Section 8.1, we can show that any bounded theorem of � 
� (or � 
� ) can

be translated into the corresponding valid QPC formulas with polysize proofs.

Theorem 5.30. Theorem 5.29 continues to hold when ( is a $��' theorem of � 
� (respectively

� 
� ) for any �! #" .

Proof. � 
� and � 
� are RSUV-isomorphic to the second-order theories V 
 and TV 
 , respectively

(Theorems 7.8 and 7.10). Hence, the claim follows from the QPC translation theorem (Theo-

rem 8.3) for V 
 and TV 
 .

Definition 5.31. Let � be a QPC proof system. For
�  �

, the
�
-reflection principle for �

is essentially the soundness of � with respect to $ %
 , and it is represented by the following

formula:

�
- � � � � � � � ���� � ����( ���
 � � � ( ���
 � � $ %
 � � � � �
�� (����
 ��� � ( � �� � is valid] (5.4)

where �� 	 � 	 (����
 � are actually numbers that encode the corresponding truth assignment, proof,

and formula, respectively. The validity of (�� �� � is represented by a $ �
 -formula which asserts

the existence of a witness to the outermost existential quantifiers of (�� ���� . Thus the
�
-reflection

principle is a � $ �
 -sentence.

Krajı́ček and Pudlák defined the above reflection principles, and they obtained results on

their provability in bounded arithmetic:
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Theorem 5.32. ([KP90, Kra95]) For every
�  " , � 
� proves

�
- � � � � � 
 � , and � 
� proves

�
-

� � � � � �
 � .

Furthermore, Krajı́ček and Pudlák prove that � �
 and � 
 are the strongest QPC proof sys-

tems for which � 
� and � 
� can prove the
�
-refection principle, respectively.

Theorem 5.33. ([KP90, Kra95]) Let
� 	 � be such that " � � � �

, and let � be a QPC proof

system. (i) If � 
� proves � - � � � � � � , then � 
 p-simulates � w.r.t. $�%' . (ii) If � 
� proves � -

� � � � � � , then ���
 p-simulates � w.r.t. $ %' .

From Theorems 5.32 and 5.33 together with Theorem 2.20, we obtain the following:

Corollary 5.34. For every
�  #" , ��
 and ���
 � � are p-equivalent w.r.t. $&%
 .

Proof. Let
�  " . � 
� proves

�
- � � � � � �
�� � � since it is a $ �
 -theorem of � 
�� �� , and � 
�� �� is

$ �
�� � -conservative over � 
� (Theorem 2.20). Thus, ��
 p-simulates � �
�� � w.r.t. $ %
 by Theorem

5.33.

Similarly, a p-simulation of ��
 by � �
�� � w.r.t. $ %
 follows from Theorem 5.33 and the fact

that � 
�� �� proves
�
- � � � � � 
 � .

It is open whether the above p-simulation of � �
�� � by � 
 can be strengthened for $&%
 � � -
formulas.



Chapter 6

The Witnessing Problems for QPC

In this Chapter, we introduce a new kind of total search problem, the QPC witnessing prob-

lems. The QPC witnessing problems provide a tangible link between the complexity of search

problems and the length of proofs in QPC.

Definition 6.1. Let
�  �

and let � be either ��
 or � �
 . For �  " , define the $ %' -witnessing

problem for � , written
���������
	
	�� � 	 $&%' � , as follows. The input is � � 	 �� � , where � is an � -proof

of a $ %' -formula (����
 � of the form

( ���
 � ��� � � � � �
����� � � � � ���
 	�� � 	 ����� 	�� � � (6.1)

with � prenex � %' � � , and �� is a truth assignment to the free variables �
 . A solution for the

problem is a witness for (�� �� � , i.e., a sequence �� of T 	 F such that � � �� 	 �� � holds.

If the input is not of the correct form (e.g., � is not an � -proof), then we define every string

to be a solution for this input.

Let us describe how the QPC witnessing problem captures the relationship between the

complexity of search problems and the proof lengths in QPC. Consider the following total

search problem
�

, which is similar to the $&% � -witnessing problem except that no proof is

provided as part of the input.
�

is defined as follows. The inputs to
�

are of the form

� ( 	 �� � , where ( is a prenex $&% � -formula of the form (6.1) with � quantifier-free, and �� is a truth

118
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assignment to the free variables of ( . If ( � �� � is a true sentence, then every witness �� to ( � �� � ’s
existential quantifiers is a solution; otherwise, every string is a solution.

It is easy to see that
�

is in ���
� �

and hard for � � . Moreover, every search prob-

lem defined by an � � -relation is reducible to
�

. Finally, for every QPC proof system � ,
���������
	 	�� � 	 $ % � � reduces to

�
.

Let � � � ���� 	 � � 	 ���� 	 � ��� and compare the complexity of
���������
	
	�� � 	 $ % � � with that of

�
. This comparison shows how much the presence of an � -proof of a $ % � -formula ( reduces

the complexity of witnessing ( . The result is the following:

�
���������
	
	�� � �� 	 $ % � � and

���������
	 	�� � � 	 $ % � � are complete for FNC
�
. (Theorem 6.5)

�
���������
	
	�� � � � 	 $ % � � is complete for ��� . (Theorem 6.2)

�
���������
	
	�� � � 	 $ % � � is complete for

� ������� � . (Theorem 6.2)

�
�

is in ���
���

and hard for � �

Thus, when � ��� ���� 	 � � 	 ���� 	 � ��� , the presence of an � -proof in the input dramatically

decrease the complexity of witnessing the given formula ( , and the amount of the decrease

is larger if � is a weaker proof system. This shows that � -proofs of $ % � -formulas contain

information on how to construct a witness for the endformula ( , and the weaker the system the

more constructive the proofs.

Moreover, from the hardness directions of the above itemized statements, we can conclude

that every search problem in FNC
�

has a short � �� -proof of its totality, and similarly for ���
and � � � , and

� � � �&� � and � � , respectively. This immediately tell us that � � does not have

short NC
�
-uniform proofs of the formula ���� � � ���
 	 �� � in (5.2) of page 92 unless � � NC

�
.

Thanks to Krajı́ček and Pudlák’s work on the close connection between QPC and bounded

arithmetic [KP90], it is often possible to obtain complexity bounds on the QPC witnessing

problems from results in bounded arithmetic. However, looking for direct proofs of the com-

plexity bounds without going through bounded arithmetic is important for two reasons. First,
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QPC proof complexity is an interesting research are of computer science on its own right, and

in particular it is relevant to those who are working on the design of efficient algorithms for

QPC provers. Proofs using bounded arithmetic are elegant, but they look unnecessarily com-

plicated to those who do not work with it on regular basis. Second, we will show in Chapter 8

that the complexity of the $ %� -witnessing problems for ���
 and � 
 do not match the definabil-

ity results for � 
� and � 
� , respectively, for �  � � �
, and therefore direct proofs are the only

methods for obtaining bounds for these witnessing problems.

We take a mixed approach and some results are obtained using bounded arithmetic, and

some are obtained by direct methods. In particular, the hardness of various QPC witnessing

problems are most easily obtained via the QPC translation theorems of bounded arithmetic (see

Chapter 8).

Finally, since our results on the QPC witnessing problems are scattered through this Section

and Chapter 8, we will summarize all the results in Chapter 9, where a table of all the results is

provided (Table 9.2).

This Chapter is organized as follows. In Section 6.1, we obtain the completeness results

for both
� �������
	
	�� � �
 	 $ %
 � and

���������
	 	�� � 
�	 $ %
 � for every
�  " . While we prove these result

by going through bounded arithmetic, they can be shown by direct proofs. In Section 6.2, we

show that both
���������
	
	�� ���� 	 $ % � � and

���������
	
	�� � � 	 $ % � � are complete for FNC
�

under many-one

��� � -reduction. Our proof uses the Herbrand � -disjunction, which we introduced in Section

5.4.2. In Section 6.3, we prove the completeness result for
���������
	
	�� � �
 	 $ %
�� � � for every

�  #" .
We prove it by a direct method, since there is no bounded arithmetic result that implies this.

Note that the hardness direction is proven using the results in Chapter 8.
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6.1 The Complexity of
� �������	�
����
 ����� ���� and

� �������	�	����
 �� ��� ����

for
��� �

The complexity of $ %
 -witnessing problems for ��
 and ���
 for
�  " follow from the existing

results in bounded arithmetic.

Theorem 6.2. Let
�  #" . (i)

���������
	
	�� � �
 	 $ %
 � is complete for �������	�

� ; and (ii)
���������
	
	�� � 
 	 $ %
 �

is complete for
� � � �&� � � � 	�

� . The completeness is with respect to polynomial-time many-one

reducibility.

Proof. We first prove that
���������
	
	�� � �
 	 $ %
 � is in ����� �

	�

� . Recall the definition of
�
- � � � � ���
 �

in (5.4) and note that
���������
	
	�� � �
 	 $ %
 � is the search problem whose defining relation is repre-

sented by
�
- � � � � ���
 � . It follows that

���������
	 	�� ���
 	 $ %
 � is a �$
�
 -definable search problem of

� 
� , and, by Buss’s witnessing theorem in [Bus86] (Theorem 2.22 of this dissertation), it is in

����� � 	�
�� .
That

���������
	 	�� � 
 	 $ %
 � � � �������
� �
�	�

� follows in an analogous manner from the provabil-

ity of
�
- � � � � � 
�� in � 
� (Theorem 5.32) and the �$
�
 -witnessing theorem for � 
� (Item (ii) of

Theorem 2.22).

The hardness of
���������
	
	�� � �
 	 $ %
 � is shown as follows. Let � be a search problem in

����� � 	�
�� . By Theorem 2.22, � is is �$ �
 -definable in � 
� ; that is, there exists
� ���
	��
� � �$ �


such that the following two conditions hold: (i)
� � �
	 ��� represents a relation � � such that,

for every �
	 � � �
, � � � �
	 �
� implies � � �!� ��� ; and (ii) � 
� proves ������� � ���
	��
� . Let (���� �

denote ��� � ��� 	��
� with one free variable � . By Theorem 5.29, given � � �
with 	 � 	 � �

, we

can construct in polynomial-time a � �
 -proof � of the $�%
 -formula 	 	 (���� � 	 	 � . Let ( % denote

	 	 (���� � 	 	 � . Since ( % is not prenex even when ( is prenex, we do the following. Let ( � � $ %

be a prenex form of ( % such that

( % � ( �

has short, cut-free ���� -proofs. By a cut on ( % we construct from � another � �
 -proof � � with
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endformula ( � . Finally, by letting �� the truth assignment encoding the bits of � , a solution

for
� �������
	
	�� � �
 	 $ %
 � on the instance � � � 	 ���� gives a solution for � � � � . Thus, � is many-one

reducible to
���������
	 	�� ���
 	 $ %
 � .

The hardness of
���������
	 	�� ��
�	 $ %
 � for

� � � �&� � � � 	�
�� is proven in a way completely analogous

to the � �
 case above, using Theorems 2.22 and 5.29.

It follows from Theorem 6.2 that, if � � � p-simulates � � w.r.t. $ % � , then ����� � � � �&� � ,
which is believed to be false. More generally, a p-equivalence between any two quantified

sequent calculi discussed in this paper implies a collapse of the corresponding complexity

classes.

Cook [Coo02] has a direct proof of
���������
	 	�� � �
 	 $ %
�� � ����� �	�

� . Also Alan Skelley in

2002 described to us in person a direct proof of
���������
	
	�� � 
�	 $ %
 � � � � � ���
� � � 	�

� . Skelley’s

direct proof has not appeared in print, and Buss in [Bus04], independently of Skelley’s work,

applied similar ideas with respect to bounded-depth Frege proofs to obtain alternative proofs

of Theorem 2.22. An advantage of the proofs by Cook and Skelley is that their proofs do

not mention bounded arithmetic at all and therefore are more accessible to a general computer

science audience.

6.2 FNC " and the � �
" -Witnessing Problems for


 �
� and


 �

Since � � and ���� are new proof systems for QPC, the complexity of their witnessing problems

have never been studied. In this Section, we prove that the $ % � -Witnessing Problems for � �� and

� � are both complete for FNC
�

under many-one � � � -reduction. We begin with the hardness

direction.

The Hardness for FNC
�

A search problem � is said to be hard for FNC
�

under many-one ��� � -reductions iff every

search problem in FNC
�

is many-one ��� � -reducible to � . � is complete for FNC
�

if � �
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FNC
�
.

First, we describe how a weaker claim of the hardness of
���������
	
	�� � �� 	 $ % � � for NC

�
under

many-one ��� � -reductions can be proven. For every propositional sentence ( , the sequent

� ��� ��� � � � � ( ��� ��� ��� � ( � �
has a ���� -proof � consisting of � sequents, where � is some constant that does not depend on

( ; in fact, we have seen such a proof in Chapter 5 as Figure 5.1 on page 90. It can be shown

that the ���� -proof � of Figure 5.1 is constructible from ( by an ��� � -function. Finally, note

that the witness to � is the truth value of ( and that the problem of evaluating propositional

sentences is hard for NC
�

[BIS90].

The fact that
���������
	
	�� ���� 	 $ % � � is hard for NC

�
does not immediately imply its hardness for

FNC
�
; however, we can use essentially the same idea to prove the FNC

�
hardness.

Theorem 6.3. Both
���������
	
	�� � �� 	 $ % � � and

���������
	
	�� � � 	 $ % � � are hard for FNC
�

under many-

one ��� � -reductions.

Proof. Let � be an arbitrary NC
�
-function. It suffices to show that � is many-one � � � -

reducible to
���������
	 	�� � �� 	 $ % � � . Assume without loss of generality that there is a polynomial


 such that � � � � 	 " � � � � � 	 " � 
 � � � for every
�

. Since the bit graph ��
 � �
	 � 	 � � is in NC
�
,

and since every NC
�
-predicate is computed by a Dlogtime-uniform family of polynomial-size

propositional formulas [BIS90], there exists a Dlogtime-uniform family � ( � � � of polynomial-

size propositional formulas such that, for each
�
� 	 � 	 , ( � � �
	

� � is true if the
�
th bit of � � ��� is

1 and ( � � �
	
� � is false otherwise, where � and

�
are represented in ( � by sequences �
 and �� of

propositional variables, respectively.

