
Randomness Extractors in AC0 and NC1: Optimal up to Constant

Factors

Kuan Cheng ∗ Ruiyang Wu †

Abstract

We study extractors computable in uniform AC0 and uniform NC1.
For the AC0 setting, we give a construction such that for every k ≥ n/ poly log n, ε ≥

2− poly logn, it can extract (1− γ)k randomness from an (n, k) source for an arbitrary constant
γ, with seed length O(log n

ε). The output length and seed length are optimal up to constant
factors matching the parameters of the best polynomial time construction such as [GUV09]. The
range of k and ε almost meets the lower bound in [GVW15] and [CL18]. We also generalize the
main lower bound of [GVW15] for extractors in AC0, showing that when k < n/ poly log n, even
strong dispersers do not exist in AC0.

For the NC1 setting, we also give a construction with seed length O(log n
ε) and a small constant

fraction entropy loss in the output. The construction works for every k ≥ O(log2 n), ε ≥ 2−O(
√
k).

To our knowledge the previous best NC1 construction is Trevisan’s extractor [Tre01] and its
improved version[RRV02] which have seed lengths poly log n

ε .
Our main techniques include a new error reduction process and a new output stretch process

based on low depth circuits implementations for mergers from [DKSS13], condensers from [KT22]
and somewhere extractors from [Ta-98].

1 Introduction

Randomness extractors are functions that can transform weak random sources into distributions
close to uniform. A typical definition of weak random sources is by min-entropy. A random variable
(weak rsource) X has min-entropy k if for every x in the support of X, log 1

Pr[X=x] ≥ k. To extract

from an arbitrary weak source of a certain min-entropy, Nisan and Zuckerman [NZ96] introduced
the definition of seeded extractor, where the extractor has a short uniform random seed as an
extra input. Specifically, a function Ext : {0, 1}n × {0, 1}d −→ {0, 1}m is defined to be a strong
(k, ε)-extractor, if for every source X with min-entropy k,

∥ (Ud,Ext(X,Ud))− Ud+m∥ ≤ ε,

where Ud and Um are uniform distributions over {0, 1}d and {0, 1}m respectively, and ∥ · ∥ is the
statistical distance. On the contrary, a weak (k, ε)-extractor has the same definition except we only
require

∥Ext(X,Ud)− Um∥ ≤ ε.

As a fundamental pseudorandom construction, extractors are closely related to other pseudo-
random objects and also have various applications in computational complexity, combinatorics,

∗School of Computer Science, Peking University. ckkcdh@hotmail.com
†School of Computer Science, Peking University. 2301111967@stu.pku.edu.cn

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 40 (2024)

algorithm design, information theory, and cryptography. See surveys [NT99][Sha02] [Vad07] [Sha11]
[AB09] [Vad12].

Optimizing extractor constructions aims to get, for every k and ε, an extractor with d as small
as possible, and m as large as possible. An existential bound for strong extractors can be given by a
probabilistic argument, which has d = log(n−k)+2 log(1/ε)+O(1), m = k−2 log(1/ε)−O(1). This is
optimal up to some additive constants for k ≤ n/2, due to the lower bound by [RTS00]. After [NZ96],
a long line of work has been done to seek explicit extractors with parameters close to the existential
bounds [WZ99, SZ99, GW94, Ta-96, Zuc97, RRV99, NT99, RSW00, Tre01, Ta-98, RRV02, LRVW03,
GUV09, TSU12, DKSS13, KT22]. Among them, [GUV09] first achieves d = log n + O(log(k/ε))
and an arbitrary constant factor entropy loss, and also achieves m = k − 2 log(1/ε) − O(1) with
d = log n + O(log k · log(k/ε)). [TSU12] and [KT22] can also achieve the same parameters by
replacing the condenser in [GUV09] with their condenser versions. On the other hand, [TSU12] and

[DKSS13] achieve subconstant entropy loss m = (1−1/ poly log n)k, d = O(log n) when ε ≥ 1/2log
β n

for any constant β < 1.
In terms of computational complexity, an explicit construction is an algorithm that can compute

the function in deterministic polynomial time on given parameters. A natural question is whether
one can construct extractors in lower complexity classes, with matching parameters to the current
best explicit ones. We specifically focus on AC0 and NC1. AC0 is the class of all uniform polynomial-
size circuits of constant depth, with NOT, AND, and OR gates, where AND and OR gates have
unbounded fan-in. NC1 is the class of all uniform polynomial-size circuits of O(log n) depth, with
NOT, AND, and OR gates, where AND, OR gates have fan-in 2.

Viola [Vio05] raised the question on extractor construction in AC0. Goldreich and Wigderson
[GVW15] generalize the negative result of [Vio05], showing that for every constant D, there exists a
polynomial p such that as long as k ≤ n/p(log n), no extractor in AC0 with depth D extract even 1
bit with a constant error, no matter how long the seed is. This rules out the possibility for the case
that k = n/ logω(1) n. For the case k ≥ n/ poly log n, [GVW15] gives a strong extractor in AC0 that
has an output length linear to the seed length. Lately Cheng and Li [CL18] give a construction that

significantly improves the parameters, achieving d = O
(
(log n+ log(n/ε) log(1/ε)

logn)nk

)
,m = (1− γ) k,

for any constant γ and any ε ≥ 2− poly logn. They also show that ε has to be at least 2− poly logn for
AC0 extractors.

For extractors in NC1, unlike the AC0 case, there are no known lower bounds for k or ε. Indeed
the extractor based on universal hash functions [CW79], argued by the leftover hash lemma [ILL89],
can achieve an arbitrary ε and k. It can be realized in NC1 since there are simple linear function
constructions for such hash functions. Trevisan’s extractor [Tre01], and its improved version [RRV02]
can also be realized in NC1, since their main components, the average-case hard function based on
local list-decodable codes can be computed in NC1. Extractors can also be derived from averaging
samplers [Zuc97]. Healy [Hea08] constructs a sampler in NC1. However if one simply applies the
transformation of [Zuc97] on it, then this can only give an extractor with a constant error. So it is
still a question whether one can achieve extractors in NC1 with better parameters for arbitrary k
and ε.

1.1 Our results

Our main positive result is an AC0 computable extractor with parameters optimal up to constant
factors.

Theorem 1.1. For every constant a, c > 0, γ ∈ (0, 1), every k ≥ n
loga(n) , ε ≥ 2− logc(n), there exists

an explicit (k, ε)-strong extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m in AC0 with depth O(a+ c+1)2,

2

such that d = O(log n
ε), and m ≥ (1− γ)k.

Notice that this is much better in seed length compared to the previous best AC0 constructions

[CL18], which achieves d = O
((

log n+ log(n/ε) log(1/ε)
logn

)
loga n

)
. Also, notice that there are lower

bounds for k and ε in the AC0 construction setting, i.e. k has to be at least n/ poly log n by
[GVW15] and ε has to be 2− poly logn by [CL18]. Thus roughly in the plausible range for k and ε,
we achieve parameters optimal up to constant factors.

Our method can also be used to give NC1 computable extractors.

Theorem 1.2. For every constant γ ∈ (0, 1) every k ≥ Ω(log2(n)), ε ≥ 2−O(
√
k), there exists a

strong (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m computable in NC1, with d = O(log(n/ε)),
m = (1− γ)k.

To our knowledge, the previous best known NC1 construction is the improved Trevisan’s extractor
from [RRV02], which has seed length O(log2 n log n

ε), for all k, ε. Our parameters are optimal up to
constant factors for ranges of k, ε as stated.

Our negative result generalizes the previous entropy parameter lower bound by [GVW15] for
strong extractors in AC0 to strong dispersers in AC0.

Theorem 1.3. For every d, s > 0, every constant δ ∈ (0, 1), if C : {0, 1}n × {0, 1}r → {0, 1} is a
(k, 12 − δ)-disperser that can be computed by an AC circuit of size s and depth d, then k ≥ Θ(δn

logd−1 s
).

1.2 Technique Overview

1.2.1 Extractor in AC0

Our AC0 computable extractor is constructed by three main parts.

Merger in AC0 In this part, we show that any somewhere high-entropy source X can be
merged to be a high-entropy source in AC0 under a restricted setting of parameters. Recall that
X = (X1, . . . , XΛ) is a simple somewhere (n, k) source if there exists i ∈ [Λ], Xi is a (n, k) source.
We call each Xi a segment. A somewhere (n, k) source is a convex combination of simple somewhere
(n, k) sources. A (k, k′, ε) merger is a function Merge : {0, 1}nΛ × {0, 1}d → {0, 1}m, such that for
any input somewhere (n, k) source X, Merge(X,U) has entropy k′. [DKSS13] gives a fairly good
merger for somewhere uniform sources, which has m = n = k, k′ = (1− δ)k, d = 1

δ (log
2Λ
ε). Our key

observation is that if the number of segments in the somewhere uniform source is poly log n, δ is
a small constant, and error ε = 2− poly logn, then this merger can be computed in AC0. To show
this, we notice that under this parameter setting, the computation of [DKSS13] is over a finite field
Fq, q = 2d = 2poly logn. The computation only involves three operations: (1) the summation of
poly log n elements; (2) the powering yi where y ∈ Fq, i = poly log n; (3) the product of a constant
number of field elements. (1) is clearly in AC0 since it is actually the summation of poly log n bits,
while (2) and (3) are shown to be in AC0 by [HV06]. Notice that this can be straightforwardly
generalized to a merger for somewhere high-entropy source by first applying an extractor to each
segment and then merging them.

Error Reduction This part gives a new error reduction that can be realized in a highly parallel way.
The required seed length is optimal up to constant factors, significantly better than [CL18]. Let X
be an input (n, k)-source with k = n/ loga n for some constant a. We start from an AC0 computable
(k, ε0) extractor Ext0 : {0, 1}n ×{0, 1}d0 → {0, 1}m0 where ε0 = 1/n, d0 = O(log n),m0 = O(k2/n),

3

which is achieved in [CL18]. Then for every given constant c, the new error reduction can reduce the
error to be as small as ε = 2− logc(n), with a seed length O(log n

ε). We briefly describe the procedure
in three steps along with their arguments:

1. Apply Ext0 to X for t = log(n/ε)
logn times, using independent seeds, outputting Y1, Y2, . . . , Yt

respectively.

Notice that by the error reduction of [RRV99], one can show that with probability at least
1− ε′ ≥ 1−O(ε0)

t, there exists i such that Yi has min-entropy at least m0 −O(log t), while
the seed length used here is only td0 = O(log(n/ε)). Hence one can deduce that (Y1, . . . , Yt)
is tε′ close to a somewhere (m0,m0 −O(log t)) source. We stress that this step is also the first
step in the error reduction of [CL18]. But we differ from [CL18] after then.

2. For each i, cut Yi into l = O(log n) blocks such that their lengths form a geometric sequence.
That is Yi = (Yi,1, Yi,2, . . . , Yi,l), where we let mj = |Yi,j | = m0.1

0 · 3j . Denote Yi,1...j as the first
j blocks of Y . Then for each j, let Bj = (Y1,1...j , Y2,1...j , . . . , Yt,1...j), i.e. the i-th segment of
Bj is the first j blocks from Yi. Regard Bj as a somewhere high-entropy source and merge it
by the merger from the previous part, attaining Zj . Here we use the same seed for each j.
Then we regard (Z1, Z2, . . . , Zl) as a block source and extract by a standard method.

Notice that since the high entropy segment of Y is a (m0,m0 −O(log t)) source, each Bj has
to be a somewhere (Mj ,Mj − O(log t)) source, where Mj = m1 +m2 + · · · +mj . Also, as
t = poly log n, the merger can be implemented in AC0. As the result of merging, Zj has a
high constant entropy rate. Since mj , j ∈ [l] forms a geometric sequence, Zj is a constant
times longer than Zj−1. Thus (Z1, Z2, . . . , Zl) is indeed very close to a block source that has
a constant conditional entropy rate. The output length is O(log n log n

ε) since for each block
we can sample O(log n

ε) bits and then apply an extractor from the left-over hash lemma. The
seed length is O(log n

ε) since both the merger and the sample-then-extract have a seed length
O(log n

ε).