Let � �

 � � � and, for each

� � � " 	�� � , let �� denote the truth assignment to �� representing
�

in unary. Define sequent � � as follows:

� ����� � � ����� ����� � � � ��� � � ( � ���

 	 �" ����� ����� � � � � � ( � ���


 	 �� ��� �
where ‘ � 
 � ( � ���


 	 � � � ’ abbreviates ��� 
 � ( � ���

 	 � � ��� � ��� � 
 � � ( � ���


 	 � � ��� . Suppose that � � is

a � �� -proof of � � and that �� is a truth assignment to �
 encoding � � � � 	 " � � . It is easy to
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F(D1,D2,D3)

F(C1,C2,C3)F(B1,B2,B3)

x   y   z F(x,y,z)

EEE

Figure 6.1: A ���� -proof of a prenex $ % � -formula � �����
��
 �!� �
	 ��	 
 � .

see that there is an ��� � function that computes � ����� given the solution for
���������
	
	�� � �� 	 $ % � �

on � � � 	 �� � . Thus, it suffices to show the existence of an � ��� -function � such that � � ��� is a

� �� -proof � � � � of � � � � of size polynomial in 	 � 	 .
Below we give an informal description of the proof � � . The sequent � � is derived by �

applications of � -right from

� ��( � ���

 	 �" � � ( � ���


 	 �" ����� ����� � � ( � ���

 	 �� � � ( � ���


 	 �� ���

which follows by applications of � -right from the sequents

� � ( � ���

 	 � � � � ( � ���


 	 � � ��� (6.2)

for each
� � � " 	�� � . It is easy to see that every sequent of the form (6.2) has a � �� -proof with

a constant number of sequents, and this completes the description of � � . Finally, an � � � -

function can output � � because each line of � � has a highly uniform structure and it is easy to

determine what the � th sequent of � � should look like for any � .

The Membership in FNC
�

Here we prove that there exists an NC
�
-function that outputs a solution for

���������
	
	�� � � 	 $ % � � .
We first describe an informal idea why this is the case.
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As an example, let � � 	 �� � be an instance of
���������
	 	�� � � 	 $ % � � , where � is depicted as Figure

6.1, which is a reproduction of Figure 5.2. Assume without loss of generality that � is in free

variable normal form; thus, every free variable of � appears in the endformula. Note that � can

be converted into free variable normal form by a TC
�
-function.

Let ( be the endformula � ��������

� ���
	 ��	�
 � of � . Recall the definition of � -prototypes and

Herbrand � -disjunctions (Definition 5.22 on page 109). ( has three � -prototypes (����!" 	�� � 	���� � ,
(�� � " 	 � � 	 � � � , and (�� � " 	 � � 	 �

� � , and, by Lemma 5.25, the Herbrand � -disjunction

� (����!" 	�� � 	���� � 	 (�� � " 	 � � 	 � � � 	 (�� � " 	 � � 	 �
� �

is valid. Hence, under the truth assignment �� , at least one of the three � -prototypes is true.

Suppose that ( � � " 	 ��� 	 � � � is true under �� . Then

(�� � � � � � � " 	 ���� 	 � � � � � � � 	 �� � 	 � � � � � � ��	 �� ���

is a true sentence, where
� � � � � � 	 �� � denotes the truth value of a formula

�
under �� . Thus, a

solution for the instance � � 	 �� � is obtained by evaluating the components
� " , ��� , and

�
� under

�� . (Components of a � -prototype is defined in Definition 5.23.)

In order to show that
���������
	
	�� � � 	 $ % � � � FNC

�
, it suffices to show how to compute the

�
th bit � 
 of the witness. Here is an algorithm for it. Given � � 	 �� � , find the first � -prototype ( �

that is true under �� ; we will say more about the ordering on � -prototypes below. Then � 
 is

obtained by evaluating the
�
th component of ( � under �� . Buss has shown in [Bus87] that the

Boolean Formula Value Problem of evaluating the input propositional formula under the given

truth assignment is in NC
�
, and this fact is crucial in our algorithm.

In the above algorithm, � -prototypes are ordered simply by the order of their appearance in

� . We need to recognize the first � -prototype that is true under �� since, if there are more than

one � -prototype that is true under �� , the bits of a witness � � 	 ����� 	 � � must be extracted from the

same � -prototype; otherwise the result �� may not be a witness at all.

Below we argue more formally that
���������
	
	�� � � 	 $ % � � � FNC

�
. Let � be the input � � -proof
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of (����
 � of the form

( ���
 � ��� � � � � �
����� � � � � ���
 	�� � 	 ����� 	�� � � (6.3)

with � quantifier-free, and let ( � 	 ����� 	 ( � be a sequence of all � -prototypes (Definition 5.22).

Note that the sequent
� ( � 	 ����� 	 ( � is valid by Lemma 5.25. For each � � � " 	�� � , define a

formula � ' which states that ( ' is the first in the sequence ( � 	 ����� 	 ( � that is satisfied, i.e.,

� ' ��� � � ��� ( � ��� ( � �
����� ��� ( ' � � ��� ( ' �

Thus, any truth assignment �� satisfies � � for exactly one value � � � " 	�� � .

Definition 6.4. Let (����
 � and � be as in (6.3) and ( � 	 ����� 	 ( � and � � 	 ����� 	�� � be as in the

above paragraph. For all
� � � " 	 � � , define

� 
 ��� � �
��
' � �

� � ' � �
'
 � 	

where �
'
 is the

�
th component of ( ' . We call

� 
 the
�
th � -witness formula.

It is easy to see that a witness �� to (����
 � is computed by evaluating
� � 	 ����� 	 � � under �� . We

show that this fact has short ��� -proofs in Theorem 6.7.

Theorem 6.5. Both
���������
	
	�� � � 	 $ % � � and

���������
	 	�� � �� 	 $ % � � are in FNC
�
.

Proof. It suffices to show that the following relation is in NC
�
:

��� � 	 �� 	 � � � the
�
th � -witness formula

� 
 of � evaluates to T under ���	

where � is either � � -proof in sequential representation or a � �� -proof in bracket representation.

It is easy to see that there is a TC
�
-function � such that � � � 	 � � is the formula

� 
 . By Buss’s re-

sult in [Bus87, Bus93], there is an NC
�

relation � such that � ��� 	 �� � holds iff the propositional

formula � evaluates to T under the truth assignment �� . Then

��� � 	 �� 	 � � � � � �!� � 	 � � 	 �� � �

Since � � �!� � 	 � � 	 �� � is in NC
�
, this completes the proof.
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From Theorems 6.3 and 6.5, we obtain the desired completeness result.

Theorem 6.6. Both
���������
	
	�� � �� 	 $ % � � and

���������
	
	�� � � 	 $ % � � are complete for FNC
�

under

many-one ��� � -reduction.

The Correctness of the Witness Formulas

We prove that the � -witness formulas compute a solution for the $ % � -witnessing problem for � �

and that this fact has short � � proofs. This fact may be useful in proving that VNC
�

proves

" - � � � � � � � , which we expect to be true.

Theorem 6.7. Let � be a � � -proof of a prenex $�% � -formula ( of the form

� � � ����� � � � �!���
 	�� � 	 ����� 	�� � � , where � is quantifier-free. Let
� � 	 ����� 	 � � be the � -witness for-

mulas. Then �!���
 	 � � 	 ����� 	 � � � is valid, and there is a TC
�
-function that, given � , outputs a

��� -proof of � ���
 	 � � 	 ����� 	 � � � .

Proof. We write � to denote �!���
 	�� � 	 ����� 	�� � � . � � �� � �� � denotes the result of substituting
� 
 for

� 
 , � � � " 	 � � . Our first goal is to show that � � �� � �� � has � � -proofs of size polynomial in 	 � 	 .
That these ��� -proofs can be constructed by a TC

�
-function will be clear.

Let ( � 	 ����� 	 ( � be the � -prototypes of ( . For each � � � " 	�� � , define sequents � ' and � '

as

� ' �
� � �
� � � �� � �� � 	 ( � 	 ����� 	 ( '

� ' ��� � � ( '
� � � �� � �� � 	 ( � 	 ����� 	�( ' � �

� � is derived by weakening the Herbrand disjunction
� ( � 	 ����� 	 ( � which, by Lemma

5.25, has a � � -proof of size polynomial in 	 � 	 . For each � � � " 	�� � " � , � ' is derived from

� ' � � and � ' � � by cut, and finally � � �� � �� � is derived from � � and � � by cut. Thus it suffices to

prove that, for each � � � " 	�� � , the sequent � ' has a polysize ��� -proof.

Fix � � � " 	�� � . Let
�

be a subformula of � , and let
� � �� � �� ' � be the result of substituting,

for every
� � � " 	 � � , � '
 for � 
 in

�
. Note that

� � �� � �� ' � is a subformula of ( ' . Define two
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sequents �
�
� and �

�

� as follows:

�
�
� � � � �� � �� ' � 	 ( ' � � � �� � �� � 	�( � 	 ����� 	 ( ' � �

�
�

� �
� � �� � �� � 	�( ' � � � �� � �� ' � 	�( � 	 ����� 	 ( ' � �

It is clear that � ' follows from �
�
� for

�
�
� � � � by contraction. We prove that, for any

subformula
�

of � , both �
�
� and �

�

� have ��� -proofs of size polynomial in 	 � 	 .
We proceed by structural induction on

�
. If

�
does not contain any occurrence of an � -

variable, then
� � �� � �� � and

� � �� � �� ' � are identical, and therefore both �
�
� and �

�

� follow from

initial sequents by weakening.

For the other base case, suppose that
�

is an atom ��� 
 � for
� � � " 	 � � . Then

� � �� � �� � is
� 


and
� � �� � �� ' � is �

'
 , and hence we need to show that the following two sequents have polysize

��� -proofs:

� 
� � �
'
 	 ( ' �

��
� � �
� � � � � �
 � 	 ( � 	 ����� 	 ( ' � � (6.4)

� 
� �
��
� � �
� � � � � �
 � 	 ( ' 	 � �

'
 	 ( � 	 ����� 	 ( ' � � (6.5)

The sequent (6.4) is derived by weakening and � -right from

�
'
 	 ( ' � � � ' � �

'
 � 	 ( � 	 ����� 	 ( ' � �

which follows from the two sequents �
'
 � �

'
 and ( ' � � ' 	 ( � 	 ����� 	 ( ' � � . By the definition

of � ' , the latter sequent has short proofs.

The sequent (6.5) is derived by � applications of � -left from the sequents

� � � � � �
 � 	�( ' 	 � �
'
 	�( � 	 ����� 	 ( ' � � (6.6)

for each � � � " 	�� � . We claim that all of the sequent of the form (6.6) have short � � proofs.

If � � � , then the sequent contains ( � in both sides of ‘
�

’. If � � � , then �
'
 appears in both

sides. Finally, if � � � , then the antecedent of the sequent contains both ( ' and � ( ' . This

concludes the case where � �
� � � ��� 
�� for some
� � � " 	 � � .
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The inductive step is straightforward. If
�

is � � � � � � � , �
� � � � � � , or ��� � � � , then the

sequents �
�
� and �

�

� have short ��� -proofs from �
� �� , �

� �� , �
� 
� , and �

� 


� , all of which have

short ��� -proofs.

Finally, we claim that the above construction can be carried out by a TC
�
-function. First,

note that � � -proof of � � is TC
�
-constructible from � by Lemma 5.25. For � � � " 	�� � , the

��� -proofs of � ' that we described above is easily seen to be TC
�
-constructible, and therefore

the claim holds.

6.3 The � �
� -Witnessing Problems with Large

�

In this Section, we prove the following:

(i) For every
�  #" , ���������
	
	�� ���
 	 $ %
�� � � is in ��� �

�

	 ��� ��� 	 � ���	��
 � � � (Theorem 6.9); and

(ii) For every
�  �

and �  � ���
,
���������
	
	�� ��
�	 $ %� � is in ��� �

�

� 
�� ��� ��� 	 � ���	��
 � � � (Theorem

6.11).

For item (i) above, we prove a matching hardness result in Chapter 8 (Theorem 8.6) and there-

fore
���������
	 	�� � �
 	 $ %
 � � � is complete for �����

�

	 ��� ��� 	 � ���
��
 � � � . Item (ii) implies an upper bound

on
� �������
	
	�� � �
 	 $ %� � for every

�  �
and �  ��� �

; this is the best upper bound we have so far.

Note that Theorem 6.2 in Section 6.1 and Theorem 6.9 below (item (i) above) show that the

complexity of $�%' -witnessing problems of � �
 correspond to the complexity of the �$
�� -definable

search problems of � 
� for � � � � 	 ��� " � ; see Theorems 2.22 and 2.23. If the correspondence

continued for �  � � �
, we would have

���������
	 	�� � �
 	 $ %� � � ��� �
�

� 
�� ��� ��� 	 � � " � � . However,

we will prove that, if this is the case, then ��� collapses (Theorem 8.8). Therefore, the upper

bound using
� ���	��
 � � witness queries in item (ii) above (Theorem 6.11) cannot be improved to

� � " � witness queries, assuming that � � does not collapse. On this other hand, we only know

that
���������
	
	�� ���
 	 $ %� � is hard for ��� �

�

� 
�� ��� ��� 	 � � " � � (Theorem 8.6). Closing the gap between

the hardness and the upper bound is an open problem.



CHAPTER 6. THE WITNESSING PROBLEMS FOR QPC 130

We use the following notion of strong- $ %
 in the proofs below:

Definition 6.8. Let
�  " be arbitrary. We say that a QPC formula ( is strong- $ %
 if ( � $ %


and ( �� � %
 . Similarly, ( is strong- � %
 if ( � � %
 and ( �� $�%
 .

6.3.1 The Complexity of ���������
	�	
� � ���������������

First, we prove that
���������
	
	�� � �
 	 $ %
 � � � is in ��� � � 	 ��� ��� 	 � ���	��
 � � � , and in fact it is complete

for the class. Recall that, by Theorem 2.7,

��� � � 	 ��� ��� 	 � ���
��
 � � � � ��� � � 	��� ��� ��� �

for every
�  #" .

Theorem 6.9. For every
�  " , ���������
	
	�� � �
 	 $ %
�� � � is complete for ��� � � 	 ��� ��� 	 � ���	��
 � � � under

polynomial-time many-one reduction.

Proof. The hardness is proven in Theorem 8.6. The membership would easily follow if � 
�
proves � � � " � - � � � � ���
 � , but we do not know this. We give a direct proof of the membership,

which is actually a first positive step toward deciding whether � 
� proves � ��� " � - � � � � ���
 � .
Let � � 	 �� � be an instance of the witnessing problem. By Theorem 5.13, � can be converted

in polynomial-time into another � �
 -proof in which all cut formulas are prenex $&%
 . Thus, we

assume without loss of generality that all cut formulas in � are prenex $ %
 . This and the fact

that the endformula of � is prenex implies the following: (i) every formula in � is prenex $ %
�� � ;
(ii) every formula that occurs in the antecedent of a sequent in � is $ %
 ; and (iii) every strong-

� %
 -formula in � is an ancestor of the endformula, and it occurs in the succedent of a sequent.