3. Use samplings to get a block source with a constant number of blocks. Apply a standard
extraction, e.g. the method in [CL18], for the block source to get output length Ω(logb n · log n

ε)
for a given arbitrary constant b.

Notice that we have to extract these blocks one by one from the last to the first, so the depth
has a factor O(b) blow-up. But as long as b is a constant, this is still in AC0. The seed length
is O(log n

ε) as we only need to pay the seed for the sampling and the extraction of the last
block.

Output Stretch The last part is a new output stretch procedure for AC0 computable extractors.
Compared to the one in [CL18], the new method attains an output length (1 − γ)k with a seed
length O(log n

ε). Observe that if the input source already has a constant entropy rate, then this is an
easy case. Because one can do sampling to get a two-block source with constant conditional entropy
rates. Then one can use the extractor derived from the previous part to extract from the second
source, attaining a poly log n

ε length output, and then use it to extract the first block by applying
the main extractor from [CL18]. However, the hard case is when the entropy rate is sub-constant
i.e. k = n

loga n . The above simple strategy does not work since we don’t know how to argue that
the block attained from sampling can keep a constant fraction of all entropy while conditioned on
this block, the source still keeps a fairly large conditional entropy. To resolve this issue, we follow a
general strategy used in [DKSS13]. We describe the following 3 steps to reduce the hard case to the
easy case:

4

1. Use Ta-shma’s somewhere-block-source converter [Ta-98] to convert the original source into a
somewhere-two-block-source.

Recall that Ta-shma’s converter tries every position of the input source. For each position,
the source is cut into two substrings. To avoid having too many segments in the resulting
somewhere-two-block-source, one can pick a cutting position after, for example, every n/ log2a n
consecutive positions. In this way, the number of segments is Λ = log2a n. [Ta-98] shows that
for at least one of the position choices, the cutting can give a two-block source where the first
block has entropy Ω(k), and the second has conditional entropy Ω(k).

2. For each segment, apply our extractor in part 2 for the second block and then use the output
as a seed to extract the first block by the extractor in [CL18].

As at least one segment of the somewhere source is indeed a two-block source, the extraction
for the second block can provide an output of length poly log n

ε . This is enough to extract a
constant fraction of entropy i.e. Ω(k) from the first block by [CL18]. Then what we get is
very close to a somewhere uniform source.

3. Use the merger in AC0 from the previous part to get a source with a constant entropy rate
and min-entropy Ω(k).

As we only have poly log n segments, ε = 2− poly logn, and the entropy rate attained is a
constant, it holds that the merger is in AC0, with a seed length O(log n

ε). Then after merging,
the hard setting is reduced to the previously discussed easy setting, i.e. the constant entropy
rate case.

1.2.2 Extractor in NC1

Our construction for extractor in NC1 can be described by the following 3 steps:

1. First apply a condenser from [KT22]. Regard the output as (Y1, Y2) such that Y1, Y2 have a
equal length.

Compared to the condenser in [GUV09], the condenser in [KT22] can only work for k ≥

Ω(log2(n)), ε ≥ 2
−O

(√
k(n)

)
, However, the advantage is that it is computable in NC1. Recall

that the [KT22] (k, k + d, ε) condenser can actually be viewed as Cond : Fn
q × Fq → Fm

q . It

views the input source as coefficients of a degree n − 1 polynomial f(x) =
∑n−1

i=0 aix
i over

field Fq, log q = O(log n
ε). The seed is a random element of Fq. The computation is actually

Cond(f, u) = (u, f(u), f (1)(u), . . . , f (m)(u)). Where f (j)(u) =
∑d

i=0
i!

(i−j)!aiu
i−j is the j-th

derivative of f . Notice that all these coefficients i!
(i−j)! can be precomputed and hardwired in

the circuits. The polynomial evaluation consists of three operations: (1) the powering xi−j ,
(2) the multiplication of two Fq elements, and (3) the summation of a polynomial number
of elements. The powering could be implemented with two steps: powering in N and then
divided by q, which is computable in NC1 by [BCH86]. The multiplication and summation
are both in NC1 by straightforward realizations. So after condensing, we get a source (Y1, Y2)
with an entropy rate > 3/4. As Y1 and Y2 have an equal length, they form a two-block source
with constant conditional entropy rates.

2. For Y2, apply the extractor from our error reduction to get an output Z of lengthO(log2 n log(n/ϵ)).

This step is basically the same as the AC0 case. We make sure the error reduction can also be
done in NC1 under this parameter setting, and the seed length is still O(log n

ε).

5

3. Apply the improved Trevisan’s extractor [RRV02] to Y1 using Z as the seed.

Notice that this extracts O(k) bits with a desired error. It can be further stretched to (1− γ)k
by a standard parallel method. Also, notice that it is a folklore that Trevisan’s extractor
[Tre01] and its improved version [RRV02] can be realized in NC1. So our whole construction
is in NC1. The required seed length for improved Trevisan’s extractor is O(log2 n log(n/ϵ)),
and the output from step 2 is enough to feed it. Hence the overall seed length is O(log n

ε).

1.2.3 A lower bound for AC0 computable dispersers

Our lower bound follows from the improved switching lemma in [Ros]. Assume Disp : {0, 1}n ×
{0, 1}r → {0, 1} is a strong (k, 12 − δ)-disperser computable in AC0 with depth d and size s. Notice
that we only need to consider the 1 bit output setting. Consider that for a fixed seed y ∈ {0, 1}r, we
apply a random restriction on Cy := Disp(·, y). Let the random restriction be Rp over {0, 1, ∗}n such
that for every i ∈ [n], independently we have Pr[Rp(i) = ∗] = p,Pr[Rp(i) = 0] = Pr[Rp(i) = 1] = 1−p

2 .
For a restriction ρ sampled from Rp, the function Cy|ρ is defined to be a function such that if ρi is 1
or 0 then fix the i-th input to be ρi, otherwise leave it unfixed, and then apply Cy on this modified
input. The switching lemma from [Ros] basically shows that Prρ∼Rp [Cy|ρ is not constant] ≤ δ, if

p = δ
Θ(log s)d−1 . Also notice that when δ is a constant, with probability at least 1− 2−O(pn) > 1− δ,

the number of stars in ρ is at least p/2 fraction. By a union bound and an averaging argument,
one can show that there exists a ρ which has at least pn/2 stars such that for > 1− 2δ fraction of
y, Cy|ρ is a constant. Notice that if we take this ρ for a uniform input source, then it becomes a
bit-fixing source of entropy k ≥ pn/2 = Θ(δn

logd−1 s
). Also notice that for every y such that Cy|ρ is

not fixed, Supp(Cy|ρ(X)) ≤ 2 as Cy only has 1 bit output. This implies that |Supp(U,Disp(X,U))|
is less than 2δ2r · 2 + (1− 2δ)2r ≤ (12 + δ)2r+1, a contradiction to the disperser definition.

1.3 Paper Organization

In Section 2 we prepare some basic tools used in the rest of the paper. In Section 3 we show that
merger can be implemented in AC0. In Section 4 we give our new error reduction. In Section 5
we give our new output stretch and show our AC0 computable extractor finally. In Section 6 we
show our NC1 computable extractor. In Section 7 we give our lower bound for dispersers in AC0.
In Section 8 we describe some open questions.

2 Preliminaries

We use the following results from previous works. First, we review the main constructions for
extractors in AC0 from [CL18].

Theorem 2.1 ([CL18]). For every constant a, c ≥ 1, every k = δn = Θ(n/ loga n) there exists an
explicit (k, 1/nc)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m computable in AC0 with depth O(a),
where d = O(log n),m ≥ Θ(δk).

Theorem 2.2 ([CL18] for small entropy). For every constant γ ∈ (0, 1), a, c ≥ 1, every k = δn =
Θ(n/ loga n), ε = 2−Θ(logc n), there exists an explicit (k, ε)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m

computable in AC0 with depth O(a+ c), where d = O
((

log n+ log(n/ε) log(1/ε)
logn

)
/δ
)
,m ≥ (1− γ)k.

Also, recall the sample-then-extract technique in AC0.

6

Theorem 2.3 ([CL18] Sample-then-extract). For every constant δ ∈ (0, 1], c ≥ 1 and every
ϵ = 2− logc n, there exists an explicit (δn, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 with
depth O(c), where d = O(log(n/ε)), m = Θ(log(n/ε)).

The leftover hash lemma is also needed in our construction.

Lemma 2.4 (Leftover Hash Lemma [ILL89]). Let X be an (n′, k = δn′)-source. For any ∆ > 0, let
H be a universal family of hash functions mapping n′ bits to m = k − 2∆ bits. The distribution
U ◦ Ext(X,U) is at distance at most 1/2∆ to uniform distribution where the function Ext :
{0, 1}n′ × {0, 1}d → {0, 1}m chooses the U ’th hash function hU in H and outputs hU (X).

For universal hash functions, we use the construction from Toeplitz matrices. For every u, the
hash function hA(x) equals to Ax where A is a Toeplitz matrix.

Averaging sampler is also an important ingredient in our construction.

Definition 2.5 (Averaging Sampler). A (γ, ε)-averaging sampler is a function Samp : {0, 1}r → [n]t

such that for every sequence of functions fi : [n] → [0, 1], i ∈ [t], µi = Ex∈[n][fi(x)], it holds that

Pr
s←Samp(Ur)

[
1

t

∑
i∈[t]

|fi(si)− µi| ≥ ε] ≤ γ.

Lemma 2.6. [Zuc97] If there is an efficient (δn, ε)-extractor with seed length d, input length n,
output length m, then there is an efficient (21−(1−δ)n, ε)-sampler with input length n, length of each
sample m, and 2d number of samples.

Now we give the following sampler.

Theorem 2.7. For any n, any γ = 1/ poly n, ε ≥ 1/ poly log n, there exists an (γ, ε)-averaging
sampler Samp : {0, 1}r → [n]t with seed length r = log n+O(log(1/γ)) and t = poly(r, ε) which can
be computed by NC1 circuits of size poly log n. Furthermore, this sampler can be computed by AC0

circuits of poly n.

To prove the theorem we need to use Trevisan’s extractor for the following version.

Theorem 2.8 ([Tre01] for polynomial small error). For every constant γ ∈ (0, 1), every k ≥ nΩ(1),
ε = 1/ poly n, there exists an explicit (k, ε)-extractor Ext0 : {0, 1}n × {0, 1}d → {0, 1}m computable
in AC0[2], where d = O(log n),m ≥ (1− γ)k.

Now we can prove Theorem 2.7.

Proof of Theorem 2.7. Let Ext0 : {0, 1}r × {0, 1}d0 → {0, 1}m0 be a (δr, ε)-extractor from Theo-
rem 2.8, where m0 = log n, δ = 1/2, r be s.t. γ = 21−(1−δ)r, d0 = O(log r) = O(log log n).

By Lemma 2.6, this is a desired sampler. The furthermore part follows directly by Lemma 2.11.

Error reduction for extractors has been extensively studied in previous works. We recall the
following key ingredient in the classic error-reducing technique [RRV99].

Lemma 2.9 (Gx Property [RRV99]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ϵ)-extractor
with ϵ < 1/4. Let X be any (n, k + t)-source. For every x ∈ {0, 1}n, there exists a set Gx such that
the following holds.

• For every x ∈ {0, 1}n, Gx ⊂ {0, 1}d and |Gx|/2d = 1− 2ϵ.

7

• If we drawn a y from Ext(X,GX), then with probability at least 1−2−t, Pr [Ext(X,GX) = y] ≤
2−(m−1). Here Ext(X,GX) is obtained by first sampling x according to X, then choosing r
uniformly from Gx, and outputting Ext(x, r).

• Ext(X,GX) is within distance at most 2−t from an (m,m−O(1))-source. Here Ext(X,GX)
is obtained by first sampling x according to X, then choosing r uniformly from Gx, and
outputting Ext(x, r).

We also need to use the following lemmas about low-depth circuits computing.

Lemma 2.10 (folklore). Let a > 0 be an absolute constant. Then loga(n)-bit parity can be computed
by an AC0 circuit with O(a) depth and poly(n) size.

Proof. An AC0 circuit with O(1) depth can compute the parity of log(n) bits. Therefore, calculating
the parity of loga(n) bits is reducible to loga−1(n) bits parity with O(1) depth circuit. The lemma
follows by induction.

Lemma 2.11 ([GGH+07]). For every c ∈ N, every integer l = Θ(logc n), if the function fl :
{0, 1}l → {0, 1} can be computed by circuits of depth O(log l) and size poly(l), then it can be
computed by AC0 circuits of depth c+ 1, size poly(n).

A key part of our argument considers block sources. Recall the chain rule for min-entropy.

Definition 2.12 (block source). Let X = (X1, . . . , Xl) such that each Xi is distributed on {0, 1}ni .
We say X is a (n1, k1, n2, k2, . . . , nl, kl)-block source if for every i ∈ [l] and (x1, . . . , xi−1) ∈
{0, 1}n1+···+ni−1, Xi|X1=x1,...,Xi−1=xi−1 is a (ni, ki)-source.

Lemma 2.13. Fix t ∈ N and k, s, n, n1, . . . , nk ∈ N such that n1+· · ·+nk = n. Let X = (X1, . . . , Xl)
be a (n, n − k)-source on {0, 1}n such that Xi is distributed on {0, 1}ni for each i ∈ [t]. Then
(X1, . . . , Xl) is l · 2−s-close to a (n1, n1 − k, n2, n2 − k − s, . . . , nl, nl − k − s)-source.

Proof. We prove this by induction.
For l = 2, we have X = (X1, X2). Assert that Pr[X1 = x1] ≤ 2n1−k for every x1 ∈ {0, 1}n1 .

Suppose not, then there exists x1 ∈ {0, 1}n1 such that Pr[X1 = x1] > 2n1−k. Then there exists
x2 ∈ {0, 1}n2 such that Pr[X1 = x1, X2 = x2] > 2n1+n2−k. This contradicts the assumption that X
is a k-source.

Fix any x1 ∈ {0, 1}n1 , suppose that X2|X1=x1 is not a (n2, n2 − k − s)-source. Then there exists
x2 ∈ {0, 1}n2 such that Pr[X2 = x2|X1 = x1] > 2−n2+k+s. Since Pr[X1 = x1, X2 = x2] ≤ 2−n+k, we
have Pr[X1 = x1] ≤ 2−n1−s. Therefore Prx1←X1 [X2|X1=x1 is not a (n2, n2 − k)-source] ≤ 2−s. The
lemma follows.

For other l, we have X = (X1, . . . , Xl). Let X ′2 = (X1, X2). By the induction hypothesis, we
have that X = (X ′2, . . . , Xl) is (l − 1)2−s-close to a (n1 + n2, n1 + n2 − k, . . . , nl−1, nl−1 − k − s)-
source. Denote that source by Y = (Y2, . . . , Yl). The l = 2 case shows that Y2 is ε-close to
a (n1, n1 − k, n2, n2 − k − s)-source (Y ′1 , Y

′
2). Construct random variables Y ′3 , . . . , Y

′
l such that

(Y ′3 , . . . , Y
′
l)|Y ′

1=y′1,Y
′
2=y′2

has the same distribution as (Y3, . . . , Yl)|Y1=y′1,Y2=y′2
. Then (Y1, Y2, Y3, . . . , Yl)

is 2−s-close to (Y ′1 , Y
′
2 , Y

′
3 , . . . , Y

′
l). The distribution (Y ′1 , Y

′
2 , Y

′
3 , . . . , Y

′
l) is a (n1, n1 − k, n2, n2 − k−

s, . . . , nl, nl − k − s)-source. The lemma follows.

Recall a folklore extraction process for block sources.

8

Lemma 2.14. Let X = (X1, . . . , Xl) be a (n1, k1, n2, k2, . . . , nl, kl)-block source on {0, 1}n. Suppose
that Exti : {0, 1}ni × {0, 1}r → {0, 1}mi is a strong (ki, ε)-extractor for each i ∈ [l]. Let Y be a
uniformly random variable on {0, 1}r. Take Z = (Z1, . . . , Zl) such that Zi = Exti(Xi, Y). Then Z
is l · ε-close to uniform.

Proof. We prove this by induction.

Claim 2.15. For every i ∈ [l], (Y,X1, . . . , Xi−1, Zi, . . . , Zl) is (l−i+1)·ε-close to (Y,X1, . . . , Xi−1, Ui, . . . , Ul)
where Uj are independent uniformly random variables on {0, 1}mj for each i ≤ j ≤ l.

Proof of Claim 2.15. We prove this by induction. For i = l, Xl|X1=x1,...,Xl−1=xl−1
is a (nl, kl)-source.

Therefore (Y,Zl)|X1=x1,...,Xl−1=xl−1
is ε-close to uniform. The claim follows.

For other i, by the induction hypothesis, we have that (Y,X1, . . . , Xi−1, Zi+1, . . . , Zl) is (l− i) · ε-
close to (Y,X1, . . . , Xi−1, Ui+1, . . . , Ul). Since Uj ’s are independent of X1, . . . , Xi−1, we only need
to show that (Y,X1, . . . , Xi−1, Zi) is ε-close to (Y,X1, . . . , Xi−1, Ui). This follows from case i = l.
The claim follows.

By Claim 2.15, we have that (Y, Z1, . . . , Zl) is l · ε-close to (Y,U1, . . . , Ul). Since U1, . . . , Ul are
independent uniformly random variables on {0, 1}m1+···+ml , the lemma follows.

Another folklore extraction process is used in stretching the output, we also state it here.

Theorem 2.16. Let Ext1 : {0, 1}n1 × {0, 1}m1 → {0, 1}m2 be a (k1, ε1)-strong extractor, and
Ext2 : {0, 1}n2 × {0, 1}r → {0, 1}m1 be a (k2, ε2)-strong extractor. Then the construction

Ext(X1, X2, Ur) = Ext1(X1,Ext2(X2, Ur)) (1)

is a (k1, k2, ε1 + ε2)-strong extractor.

Proof. Let X = (X1, X2) be a (k1, k2)-block-source, and Ur be a uniform random distribution on
{0, 1}r. Then Ext2(X2, Ur) is ε2-close to W . W is a uniform random distribution on {0, 1}m1 ,
independent of both X1 and Ur. Then Ext1(X1,W) is ε1-close to uniform distribution V on
{0, 1}m2 , where V is independent of W and Ur.

Therefore, (Ur, V) is ε1-close to (Ur,Ext1(X1,W)). (Ur,Ext1(X1,W)) is ε2-close to
(Ur,Ext1(X1,Ext2(X2, Ur))). Therefore, (Ur, V) is ε1 + ε2-close to (Ur,Ext(X1, X2, Ur)).

3 Merger in AC0

In this section, we will examine the merger construction in [DKSS13] to prove that the merger
can indeed be implemented in AC0. Some further modifications are discussed to construct strong
mergers for non-uniform sources.

We start by defining the concept of somewhere-(n, k) source.

Definition 3.1 (somewhere-(n, k) source). Let X = (X1, . . . , XΛ) such that each Xi is distributed
on {0, 1}n. We say X is a simple somewhere-(n, k) source with Λ segments if there exists i ∈ [Λ]
such that Xi is a (n, k)-source on {0, 1}n. We say X is a somewhere-uniform source if X is a
convex combination of simple somewhere-(n, k) sources.

If n = k in the above definition, which means that Xi is uniform, we say X is a somewhere-
uniform source.

9

The merger is a function that takes a somewhere-uniform source and a uniform random seed
as input and outputs a (m, k′)-source. The remaining entropy k′ is usually less than the original
entropy k.

Definition 3.2 (merger and strong merger). We say Merge : {0, 1}Λ·n × {0, 1}r → {0, 1}m is a
(k, k′, ε)-merger if for any somewhere-(n, k) source X = (X1, . . . , XΛ), the distribution Merge(X,Ur)
is ε-close to a k′-source. Here Ur is a independent uniform random distribution on {0, 1}r

Furthermore, if (Ur,Merge(X,Ur)) is ε-close to (Ur,W), we say Merge is a strong (k, k′, ε)-
merger. Here W is a distribution such that for all a ∈ {0, 1}r, W |Ur=a is a k′-source.

We examine the merger introduced in [DKSS13], and find that the merger can be implemented
in AC0 if the number of segments is not too large.

Theorem 3.3 (merger in [DKSS13]). For any constant a, c > 0, δ ∈ (0, 1), let Λ(n) ≤ loga(n), ε(n) ≥
2− logc(n). Then there exists explicit (n, δn, ε(n))-mergers Merge : {0, 1}Λ(n)·n × {0, 1}r(n) → {0, 1}n.
Here r(n) = O(log(1ε)).

Furthermore, the mergers can be implemented in AC0 with O(a+ c+ 1) depth and poly(n) size,

The merger in [DKSS13] is defined as follows:
Define q = 2s be a power of two which is decided later. Let Fq be the finite field of order q. Let

X = (X1, . . . , XΛ) be a somewhere-uniform-source with Λ segments. Regard each Xi as distributed
on FK

q with K = n
s . Then

Xi = (Xi,1, . . . , Xi,K), Xi,j ∈ Fq. (2)

Note that the uniform distribution on FK
q is equivalent to the uniform distribution on {0, 1}n.

Take γ1, . . . , γΛ be Λ unique points in Fq. Let C1, . . . , CΛ be Λ unique polynomials in Fq[x] of
degree at most Λ − 1, such that Ci(γj) = 1 if i = j and Ci(γj) = 0 if i ̸= j. Then the merger is
defined as:

Merge(X, y) =

(
Λ∑
i=1

Ci(y)Xi,1, . . . ,

Λ∑
i=1

Ci(y)Xi,K

)
, (3)

where y ∈ Fq.

Lemma 3.4 (merger in [DKSS13]). For any constant δ > 0, let q ≥
(
2Λ
ε

)1/δ
. Then the function

Merge : FK·Λ
q × Fq → FK

q is a (K log q, k, ε)-merger, where k = (1− δ) ·K · log q.

The condition q ≥
(
2Λ
ε

)1/δ
is equivalent to r ≥ 1

δ log
(
2Λ
ε

)
. When Λ = loga(n), ε = 2− logc(n), this

requires r ≥ 2
δ log

c(n). So we can pick r(n) = min{s ∈ N|s ≥ 2
δ log

c(n),∃d ∈ N, s = 3 · 2d}. As δ is
a constant, r(n) = O(logc(n)) = O

(
log
(
1
ε

))
.

Lemma 3.5. For any constant a, c, δ ∈ (0, 1), let Λ(n) ≤ loga, ε(n) ≥ 2− logc(n). Define r(n) =
min{s ∈ N|s ≥ 2

δ log
c(n),∃d ∈ N, s = 3 · 2d}, q(n) = 2r(n),K(n) = n

r(n) . Then the (n, δn, ε)-merger

Merge : {0, 1}Λ(n)·n × {0, 1}r(n) → {0, 1}n can be implemented in AC0 with O(a+ c+ 1) depth and
poly(n) size.

To prove the lemma, we can express the Λ polynomials C1, . . . , CΛ by their Λ2 coefficients. That
is:

Ci(y) =
Λ∑

j=1

ci,jy
j−1, ci,j ∈ Fq, i ∈ [Λ].

10

These coefficients are not necessarily computable in AC0. Instead, they can be pre-determined
and stored in the circuit. Note that Λ = loga(n) and r2(n) = O(logc(n)). Therefore it requires
O(logc(n)) bits to store one coefficient, and O(log2a+c(n)) bits to store all the coefficients.

Therefore, the AC0 circuit for the merger is only required to do three types of operations:
powering, multiplication and summation. The parameters of these operations suffice the following
conditions:

1. The powering operation is to compute yj , where j ≤ log2a(n), and y ∈ Fq. The order q = 2s

is a power of 2, and s = O (logc(n)).