Note that we do not know whether Theorem 5.13 holds for � 
 , i.e., for dag proofs. We will say

more about this after this proof.

We also assume without loss of generality that � is in free variable normal form. Since �

is tree-like, every formula in � is an ancestor of either a cut formula or the endformula but not

both.
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We describe an algorithm that solves the witnessing problem in polynomial-time by making

polynomially many witness queries to an 	 
 
 oracle in a nonadaptive manner.

Let �
� �� � be the result of replacing the parameter variables of � with the truth values specified

by �� . Then the free variables of �
� �� � are eigenvariables of � -right and � -left. Let � be a sequent

of �
� �� � . We represent � in the following way:

� � ��� 	������

where � is the antecedent of � , and the succedent of � is partitioned into two cedents so

that ��� contains all � %
 -formulas, and ����� contains the rest of the formulas. Note that every

formula ����� is either strong- $�%
 or strong- $�%
�� � . Moreover, every strong- $&%
 -formula in ����� is

an ancestor of a cut formula, and every strong- $ %
 � � -formula is an ancestor of the endformula.

Let �� be all the free variables of � . We define � � � � to be the following sequent:

� � � � ��� � � � � ���

We define ��� � � to be the witness query asking whether the sequent � � � � is falsified by some

truth assignment to �� . A positive answer to this query returns a falsifying assignment. Note that,

for every � , � � � � is equivalent to a � %
 -formula and therefore the query �
� � � is a $&%
 -witness

query.

Clearly, if the succedent of � consists of � %
 -formulas only, then � � � � is valid and the

answer to �
� � � is negative. More specifically, for every intitial sequent � , � � � � is valid. On

the other hand, if � is the endsequent, then the query ��� � � is trivial since � � � � is the empty

sequent, i.e., unsatisfiable. Thus, in every path of �
� �� � , there must be an inference step with an

upper sequent � � and the lower sequent � � such that � � � � � is valid but � � � � � is not. In fact, it is

not hard to see that � � � � � logically implies � � � � � for every inference rule except for � -right and

cut. More specifically, if � � � � � does not logically imply � � � � � , then this inference step must be

either (i) an � -right step introducing a strong $ %
 -formula, or (ii) a cut on a strong- $ %
 -formula

and � � is the upper-left sequent in

� � � � � � � 	�� � � � � � 	 � � � � � � �
� � � � � � �
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Note that, in this case, � � � � � and � � � � � are logically equivalent. We will use these properties

later.

Our algorithm for solving the witness query is simple. Let � � 	 ����� 	 � � be the input proof

� . First, compose the � witness queries ��� � � � ����� 	 ��� � � � , and ask all of them at once. After

receiving the answers to the queries, find an � -right step

� � � � � � 	 (������
� � � � � � � 	 � � ��� (�� ���

such that � � � � is valid but � � � � � has a falsifying assignment. Note that such � � � � and � � � � �
must be of the form

� � � � � � � ��� 	 (������ and � � � � � � � � ���

where (������ is a strong- � %
 -formula that is an ancestor of the endformula. Let �� be a falsifying

assignment given as the answer to �
� � � � . It follows that (������ evaluates to T under �� . Thus, the

solution for
���������
	 	�� ���
 	 $ %
�� � � is found by evaluating under �� the targets of � -right steps that

introduce the outermost existential quantifiers of the endformula. Since the targets are proposi-

tional subformulas, this algorithm runs in polynomial-time using nonadaptive witness queries

to 	�
 
 . Thus the witnessing problem is in ��� ��� 	��� ��� ��� � , which is equal to ��� � � 	 ��� ��� 	 � ���	� 
 � � �
by (iv) of Theorem 2.7.

We still need to prove that the above algorithm is correct, i.e., that there exists an � -right

step with upper sequent � and lower sequent � � such that � � � � is valid and � � � � � is invalid.

We prove this by traversing �
� �� � in the following way. Let � be the ‘leftmost’ path of �

� �� �
from the endsequent to an initial sequent; that is, � is a path that contains no sequent that is

an upper-right sequent of an inference step. We start traversing �
� �� � from the initial sequent

of � . First, keep going toward the endsequent until we first encounter a sequent � � with � � � � �
invalid. If � � is the lower sequent of an � -right step, we are done. Otherwise, � � is the lower

sequent of a cut, and we were in the upper-left sequent of the cut. Note that � � � � ��� � � � � � � ,
where � � � is the upper-right sequent of the cut. Now we start traversing �

� �� � upward from � � � ,

while maintaining the invalidity of � � � � , where � is the currently visited sequent. When we
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encounter a cut, always go to the upper-right sequent. When we encounter binary inference

steps (i.e., � -left or � -right), take an arbitrary way up. Since � � � � for every initial sequent �

is valid, we must encounter a desired � -right step.

As we stated in the proof above, the provability of � � � " � - � � � � � �
 � in � 
� will follow if

we can demonstrate that � 
� proves the correctness of the above witness-query algorithm.

In the above proof, we define � � � � by removing from the succedent of � the strong- $ %
�� � -
ancestors of the endformulas and the strong- $ %
 -ancestors of cut formulas. This definition

ensures the following two properties: (i) � � � � is equivalent to a � %
 -formula; and (ii) every

inference rule except � -right and cut preserves the validity of � � � � for an upper sequent � .

Property (i) ensures that the complexity of witness queries is $ %
 , and property (ii) ensures that

a witness can be found from � -steps that do not preserve the validity of � � � � . These properties

hold because of the fact that every � �
 -proof can be converted into another proof with cuts

on prenex $�%
 -formulas only (Theorem 5.13). On the other hand, without the assumption that

every cut formula is prenex $ %
 , a sequent of � may contain both $ %
 -formulas and � %
 -formulas

in the antecedent. In this case, we do not know how to define � � � � so that properties (i) and

(ii) hold and our proof works.

Since we do not know whether Theorem 5.13 holds for � 
 , the argument in the above

proof of Theorem 6.9 fails to give us any meaningful upper bound on the complexity of
���������
	 	�� � 
 	 $ %
�� � � . On the other hand, if Theorem 5.13 does hold for � 
 as well as for ���
 ,
then there is a complexity-theoretic consequence:

Theorem 6.10. Let
�  " and define �� 
 to be � 
 with an additional restriction that every cut

formula be prenex $�%
 . If �� 
 p-simulates � 
 w.r.t. prenex $�%
�� � , then

��� �
�

	 ��� ��� 	 � ���	� 
 � � � � ��� � � 	

Proof. Let
�  #" be arbitrary and assume that �� 
 p-simulates � 
 w.r.t. $ �
�� � . Then the proof of

Theorem 6.9 goes through, and thus we have

���������
	
	�� � 
 	 $ %
�� � � � ��� �
�

	 ��� ��� 	 � ���	��
 � � � �
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Since
���������
	 	�� � 
 	 $ %
�� � � is hard for ��� � � 	 , it follows that

�����
�

	 ��� ��� 	 � ���	��
 � � � � ����� �	 �

Not much is known about whether ��� �
�

	 ��� ��� 	 � ���	��
 � � � and ��� ��� 	 are equal. We only

know that

��� �
�

	 ��� ���
��
 � � � � ��� �
�

	

for some
�  " implies ��� � � � � 	�
�� . Krentel [Kre88] shows this for

�
� " , and it is easy to

generalize his proof for any
�  #" . However, the proof of this does not work if witness queries

are allowed.

We have not obtained an upper bound on the complexity of
���������
	 	�� � 
 	 $ %
�� � � , and it

seems likely that the upper bound is ��� � � 	 . There are at least two ways we could prove this:

the first way is to show that � 
� proves � � � " � - � � � � � 
�� ; and the second way is to show the

upper bound directly, as we did for Theorem 6.9.

6.3.2 An Upper Bound on the Complexity of ����������	�	
� � � ��� � � � for
��� �����

Theorem 6.11. For every
�  �

and �  � � �
,
���������
	
	�� ��
 	 $ %� � is in ��� � � � 
�� ��� ��� 	 � ���	� 
 � � � .

Proof. Let
�  �

and �  � � �
be arbitrary. The claim would follow if � 
� (or TV 
 if

�
�

�
) proves � - � � � � � 
 � ; however, we know that � 
� does not prove � - � � � � ��
 � unless ���

collapses; see Corollary 8.9. Thus, we prove the claim by a direct proof similar to the proof of

Theorem 6.9. Note, however, that this time our proof does not require that all cut formulas be

prenex $ %
 , and therefore it works for � 
 .
Let � � 	 �� � an instance of

���������
	
	�� � 
 	 $ %� � . We proceed as in the proof of Theorem 6.9 and

let �
� �� � be the result of replacing the parameter variables of � with the truth values specified

by �� .
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Let � a sequent of �
� �� � . Represent � as

� � � � � 	 � �

where � � is the cedent consisting of all strong- $&%� -formulas in the succedent of � , and � � � is

the cedent containing the rest of the formulas in the succedent of � . Define � � � � as

� � � � �
� � � � � � � �
�

Note that we have � � $�%
�� � � $ %� � � , and � � �
� � %� � � ; therefore, � � � � is equivalent to a � %� � � -

formula. Let �
� � � be the $ %� � � -witness query asking whether the sequent � � � � is falsified by

some truth assignment.

Suppose that � and � � are an upper sequent and the lower sequent of an inference step

in �
� �� � , respectively. It is easy to check that, if � � � � is valid and � � � � � is invalid, then the

inference step must be an � -right step whose auxiliary formula is strong- � %� � � . Since � � � � for

every initial sequent � is valid while � � � � � for the endsequent � � is unsatisfiable, it follows

that, in every path in �
� �� � , there is an � -right step satisfying the above conditions.

The following algorithm solves
���������
	
	�� � �
 	 $ %� � in polynomial-time using adaptive queries

to $ %� � � : given �
� �� � , ask ��� � � for every sequent � in �

� �� � , and find an � -right step such that

� � � � is valid and � � � � � is invalid, where � is the upper sequent and � � is the lower sequent. A

solution for the witnessing problem is found by evaluating the appropriate quantifier-free sub-

formulas of the auxiliary formula of this step, under the falsifying assignment for � � � � � .

6.4 Quantified Propositional Calculi for TC
�

In this section we sketch sequent calculus systems for TC
�
. By taking advantage of the fact that

many parsing operations are in TC
�
, we obtain a witnessing theorem for these TC

�
sequent

calculi similar to Theorem 6.5 for � � .

We describe below the sequent calculus system � � � for propositional threshold logic by

Buss and Clote [BC96] with minor modifications. The connectives of � � � are the negation �
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and the unbounded fan-in threshold connectives � � � for �  �
. Here � � � � ( � 	 ����� 	 ( � � holds

iff the number of true inputs is at least � . Note that � � � ��( � 	 ����� 	 ( � � for � � " and � � �
are

the
� �
 � � ( 
 and

� �
�� � ( 
 , respectively.

The initial sequents of � � � are:

(i)
�

T and F
�

and ( � ( for any formula ( ;

(ii) � � � ��� � for �  #" ; and

(iii)
� � � � ��( � 	 ����� 	�( � � for

�  #" .
The structural rules of � � � are: weakening, contraction, exchange, and permutation of

the arguments of � � in a formula. � � � has cut, � -left, � -right, and the following introduction

rules for � � � with �  #" :

� � � -left:
� � � ��( � 	

����� 	�( � � 	��
� � ( � 	 � � � � � � ( � 	

����� 	 ( � � 	 �
� �

� � � � ( � 	 ����� 	 ( � � 	��
� �

� � � -right:
� � � 	 ( � 	 � � � � ( � 	

����� 	 ( � � � � � 	 � � � � � ��( � 	
����� 	�( � �� � � 	 � � � � ( � 	 ����� 	 ( � �

Let ( be a formula of � � � . The depth of ( is the maximum number of nestings of

connectives in ( .

Quantified Threshold Calculus (QTC) is obtained by introducing quantifiers in � � � , with

the convention that the � -variables are used for bound variables and the 
 -variables denote free

variables. For
�  �

, define � $�%
 to be the class of $�%
 -formulas over the connectives � and � � �
for �  �

.

Definition 6.12. � � is obtained by augmenting � � � with the quantifier-introduction rules.

We require that the target of a � -right and a � -left be quantifier-free. � � � is � � with cuts only

on quantifier-free formulas. For �  #" , � � � � � � is � � � with a restriction that all quantifier-free

formulas in a proof be of depth � � .

The � $ % � -witnessing problem for � � � � � � , written
� �������
	
	�� � � � � � � 	 � $ % � � , is defined sim-

ilarly to
���������
	
	�� � � 	 $ % � � .

Theorem 6.13. For every �! #" , ���������
	
	�� � � � ��� � 	 � $ % � � is solved by some TC
�
-function.
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Proof. Fix �  " and let � � 	 �� � be an instance of
� �������
	
	�� � � � ��� � 	 � $ % � � . Assume that the

endformula of � is the formula of the form

( ���
 � ��� � � � � �
����� � � � �!���
 	�� � 	 ����� 	�� � � �

We can define � -prototypes, Herbrand � -disjunction, and the witness formulas for � � � � � �
analogously to those for � � . First, we claim that there is a TC

�
-function � such that �!� � 	 � �

is the
�
th � -witness formula. Note that � -prototypes are easily seen to be TC

�
-recognizable.

The
�
th component of a � -prototype ( � is the propositional subformula � of ( � such that,

for all occurrence of � , there exists a subformula � � of � such that � � ��� � � ��� 
 � and

� � � � �
��� � � � � ��� �
� , where � �
is appropriately modified to take into account that the fan-in

of the connective � � can be arbitrarily large. Let � be the largest fan-in of � � in � . Then �
�

is defined to be a sequence of �	��
 � -bit numbers that specify the location of a subformula in a

formula as a tree.

Next, using the methods of [BIS90], we can show that there is � � � TC
�

such that � � � � 	 �� �
holds iff � is a � � � -formula of depth at most � and � evaluates to T under the truth assign-

ment �� .

Finally, consider the TC
�
-relation � � � � � � 	 � � 	 �� � . This is the bit graph of a function that

solves
���������
	 	�� � �!� � � 	 � $�% � � .

Theorem 6.14. For Every TC
�
-function � , there exists � � �

such that � is reducible to
���������
	 	�� � � � � � � 	 � $ % � � under many-one � � � -reduction.

Proof. This is proven analogously to Theorem 6.3, using the fact that every TC
�

predicate is

computed by a Dlogtime-uniform family � � � � � of polynomial-size � � � formulas [BIS90].