2. The multiplication operation is to compute ci,jy
j−1Xi,k, for each i ∈ [Λ], j ∈ [Λ], k ∈ [K]. All

of the three multipliers are in Fq.

3. The summation operation is to compute
∑Λ

i=1

∑Λ
j=1 ci,jy

j−1Xi,k for each k ∈ [K]. All the

addends are in Fq, and the total number of them is log4a(n).

The following theorems in the work of Healy and Viola [HV06] show that the powering and
multiplication are indeed in AC0.

Lemma 3.6 ([HV06, Corollary 6(1)]). Let a, c > 0 be absolute constants. Let y ∈ Fq where q = 2s

and s = 2 · 3d for some d ∈ N. Suppose that j ≤ loga(n) and s ≤ logc(n), then yj can be computed
by an AC0 circuit with O(a+ c) depth and poly(n) size.

Lemma 3.7 ([HV06, Corollary 6(2)]). Let a, c > 0 be absolute constants. Let y1, y2 ∈ Fq where
q = 2s and s = 2 · 3d for some d ∈ N. Suppose that s ≤ logc(n), then y1 · y2 can be computed by an
AC0 circuit with O(c) depth and poly(n) size.

The summation operation is also in AC0, as the summation of elements in Fq where q = 2s is
equivalent to bitwise parity of the binary representation of the elements if we implement Fq by
polynomial fields with coefficients in F2. When the number of addends is poly log n, it is in AC0 by
Lemma 2.10.

With these results, the merger can be implemented in AC0 with O(a+ c) depth and poly(n)
size.

Proof of Lemma 3.5. It is sufficient prove that each
∑Λ

i=1

∑Λ
j=1 ci,jy

j−1Xi,k can be computed in

AC0 with O(a+ c) depth and poly(n) size. The powering could be computed in O(a+ c) depth and
poly(n) size by Lemma 3.6. The multiplication could be computed in O(c) depth and poly(n) size by
Lemma 3.7. The summation could be computed in O(a) depth and poly(n) size by Lemma 2.10.

Theorem 3.3 follows directly from Lemma 3.4 and Lemma 3.5.

Proof of Theorem 3.3. Take r(n) = min{s ∈ N|s ≥ 2
δ log

c(n), ∃d ∈ N, s = 3·2d}, q(n) = 2r(n),K(n) =
n

r(n) as discussed above. By Lemma 3.4, we know that the merger is a (n, k(n), ε(n))-merger, where

k(n) = (1− δ)n. By Lemma 3.5, we know that the merger can be implemented in AC0 with O(a+ c)
depth and poly(n) size. The theorem follows.

3.1 Merger for high entropy sources

The original merger is only applicable to somewhere-uniform sources. We prepare a merger for
somewhere-(n, k) source with high min-entropy by applying an extractor first, then merging them.

11

Theorem 3.8. Let Λ(n) ≤ poly(n), ε(n) = 2−O(n) , ∆(n) = O(log(nε)).Then there exists a strong

(n−∆(n), 12m(n), ε(n))-merger Merge : {0, 1}Λ(n)·n×{0, 1}r(n) → {0, 1}m(n). Here r(n) = O(log(nε))
and m(n) = Ω(n). The merger is computable in AC0[2].

If Λ(n) ≤ loga(n), ε(n) ≥ 2− logc(n) for constant a, c > 0, then the merger can be implemented in
AC0 with O(a+ c+ 1) depth and poly(n) size.

Proof. Assume that X is a simple somewhere-(n, n−∆(n)) source with Λ segments. Let Xi′ be a
good segment. The construction of the merger is as follows:

1. Separate each Xi into l = n
∆(n)+5 log(1

ε
)
blocks of length u(n) = ∆(n) + 5 log(1ε), which

are Xi,1, . . . , Xi,l. Take s = 2 log(nε), by Lemma 2.13, the good segment Xi′ satisfies that
(Xi′,1, . . . , Xi′,n0.8) is l · 2s-close to a (n1, k1, n2, k2, . . . , nl, kl)-block source. Here nj = u(n)
and kj = 3 log(nε) for each j ∈ [l].

2. Since 3 log(nε) − 2 log(ε
2l) ≥ log(nε), we take Ext1 : {0, 1}u(n) × {0, 1}r1 → {0, 1}log(

n
ε
) be a

strong (3 log(nε),
ε
2l)-extractor using the leftover hash lemma from Lemma 2.4. Take U1 be a

uniformly random variable on {0, 1}r1 , and Yi,j = Ext1(Xi,j , U1) for each i ∈ [Λ(n)], j ∈ [nl].
Each source Yi = (Yi,1, Yi,2, . . . , Yi,l) is of length m(n) = l · log(nε) = Ω(n). By Lemma 2.14,
Yi′ = (Yi′,1, . . . , Yi′,l) is

ε
2 -close to uniform.

3. Take the merger Merge1 : {0, 1}Λ(n)·m(n)×{0, 1}r2 → {0, 1}m(n) be the (m(n), 12m(n), ε2)-merger
from Theorem 3.3. Take U2 be a uniformly random variable on {0, 1}r2 , and Z = Merge1(Y,U2)
which is the output.

The above merger is defined as Merge(X,U1, U2) = Merge1(Y, U2) where Y = (Y1,1, . . . , YΛ,l) and
Yi,j = Ext1(Xi,j , U1) for each i ∈ [Λ(n)], j ∈ [l].

For the AC0[2] case, the extractor Ext1(x, y) can be realized as computing Ax on input x where
A = A(y) is a Toeplitz matrix of size u(n) · log(nε) = poly(n). So it is computable in AC0[2].

The merger Merge1 requires poly(n)’th exponentiation of a O(n)-bit number in F of characristic
2, which is in AC0[2] by [HV06, Theorem 4]. The multiplication and addition are both in AC0[2].
Therefore Merge1 is computable in AC0[2].

For the AC0 case, notice that we set ε(n) ≥ 2− logc(n). So the matrix size in Ext1 is reduced to
O(log2c(n)). Therefore it is computable in AC0 by Lemma 2.10. For the merger, if Λ(n) ≤ loga(n),
then Theorem 3.3 shows that the merger is computable in AC0.

The total seed length is r1 + r2 = O(log(nε)).
The same arguments hold for the case that X is a somewhere-(n, n−∆(n)) source because a

somewhere-(n, n−∆(n)) source is a convex combination of simple somewhere-(n, n−∆(n)) sources.
The theorem follows.

4 Error Reduction

In this section, we give a new error-reduction technique to transform an extractor with moderate
error into an extractor with very small error. The main theorem of this section is the following:

Theorem 4.1. For any constant a, c > 0, b ∈ N+, every k(n) ≥ n/ loga(n), ε(n) ≥ 2− logc(n),
there exists a strong (k(n), ε(n))-extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), where r(n) =

O(log(n
ε(n))), m(n) = Θ

(
logb(n) · log(n

ε(n))
)
.

Furthermore, the extractor can be implemented in AC0 with O(b(a+ c+ 1)) depth.

12

For the following discussion in the section, we will fix a > 0 to be a constant and k(n) = n
loga n .

We mainly prove the following error reduction lemma.

Lemma 4.2. For every ε0 ∈ (0, 1), every constant c > 0, suppose there exists a (k, ε0) extractor
Ext0 : {0, 1}n × {0, 1}d0 −→ {0, 1}m0 with m0 ≥ kΩ(1). Then for any ε = 2− logc n, there exists a
(k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(d0 · log ε

log ε0
), m = Θ

(
logb(n) · log(nε)

)
.

If Ext0 can be realized by a depth h AC circuit, then Ext can be realized by a depth O(b(h+c+1))
AC circuit.

Notice that Theorem 4.1 directly follows from Lemma 4.2 by instantiating Ext0 : {0, 1}n ×
{0, 1}d0 −→ {0, 1}m0 as a (k, ε0) extractor from Theorem 2.1, with ε0 = 1/n,m0 = 0.9k, d0 = O(log n),
depth h = O(a).

For the rest of this section, we prove Lemma 4.2.

4.1 Step 1: extracting in parallel

In this section, we apply Ext0 for t = log(1/ε)
log(1/ε0)

times in parallel, with independent seeds. Specifically,

take U1,i be independent uniform seeds in {0, 1}d0 for every i ∈ [t]. Let Y = (Y1, Y2, . . . , Yt), where
Yi = Ext0(X,U1,i). The step can be computed by depth h AC circuits because the extractor Ext0

has depth h, and the parallel extraction can be done without increasing the depth.
Next, we show that the result is close to a somewhere-(m0(n),m0(n)− O(log t))-source. The

main idea is that by Lemma 2.9, we know that with high probability, at least one of the seeds Ui

lands in Gx, which makes Yi a good source with a high entropy rate. The following lemma states
this formally:

Lemma 4.3. Let Ext0 : {0, 1}n ×{0, 1}d0 → {0, 1}m0 be an (k, ε0)-extractor and X be a (n, k+ s)-
source. Take independent seeds U1, U2, . . . , Us ∈ {0, 1}d0. Let Y = (Y1, Y2, . . . , Yt), where Yi =
Ext0(X,Ui). Then Y is (2ε0)

t + t · 2−s-close to a somewhere-(m0,m0 −O(log t))-source

Take x from a fixed distribution X and fix extractor Ext. Let Gx be the set of good seeds
from Lemma 2.9. We first denote event BADi = {Ui ̸∈ GX}. Note that these events are not
necessarily independent. However, the probability that all of them happen is exponentially small,
as the following claim shows.

Claim 4.4. Pr[BAD1 ∧ BAD2 ∧ · · · ∧ BADt] ≤ (2ε0)
t.

Proof. Fix any x from X. By Lemma 2.9, we know that Pr{Ui ̸∈ Gx} ≤ 2ε0 for every i ∈ [t]. By
the independence of Ui’s, we have Pr{Ui ̸∈ Gx, ∀i ∈ [t]} ≤ (2ε0)

t. Since this holds for every x ∈ X,
we have Pr{BAD1 ∧ BAD2 ∧ · · · ∧ BADt} ≤ (2ε0)

t.

We define an indicator random variable I ∈ {0, 1}[t] as follows:

∀i ∈ [t], i ∈ I ⇐⇒ Ui ∈ GX . (4)

With probability at least 1 − (2ε0)
t, The set I is not an empty set. Take Yi = Ext(X,Ui).

By Lemma 2.9, Yi|(BADi)c = Yi|i∈I is 2−s-close to a (m0,m0 −O(1)) source.
We apply the technique from [LRVW03] to prove that (Y1, Y2, . . . , Yt) is indeed close to a

somewhere-(m0,m0 −O(log t))-source.

Lemma 4.5 ([LRVW03]). Let Y = (Y1, . . . , Yt) be the random variable defined in Lemma 4.3.
Let I be a random set subset of [t]. Assume I ̸= ∅, and for every i ∈ [t], Yi|i∈I is ε-close to a
(m, k)-source. Then Y is (t · ε)-close to a somewhere-(m, k − log t) source.

13

For completeness of the proof, we reprove this lemma.

Proof. Take I0 to be the random selector variable over [t], such that for every S ⊆ [t], I0|I=S

uniformly randomly chooses one index from S. Fix i ∈ [t], for every atomic state (y1, . . . , yt, S) such
that i ∈ S, define the atomic event E = E(y1, . . . , yt, S) = {Y1 = y1, . . . , Yt = yt, I = S}. Then for
each event E,

Pr(E ∧ I0 = i)

Pr(E ∧ i ∈ I)
=

Pr(I0 choose i from I|E) Pr[E]

Pr[E]
∈ [1/t, 1]. (5)

By summing over all such events, we have

Pr(I0 = i)

Pr(i ∈ I)
=

∑
{(y1,...,yt,S)|i∈S} Pr(E(y1, . . . , yt,) ∧ I0 = i)∑
{(y1,...,yt,S)|i∈S} Pr(E(y1, . . . , yt, S) ∧ i ∈ I)

∈ [1/t, 1]. (6)

By conditioning on the events respectively,

Pr(E|I0=i)

Pr(E|i∈I)
=

Pr(E ∧ I0 = i)/Pr(I0 = i)

Pr(E ∧ i ∈ I)/Pr(i ∈ I)
∈ [1/t, t]. (7)

Therefore, we have

Pr{Yi = y|I0=i}
Pr{Yi = y|i∈I}

=

∑
{(y1,...,yt,S)|i∈S,yi=y} Pr{E(y1, . . . , yt, S)|I0=i}∑
{(y1,...,yt,S)|i∈S,yi=y} Pr{E(y1, . . . , yt, S)|i∈I}

∈ [1/t, t]. (8)

By assumption, Yi|i∈I is ε-close to a (m, k)-source. Equivalently,∑
{y|Pr{Yi|i∈I=y}≥2−k}

Pr{Yi|i∈I = y} − 2−k ≤ ε. (9)

By applying the multiplicative relation between Pr{Yi|I0=i = y} and Pr{Yi|i∈I = y}, we have∑
{y|Pr{Yi|I0=i=y}≥t·2−k}

Pr{Yi|I0=i = y} − t · 2−k ≤ t · ε. (10)

The lemma follows.

By Claim 4.4 and Lemma 4.5, we can prove Lemma 4.3:

Proof of Lemma 4.3. Take I as the random set indicator defined above. By Lemma 2.9, Yi|(BADi)c =
Yi|i∈I is 2−s-close to a (m0,m0−O(1)) source. By Claim 4.4, we know that with probability at least
1− (2ε0)

t, I is not an empty set. Conditioning on such events, Lemma 4.5 implies that Y |{I ̸=∅} is
t · 2−s-close to a somewhere-(m0,m0 −O(log t)) source. The lemma follows.

4.2 Step 2: divide and merge

In this subsection, we first divide each segment of the somewhere-(m0,m0 −O(log t))-source into a
sequence of blocks whose lengths form a geometric sequence. Specifically, take Y = (Y1, Y2, . . . , Yt)
to be a simple somewhere-(m0,m0 −O(log t))-source. We divide each Yi into l + 1 blocks of length
m1,m2, . . . ,ml+1 respectively, such that

Yi = (Yi,1, Yi,2, . . . , Yi,l+1) for every i ∈ [t]. (11)

14

The lengths satisfies

mj = m0.1
0 · 3j−1 for every j ∈ [l]. (12)

where l = ⌊log3m0⌋. Denote Yi,1...j = (Yi,1, Yi,2, . . . , Yi,j) for every i ∈ [t] and j ∈ [l]. Define Bj as:

Bj = (Y1,1...j , Y2,1...j , . . . , Yt,1...j) for every j ∈ [l]. (13)

We denote Mj = m1 +m2 + · · ·+mj for every j ∈ [l].
Let Mergej : {0, 1}Mj ×{0, 1}d2(n) → {0, 1}(1−α)Mj be a strong (Mj −M0.1

j , 34(1−α)Mj , ε(n)/l)-
merger from Theorem 3.8 for every j ∈ [l], where α is a constant. Let U2 be a uniform random
variable on {0, 1}d2(n). Define

Zj = Mergej(Bj , U2) for every j ∈ [l]. (14)

The seed length of the merger is d2(n) = O(log(
Mj

ε(n))) = O(log(m(n)
ε(n))).

Since Y is a simple somewhere high entropy source. By dividing it into blocks, each prefix Bj is
a simple somewhere-(Mj ,Mj −O(log t))-source. Through merging, Zj ’s are correlated high-entropy
sources with different lengths. They are close to a block source. We will extract from the block
source to acquire the desired amount of entropy.

Lemma 4.6. Zj is ε(n)/l-close to a ((1− α)Mj ,
3
4(1− α)Mj)-source for every j ∈ [l].

Proof. Let Yi be a (m0,m0 − O(log t))-source in Y . Then Yi,1...j must have entropy at least
mj − O(log t). Therefore Bj is a somewhere-(mj ,mj − O(log t))-source. By Theorem 3.8, Zj is
ε(n)/l-close to a ((1− α)Mj ,

3
4(1− α)Mj)-source. The claim follows.

The entropy argument immediately shows that Zj ’s form a block source.

Lemma 4.7. (Z1, Z2, . . . , Zl) is 2ε(n)-close to a block source (Z ′1, Z
′
2, . . . , Z

′
l). The conditional

entropy of Z ′j is larger than (1− α)Mj/100 = Ω((1− α)Mj) for each j ∈ [l]

Proof. We prove by induction that (Z1, Z2, . . . , Zj) is
2j
l ε(n)-close to a block source (Z ′1, Z

′
2, . . . , Z

′
j).

The base case j = 1 is straightforward.
For the induction case, assume that the proposition holds for j − 1. Consider the distribution

(Z ′1, Z
′
2, . . . , Z

′
j−1, Z

∗
j), where Z∗j = TI . Here I ∈ {0, 1} is a selector random variable and T0, T1

are two different random variables. For simplicity, we denote Zpref = (Z1, Z2, . . . , Zj−1) and
Z ′pref = (Z ′1, Z

′
2, . . . , Zj′−1). The conditional distribution I|Z′

pref=z is defined as Pr[I|Z′
pref=z = 0] =

min(Pr[Zpref=z],Pr[Z′
pref=z])

Pr[Z′
pref=z]

. The distribution T0 satisfies that T0|Z′
pref=z has the same distribution as

Zj |Zpref=z.

Since (Z1, Z2, . . . , Zj−1) is
2(j−1)

l ε(n)-close to (Z ′1, Z
′
2, . . . , Z

′
j−1) by induction hypothesis, we have

Pr[I = 0] ≥ 1−2(j−1)
l ε(n). Since T0 has the same conditional distribution as Zj , (Z

′
1, Z

′
2, . . . , Z

′
j−1, TI)

is 2(j−1)
l ε(n)-close to (Z1, Z2, . . . , Zj−1, Zj) regardless of how we choose T1. Furthermore, Pr[Zj =

z] ≥ Pr[T0 = z ∧ I = 0] for every point z in the co-domain.
We define T1 such that Z∗j = TI has the same distribution as Zj . Specifically, T1 is a dis-

tribution independent of Zpref , Z
′
pref such that Pr[T1 = z] =

Pr[Zj=z]−Pr[T0=z∧I=0]∑
w∈{0,1}m (Pr[Zj=w]−Pr[T0=w∧I=0]) =

Pr[Zj=z]−Pr[T0=z∧I=0]
Pr[I=1] . Then Pr[TI = z] = Pr[T0 = z ∧ I = 0] + Pr[T1 = z ∧ I = 1] = Pr[Zj = z].

15

The distribution (Z ′1, Z
′
2, . . . , Z

′
j−1, Z

∗
j) is

2(j−1)
l ε(n)-close to (Z1, Z2, . . . , Zj−1, Zj) and Z∗j = TI

has the same distribution as Zj . By Lemma 4.6, there exists a ((1− α)Mj ,
3
4(1− α)Mj)-source Z ′′j

such that Z∗j is ε(n)/l-close to Z ′′j .

Since 3
4(1 − α)Mj is larger that

∑j−1
i=1 |Zj−1| =

∑j−1
i=1 (1 − a)Mi, Lemma 2.13 implies that

(Z ′1, Z
′
2, . . . , Z

′
j−1, Z

′′
j) is 2−s-close to (Z ′1, Z

′
2, . . . , Z

′
j−1, Z

′
j) such that Z ′j |Z′

1=z′1,Z
′
2=z′2,...,Z

′
j−1=z′j−1

is

a ((1 − α)Mj ,
3
4(1 − α)Mj − s −

∑j−1
i=1 (1 − a)Mi) source. Take s = (1 − α)Mj/100. The min-

entropy term is (1 − α)Mj · (34 − 1
100 −

∑j−1
i=1 3

−i) ≥ (1 − α)Mj/100. The statistical distance is

2−s = 2−(1−α)Mj/100 ≤ ε(n)/l.
By triangular inequality, (Z1, Z2, . . . , Zj−1, Zj) is

2j
l ε(n)-close to a block source (Z ′1, Z

′
2, . . . , Z

′
j).

Next, we apply the strong extractor from Theorem 2.3 to extract from the block source. Let
Extj : {0, 1}(1−α)Mj ×{0, 1}d3(n) → {0, 1}m′(n) be strong ((1−α)Mj/100, ε(n)/l)-extractor for every
j ∈ [l]. Let U3 be a uniform random variable on {0, 1}d3(n). Then

Wj = Extj(Zj , U3) for every j ∈ [l]. (15)

The seed length of the extractor is d3(n) = O(log(
(1−α)Mj

ε(n))) = O(log(n
ε(n))).

Lemma 4.8. (W1,W2, . . . ,Wl) is 3ε(n)-close to uniform.

Proof. By the previous lemma, (Ext1(Z1, U3),Ext2(Z2, U3), . . . ,Extj(Zj , U3)) is 2ε(n)-close to
(Ext1(Z

′
1, U3),Ext2(Z

′
2, U3), . . . ,Extj−1(Z

′
j−1, U3), Vj). The source (Z

′
1, Z

′
2, . . . , Z

′
j−1, Z

′
l) is a block

source. By Lemma 2.14, the lemma holds.

For every simple somewhere-(m,m − O(log t))-source Y , the distribution W is 3ε(n)-close to
uniform. the same holds for general somewhere-(m,m−O(log t))-source Y because it is a convex
combination of simple somewhere-(m,m−O(log t))-sources.

By composing the first and second steps above, we have a strong extractor which is computable
in AC0:

Lemma 4.9. For any ε0 ∈ (0, 1) every constant c > 0, suppose there exists a (k, ε0) extractor
Ext0 : {0, 1}n×{0, 1}d0 −→ {0, 1}m0 with m0 ≥ k0.01. Then for any ε = 2− logc n, there exists a (k, ε)
extractor Ext′ : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(d0 · log ε

log ε0
), m = Θ

(
log(n) · log(nε)

)
.

If Ext0 can be realized by a depth h AC circuit, then Ext′ can be realized by a depth O(h+ c+1)
AC circuit.

Proof. Take X be the sources, U1, U2, U3 be the seeds. Let Y = (Y1, Y2, . . . , Yt) such that Yi =
Ext(X,U1,i) for every i ∈ [t] as in the first step. Then Y is ε(n)-close to a simple somewhere-
(m(n),m(n)−O(log t))-source conditioning on U1. Let Bj be the source (Y1,1...j , Y2,1...j , . . . , Yt,1...j)
for every j ∈ [l]. Then take Zj = Mergej(Bj , U2) and Wj = Extj(Zj , U3) for every j ∈ [l] as in the
second step. By Lemma 4.8, W is 3ε(n)-close to uniform if Y is a somewhere-(m(n),m(n)−O(log t))-
source. By the triangle inequality, W is 4ε(n)-close to uniform. The extractor can be made strong
in a standard way since the output length is much longer than the seed length.

Step 1 executes the extractor Ext0 in parallel, which costs depth h. Step 2 executes the merger
Mergej and the extractor Extj from Theorem 3.8 and Theorem 2.3 for every j ∈ [l] in parallel
which take depth O(a+ c). So the overall depth is as the lemma stated.

The seed length of the extractor is r(n) = |U1|+ |U2|+ |U3|. U1 = (U1,1, U1,2, . . . , U1,t) where

|U1,i| = O(log n) for every i ∈ [t] and t = log(1/ε(n))
logn . |U2| = O(log(n

ε(n))) and |U3| = O(log(n
ε(n))).

Therefore r(n) = O(log(n
ε(n))).