Chapter 7

Second Order Theories of Bounded

Arithmetic

Buss’s first-order theories � 
� and � 
� of bounded arithmetic are closely related to ��� , and

they have been the objects of intense study since their introduction in Buss’s 1985 dissertation

published as [Bus86]. Buss’s theories are preceded by the first-order theory ��� � ��� � of

Wilkie and Paris [PW81, WP87] and the equational theories ��	 of Cook [Coo75] for � and

��� ( of Dowd [Dow79], and followed by a number of new theories of bounded arithmetic

corresponding to various complexity classes, such as Arai’s AID [Ara00] for NC
�
, and theories

for NC, NC
�
, logspace, and nondeterministic logspace by Clote and Takeuti [CT92], among

others. A notable aspect of these developments is a great variety of styles in which these

theories are defined: there are equational, first-order, and second-order theories characterizing

complexity classes in different ways. As a result of these developments, our knowledge of the

connections between complexity classes and logic has greatly increased, but it is nontrivial to

compare these theories because of their different flavours.

Based on Zambella’s work on second-order bounded arithmetic theories [Zam96], Cook

[Coo02] has introduced second-order theories V
�

and � � corresponding to ��� � and � , re-

spectively, and his work led to a framework in which second-order theories characterizing

138
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various complexity classes are developed in a unified way [CK03, NC04, Coo04]. The rela-

tively simple syntax of this framework results in a simplification of both the description of the

theories and the proofs of their properties, such as their connections to QPC which will be dis-

cussed in Chapter 8. Moreover, the unified syntax of these theories makes it easy to compare

them.

The main result of this chapter is the introduction of the second-order theory VNC
�

for

NC
�
, which is inspired by Arai’s AID. We obtain VNC

�
by augmenting the base theory V

�

with a scheme $ 
� - ��� � � � ��� for a tree recursion. In Chapter 8 we will show that VNC
�

is

closely related to � � .

In Section 7.4, we present alternative proofs for Pollett’s result (Theorem 2.24) character-

izing the �$
�� -definable search problems of � 
� and � 
� for
�  " and �  � � �

. Our proofs

are simple and presented in a more general setting. As a result, we obtain a characterization

of the $ 
� -definable search problems for all �  �
of all second-order theories V

�
, VTC

�
of

[NC04], VNC
�
, V
�
-Horn of [CK03], and � � � , which has been previously unknown. In fact,

this characterization applies to every theory � with V
� � � � � � � , and it has an interesting

consequence on the provability of reflection principles in bounded arithmetic, which will be

discussed in Chapter 8.

We begin with the presentation of Cook’s theories V
�
, V 
 , and TV 
 and their syntax. These

theories will be discussed in the coming chapter as well.

7.1 Basic Definitions

7.1.1 Syntax and semantics

Cook’s “second order” theories are really two-sorted first order predicate calculus theories,

and are based on the elegant syntax of Zambella [Zam96]. The underlying language � �� has

variables �
	 ��	�
�	 � � � for the first sort, called number variables, and variables � 	 � 	�� 	 � � � of the

second sort, called string variables. The number variables are intended to range over
�

, and
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the string variables are intended to range over finite sets of natural numbers (which represent

binary strings). The reader may have noticed the similarity between this second-order approach

and that of descriptive complexity (Section 2.1.2).

The language � �� extends the language of Peano Arithmetic, and consists of the function

and predicate symbols
� 	 " 	 � 	�� 	 	 	�� � 	 � 	 � � 	 � � . Here

� 	 " 	 � 	�� are function symbols for num-

bers, and are intended to have their usual interpretation on
�

. The function symbol 	 � 	 denotes

1 plus the largest element in � , or 0 if � is empty (roughly the length of the corresponding

string).
� � � denotes set membership, but we usually use the notation � � � � for

� � � , since

we think of � � � � as the
�
-th bit of the string � . Finally � � and � � denote equality on numbers

and strings, respectively, but we will drop the subscripts, since they will be clear from context.

Number terms are built from the constants 0,1, variables �
	 ��	�
�	 � � � , and length terms 	 � 	
using

�
and � . The only string terms are string variables � 	 � 	�� 	 � � � . The atomic formulas

are
�
�

� , � � � ,
� � � ,

� � � for any number terms
� 	 � and string variables � 	 � .

Formulas are built from atomic formulas using ��	 ��	 � and both number and string quantifiers

� �
	 � � 	 ���
	 ��� . Bounded number quantifiers are defined as usual, and the bounded string

quantifier � � � � �
stands for � � � 	 � 	 � � � � � and ��� � � �

stands for ��� � 	 � 	 � � � � � ,
where � does not occur in the term

�
.

$ 
� � � 
� is the set of all formulas in � �� such that all number quantifiers are bounded,

and there are no string quantifiers. (There may be free string variables.) For
� � �

, $ 

 is

defined recursively to be the set of all formulas beginning with a block of zero or more bounded

existential string quantifiers followed by a � 

�� � formula, and � 

 is defined dually. Note that

for
� � " our $ 

 and � 

 formulas correspond to strict versions of the formula classes $ � � �
 and

� � � �
 defined in standard treatments because we require that all string quantifiers are in front.

One reason for concentrating on this more restricted class of formulas is that the replacement

scheme (asserting that a formula beginning with ��� � � � � � 	
, where

�
and

	
are terms, is

equivalent to one beginning � � � 	
� ��� � �

) does not hold in some of the theories considered

here (without surprising complexity-theoretic consequences [CT04]). Another reason is that
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this makes it easier to state and prove the connections of these theories to QPC proof systems.

7.1.2 Second order complexity classes

The basic complexity classes in this second-order context are classes of relations ��� ��
	 ���� ,
where each � 
 in the list �� ranges over

�
and each � 
 in the list �� ranges over finite subsets of

�
. When the complexity class is defined in terms of machines or circuits, we assume that each

number input is presented in unary notation, and each finite subset input is presented by the

corresponding bit string. Thus P is the class of such relations accepted in polynomial time on a

Turing machine. Again, this setting is similar to the one used in descriptive complexity theory,

and this observation almost immediately leads us to see the following:

Lemma 7.1. ([Coo02, Coo04]) A relation ��� �� 	 �� � is in ��� � iff it is represented by some

$ 
� -formula
� � ��
	 �� � .

Second-order functions are either number functions or string functions. A number function

� � ��
	 �� � takes values in
�

, and a string function �!� ��
	 �� � takes finite subsets of
�

as values. A

function � or � is polynomially bounded (or p-bounded) if there is a polynomial 
 � ��
	 �� � such

that � � ��
	 �� � � 
 � �� 	 	 �� 	 � or 	 �!� �� 	 �� � 	 � 
 � ��
	 	 �� 	 � .
The following is a paraphrase of the definitions of polynomial-time, NC

�
, and ��� � -

functions (Definition 2.3) for the second-order context.

Definition 7.2. The bit graph � � of a string function � is defined by

� � � � 	 �� 	 ���� � � � ��
	 ���� � � �

We say that a number function � is a polynomial-time function if it is p-bounded and its graph

is in � . A string function is called polynomial-time if it is p-bounded and its bit graph is in � .

��� � -functions and NC
�
-functions are defined similarly by replacing � with NC

�
and � � � ,

respectively.
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Definition 7.3. Let � be a theory whose language extends � �� . A string function �!� ��
	 �� � is

$ 
 � -definable in � if there is a $ 
 � -formula
�

such that

� � � � ��
	 �� � � � � ��
	 �� 	 � � and

� � � ���� �� ��� � � � ��
	 �� 	 ���

The $ 
 � -definability for a number function � � �� 	 �� � is defined similarly.

Definition 7.4. Let � be a search problem. We say that � is $ 

 -definable in theory � if the

following two conditions are met: (i) there is a $ 

 -formula
� � �� 	 ��� with all free variables

indicated such that
� 	 � ��� �� ����� ��� � � � �� 	 � � � � � �!� �� � � 	

and (ii) � proves � � �� ����� � � � � �� 	 � � . We call
� � �� 	 � � a $ 

 -defining formula of � .

7.1.3 The theory V �

The base theory V
�

[CK03, Coo02] (called 	 
 � - � � � 
 in [Zam96]) is associated with the com-

plexity class ��� � , and all second order theories considered in this chapter are extensions of

V
�
. The language of V

�
is � �� . The axioms of V

�
consist of the universal closures of the $�
�

formulas 2- � ( ��� � together with the $ 
� comprehension scheme below. 2- ��( ��� � consists

of

B1. � � " �� � B8. � � � � � � � ��� � � � �
B2. � � " � � � " � � � �B9.

� � " � "
B3. � � � � � B10.

� � �
B4. � � � � � " � � � � � �
� � "B11. � � � � � � 
 � � � 

B5. � � � � � B12. � � � � � � �
B6. � � ��� � " � � ��� � �
� � �B13. � � � � � � � � "
B7. � � � � � B14. � �� � � ��� � � � � � " � ���
L1. � � ��� � � � 	 � 	 L2. � � " � 	 � 	 � � � ���
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SE. � � � �
� 	 � 	 � 	 � 	 � � � � 	 � 	 � � � � � � � � � ��� �

The $ 
� comprehension scheme is

$ 
� -COMP: � � � � � 
 � � � � � 
 � � � � 
�	 �� 	 �� ��� (7.1)

where
� � 
�	 �� 	 �� � is any $ 
� formula not containing � .

Although V
�

does not have an explicit induction scheme, axioms L1 and L2 tell us that if �
is nonempty then it has a largest element, and thus we can show that V

�
proves a minimization

scheme, and the induction formula

� � � � ��� ��� � 

� � ���
� � � ��� � " ��� ��� � � 
 � (7.2)

(See [CK03] or [Coo02] for details.) From this and $ 
� -COMP we have

Theorem 7.5. ([Coo02]) V
�

proves the scheme

$ 
� -IND:
� � � � � � ��� � � ����� � � � � � " ��� � � � 
 � � 
 �

where
� ����� is any $ 
� -formula (possibly containing free variables other than � ).

Theorem 7.6. ([Coo02, Coo04]) A function (string or number) is $ 
 � -definable in V
�

iff it is

an ��� � -function.

We use as a pairing function the term

� �
	 � � � � 
 
 ���
� ��� � � � � � " � � � � (7.3)

Then V
�

proves that the map ���
	��
���� � �
	�� � is a one-one map from
� � �

to
�

. We use this

idea to define a binary array � using the definition � � �
	 �
� � � � � �
	 � � � . By iterating the

pairing function we can define a multidimensional array � � ���� . It is easy to see that V
�

proves

the analog of $ 
� -COMP (7.1) for multidimensional arrays.

If we think of � as a two-dimensional array, then we can represent row � in this array by

� � � � [Zam96], where � ���
	�� � � � � � � is the � ��� � string function with bit-defining axiom

� � � � � � � � � � 	�� 	 � � ���
	 � � (7.4)
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We can add this string function � � � � together with its defining equation (7.4) to form a conser-

vative extension of V
�
.

7.1.4 V
�

and TV
�

V
�

generalizes to the theory V 
 for
�  #" in the following way:

Definition 7.7. ([Coo02, Coo04]) For
�  " , V 
 is defined from V

�
by replacing the compre-

hension scheme $ 
� -COMP by $ 

 -COMP. V 
 and V
�

are over the same language � �� .

For each
�  " , V 
 is essentially equivalent to Buss’s � 
� in the following sense: seman-

tically, there is a bijection between (isomorphism types of) models of V 
 and models of � 
� ;
and syntactically, there are translations between $��
 -theorems of � 
� and $ 

 -theorems V 
 such

that both V 
 and � 
� prove the correctness of the translations. This relationship is known as an

RSUV isomorphism [Kra90, Raz93, Tak93, Kra95, Coo04].

Theorem 7.8. ([Coo04]) For each
�  #" , V 
 is RSUV-isomorphic to � 
� .

Cook shows in [Coo02] that V
�

is equivalent to a theory axiomatized by 2- ��( ��� � , $�
� -

COMP, and $ 
 � -IND, where $ 
 � -IND is the following scheme for
� � $ 

 :

� � � � ���!��� � 
 � � ���
� � � � � � " ��� ��� � � 
 �

For
�  �

, V 
 is axiomatized similarly using $ 

 -IND instead of $ 

 -COMP. If we think of

a string � as a binary representation of a number, then, via an appropriate syntactic transla-

tion between $ 

 and $
�
 , the scheme $ 

 -IND is essentially $ �
 -LIND in first-order bounded

arithmetic. This way it is intuitively clear that V 
 and � 
� are RSUV isomorphic.

A second-order scheme on $ 

 -formulas that corresponds to $ �
 -IND is obtained as follows.

Seeing strings � as binary numbers, the string successor function � � � � that computes (the

binary representation of) � � " is an ��� � -function, and therefore its bit graph is represented

by some $ 
� -formula. For
�  �

, Cook in [Coo04] defines $ 

 -String-IND scheme as

� � � ��� ����� � � � � � � � � � � � � ��� � � � �
���
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where
� � $ 

 . It is intuitively clear that $ 

 -String-IND is RSUV isomorphic to $ �
 -IND.

Definition 7.9. ([Coo04]) For
�  �

, TV 
 is defined by augmenting V
�

with the $ 

 -String-IND

scheme.

Theorem 7.10. ([Coo04]) For
�  #" , TV 
 is RSUV-isomorphic to � 
� .

It is an interesting fact that TV
�

is essentially a second-order version of Cook’s QPV

[Coo04] and it captures the complexity class � .

7.2 The theory VNC "

We define the system VNC
�

by adding a tree recursion axiom scheme $ 
� - ��� � � � ��� to V
�
.

This scheme is intended to take the place of the predicates (�� � 
 � � � � and their defining axioms

in Arai’s theory AID [Ara00], which captures reasoning in Alogtime (uniform NC
�
). Our

scheme is a simplified second order version of Arai’s $��� -RD ([Ara00] Definition 7.1), using

the idea of the heap data structure.

The $ 
� - ��� � � � ��� scheme is

� � � � � � � � � � � � � ��� � � � � � � ��� �
� � � � � � � � � � � � � � � � � � � � 	�� � � � � " � � � �

(7.5)

where
� � � � � 
 	 � � and � � � � are $ 
� formulas (which do not contain � but may contain other

parameters) and
�

contains atoms 
 	 � to be replaced in the axiom by � � � � � 	�� � � ��� " � .
The idea is that the vector � assigns truth values to the nodes of a binary tree, where the

nodes are indexed by the variable
� 	 � � � � � � � " ; see Figure 7.1. The leaves of the tree

are indexed by any
�

such that � � � � � � � " and leaf number
�

is assigned value � � � � . The

internal nodes of the tree are indexed by any
�

such that " � � � � � " , and the value � � � � of

node
�

is determined by the values � � � � � 	�� � � � � " � of its two children by the formula
�

. The

root of the tree is indexed by
�
� " , so � � " � is the output of the recursion.
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. . . . . . . . . . . . . . . . . . . .