16

4.3 Step 3: Sample-then-Extract

The final step of the construction is to stretch the length of the output from Θ
(
log(n) · log(n

ε(n))
)

to Θ
(
logb(n) · log(n

ε(n))
)
for any given constant b > 0. We use the Sample-then-Extract method to

achieve this.
Assume X0 is a (n, 3δn)-source. Let Samp1, . . . ,Sampb be sampler functions such that Sampi :

{0, 1}ri → [δn]ni+1 samplers. Take Xi = (Xi−1)Sampi(Ui) for every i ∈ [b]. Then the Sample-then-
Extract method is the following:

Lemma 4.10 (Repeated Sample-then-Extract from [Vad03]). For any constant δ ∈ (0, 1), b ∈ N
Assume X0 is a (n, (2δ+3bε)n)-source. Let Sampi : {0, 1}ri → [δi−1n]δ

in be (γ, ε/ log(1/ε)) samplers.
Let U = (U1, U2, . . . , Ub) be a uniform random seed. Take Xi = (Xi−1)Sampi(Ui) for every i ∈ [b].

Then (X0, X1, . . . , Xb) is b · (γ + 2−Ω(εn))-close to a source (X ′0, X
′
1, . . . , X

′
b) such that X ′i|U=u is a

(δi−1n, 2δin)-source for every i ∈ [b].

Proof. We use induction to prove the lemma. For b = 2, by the typical sample then extractor
technique in [Vad03], (U,X0, X1) is (γ + 2−Ω(εn))-close to a source (U,X ′0, X

′
1) such that X ′1|U=u is

a (δn, (2δ + 3(b− 1)ε)δn)-source.
For b > 2, construct X ′1 as above. define X ′i = (X ′i−1)Sampi(Ui) for every i ∈ [b], i ≥ 2. By

induction hypothesis, (X ′1, X
′
2, . . . , X

′
b) is (b− 1) · (γ + 2−Ω(εn))-close to a source (X ′′1 , X

′′
2 , . . . , X

′′
b)

such that X ′′i |U=u is a (δi−1n, δin)-source for every i ∈ [b]. Since (X1, X2, . . . , Xb) is (γ+2−εn)-close
to (X ′1, X

′
2, . . . , X

′
b), the lemma follows from the triangle inequality.

To apply the extraction to the block sources Xb, Xb−1, . . . , X1, we need a seed Yb and apply
an extractor Extb : {0, 1}δ

b−1n × {0, 1}rb → {0, 1}rb−1 to get Yb−1 = Extb(Yb, Yb). We repeat this
process for i ∈ [b− 1] to get Y1, which is the output.

Now we prove the main lemma.

Proof of Lemma 4.2. Let X be a (n, k(n)) source. Define δ = δ(n) = k(n)−3bn0.5

2n . Take Sampi
be (γ, 1/(n0.5 log n))-samplers from Theorem 2.7, where γ = ε/(4b). Take Xi = (Xi−1)Sampi(Ui)

for every i ∈ [b]. Then (X0, X1, . . . , Xb) is b · (γ + 2−Ω(n0.5))-close to a source (X ′0, X
′
1, . . . , X

′
b)

such that X ′i|U=u is a (δi−1n, 2δin)-source for every i ∈ [b]. By Lemma 2.13, X ′i|U=u,X′
i+1=x′

i
is a

(δi−1n, δin)-source for every i ∈ [b].
For each i ∈ [b − 1], let Exti : {0, 1}δ

i−1n × {0, 1}r → {0, 1}m be (δin/2, ε/(2bn)) extractors
from Lemma 4.9, such that r = O(log(nε)) and m = C log n · r = O(log n log(nε)) for some constant
C > 0. Apply Exti for ti = (C log n)b−i−1 times, which gives

Ext′i(X,U) = (Exti(X,U1),Exti(X,U2), . . . ,Exti(X,Uti)) (16)

for U = (U1, U2, . . . , Uti). Since ti · ε/(2bn) < ε/(2b), Ext′i : {0, 1}δ
i−1n × {0, 1}ri → {0, 1}ri−1 is a

(δin, ε/(2b))-extractor. Here ri = (C log n)b−i−1r.
Take Yb be an independent uniform seed on {0, 1}r. Take Yi−1 = Ext′i(Xi, Yi) for every i ∈ [b−1].

The final output is Y0.
By the extractor property of Ext′i, we know that (X ′1, X

′
2, . . . , X

′
i−1,Ext

′
i(X

′
i, Ui+1)) is ε/(2b)-

close to (X ′1, X
′
2, . . . , X

′
i−1, Ui) where Ui are uniform distributions on {0, 1}ri . Denote Y ′i−1 =

Ext′i(X
′
i, Y

′
i) By the triangle inequality, (X ′1, X

′
2, . . . , X

′
j−1, Y

′
j) is

b−j
2b ε-close to a uniform distribution.

Therefore Y ′0 is 1
2ε-close to uniform.

17

From the result that (X0, X1, . . . , Xb) is b · (γ + 2−ε)-close to a source (X ′0, X
′
1, . . . , X

′
b) where

b · (γ +2−Ω(n0.5)) ≤ 1
2ε, we have that Y0 is 1

2ε-close to Y ′0 . Triangle inequality gives that Y0 is ε-close
to uniform.

The overall depth is O((h+ c+ 1)b) since we only apply Ext in parallel for O(b) rounds.

5 Output Stretch

In this section, we will use the framework introduced in [DKSS13], to further stretch the output
length from O(logc(n)) to a near-optimal O(k). The main theorem of this section is the following:

Theorem 5.1. For any constant a, c > 0 and γ ∈ (0, 1), let k(n) ≥ n
loga(n) , ε(n) ≥ 2− logc(n).

Then there exists a (k(n), ε(n))-strong extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), such that
r(n) = O(log(nε)), and m(n) ≥ (1− γ) · k(n).

Furthermore, the extractor can be implemented in AC0, with O(a+ c+ 1)2 depth and poly(n)
size.

We use a four-step method to extract randomness.

5.1 Step 1: Converting to a somewhere-block-source

In this subsection, we will convert the original k-source into a somewhere-block-source. First, we
define the concept:

Definition 5.2 (somewhere-block-source). Let X = (X1, . . . , XΛ) be a random variable with Λ
segments, each Xi distributed on {0, 1}n1 × {0, 1}n2. We say X is a simple (k1, k2)-somewhere-
block-source if there exists i ∈ [Λ] such that Xi is a (k1, k2)-block-source. We say X is a (k1, k2)-
somewhere-block-source if X is a convex combination of simple (k1, k2)-somewhere-block-sources.

Ta-shma’s somewhere-block-source converter [Ta-98] is a deterministic function that converts a
k1 + k2 + s-source into a (k1 −O(n/Λ), k2)-somewhere-block-source, which has Λ segments.

Take X1 ∈ {0, 1}n as the original source, assume n is divisible by Λ, otherwise pad X1 with 0’s.
Regard X1 as a source with Λ parts, each of length n/Λ:

X1 = (X1,1, . . . , X1,Λ) ∈
(
{0, 1}n/Λ

)Λ
. (17)

Now define the following separation of these parts into (Yi, Zi):

Yi = (X1,1, . . . , X1,i, 0
(Λ−i)·(n/Λ)), (18)

Zi = (0i·(n/Λ), X1,i+1, . . . , X1,Λ). (19)

Then (Yi, Zi) ∈ {0, 1}2n. The Ta-shma’s somewhere-block-source converter is defined as the
collection of all (Yi, Zi), for i ∈ [Λ]:

BΛ
TS(X1) =

{
(Yi, Zi) ∈ {0, 1}2n | i ∈ [Λ]

}
. (20)

Theorem 5.3 ([Ta-98]). Let Λ be an integer and Λ divides n. Let BΛ
TS be the Ta-shma’s somewhere-

block-source converter defined above. Fix k, k1, k2, s ∈ N such that k = k1 + k2 + s. Then for any
k-source X ∈ {0, 1}n, BΛ

TS(X) is O(n · 2−s/3)-close to a (k1 −O(n/Λ), k2)-somewhere-block-source.

18

Now we summarize the first step:

Step 1: Set Λ = log2a(n), Take X2 = (X2,1, . . . , X2,Λ) = BΛ
TS(X1) be the somewhere-block-source.

Lemma 5.4. For any constant a ≥ 0, let k ≥ n
loga(n) . Then for any k-source X1 ∈ {0, 1}n, the

somewhere-block-source X2 = BΛ
TS(X1) is n · 2−

n
log2a n -close to a (k −O(n

log2a n
), n

log2a n
)-somewhere-

block-source.

The first step can be computed in AC0 with O(1) depth and poly(n) size, as it is only splitting
the input into blocks.

5.2 Step 2: Extracting from a somewhere-block-source

In this subsection, we focus on the good block of the somewhere-block-source, and extract randomness
from it. A two-block extractor is employed in this section. We use the block-extraction technique
together with our extractors from Theorem 2.2 and Theorem 4.1 to extract O(loga+c n) randomness
from the second block of the block source, then use it as seed for another extractor, in order to
extract O(k) randomness from the first block of the block source.

Definition 5.5 (two-block extractor). We say a function Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}r →
{0, 1}m is a (k1, k2, ε)-strong-two-block extractor, if for any (k1, k2)-block-source X = (X1, X2) and
independent uniform random distribution Ur on {0, 1}r, the joint distribution (Ur,Ext(X1, X2, Ur))
is ε-close to uniform distribution on {0, 1}r × {0, 1}m.

For a somewhere-block-source, we may apply the two-block extractor to each segment such that
the good segment is converted into a somewhere-close-to-uniform source. The source is defined as
follows:

Lemma 5.6. Let X = (X1, . . . , XΛ) be a (k1, k2)-somewhere-block-source, where each segments is
a source on {0, 1}n1 × {0, 1}n2. Let Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}r → {0, 1}m be a (k1, k2, ε)-
strong-two-block extractor. Let Ur be a uniform random distribution on {0, 1}r. Then

(Ext(X1, Ur), . . . ,Ext(XΛ, Ur))

is ε-close to a somewhere-uniform-source.

Proof. If X is a simple-somewhere-block-source, then there exists a good segment Xi such that
Xi is a (k1, k2)-block-source. Then (Ext(Xi, Ur)) is ε-close to a uniform distribution on {0, 1}m.
Therefore, (Ext(X1, Ur), . . . ,Ext(XΛ, Ur)) is ε-close to a somewhere-uniform-source.

Otherwise, X is a convex combination of simple-somewhere-block-sources. Each simple-
somewhere-block-source is converted into a simple-somewhere-uniform-source. Therefore, X is
converted into a somewhere-uniform-source. The lemma follows.

For AC0 implementation, we have the following theorem:

Theorem 5.7 (block-extraction in AC0). There exists a constant γ ∈ (0, 1). For any constant
a, c > 0, let k1(n) ≥ n

loga(n) , k2(n) ≥ n
log2a(n)

, ε(n) ≥ 2− logc(n), there exists a (k1(n), k2(n), ε(n))-

strong-two-block extractor Ext : {0, 1}n × {0, 1}n × {0, 1}r → {0, 1}m, such that r(n) = O(log(nε)),
and m(n) ≥ (1− γ)k1(n).

Furthermore, the extractor can be implemented in AC0, with O(a+ c+ 1)2 depth and poly(n)
size.

19

Proof. Take Ext1 : {0, 1}n × {0, 1}m1 → {0, 1}m2 be the (k1, ε(n)/2)-extractor from Theorem 2.2,
where m1 = logO(a+c)(n) and m2 = (1 − γ)k1(n). Take Ext2 : {0, 1}n × {0, 1}r → {0, 1}m1 be
the (k2, ε(n)/2)-extractor from Theorem 4.1, where r(n) = O(log(nε)) and m1 = logO(a+c)(n).
By Theorem 2.16, Ext(X1, X2, Ur) = Ext1(X1,Ext2(X2, Ur)) is a (k1, k2, ε(n))-strong-two-block
extractor.

The extractor is in AC0 with depth O(a+ c+ 1)2, as Ext1 is in AC0 with depth O(a+ c+ 1)
and Ext2 is in AC0 with depth O(a+ c+ 1)2

We summarize the second step here:

Step 2: Take Ext : {0, 1}n × {0, 1}n × {0, 1}r1(n) → {0, 1}m(n) be the (n
loga(n) ,

n
log2a(n)

, ε(n))-

strong-two-block extractor, where r1(n) = O(log(nε)) and m(n) ≥ (1 − γ)k(n). Take X3 =
(Ext(X2,1, Ur1), . . . ,Ext(X2,Λ, Ur1)) be 2 · ε(n)-close to a somewhere-uniform-source.

This step can be implemented in AC0 with O(a+ c) depth and poly(n) size, as it is applying
AC0 functions to each block of the input.

The source X3 is now ε(n)-close to a somewhere-uniform-source. It has Λ = log2a(n) segments,
each of length m(n) ≥ (1− γ)k(n). The next step is using the merger introduced in [DKSS13] to
merge the segments into one source.

5.3 Step 3: Merging the segments

We use the merger introduced in [DKSS13] to merge the segments of the somewhere-uniform-source
into one source. The construction of the merger is discussed in Theorem 3.3.

Step 3: Take Merge : {0, 1}Λ·m(n) × {0, 1}r2(n) → {0, 1}m(n) be the (m(n), 34m(n), ε(n))-merger
from Theorem 3.3. Then X4 = Merge(X3, Ur2).

As a direct consequence of Theorem 3.3 we have the following lemma.

Lemma 5.8. X4 is 3 · ε(n)-close to a 3
4m(n)-source.

Also, notice that the computation in AC0 with depth O(a+ c), with seed length O(log(n/ε(n)).

5.4 Step 4: Second extraction

The final step is as the following.

Step 4: Take Ext2 : {0, 1}m(n)/2 × {0, 1}m(n)/2 × {0, 1}r3(n) → {0, 1}m′(n) be the
(18m(n), 18m(n), ε(n))-strong-two-block extractor from Theorem 5.7, where r3(n) = O(log(nε)) and

m′(n) ≥ 1−γ
6 ·m(n). Take X5 = Ext2(X

′
4, X

′′
4 , Ur3), where Ur3 is a uniform random distribution on

{0, 1}r3(n), where (X ′4, X
′′
4) = X4.

Lemma 5.9. X5 is 5ε(n) close to uniform.

Proof. We divide X4 into 2 parts, X4 = (X ′4, X
′′
4) on {0, 1}m(n)/2 ×{0, 1}m(n)/2. By Lemma 5.8, X4

is 3 · ε(n)-close to a 3
4m(n)-source on {0, 1}m(n). By Lemma 2.13, (X ′4, X

′′
4) is 3ε(n)+ 2−

1
24

m(n)-close

to a (18m(n), 18m(n))-block source. Here 2−
1
24

m(n) ≤ ε(n).

20

Now we apply the block extractor from Theorem 5.7 to extract randomness from the block
source (X ′4, X

′′
4).

Since (X ′4, X
′′
4) is 4ε(n)-close to a (18m(n), 18m(n))-block source by Lemma 5.8, the final distri-

bution X5 is 5ε(n)-close to a uniform distribution.

The circuit depth of Ext2 is O(a+ c = 1)2 by Theorem 5.7.
Now we prove the main theorem of this section:

Theorem 5.10. For any constant a, c > 0, γ′ ∈ (0, 1), let k(n) ≥ n
loga(n) , ε(n) ≥ 2− logc(n). Then

there exists a (k(n), ε′(n))-strong extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n), such that
r(n) = O(log(n

ε(n))), and m(n) ≥ (1− γ′) · k(n).
Furthermore, the extractor can be implemented in AC0, with O(a+ c+ 1)2 depth and poly(n)

size.

Proof. The extractor Ext is defined as Ext(X1, Ur1 , Ur2 , Ur3) = X5, where X5 is defined through
the four steps above.

The extractor can be implemented in AC0 with O(a+ c)2 depth and poly(n) size as each step is
in AC0 with corresponding parameters. The overall seed length is r1(n)+ r2(n)+ r3(n) = O(log(nε)).

The output length is m′(n) = 1−γ
6 ·m(n) = (1−γ)2

6 k(n). The error is 5ε(n) by Lemma 5.9.

By repeatedly extracting from the source X1 in parallel for (1−γ′)/ (1−γ)2
6 times with independent

seeds, we could extract the desired amount of randomness with error 5ε(n) · (1−γ)2
6 · 1

1−γ′ . The
theorem follows by adjusting the error parameter by increasing the seed length.

6 Extractors in NC1

Our method can also construct extractors in NC1 with improved parameters. The construction
consists of 3 parts:

1. Apply a condenser from [KT22]. It behaves like the GUV condenser but is computable in NC1.
It condenses the source into a source with a constant entropy rate. We regard the output as a
block source.

2. For the second block, apply our error reduction method which outputs a seed of length
O(log2 n log(n/ϵ)).

3. Apply the improved Trevisan’s extractor [RRV02] to the first block, which outputs Ω(k) bits
of randomness.

The main theorem is as follows:

Theorem 6.1. For every constant γ ∈ (0, 1) every k = k(n) ≥ Ω(log2(n)), ε = ε(n) ≥ 2
−O

(√
k(n)

)
,

there exists a strong (k, ε) extractor Ext : {0, 1}n ×{0, 1}r(n) → {0, 1}m(n) computable in NC1, with
r(n) = O(log(n/ε)), m(n) = (1− γ)k(n).

6.1 Condenser in NC1

The first component in our construction is the condenser from [KT22]. A simplified version of their
result is as follows:

21

Lemma 6.2 (condenser from [KT22]). For every k = k(n) ≥ Ω(log2(n)), ε = ε(n) ≥ n ·2−
√

k(n)/1024,
There exists m(n) ≤ 3

2k(n) and a function Cond : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) with r ≤ 4 log(nε)
such that Cond is a (k, k + r, ε)-condenser.

The condenser takes the input x as the representation of a degree ≤ d = O(n
log q) polynomial

over Fq for some prime q ≥ d, log q ≥ r. Denote the degree ≤ d polynomial as f . The condenser
takes the seed y as a point in Fq. Then the output is defined as:

Cond(x, y) = (y, f(y), f (1)(y), . . . , f (s)(y)) (21)

for some s = s(n) ≤ m(n)
r(n) . f

(i) denotes the i-th formal derivative of f .

To apply the condenser, we need to transform a source on {0, 1}n to a source on Fq and transform
it back for the output. We use division to do the transformation, which is computable in NC1.

The condenser itself requires two sorts of operations: polynomial evaluation and formal derivative.
Denote f(x) =

∑d
i=0 aix

i. Then f (j)(x) =
∑d

i=0
i!

(i−j)!aix
i−j . There are at most d2 such coefficients

i!
(i−j)! , which can be precomputed and stored in the circuit. The multiplication of ai and

i!
(i−j)! can

be done in NC1. Therefore, the formal derivative is computable in NC1.
The polynomial evaluation consists of three operations: calculating the powering xi−j , multipli-

cation and summation. The powering could be implemented with two steps: powering in N and
division by q, which is computable in NC1 according to [BCH86]. The multiplication and iterated
summation are both in NC1.

Putting it together, we can obtain the following lemma:

Lemma 6.3. The condenser from Lemma 6.2 is computable in NC1.

Regard the output of the condenser as (X1, X2), |X1| = |X2| = 1
2m(n). By Lemma 2.13, (X1, X2)

is ε(n)-close to a (12m(n), 16m(n), 12m(n), 16m(n))-source.

6.2 Error Reduction in NC1

After condensing, we only need to handle an input (n, k) source X over {0, 1}n with constant entropy
rate δ = k

n . To extract a seed of length O(log n log(n/ϵ)), we use almost the same procedure as
in Section 4 despite some minor changes.

For the first step to convert the source to a somewhere source, we use the same extractors as
in Section 4. We apply the extractors in parallel for t = logn

log(1/ε) = O(
√
k) times. Then the output is

ε-close to a somewhere (m0,m0 − log(t))-source, where m0 = Ω(k).
For the second step, we still apply the (m0 − log(t), 0.9m0, ε)-merger from Theorem 3.8 to the

output of the first step as in Section 4. Since ε ≥ 2−O(
√
k) and t = poly(k), the merger is computable

in NC1.
After applying the merger, we obtain a block-source with exponentially increasing length. We

require a modification to Theorem 2.3 for the NC1 setting. The main difference is that the error is

now 2−O(
√
k) instead of 2−poly(logn). Also we setup the block length mj = 3j · 10 log n

ε , j ∈ [l], where

l can still be O(log n), since ε = 2−O(
√
k).

We use the following standard method to extract from the block source.

Lemma 6.4. For every constant δ ∈ (0, 1] and every ε = 2−O(n), there exists an explicit (δn, ε)-
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in NC1, where d = O(log(n/ε)), m = Θ(log(n/ε)).

To prove the lemma, we use the sampler from [Hea08].

22

Lemma 6.5 (Sampler in [Hea08]). For any n ∈ N, any ϵ ∈ (0, 1], there exists an (γ, ϵ)-averaging

sampler Samp : {0, 1}r → [n]m with seed length r = log n+O
(
log(1/γ)

ϵ2

)
and m = O

(
log(1/γ)

ϵ2

)
which

can be computed by NC1 circuits of size poly(n, 1/ϵ, log(1/γ)).

Proof of Lemma 6.4. Let γ = 0.8ε, ϵ be a small constant. We apply the sampler to the (n, δn)-source
X with independent seed U1. By Lemma 4.10, X1 = XSamp(U1) is γ + 2−ϵn-close to a (m, (δ − ϵ)m)
source.

Since m = O(log(n/ε)), we can apply extractor Ext1 from Lemma 2.4 to X1 with independent
seed U2. For any (m, (δ − ϵ)m)-source X1, (U2,Ext1(X1, U2)) is ε-close to uniform. Since m =
O(log(n/ε)), the seed length of Ext1 is O(log(n/ε)), The output length is (δ − ϵ)m− 2 log(n/ε) =
Ω(log(n/ε)).

The final extractor is Ext(X,U1, U2) = Ext1(XSamp(U1), U2). It satisfies the requirement of the
lemma.

The extractor from leftover hash lemma performs a matrix multiplication, which is computable
in NC1. The sampler is also computable in NC1. Therefore, the extractor Ext is computable in
NC1.

Using the extractor to extract from the block source as in Section 4, we obtain a seed of length
O(log n log(n/ε)).

One can use the third step of Section 4 to stretch the output to O(log2 n log(n/ε)). The analysis
is exactly the same.

This gives us the following lemma:

Lemma 6.6. For every δ ∈ (0, 1), k = δn, ε = ε(n) = 2−O(
√
k), there exists a strong (k(n), ε(n))-

extractor Ext : {0, 1}n × {0, 1}r(n) → {0, 1}m(n) computable in NC1, with r(n) = O(log(n/ε)),
m(n) = O(log2(n) log(n/ε)).

6.3 Improved Trevisan’s Extractor in NC1

With the seed of length O(log2 n log(n/ε)), We apply the extractor from [RRV02] to the first block
of the block source. Their extractor is given as follows:

Theorem 6.7 (Improved Trevisan’s Extractor [RRV02]). For every k = k(n), ε = ε(n), there are ex-
plicit (k(n), ε(n))-extractors ExtTrev : {0, 1}n×{0, 1}r(n) → {0, 1}m(n) with r(n) = O(log2(n) log(n/ε))
and m(n) = Ω(k(n)).

The construction of their extractor is as follows:
Given k and ε, regard the source X and the seed U as distributions on alphabet F instead of

{0, 1}. F is a finite field such that log |F | = O(log(1/ε)). Take n′ = n/ log |F |, r′ = r/ log |F |,m′ =
m/ log |F |. Then the extractor is defined as

ExtTrev : Fn′ × F r′ → Fm′
, (22)

where r′ = O(log2(n)), m′ = Ω(k/ log(1/ε)).
Define l = log n′. The source X is regarded as a multilinear function f : F l → F , which has

n′ = 2l coefficients.
Given the above parameters, there exists a polynomial time constructible set of sets (S1, . . . , Sm′),

which is called a (l, ρ)-weak design in [RRV02]. Each Si is a subset of [r′] and |Si| = l.
The first step of the extractor is to apply the function f on the seed U restricted to each Si:

Yi = f(U |Si), (23)

23

which forms a block source Y = (Y1, . . . , Ym′).
The second step of the extractor is to apply one universal hash function h : F → {0, 1}O(log(1/ε))

to each Yi. The output is the concatenation of the hash values:

W = h(Y1)h(Y2) . . . h(Ym′). (24)

The extractor is defined as ExtTrev(f, U, h) = h(f(U |S1))h(f(U |S2)) . . . h(f(U |Sm′)).