Z[1]

Z[2] Z[3]

ϕ (1)[Z(2),Z(3)]

Z[a+1]Z[a] Z[2a-2] Z[2a-1]

(a)ψ (a+1)ψ (2a-2)ψ (2a-1)ψ

Figure 7.1: $ 
� - ��� � � � ��� . The formula � � � � defines the boolean values of the leaf nodes, and
� � � � � � � � � � 	�� � � � � " � � defines the value of node

�
based on the values of its children

� �
and

� ��� " .

For $ 
� formulas
� � � 	 ��
	 �� � � 
 	 � � and � � � 	 ��
	 �� � in the $ 
� - ��� � � � ��� scheme (7.5) we define

the $ 
� formula � � � � � � 	 �� 	 �� 	�� � to be the part of (7.5) which comes after � � � � � . That is,

� � � � ��� 	 ��
	 �� 	�� ��� � � � � � � � � � � � � � � � � ��� �
� � � � � � � � � � � � � � � � � � � � 	 � � � ��� " � � � �

(7.6)

Lemma 7.11. For all $ 
� formulas
� 	 �

VNC
�
� � � � � � � � � � � ��� 	 ��
	 �� 	�� � (7.7)

Proof. Existence of � follows from (7.5). Uniqueness can be proved in V
�

using $ 
� -IND.

Defining NC
�

relations and functions in VNC
�

We start by showing how to define NC
�

relations in VNC
�
. Every formula � � � �

(7.6) defines

a relation � � � �
(computed by the recursion scheme (7.5)) with defining axiom

�
� � � ��� 	 � 	 ��
	 �� � � � � � � ���
� � � � ��� 	 ��
	 �� 	 � ��� � � � ��� (7.8)

Lemma 7.12. The relation � � � �
is in NC

�
, for each pair

� � 
 	 � � 	 � of $ 
� formulas.

Proof. By Lemma 7.1, each $ 
� -formula represents an � � � relation, which is therefore in

��� ��� 
���� � . To prove the lemma, it suffices to show there exists an indexed alternating Turing
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machine
�

with inputs � � 	 � 	 ��
	 �� � (where number inputs are presented in unary notation)

which computes � � � �
in time

� ���
��
 � � , where
�

is the length of the input.

The machine
�

starts by guessing the binary notation for the input
�
, and verifying its

guess in time
� ���	��
 � � using its indexed access to the input tape. It then guesses that � � � � is

true, and verifies its guess by recursively guessing and verifying � � � � for various values of � .

In general,
�

verifies its guess for � � � � as follows: First it guesses whether � � � or �  � .

If the guess is �  � , then it verifies the guess, and verifies � � � � � � � � � � 	 �� 	 �� � , all in

time
� ���
��
 � � . If the guess is � � � it branches universally, verifying the guess on one branch

and guessing � � � � � 	���� � � � " � on the other branch. After the second branch it next does a

three-way universal branch: (i) verify � � � � � � � � 	 �� 	 �� � � ��� � � � 	 � � � � � " � � , (ii) verify � � � � �
recursively, and (iii) verify � � � � � " � recursively.

Note that the depth of the recursion is proportional to the depth of the tree recursion defined

by (7.5), which is
� ���	� 
 � � � � ���
��
 � � .

We now expand the language � �� to � �
�

�
 � 
 � by putting in a predicate symbol � � � �

for

each relation � � � �
defined in (7.8). Then $ 
� ��� �

�

 
 � 
 � � denotes the class of formulas in this

language with no string quantifiers, and all number quantifiers bounded.

Lemma 7.13. The class of $ 
� � � �
�

�
 � 
 � � formulas represents precisely the NC

�
relations.

Proof. Every such formula represents an NC
�

relation, by the previous lemma, and the easy

fact that the NC
�

relations are closed under bounded number quantification and the Boolean

operations.

Conversely, we appeal to Theorem 3.1 of [Ara00], which states that every NC
�

relation � is

$
�� ��� AID � -definable in AID. By Theorem 7.17, the formula that defines � in AID corresponds

to a $ 
� � � �
�

�
 � 
 � � formula.

We denote by VNC
� ��� �

�

 
 � 
 � � the theory whose language is � �

�

 
 � 
 � and whose axioms

are those of VNC
�

together with the defining axioms (7.8). Clearly VNC
� � � �

�

�
 � 
 � � is a
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conservative extension of VNC
�
. By $ 
� � � �

�

�
 � 
 � � -COMP we mean the scheme (7.1), where

�
is any $ 
� ��� �

�

 
 � 
 � � formula.

Lemma 7.14. VNC
� ��� �

�

 
 � 
 � � proves the $ 
� ��� �

�

 
 � 
 � � -COMP scheme.

Proof. First note that VNC
� � 
 � -defines each relation � � � �

, since the $ 
 � formula representing

� � � �
in (7.8) is provably equivalent to a � 
 � formula. That is, from (7.7) it follows that VNC

�

proves

� � � � ����� � � � � � 	 ��
	 �� 	�� ��� � � � ��� � � � � � �����
� � � � ��� 	 ��
	 �� 	�� � � ��� � ���

The lemma would follow easily from this and the $ 
� -COMP axioms if VNC
�

proves the

$ 
� -replacement scheme, but results in [CT04] suggest that this is unlikely. Instead we show

that VNC
� ��� �

�

�
 � 
 � � proves $ 
� � � �

�

�
 � 
 � � -COMP, by structural induction on formulas

�
in

$ 
� ��� �
�

 
 � 
 � � . The induction step, when

�
is built from simpler formulas from the Boolean

operations or bounded number quantification, is straightforward. For example, if
� � 
 � is � � �

� � ���
	�
 � , then using the pairing function (7.3) we have by the induction hypothesis

VNC
� � � �

�

�
 � 
 � � � � � ��� �

� � 
 � � � � � �
	�
 � � � � �
	�
 ���

Now by $ 
� -COMP,

V
�
� � � � � � � 
 � � � � � � 
 � � � � � � � ���
	�
 ���

Thus VNC
� � � �

�

�
 � 
 � � proves comprehension for

�
.

The base case of the induction is straightforward except for the case of one of the new

relation symbols � � � �
. Here it suffices to show VNC

� � � �
�

�
 � 
 � � proves (7.1) where

� � 
�	 ��
	 ����
is replaced by � � � � ��� 	 � 	 ��
	 �� � when 
 is one of the number variables � 	 � 	 �� . The case in which


 is
�

follows from (7.7). Now consider the case in which 
 is in �� . (The case in which 
 is � is

similar.) To simplify notation, we assume � is �� . By (7.8) it suffices to show

VNC
�
� � � ��� � � � � � ��� � � � � � ���
� � � � � � 	��
	 �� 	�� ��� ��� � ��� � (7.9)
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The RHS of this defines
�

in terms of trees � � for � � � 	 " 	 � � � 	 � � " . In order to show that the

existence of
�

follows from the $ 
� - � � � � � ��� scheme (7.5) we collect all of these trees into

one large tree � which has them attached to � leaves of the top part of � .

To describe in VNC
�

these tree embeddings we use the fact that the first order theory I � � ,

and hence VNC
�
, defines functions such as 	 � 	 (the length of � in binary) and

� � � �
and proves

their basic properties (see for example [Bus98a, Coo02]).

Tree � � is represented in � by the subtree of � rooted at node � ��� � ����� � � � � � � � . Note

that these � root nodes are consecutive nodes at level 	 � 	 in the tree � (where the root of � is

at level 0). In general, node
�

of tree � � is at level �
� � � � � � � � 	 � 	 � " in � � and hence at level

� � � � � � � � � 	 � 	 in � . In fact, node
�

in tree � � is represented by node

� � � � � � 	���� � � � � � � ��� � � � 
 � 
 � � 
 � � � � � � � 
 � 
 � � 
 � �

in � . Note that the leaves of � � are at level 	 � � " 	 in � � , except some may be at level 	 � � " 	 � " .
The leaves of interest in � are the deeper leaves of the embedded trees � � , and these have level

	 � � " 	 � 	 � 	 .
The function

� � � � � � 	���� is injective for pairs
� 	�� such that " � �

and
� � � � � , and its

inverses
� � � � 
 � � � and � � � � 
 � � � are definable in � � � , and � � � proves for

� 	�� satisfying these

conditions, that if � � � � � � � � 	���� , then
�
�
� � � � 
 � � � and � � � � � � 
 � � � .

The formulas
� � � 	��
	 �� � � 
 	 � � 	 � � � 	��
	 �� � used to define the tree � � determine

�
� � � 	 ��	 � 	 �� � � 
 	 � � 	 � � � � 	 ��	 � 	 �� �

to define the tree � , where

�
� � � 	 ��	 � 	 �� � � 
 	 � � � � � � � 
 � � � � � � � � � � � � 
 � � � 	 � � � � 
 � � � 	 �� � � 
 	 � � �

� � � � 
 � � �� � � � � � � � � 
 � � �
�
� 	 � � � � 
 � � � 	 �� �

� � � � 	 ��	 � 	 �� ��� � � � � � � 
 � � � � � �
�
� 	 � � � � 
 � � � � � � 	 �� �

where � � is defined below. By (7.5) we have

VNC
�
� � � � � � � � �

� � �
�
��� � 	 ��	 � 	 �� 	 � � (7.10)
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where � � � � � ��� � � � � � � . The reason for this value of � � is that all leaves of the tree � are at level

	 � � " 	 � 	 � 	 , as noted above.

Finally VNC
�

proves the existence of
�

in (7.9) using $ 
� -COMP and the definition

� � ��� � � � � � � � � � 	������

where � is obtained from (7.10). In order to prove that
�

defined in this way satisfies (7.9),

VNC
�

proves each tree � � is embedded as claimed in � ; that is

� � � � � � � � � � � � � � � ��� 	��
	 �� 	�� ��� � �
� � �
�
� � � 	 ��	 � 	 �� 	 � � �

� � � � � � � � � � � � � � 	������
This can be done using $ 
� -IND on � � � � � � .

Recall from Definition 7.2 that a string function � � ��
	 �� � is an NC
�
-function iff it is p-

bounded and its bit graph is in NC
�
. It is easy to check that a number function � � ��
	 �� � is an

NC
�
-function iff it satisfies � � ��
	 �� � � 	 �!� ��
	 �� � 	 for some string NC

�
-function � .

Theorem 7.15. A function (string or number) is $ 
 � -definable in VNC
�

if and only if it is an

NC
�
-function.

Proof. We first prove the if direction. Let � � ��
	 �� � be a string NC
�
-function, and let � � � � 	 ��
	 �� �

be its bit graph. By Lemma 7.13, there is a $ 
� � � �
�

�
 � 
 � � -formula � � � 	 ��
	 �� � that represents �

in
�

. Then there is a term
�

such that

� � � � ��
	 �� � if and only if
� 	 � ��� � � � � ��
	 �� ��� � �!� � � � � � � 	 ��
	 �� � �

It is easy to see that VNC
�

proves ����� � ����� � � � � ��
	 �� ��� � �!� � � � � � � 	 �� 	 �� � � using $ 
� ��� �
�

�
 � 
 � � -

COMP (Lemma 7.14). Thus, � is $ 
 � -COMP (Lemma 7.14). Thus, � is $ 
 � -definable in

VNC
�
.

The only-if direction is stated as Theorem 8.5, which is proven via the QPC translation

theorem for VNC
�

(Theorem 8.3). We also presented a direct proof in [CM04] of a slightly

stronger assertion.
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We state two more theorems concerning VNC
�
. The proofs of these theorems are found in

[CM04].

Theorem 7.16. ([Ngu04, CM04]) VNC
�

is finitely axiomatizable.

Theorem 7.17. ([CM04]) VNC
�

is RSUV isomorphic to AID
� $��� -CA.

7.3 Sequent Calculus
��� �

First, we present Gentzen’s first-order sequent calculus � � :

Definition 7.18. ([Gen35, Bus98b, Coo02]) � � is a sequent calculus system for first-order

logic. Its inference rules include those of ��� plus the following quantifier inference rules:

� -left � (�� � � 	�� � �
� � ( ����� 	 � � � � -right � � � � 	 ( � � �

� � � 	 � � ( �����

� -left � (�� � � 	�� � �
��� ( ����� 	 � � � � -right � � � � 	 (������

� � � 	 ��� ( �����
where

�
is any term and � is an eigenvariable that does not occur in the lower sequent.

As usual, the initial sequents of � � are logical axioms of the form (a)
�

T, (b) F
�

, or

(c) ( � ( for all formula ( .

� � is extended to � � � for second-order logic as follows:

Definition 7.19. ([Coo02]) � ��� is obtained by augmenting � � with the following second-

order quantifier introduction rules:

String � -left � (���� � 	�� � �
� � ( ����� 	 � � � String � -right � � � � 	 ( � � �

� � � 	 � � (������

String � -left � (�� � � 	 � � �
��� ( ����� 	 � � � String � -right � � � � 	 (���� �

� � � 	 ��� (������
where

�
and � denote string free variables, and, in String � -left and String � -right, � is an

eigenvariable that does not occur in the lower sequent.
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The following can be proven using a standard method in proof theory [Tak87]. This is

called an anchored completeness in [Coo02] and a free-cut free elimination in [Bus98b].

Theorem 7.20. Let � be a second-order theory of bounded arithmetic. If
�

is a theorem of � ,

then there is a tree-like � ��� -proof � of
�

satisfying the following: (i) every initial sequent of �

is a logical axiom, an equality axiom, or an axiom of � ; and (ii) every cut formulas of � occurs

in an initial sequent.

Let
�  " . Theorem 7.20 means that theorems of V 
 and TV 
 have � � � -proofs in which

complex formulas such as $ 

 -IND or $ 

 -String-IND appear as initial sequents, and this is not

very nice. This can be avoided by using the following additional inference rules:

$ 

 -IND rule:
� 	 ( � � � � ( � � � " � 	 �

� 	�(�� � � � (�� � � 	�� $ 

 String–IND rule:
� 	 (���� � � ( � � ��� ��� 	��
� 	 ( � �� � � (�� � � 	 �

where � and � are free number variable and string variable, respectively, that do not occur in

the lower sequent, � is any string variable, and
�

is any number term. � � � � $ 

 -IND and

� � � � $ 

 -String-IND are defined to be � ��� plus the corresponding induction rule.