Lemma 6.8. The extractor ExtTrev is computable in NC1.

Proof. Let F be a finite field of characteristic two satisfying log |F | = O(log(1/ε)). The weak design
are m′ subsets of [r′], which could be described using O(m′r′) = O(n2) bits. Therefore, we can
hardwire the weak design into the circuit and compute U |Si in NC1.

The function f is a multilinear function, which has O(n) terms of degree O(log n). Since each
element of F can be represented by O(n) bits, the iterated multiplication of O(log n) and summation
of O(n) terms are computable in NC1 by [HV06, Theorem 3]. Therefore, the evaluation f(U |Si) is
computable in NC1.

Using Toeplitz matrice as hash functions, the hash function h is computable in NC1. Therefore,
the extractor ExtTrev is computable in NC1.

6.4 Putting it together

Now we can prove Theorem 6.1.

Proof of Theorem 6.1. Take X as the input source. Let Cond : {0, 1}n ×{0, 1}r1(n) → {0, 1}m(n) be
the (k, k+r1, ε/4)-condenser from Lemma 6.2. Take (X1, X2) = Cond(X,U1), where U1 is the seed of
length r1 = O(log(n/ε)). By Lemma 2.13, (X1, X2) is ε/2-close to a (12m(n), 16m(n), 12m(n), 16m(n))-
source.

For X2, apply the (16m(n), ε/4)-strong extractor Ext1 from Lemma 6.6 with seed U2 of length
r2 = O(log(n/ε)). The output is Y = Ext1(X2, U2) of length O(log2(n) log(n/ε)).

For X1, apply the (12m(n), ε/4)-extractor ExtTrev from Theorem 6.7 with seed Y , which outputs
a distribution W of length Ω(k).

By the property of Ext1, (X1, Y) is 3ε/4-close to (X1, Y
′) such that Y ′ is a independent uniform

distribution. Therefore W = ExtTrev(X1, Y) is ε-close to uniform.
The extractor Ext is defined as Ext(X,U1, U2) = W . The three components Cond,Ext1,ExtTrev

are all computable in NC1. Therefore, Ext is computable in NC1.

7 Entropy lower bound for AC0 dispersers

In the context of AC0 computation, not all sources are extractable. A well-known result of [GVW15]
shows that extracting even one bit of randomness is impossible for sources with entropy less
than n

poly(logn) . Similar result from [CL18] shows that extracting randomness with error less than

2−poly(logn) is impossible for AC0 extractors.
In this section, we will extend the bound from extractors to dispersers. Dispersers are functions

that take a source and a seed and output a distribution like extractors. The only difference is that
the output distribution is not necessarily uniform, but rather supported on all but a small fraction of
the codomain. We will show that strong dispersers for AC0 sources with entropy less than n

poly(logn)
do not exist.

24

Definition 7.1 (Disperser). A function Disp : {0, 1}n×{0, 1}r → {0, 1}m is a (k, ε)-disperser if for
every k-source X on {0, 1}n and uniformly random variable Y on {0, 1}r, | Supp(Disp(X,Y))| ≥
(1− ε)2m.

Furthermore, Disp is a strong (k, ε)-disperser if for every k-source X on {0, 1}n and uniformly
random variable Y on {0, 1}r, |Supp(Y,Disp(X,Y))| ≥ (1− ε)2r+m.

We remark that the requirement for X to have entropy ≥ k can be replaced by a weaker
requirement, which only requires Supp(X) ≥ 2k, without changing the definition.

Our proof is based on the new switching lemma for AC0 circuits by Rossman in [Ros]. Their
original result says that every AC0 circuit can be reduced to a decision tree of arbitrary depth under
a random restriction for all but a small fraction of the inputs. By restricting the inputs for the
second time, it is reduced to a constant function.

Definition 7.2 (Restrictions). A restriction ρ is a string on {0, 1, ∗}n. We denote the application
of ρ to x ∈ {0, 1}n by ρ ◦ x, which is defined as:

(ρ ◦ x)i =

{
ρi if ρi ̸= ∗,
xi if ρi = ∗.

(25)

The restriction on a function f : {0, 1}n → {0, 1}m is defined as:

f |ρ(x) = f(ρ ◦ x). (26)

We use Rp to denote the independent uniform random restriction with star probability p. That
is, for every i ∈ [n], Pr[Rp(i) = ∗] = p,Pr[Rp(i) = 0] = Pr[Rp(i) = 1] = 1−p

2 .

The switching lemma for AC0 circuits is stated as follows:

Lemma 7.3 (Switching Lemma for AC0 circuits [Ros]). For every δ ∈ (0, 1), d > 0, s = s(n), there
exists p = δ

Θ(log s)d−1 such that for every AC0 circuit C of size s and depth d,

Pr
ρ∼Rp

[C|ρ is not constant] ≤ δ. (27)

We give the following negative result for strong dispersers using the switching lemma:

Theorem 7.4. For every d > 0, s = s(n), every constant δ ∈ (0, 1), if C : {0, 1}n×{0, 1}r → {0, 1} is
a (k, 12−δ)-disperser that can be computed by an AC circuit of size s and depth d, then k ≥ Θ(δn

logd−1 s
).

Proof. Define the sub-circuit Cy(x) = C(x, y) for every y ∈ {0, 1}r. Let R′p the random restriction
that R′p = Rp|Rp assigns at least p

2
fraction of the inputs as ∗. The event that Rp assigns at least p

2 fraction

of the inputs as ∗ is less than
(
n
pn

)
/(
∑

i< pn
2

(
n
i

)
≤ (

√
2ep)pn = 2−Ω(n). Therefore, R′p is 2−Ω(n)-close

to Rp.
By Lemma 7.3, there exists p = δ

Θ(log s)d−1 such that Cy|Rp is constant with probability at least

1− δ. Then C|R′
p
is constant with probability at least 1− 2δ. Define a restriction ρ to be bad for y

if Cy|ρ is constant. Then for every y, Prρ∼R′
p
[ρ is bad for y] ≥ 1− 2δ. By averaging, we have

Pr
ρ∼R′

p,y∼{0,1}r
[ρ is bad for y] ≥ 1− 2δ. (28)

Therefore, there exists a restriction ρ from R′p such that for at least 1− δ fraction of y ∈ {0, 1}r, ρ
is bad for y.

25

Define a source X to be the bit-fixing source on {0, 1}n such that X = ρ ◦ U , where U is a
uniformly random variable on {0, 1}n. Then X is a k-source for k = 2n

p = Θ(δn
logd−1 s

). Since ρ is bad

for at least 1− 2δ fraction of y ∈ {0, 1}r, Cy(X) is constant for at least 1− 2δ fraction of y ∈ {0, 1}r.
Therefore (Y,C(X,Y)) = (Y,CY (X)) covers at most 2δ(2 ·2r)+(1−2δ)2r = (12 +δ)2r+1 points in its
sample space, a contradiction to the definition of the strong disperser. So the theorem follows.

8 Open Questions

We mention the following open questions.

• For extractors in AC0, can we further improve the circuit depth? The current depth is
O(a+ c+ 1)2. Is it possible to be linear in a+ c+ 1, while maintaining other parameters to
be roughly the same?

• For extractors in NC1, can we improve the plausible range of k and ε? For example is it
possible to give an NC1 construction that can work for all k, ε, matching the parameters in
[GUV09]?

• Some components of our NC1 computable extractors are actually in AC0[2]. Is it possible to
give an extractor in AC0[2], with parameters optimal up to constant factors?

• For weak dispersers, we do not have a similar negative result to that of Section 7. The reason
is that a single good seed in the seed space can make the disperser good enough, regardless of
other seeds. So it remains an open question whether weak dispersers can constructed in AC0,
specifically for sources with entropy less than n

poly(logn) .

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

[BCH86] Paul Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, 1986.

[CL18] Kuan Cheng and Xin Li. Randomness extraction in ac0 and with small locality.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM) 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18:143–154, 1979.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
Method of Multiplicities, with Applications to Kakeya Sets and Mergers. SIAM Journal
on Computing, 42(6):2305–2328, January 2013.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Roth-
blum. Verifying and decoding in constant depth. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 440–449. ACM, 2007.

26

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):1–
34, June 2009.

[GVW15] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in
AC0. In Proceedings of the 30th Conference on Computational Complexity, CCC ’15,
pages 601–668, Dagstuhl, DEU, June 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[GW94] Oded Goldreich and Avi Wigderson. Tiny families of functions with random proper-
ties (preliminary version) a quality-size trade-off for hashing. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing, pages 574–584, 1994.

[Hea08] Alexander D Healy. Randomness-efficient sampling within nc1. Computational
Complexity, 17(1):3–37, 2008.

[HV06] Alexander Healy and Emanuele Viola. Constant-Depth circuits for arithmetic in fi-
nite fields of characteristic two. In Proceedings of the 23rd Annual Conference on
Theoretical Aspects of Computer Science, STACS’06, pages 672–683, Berlin, Heidel-
berg, February 2006. Springer-Verlag.

[ILL89] Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 12–24, 1989.

[KT22] Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM) 2022, volume 245 of LIPIcs, pages 12:1–12:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to Constant Factors. Proceedings of the thirty-fifth annual ACM symposium on Theory
of computing, June 2003.

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting randomness: A survey and new construc-
tions. Journal of Computer and System Sciences, 58:148–173, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Ros] Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the
decision-tree size of AC0.

[RRV99] Ran Raz, Omer Reingold, and Salil P. Vadhan. Error reduction for extractors. In 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, pages 191–201.
IEEE Computer Society, 1999.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and
reducing the error in trevisan’s extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.

[RSW00] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated
condensing. In 41st Annual Symposium on Foundations of Computer Science, FOCS
2000, pages 22–31. IEEE Computer Society, 2000.

27

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors and
depth-two superconcentrators. Siam Journal on Discrete Mathematics, 13:2–24, 2000.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of
the European Association for Theoretical Computer Science, 77:67–95, 2002.

[Sha11] Ronen Shaltiel. An introduction to randomness extractors. In Proceedings of the 38th
International Colloquium on Automata, Languages, and Programming, 2011.

[SZ99] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. SIAM
Journal on Computing, 28:1433–1459, 1999.

[Ta-96] Amnon Ta-Shma. On extracting randomness from weak random sources. In Proceedings
of the 28th Annual ACM Symposium on Theory of Computing, pages 276–285, 1996.

[Ta-98] Amnon Ta-Shma. Almost optimal dispersers. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, 1998, pages 196–202. ACM, 1998.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–
879, 2001.

[TSU12] Amnon Ta-Shma and Christopher Umans. Better condensers and new extractors from
parvaresh-vardy codes. In 2012 IEEE 27th Conference on Computational Complexity,
pages 309–315. IEEE, 2012.

[Vad03] Salil P. Vadhan. On Constructing Locally Computable Extractors and Cryptosystems
in the Bounded Storage Model. In Advances in Cryptology - CRYPTO 2003, volume
2729, pages 61–77. Springer Berlin Heidelberg, 2003.

[Vad07] Salil Vadhan. The unified theory of pseudorandomness. SIGACT News, 38, 2007.

[Vad12] Salil Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[Vio05] Emanuele Viola. The complexity of constructing pseudorandom generators from hard
functions. computational complexity, 13(3-4):147–188, 2005.

[WZ99] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound:
Explicit construction and applications. Combinatorica, 19(1):125–138, 1999.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and
Algorithms, 11(4):345–367, December 1997.

28
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