The following is a variant of the anchored completeness for � � plus induction rules. Again

it can be proven by a standard method in proof theory: see [Tak87, Bus98b, Coo02].

Theorem 7.21. Let
�  #" . If

�
is a bounded theorem of V 
 , then there is a tree-like � ��� � $ 

 -

IND proof � of
�

satisfying the following: (i) every initial sequent of � is a logical axiom, an

equality axiom, or an axiom of 2- � ( ��� � or $ 
� -COMP; and (ii) every cut formula of � either

occurs in an initial sequent or is a $ 

 -formula (�� � � or (�� � � in $ 

 -IND step.

Similarly for TV 
 and � � � $ 

 -String-IND.

7.4 The � � � -Witnessing Theorems for Large
�

In this Section, we present alternative proofs for Pollett’s result (Theorem 2.24) characterizing

the �$
�� -definable search problems of � 
� and � 
� for
�  " and �  � � �

. Our proofs are
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simple and presented in a more general setting. As a result, we obtain a characterization of

the $ 
� -definable search problems for all �  �
of all second-order theories V

�
, VTC

�
of

[NC04], VNC
�
, V
�
-Horn of [CK03], and � � � , which has been previously unknown. In fact,

this characterization applies to every theory � with V
� � � � � � � , and it has an interesting

consequence on the provability of reflection principles in bounded arithmetic, which will be

discussed in Chapter 8.

The following is the main result of this Chapter:

Theorem 7.22.

(i) ([Pol99]) Let
�  #" and � denote either � 
� or � 
� . For every �  ��� �

, a search problem �
is in ��� � � � 
�� ��� ��� 	 � � " � � if and only if � is �$ �� -definable in � .

(ii) Let � be a second-order theory such that V
� � � � � �

�
. For every �  �

, a search

problem � is in ��� � � � 
�� ��� ��� 	 � � " � � if and only if � is $ 
� -definable in � .

Proof. The ‘if’ direction of (i) is proven in Theorem 7.23 below. The ‘only if’ direction is im-

mediate from Lemma 7.25 since � �� is RSUV isomorphic to V
�

(Theorem 7.8), which contains

V
�
.

The ‘if’ direction of (ii) follows from the (ii) of Theorem 7.23 with
�
�
�
, showing that

$ 
� -definable search problems of TV
�

are in ��� � � � 
�� ��� ��� 	 � � " � � . The ‘only if’ direction is

immediate from Lemma 7.25.

The following is the ‘if’ directions of Theorem 7.22.

Theorem 7.23. For every
�  " and �  � � �

, every �$ �� -definable search problem of � 
� is in

��� � � � 
�� ��� ��� 	 � � " � � . (ii) For every
�  �

and �  � � �
, every $ 
� -definable search problem of

TV 
 is in ��� � � � 
�� ��� ��� 	 � � " � � .
Proof. We prove (i) below. The assertion (ii) can be proven in a completely analogous way.

For
�  #" , (ii) also follows from the RSUV-isomorphism between � 
� and TV 
 (Theorem 7.10).

Let
�  �

and �  �����
be arbitrary. Our proof is based on the same idea as the proof that

���������
	 	�� ���
 	 $ %� � is in ��� � � � 
�� ��� ��� 	 � ���	� 
 � � � .



CHAPTER 7. SECOND ORDER THEORIES OF BOUNDED ARITHMETIC 154

We consider a bounded axiomatization of � 
� , which consists of quantifier-free axioms of

BASIC plus the following bounded formulation of $��
 :
(�� � � � � ��� � � � � (�� ��� � ( � � ��� ��� ( � � � 	

where ( � $ �
 and � is a free variable. Note that this $ �
 -IND axiom is a $ �
�� � -formula, and

therefore � 
� is axiomatized by $ �
�� � -formulas.

Assume that a search problem � is �$
�� -definable in � 
� . We show that � is solved by a

polynomial-time machine that makes
� � " � witness queries to a 	 
 � � � -oracle. By the definition

of $ �� -definability (Definition 2.21), there is a $��� -defining formula

��� �
 � � � ��
	 ��	 �
 � 	

where � � � �� � � with all free variables indicated and bounds on �
 supressed, such that

� 	 � � � �� ��������� � ��� �
 � � � �� 	 ��	 �
 � � � � �!� ���� � and � 
� � � ���
����� �
 � � � �� 	 ��	 �
 � �

Let � be an � � -proof of the sequent
� ������� � � �
 � � � �� 	 ��	 �
 � from the axioms of � 
� and the

equality axioms. We assume that � is tree-like and in free variable normal form. Moreover, by

the free-cut elimination of � � [Bus98b], we assume without loss of generality that every cut

formula in � is either an axiom of � 
� or an equality axiom; that is, every cut formula is $ �
�� � .
Note that the endformula is $��� with � � � � " . � � is defined in Definition 7.18 in the next

Section, and Theorem 7.20 is the second-order analogue of the free-cut elimination of � � .

The free-cut elimination is also known as the anchored completeness of � � [Bus98b, Coo02].

Let an instance �� of � be given, where �� is a tuple of natural numbers. Our goal is to find

any � � �
such that

� 	 � ��� �
 � � � �� 	
� 	 �
 � � (7.11)

Let �
� �� � be the result of substituting the values �� for the parameter variables �� in � . Note that

all the free variables of �
� �� � are eigenvariables for � -right and � -left steps.

From here, we proceed analogously to the proof of Theorem 6.11. For each sequent � of

�
� �� � , define � � � � to be the sequent obtained from � by removing every strong- $ �� -formula.
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Every strong- $ �� -formula must be in the succedent of � . Define �
� � � to be the witness query

asking whether there is a value assignment to the free variables of � � � � that falsifies � � � � .
Note that �
� � � is a 	 �� � � -witness query.

The rest of the proof is identical to that of Theorem 6.9. Our algorithm asks ��� � � for every

sequent in �
� �� � , and finds an � -right step with upper sequent � and lower sequent � � such that

� � � � is valid and � � � � � is invalid. Note that the number of witness queries is
� � " � since it only

depends on � , which is not part of the input to the algorithm. The witness to the invalidity of

� � � � � is a value assignment � that falsifies � � , and it follows that the auxiliary formula ( of

this � -right step is a valid sentence under this assignment � . A solution � � �
satisfying (7.11)

is obtained by evaluating under � the term
�

in ( that is the target of the � -right that introduces

��� into ( . Finally, such � -right step exists because � � � � is valid for every initial sequent � ,

while � � � � � is unsatisfiable for the endsequent � � .

The above proof is meaningful only when �  � � �
. If � � � � " , the proof still works but

it only shows that �$
�� -definable search problems are in ��� ��� 	�� � ��� ��� 	 � � " � � , which is a trivial

statement. Note that the complexity of the witness queries remains 	 
 
�� � independently of � in

this case. This is because $ �
 -IND is $ �
 � � , and therefore sequents � � � � in the above proof still

contains $
�
�� � -formulas even when the endformula is $��� .
The next Lemma is useful in proving Theorem 7.25, which implies the ‘only if’ directions

of Theorem 7.22.

Lemma 7.24. For every �  #" ,

��� � � ���� ��� ��� 	 � � " � � � � ��� � � � ���� ��� ��� 	 � � " � �

Proof. This is proven analogously to Jenner and Torán’s proof that ���
� �
��� is equal to � � � �

���

in [JT95] and Buss and Hay’s proof that � ���
��� is the class of relations representable by $��� ��$
� � � -

formulas [BH88].

We show ��� ��� ���� ��� ��� 	 � � " � � � � � � � ��� ���� ��� ��� 	 � � " � � , since the � is trivial. Let �  " be

arbitrary. Let
�

be a polynomial-time Turing machine that, on � , asks
�

witness queries to
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( � 	 
 � nonadaptively before halting with an output � � � ����� . Define
�

� to be the following

machine. On input � �
	 � � with
� � � � 	 � � , � � first simulates

�
until

�
receives the answers

to its witness queries. Upon receiving the answers,
�

� rejects the input if the number of the

positive answers is not exactly
�
. Otherwise

�
� continues the simulation of

�
and produces

some � with � � � ����� .
We describe an � � � algorithm that solves �!� ��� . Given � , it first computes witness queries

��� � � for each
� � � � 	 � � of the following form: is there a computation of

�
� on � �
	 � � ? All

of these queries are answered positively, accompanied by a description of a corresponding

computation of
�

� . Note that there is a unique value
�

such that the query �
� � � returns a

computation that results in an output � � �!� ��� . ����� can recognize such a computation and

extract � from it. Finally, note that the queries ��� � � 	 ����� 	 ��� � � are also � � � -computable given

� .

The following theorem implies the ‘only if’ directions of Theorem 7.22.

Theorem 7.25. For every �  �
, every search problem � � ��� � � � 

� ��� ��� 	 � � " � � is $ 
� -

definable in V
�
.

Proof. Fix �  �
. By Lemma 7.24 and Theorem 2.7, it suffices to show that every search prob-

lem � in � ��� � ��� � 
����� ��� ��� 	 � � " � � is $ 
� -definable in V
�
. Let �

�
be the conservative extension

of V
�

obtained by adding, for every � � � -function, a function symbol for it and its defining

axiom. We prove that � is $ 
� -definable in �
�
.

By definition, there exists an oracle ( � 	 
 � � � and ��� � -functions � 	 � � 	 ����� 	 � � such that

the following hold: (i) for each
� � � " 	 � � , ��
 � � � computes a witness query to ( ; and (ii) if

� � 	 ����� 	�� � are answers to the witness queries � � � � � 	 ����� 	 � � � � � , then

�!� � � � � � � 	�� � 	 ����� 	 � � �
�

Note that �
�

has a symbol for each of � 	 � � 	 ����� 	 � � and contains a defining axiom for it.

In order to simplify our presentation, we do not write out bounds of the bounded quantifiers

in the formulas below. By a second-order version of Theorem 2.17, the oracle ( is represented
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by some $ 
� � � -formula � � � � � 	 � � with
� � � 	 � � � � 
� � � . For each

� � � " 	 � � , define a

formula
� � � � ��� � 
 � � 	�� 	 � � as follows:

� � � � ��� � 
 � � 	�� 	 � � �
� � �
� � 	 ��	 � � � ��( � � � � 
 � � � 	 ( ��� � � 	 � 	 � " � � � � 
 � � � 	 � ��� � �

� � � � ��� � 
 � � 	�� 	 � � asserts that, for an input � , � and
�

collectively encode an answer to

the witness query � 
 � � � , where 	 ��	 encodes the yes-no answer to ��
 � � � , and
�

is a witness

whenever the answer is a yes. It is not hard to show that

�
�
� � � ��� � � � � � � � � ��� � 
 � � 	�� 	 � �

for every
� � � " 	 � � ; in fact, the above formula is logically valid.

Recall that � � 	 � � is an encoding of two strings �!	 � in one; see (7.3) on page 143. An

answer � 
 to a witness query ��
 � � � can be encoded by � �!	 � � such that
� � � � ��� � 
 � � 	��!	 � �

holds. Then �
�

proves the following:

��� ��� ��� � � ����� � � � ����� � � 	
� � ����� � � � 	

�
� �

� � � � � � 	 � � � � ����� � � � � � � � 	
�
� �

� � � � � ��� � � � � 	�� � 	 � � ��� ����� � � � � � ��� � � � � 	 � � 	
�
� �

�	� � � � � 	�� � 	 ����� 	�� � �
The above formula is not $ 
� since it is not in strict form, but it is clear that �

�
proves a strict

formula equivalent to it. This completes the proof that � is $ 
� -definable in �
�
.



Chapter 8

Bounded Arithmetic and the Witnessing

Problems for QPC

Cook in [Coo02] presented a translation of second-order bounded arithmetic formulas into

polynomial-size QPC formulas. Using this translation, we prove that any bounded theorem

of V 
 and TV 
 translates into families of valid QPC formulas with polynomial-size � �
 - and

� 
 -proofs, respectively. We also prove a translation of bounded theorems of VNC
�

into

polynomial-size ���� -proofs. These translation theorems generalize similar results for � 
� and

� 
� by Krajı́ček and Pudlák (Theorem 5.29), since our translation applies to any bounded the-

orem, as opposed to $ 

 -theorems. This generality stems from the simple syntax of Cook’s

second-order framework.

Based on these translation theorems, we address the question whether � - � � � � � 
�� is prov-

able in � 
� for �! ��� �
. We will show that the answer is negative, unless ��� collapses.

8.1 Propositional Translations

In this section we give a complete definition of Cook’s translation of bounded formulas over

� �� to quantified propositional formulas [Coo02]. This translation is similar to the Krajı́ček-

158
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Pudlák translation of the first-order language of bounded arithmetic (see [KP90] and [Kra95]

sec 9.2), but Cook’s second-order setting allows a much simpler translation.

First, we show how to translate $ 
� -formulas into quantifier-free QPC formulas. Let

� ��� � 	 ����� 	�� � 	 � � 	 ����� 	 � � �

be a $ 
� -formula with all free variables displayed. The translation takes � � � natural num-

bers � � 	 ����� 	 � � 	 � � 	 ����� 	 � � as parameters and produces a $�%� -formula 	 	 � � ��
	 �� � 	 	 � �� 	 �� � whose

size is polynomial in � � � � �� 	 �� � . For
� � � " 	 � � , � 
 is the value for the number free vari-

able � 
 . For each
� � � " 	 � � , we associate with string variable � ' the propositional variables


 �
�� 	 


�
�� 	 ����� 	 
 �

�� � , where 

�

�
 is intended to mean � ' � � � . The translation has the property that,

for every set �� 	 �� of parameters,
� � � ��
	 �� � � � �� 	 �� � is valid iff

� 	 � ��� �� ��� 	 � � 	�� � � � ����� � � � � � � � � � �� 	 �� ��� �

More generally, there is a one-one correspondence between truth assignments satisfying
� � � ��
	 �� � � � �� 	 �� � and tuples of strings �� , with 	 � 
 	 � � 
 , satisfying

� � �� 	 �� � .
We use the notation � � � � � � for the numerical value to which

�
evaluates under the parameters

�� 	 �� . Our usage of � � � � � � is such that
�

contains no bound variables, thus its value only depends

on the parameters �� 	 �� .

Let us write
�

to denote
� � �� 	 �� � . The first step in defining 	 	 � 	 	 � �� 	 �� � is to replace every

atomic formula of the form � � � by its $ 
� definition, given by the RHS of the extensionality

axiom SE. After this is done, we define 	 	 � 	 	 � �� 	 �� � by structural induction on
�

.

The base case is when
�

is atomic. Four cases arise. First, if
�

is one of the constants

T or F then 	 	 � 	 	 � � � � � �� � ; note that there is no parameter in this case. Second, if
�

is
� � �� 	 �� � � � � ��
	 �� � , then 	 	 � 	 	 � �� 	 �� � � T if � � � � � � �� 	 �� ��� � � � � � � � ��
	 �� ��� , and 	 	 � 	 	 � �� 	 �� � � F

otherwise. The third case is when
� � �� � is

� � 	 �� 	 � � � � 	 �� 	 � , and this is handled similarly to

the second case. The forth case is when
�

is � ' � � � �� 	 �� ��� . Then we set � � � � � � � � �� 	 �� ��� and
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define

	 	 � 	 	 � �� 	 �� � �

�������� �������


 � 	' if � � � 
 � "

T if � � � 
 � "

F if � � � 
 � "

For the induction step,
� � ��
	 �� � is built from smaller formulas using a propositional connec-

tive ��	 ��	 � , or a bounded quantifier. For ��	 ��	 � we make the obvious definition; for example

� � � ��
	 �� ����� � ��
	 �� � � � �� 	 �� � � � � � � ��
	 �� � � � �� 	 �� � ��� � � � � ��
	 �� � � � �� 	 �� � �

For the case of bounded number quantifiers, we define

� ������� � � � � � � � ��	 �� 	 �� � � � � �� 	 �� � �
� � � � � ��

��� � �
� � � � 	 ��
	 �� � � � � � 	 �� 	 �

� �

� ������� � � � � � � ����	 ��
	 �� � � � �� 	 �� � �
� � � � � �
�
� � � �

� � � � 	 ��
	 �� � � � � � 	 �� 	 �
� �

Note that the bounding term
�

contains variables from �� 	 �� only, thus � � � � � � depends only on

�� 	 �� . This completes the QPC translation of $ 
� -formulas.

For the translation of $ 

 -formulas with
�  " , it suffices to describe how to handle bounded

string quantifiers, which is done as follows:

� � � ��� � 	 � 	 � � � � �� 	 � 	 �� � � � �� 	 �� � � � 
 �� � � � � 
 �� � � � � �
� � � � � ��

�	� � �
� � � ��
	 � 	 �� � � � �� 	 � � 	 �� �

� � � ��� � 	 � 	 � � � � �� 	 � 	 �� � � � �� 	 �� � � � 
 �� � � � � 
 �� � � � � �
� � � � � �
�

�	� � �
� � � ��
	 � 	 �� � � � �� 	 � � 	 �� �

Each variable 
 �
 above is a metavariable for an appropriate � -variable; this way, we meet our

free-bound variable convention.

This completes the definition of the QPC translation of bounded formulas over � �� . Notice

that $ 

 formulas translate to families of $&%
 formulas. Moreover, unlike the QPC translation of

first-order bounded arithmetic formulas, $ 
� -formulas are translated into quantifier-free QPC
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formulas (i.e., propositional formulas). However, for
�  " , the $ %
 -formulas obtained by

translating $ 

 -formulas are in general not prenex.

This translation allows us to state a number of results, which can be inferred from the litera-

ture [KP90, Kra95, Coo02, Coo04], connecting a theory � over � �� with a corresponding QPC

proof system. For example, a $ 
� -theorem of V
�

translates to a tautology family with polyno-

mial size bounded-depth Frege proofs. Second-order analogs of the � 
 simulation theorems

for � 
� and � 
� are presented as Theorem 8.2 below.

Note that, for
� � $ 

 with

�  " , the QPC formula 	 	 � 	 	 � �� 	 �� � is not prenex in general.

We define ��� � ��� � �� 	 �� � to be the prenexification of 	 	 � 	 	 � �� 	 �� � obtained simply by moving all the

quantifiers to the left while maintaining their order.

We define the semi-implicit bounded formulas as follows:

Definition 8.1. Let
�  " . A semi-implicit $ 

 -formula is the formula obtained from a $ 

 -

formula by pulling all of its string quantifiers to the front.

For example, a $ 
� -formula

� � � � � � �� 	 �� ��� ��� � � 	 � �� 	 �� 	 � ��� � � ��
	 �� 	 � 	�� � 	

where � � �� 	 �� 	 � 	�� � � $ 
� , gives rise to the following semi-implicit $ 
� -formula:

��� ������� � � � 	 � 	 � � � �� 	 �� ��� � 	�� 	 � 	 � �� 	 �� 	 � � � � � ��
	 �� 	 � 	 � 	�� ��� � (8.1)

Note that every bounded formula gives rise to a unique semi-implicitly bounded formula.

Let
� � $ 

 for some

�
and

�
� be the corresponding semi-implicit $ 

 -formula. It is not hard

to define a direct translation of
�
� into prenex $ %
 -formulas ��� � ��� � �� 	 �� � . Since such a translation

is similar to the above, we only give an example. Let
�
� be the semi-implicit $ 
� -formula in

(8.1). Define the term
	
� to be

	 � � � ��
	 �� � 	 ��
	 �� � . Then � � � ��� � �� 	 �� � is as follows:

� 
 �� ����� � 
 �� � � � � � � 
��� ����� � 
��� � � � � � �
� � � � � ��

� � � �
� � � � � �
�
� � � �

�
	 	 � � �� 	 �� 	 � 	�� � 	 	 � �� 	 �� 	 � � 	 � � ���

Note that � � � � � � and � � � � 	 � � depend only on �� 	 �� , while � � � � 	 � depends on an additional pa-

rameter
�
� .
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8.2 The QPC Translation Theorems for Second-Order The-

ories

The following result gives a second-order setting to Krajı́ček and Pudlák’s result [KP90] show-

ing � 
 simulates � 
� , and to Krajı́ček’s result [Kra95] showing � �
 simulates � 
� . Our modified

definitions of � 
 and � �
 allow us to state the result for arbitrary bounded theorems of TV 
 and

V 
 , as opposed to just $ 

 theorems. This is a straightforward generalization of Cook’s result

that the $ 
 � -theorems of V
�

translate into polynomial-size � � � -proofs [Coo02].

Theorem 8.2. For every
�  " , if

� � ��
	 �� � is a bounded theorem of V 
 , then the family
� � � ��
	 �� � � � �� 	 �� � has ���
 proofs which can be computed in time polynomial in �� 	 �� . The same is

true for TV 
 and � 
 .
Moreover, the above assertion holds even if we use ��� � � �� 	 �� � ��� � �� 	 �� � in place of

� � � ��
	 �� � � � �� 	 �� � .
Proof. (Sketch) We first sketch a proof for the translation of a bounded theorem

�
of V 
 into

polynomial-size � �
 -proofs of 	 	 � 	 	 � �� 	 �� � . The proof is essentially identical to Cook’s proof in

[Coo02] of the QPC translation of $ 
 � -theorems of V
�
; we reproduce his argument here for

completeness.

Let
�  " and

� � ��
	 �� � be a bounded theorem of V 
 . Then, there is a tree-like � � � � $ 

 -

IND proof � of
� � ��
	 �� � satisfying the conditions of Theorem 7.21; in particular, all formulas in

� are bounded. Assume that � contains � sequents � � 	 ����� 	 � � , where � � is the endsequent
�

� � ��
	 �� � . Let � �� � �� 	 �� � be the QPC sequent obtained by transforming each formula � � ��
	 �� � to
� � � ��
	 �� � � � �� 	 �� � . We prove the following assertion by induction on � : there exists a polynomial


 such that, for every set of parameters � �� 	 �� � , the QPC sequent � �� � �� 	 �� � has � �
 -proofs of size

at most 
 ��� � � � �� 	 �� � � .
The base case is when � � is an initial sequent, that is, � � is a logical axiom, an equality

axiom, an axiom in 2- ��( ��� � , or $ 
� -COMP. It is not hard to see that � �� � �� 	 �� � consists of

$ % � -formulas only and it has short � � � -proofs. For the inductive step, we have a number of

cases, one for each inference rule that derives � � from preceding sequents. The cases for
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structural, propositional, and cut rules are easy: just apply the same rule in � �
 . Note that every

cut formula in � is $ 

 and � �
 can cut its QPC translation. The only nontrivial cases are for the

quantifier rules and the $ 

 -IND rule. Below we show how to handle String � -right and String

� -right; the other quantifier rules are handled analogously.

Suppose that � � is derived from ��
 by String � -right rule in the following way:� � 
 � � � � 	 	 � 	 � � � (� � � � � � � 	 ��� � � � 	 � 	 � � � ( �
For simplicity, we ignore all free variables of � � other than � . Then � �� � � � � is of the form

	 	 � 	 	 � � � � � 	 	 � 	 	 � � � � 	 � 
 � � ����� � 
 �
� � � � � �

� � � � � ��

��� �
� 	 	 (
	 	

� � � � �

Then, again ignoring the free variables other than � , � �
 � � � � is of the form

	 	 � 	 	 � 	 	 � 	 	 	 	 	 	 � 	 � � � ( 	 	 � � � �

If
� � � � � � � � � , then the auxiliary formula 	 	 	 � 	 � � � (
	 	 � � � � is simply F and therefore

� �� � � � � follows from � �
 � � � � by weakening. If
� � � � � � � � � , then � �� � � � � is derived from

� �
 � � � � by weakening-right, � -right, and then � -right.

Next, suppose that � � is derived from ��
 by String � -right:� � 
 � � � � 	 	 � 	 � � � (� � � � � � � 	 � ��� � � 	 � 	 � � � ( �
Then, for each

� � � � � � � � � , we have a proof of � �
 � � � � , which is of the form

	 	 � 	 	 � 	 	 � 	 	 	 	 	 	 � 	 � � � (
	 	 � � � � �

By applying � -right � � � � � � � " times, we derive

	 	 � 	 	 � 	 	 � 	 	 	
� � � � � �
�

��� �
�

�
	 	 	 � 	 � � � (
	 	 � � � � � 	

from which � �� � � � � follows by � � � � � � � " applications of � -right.

If � 
 is derived by a $ 

 -IND step, then this step is simulated in a straightforward way by

a polynomial-size sequence of cuts in the � �
 proof, with $�%
 cut formulas. This concludes the

proof of the first statement for V 
 .
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For TV 
 , the translation is identical except for a $ 

 -String-IND step, for which a straight-

forward translation by a sequence of cuts would result in exponentially many cuts, so instead

we use a doubling chain of implications whose intuitive meaning is
� � � � � � � � � � � ��� 
 � �

,

where
�

is binary addition. This ��
 proof is not tree-like, and uses the fact that for
�  " a

substitution rule for $ %
 formulas can be added to ��
 with only a polynomial increase in power.

This is carried out by Krajı́ček and Pudlák in their proof of Theorem 5.29 in [KP90].

If
�

is a bounded theorem of V 
 , then the corresponding semi-implicitly bounded formula
�
� is also a theorem of V 
 . The polynomial-size proofs of ��� � ��� � �� 	 �� � are obtained by translating

a � � � � $ 

 -IND proof of
�
� into ���
 -proofs in a way similar to the above, using the translation

of semi-implicitly bounded formulas into prenex QPC formulas. Similarly for TV 
 and � 
 .

The next result shows that VNC
�

proofs of bounded formulas translate into polynomial size

families of � �� proofs. This is analogous to Arai’s [Ara00] theorem showing that AID proofs of

$
�� formulas translate into polynomial size families of Frege proofs. Our result is more general,

because it applies to all bounded theorems and not just those in $ 
� , and simpler, because of

our second-order setting.

Theorem 8.3. If
� � ��
	 �� � is a bounded theorem of VNC

�
, then the family

� � � �� 	 �� � � � �� � has � ��

proofs of size polynomial in �� 	 �� , and can be computed by an NC
�

function of �� 	 �� .

The above statement holds even if we use ��� � � �� 	 �� � ��� � �� 	 �� � instead of
� � � ��
	 �� � � � �� 	 �� �

Proof. Apply Theorem 7.20 and let � be a tree-like � � � proof of a bounded formula
� � �� 	 �� �

from the equality axioms and the axioms of VNC
�
. All cut formulas of � are substitution

instances of VNC
�

axioms, and hence are $ 
 � , and therefore all formulas in � are bounded.

Let parameters � �� 	 �� � be given. By applying the method of the proof of Theorem 8.2,

we first construct a ���� -proof � � such that (i) its endsequent is 	 	 � � �� 	 �� � 	 	 � �� 	 �� � , and (ii) QPC

translations of nonlogical axioms of VNC
�

may appear in � � as initial sequents. Every cut

formula of � � is a QPC translation of a cut formula of � , and therefore every cut formula of � �

that is not quantifier-free is a QPC translation of either $ 
� -COMP or $ 
� - ��� � � � ��� . It remains
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to transform � � to a � �� proof with no nonlogical axioms.

All axioms of VNC
�

are $ 
� except $ 
� -COMP and $ 
� - � � � � � ��� . Each of the $ 
� axioms

either translates to T, or translates to a valid $&%� -formula with a trivial � �� proof. Each of the $ 
 �
axioms of VNC

�
has the form ��� � � � � � � �� 	 �� 	 � � , where � is $ 
� . Further, given � �� 	 �� � , it is

easy to find quantifier-free formulas
� � 	 � � � 	 � � witnessing the existential quantifiers � � �� � � � � � ��

in its translation

� � � � � � � � � �� 	 �� 	 ��� � � �� 	 �� � (8.2)

where � � � � � � � � . In fact, if these existential quantifiers are removed from
�

and each variable

� �
 is replaced by
� 
 , the result is a valid $ %� formula

�
� with a � �� proof of size polynomial in

� � � � �� 	 �� � .
Now consider an uppermost instance of the cut rule in � � , with cut formula

�
from (8.2).

We change this instance to an instance in which the cut formula is
�
� instead of

�
, but the

conclusion is the same. The upper-right sequent of the original instance has
�

in the succedent:

just replace
�

by
�
� after deriving

�
� with a ���� proof. The upper-left sequent has

�
in the

antecedent: modify the derivation of this sequent by replacing every eigenvariable 
 �
 in an

exists-left rule by
� 
 throughout the derivation, and remove all � -left rules used to derive

�
.

Thus we convert ���� 	�� � �

���
� � � 	 �

� � �
to

����
� 	�� � �

���� �
�

� � � � � � � �

� � � 	 �
�

� � �
The result is a � �� derivation of the same sequent.

Continue replacing each $�% � cut formula in the proof � � by a $ %� cut formula, in the same

way. The result is a � �� -proof of 	 	 � � �� 	 � � ��� � 	 	 � �� 	 �� � .

Since a � � proof of a quantifier-free formula is a ��� -proof, we obtain the following:
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Corollary 8.4. If
� � ��
	 �� � is a $ 
� -theorem of VNC

�
, then the family

� � � ��
	 �� � � �� 	 �� � has ��� -

proofs of size polynomial in �� 	 �� , and these can be computed in FNC
�
.

8.3 Implications for QPC Witnessing and Reflection Princi-

ples

In this subsection we present some consequences of the QPC translation thereoms for the

complexity of the QPC witnessing theorems. First, we state and prove the only-if direction

of Theorem 7.15.

Theorem 8.5. If a function (string or number) is $ 
 � -definable in VNC
�
, then it is in FNC

�
.

Proof. Let � br a string function $ 
 � -definable in VNC
�
. Then, there is a $ 
 � -formula

� � ��
	 �� 	 � �
representing the graph of � such that VNC

�
proves

VNC
�
� ��� ��� � � ��
	 �� 	 ��� �

By Theorem 8.3, there exists an NC
�
-function � such that, given the number arguments �� and

string arguments �� of � , � � �� 	 �� � is a pair � � 	 �� � , where � is a � �� -proof of � � ��� ��� � � ��
	 �� 	 � � ��� � �� 	 �� � ,
and �� is a truth assignment encoding the input strings �� . By running the NC

�
algorithm for

���������
	 	�� � �� 	 $ % � � on �!� �� 	 �� 	 �� � , a witness to � is computed in NC
�
.

Theorem 8.6. The following hardness results hold with respect to polynomial-time many-one

reductions:

(i) For every �  �
,
���������
	
	�� � �� 	 $ %� � is hard for ����� � � 
�� ��� ��� 	 � � " � � .

(ii) For every
�  #" , ���������
	 	�� � �
 	 $ %
�� � � is hard for ��� ��� 	��� ��� ��� � .

(iii) For every
�  #" , ���������
	
	�� � 
 	 $ %
 � � � is hard for ����� �	 .

(iv) Let
�  " be arbitrary and let � 
 denote either � 
 or � �
 . Then, for every �  � ���

,
���������
	 	�� � 
 	 $ %� � is hard for ��� ��� � 
�� ��� ��� 	 � � " � � .
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Proof. For (i), every � � ��� � � � 

� ��� ��� 	 � � " � � is $ 
� -definable in VNC
�

by Corollary 7.22, and

by Theorem 8.3 the $ 
� -formula defining � gives rise to a family of polynomial-size � �� -proofs

� � . Given an instance of � , a solution can be found by solving
���������
	
	�� � �� 	 $ %� � on � � � 	 �� � ,

where
�

and �� depend on the instance of � .

The proofs for the other cases are completely analogous, using Theorems 2.23, 2.24 and

8.2.

Note that (ii) of the above theorem is the hardness direction of Theorem 6.9. We do not

know whether (iii) could be strengthened to a completeness. We show below that (i) and (iv)

are unlikely to be strengthened to be the completeness for ��� � �� 
�� ��� ��� 	 � � " � � . This result is

based on the following fact:

Theorem 8.7. Let
�  " and ��	 � � be such that " � � � � � . If ��� � � 	 ��� ��� 	 � � � ��� � � 	 ��� ��� 	 � � � ,

then ��� collapses to � �
�	 � � ��� ���	��
 � � � .
Proof. Assume that

��� �
�	 ��� ��� 	 � � � �����
�	 ��� ��� 	 � � �
for some

�  #" and " � � � � � . By (iii) of Theorem 2.7, it follows that

� � � 	 � � � � � � � 	 � � � � 	
which implies the collapse of ��� to � � � 	 � � ��� ���	��
 � � � by Kadin’s result [Kad88].

Theorem 8.8. Let
�  �

and �  ��� �
. If

� �������
	
	�� � 
 	 $ %� � � ��� �
�� 
�� ��� ��� 	 � � " � � , then ���

collapses to � � � � � � ���
��
 � � � . Similarly for
� �������
	
	�� ���
 	 $ %� � .

Proof. Let
�  �

and �  � � �
. If

���������
	 	�� ��
 	 $ %� � � ��� �
�� ��� ��� 	 � � " � � , then there is

some
� � �

such that
���������
	
	�� � 
 	 $ %� � � �����
�� 
�� ��� ��� 	 � � , and by (iv) of Theorem 8.6,

�������� 
�� ��� ��� 	 � � " � � collapses to ��� �
�� 
�� ��� ��� 	 � � . A collapse of ��� follows by Theorem 8.7.
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Corollary 8.9. (i) Let
�  " and �  � � �

. If � - � � � � ��
 � is provable in � 
� , then ���

collapses to � � � � � � ���
��
 � � � . Similarly for � - � � � � � �
 � and � 
� . (ii) Let �  �
. If TV

�
proves

� - � � � � � � � � � , then ��� collapses to � � � � � � ���
��
 � � � .

Proof. Let
�  " and �# � � �

. Suppose that � 
� proves � - � � � � � 
 � , which means that
���������
	 	�� � 
 	 $ %� � is $
�� -defined in � 
� . By Theorem 2.24,

���������
	
	�� ��
�	 $ %� � � ��� � � � 

� ��� ��� 	 � � " � �
follows, and ��� collapses because of Theorem 8.8. Similarly for � 
� and � �
 , and TV

�
and

� �� .



Chapter 9

Concluding Remarks for Part II

Throughout Part II we presented various results on the complexity of QPC witnessing prob-

lems. Since we consider these problems for various parameters, we summarize all the known

results on the complexity of the QPC witnessing theorem that we have discussed in this disser-

tation. Also see Table 9.2 on page 173.

� For both � � and � �� , the $ % � -witnessing problems are complete for FNC
�

under many-one

��� � -reduction (Theorem 6.3).

� For both � � and � �� , for every �  �
, the $ %� -witnessing problems are in ��� ��� � 
�� ��� ��� 	 � ���	��
 � � �

(Theorem 6.11).

� For both � � and � �� , for every �  �
, the $ %� -witnessing problems are hard for ��� ��� � 
�� ��� ��� 	 � � " � �

under many-one ��� � -reduction (Theorem 8.6). If these problems are complete for these

classes, then ��� collapses (Theorem 8.8).

Next, we list the results regarding � �
 and � 
 for an arbitrary
�  #" .

� The $ %
 -witnessing problem for � �
 is complete for ����� �	�
�� (Theorem 6.2).

� The $ %
 -witnessing problem for ��
 is complete for
� � � ���
� ��� 	�
�� (Theorem 6.2).

169



CHAPTER 9. CONCLUDING REMARKS FOR PART II 170

Note that the above two results match the results on the complexity of �$ �
 -definable search

problems of � 
� and � 
� (Theorem 2.22).

� The $ %
�� � -witnessing problem for � �
 is complete for ����� �	 ��� ��� 	 � ���
��
 � � � (Theorem

6.9).

The above result also matches the complexity of the �$ �
�� � -definable search problems of � 
�
(Theorem 2.23).

� The $ %
�� � -witnessing problem for � 
 is hard for ��� � � 	 (Theorem 8.6).

We conjecture that the above problem is indeed complete for ��� � � 	 , matching the complexity

of the �$
�
�� � -definable search problems of � 
� .
� For every �  � � �

, the $�%� -witnessing problem for both � �
 and � 
 are in ��� � � � 

� ��� ��� 	 � ���
��
 � � � .
(Theorem 6.11)

� For every �  � � �
, the $ %� -witnessing problems for both � �
 and � 
 are hard for

�������� 

� ��� ��� 	 � � " � � . (Theorem 8.6)

� For every
�  �

and �  � � �
, if the $&%� -witnessing problem for either ��
 or � �
 is in

��� � � � 

� ��� ��� 	 � � " � � , then ��� collapses to � ��� � � � ���	� 
 � � � (Theorem 8.8).

The last item above shows that the complexity of
���������
	
	�� ��
 	 $ %� � does not match the com-

plexity of �$ �� -definable search problems (Theorem 2.24), and similarly for � �
 and � 
� .
The following is open: for

�  �
and � � �

, find a complexity class for which the $ %� -
witnessing problem for ��
 (or � �
 ) is complete. Note that there is no analogous result for the

�$
�� -definable search problems of � 
� (or � 
� ).

Let � be a QPC proof system and let �  " . The $&%' -witnessing problem for � is �$
�' -
definable in theory � if � proves � - � � � � � � . Below we summarize the open problems and

known facts on the provability in bounded arithmetic of the reflection principles of various

QPC sequent calculus systems. Also see Table 9.1.
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� We conjecture that VNC
�

proves both " - � � � � � � � and " - � � � � � �� � .

� If TV
�

proves � - � � � � ���� � for any �! �
, then ��� collapses (Corollary 8.9). Note that

VNC
� �

TV
�
.

The following hold for any
�  #" .

� � 
� proves
�
- � � � � � �
 � . � 
� proves

�
- � � � � � 
�� . ([KP90, Kra95], Theorem 5.32)

� We do not know whether � 
� proves � � � " � - � � � � ���
 � . It is also unknown whether � 
�
proves � ��� " � - � � � � � 
 � .

� If � 
� proves � - � � � � � �
 � for any �  � � �
, then � � collapses. Similarly for � 
� and � 
 .

(Corollary 8.9)

One interesting open problem is to decide whether � 
� proves � � � " � - � � � � � 
 � . The

positive answer would follow via the $��
�� � -conservativity of � 
�� �� over � 
� (Theorem 2.20) if

� 
�� �� proves � ��� " � - � � � � � 
�� . However, we do not know whether � 
�� �� indeed proves � ��� " � -
� � � � � 
�� . In fact, we do not know how to prove a weaker assertion that � �
�� � p-simulates � 

w.r.t. $ %
�� � . (This assertion is a consequence of the provability of � � � " � - � � � � � 
�� in � 
�� �� via

Theorem 5.33.) A p-simulation of ��
 by ���
 � � w.r.t. $ %
 is known; see Corollary 5.34.
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�
- � � � No � �

�
No � �

�
No � �

�
No � �

�
No � �

�
No � �

�
No � �

�

�
- � � � No � �

�
No � �

�
No � �

�
No � �

�
No � �

�
?? ??

� - � � � No � �
�

No � �
�

No � �
�

?? ?? Yes Yes
�
- � � � No � �

�
?? ?? Yes Yes Yes Yes

" - � � � ?? Yes Yes Yes Yes Yes Yes

� VNC
� 	 � � � � � �� 	 � � � � � � �� 	 � � � � � �� 	 � �� � � � �� 	 � � � � �

�

� 	 � �� � � � �� 	 � � �

Table 9.1: The provability of the reflection principles in bounded arithmetic. A cell at column

� � 	 � � and row � indicates whether � - � � � � � � is provable in � . Note that all the negative

answers in this table are conditional; that is, the answer is negative unless � � collapses. We

do not have answers for the cells containing ‘??’; we conjecture that the correct answers for

these cells are ‘Yes’.
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� �� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �� � � � � � � � � � � � � � � � � � � � � � � � ��� 
�� 
��� � �� � � � �� �� � � � � ! �

� �� � � � � � � � � � � � � � � � �� 
 � 
��� � ���� � � �� �� � � � � �� � � � !  " � � # $ � � �� 

� �% � � % � � � & ' 
�� 
��� � ���� � � �� �� � � � & ' � � & ' " � � # $ � & '

?? ??

� �( FNC

( � � " � �# $ �

?? ?? ?? ??

���� ,

��� �� ( � ( � � % � % �� � � �

Table 9.2: The complexity of

� 
� �	 
 
 
� � � �. � for

� 0 1 � � -� � - � 
� 
 � 3 5

and
/ 0 1 � � 2� 3� 4 5

. If a cell is marked with ‘

�

’, then only

the hardness is proven in this dissertation, and we conjecture that there is a matching upper bound. For every cell marked with ‘

� . ’, the

following holds: (i) the corresponding witnessing problem

�

is in

� � � ����� � 
�� 
��� � ���� � � ��

and it is hard for

� � � ����� � 
�� 
��� � �� ��

; and if

�

is in the latter class, then

��

collapses.
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on Grädel’s theorem. Annals of Pure and Applied Logic, 124:193–231, 2003.

[CM04] S. A. Cook and T. Morioka. Quantified propositional calculus and a second-order

theory for � � � . Submitted to Archive for Mathematical Logic, 2004.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceedings of the

3rd Annual ACM Symposium on Theory of Computing, pages 83–97, 1971.

[Coo75] S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Prceed-

ings of the 7th Annual ACM Symposium on the Theory of Computing, pages 83–97,

1975.

[Coo02] S. A. Cook. Proof complexity and bounded arithmetic, 2002. Course notes for

CSC2429, available at http://www.cs.toronto.edu/˜sacook/.

[Coo03] S. A. Cook. Relativized propositional calculus. An unpublished working paper,

2003.

[Coo04] S. Cook. Theories for complexity classes and their propositional translations. sub-

mitted, pages 1–36, 2004.



BIBLIOGRAPHY 178

[CR77] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof

systems. Journal of Symbolic Logic, 44(1):36–50, 1977.

[CT92] P. Clote and G. Takeuti. Bounded arithmetic for NC, AlogTIME, L, and NL. An-

nals of Pure and Applied Logic, 56:73–117, 1992.

[CT04] S. Cook and N. Thapen. The strength of replacement in weak arithmetic. In

Proceedings of the Nineteenth Annual IEEE Symposium on Logic in Computer

Science (LICS’04), 2004.

[Dow79] M. J. Dowd. Propositional representations of arithmetic proofs. PhD thesis, Uni-

versity of Toronto, 1979.

[FS88] L. Fortnow and M. Sipser. Are there interactive proofs for coNP languages? In-

formation Processing Letters, 28:249–251, 1988.

[Gen35] G. Gentzen. Untersuchungen über das logische schliessen. Mathematiche

Zeitschrift, 35:176–210,405–431, 1935. English translation in: M. E. Szabo, The

collected papers of Gerhard Gentzen, North-Holland, 1969.

[HCC � 92] Hartmanis, Chang, Chari, Ranjan, and Rohatgi. Relativization: A revisionistic ret-

rospective. BEATCS: Bulletin of the European Association for Theoretical Com-

puter Science, 47, 1992.

[Imm99] N. Immerman. Descriptive Complexity. Springer, 1999.

[Joh90] D. S. Johnson. A catalog of complexity classes. In J. van Leewen, editor, Hand-

book of Theoretical Computer Science, pages 67–161. Elsevier Science Publishers,

1990.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?

Journal of Computer and System Sciences, 37:79–100, 1988.



BIBLIOGRAPHY 179
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