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Abstract

In the MINMAX SET COVER RECONFIGURATION problem, given a set system F over
a universe and its two covers Cstart and Cgoal of size k, we wish to transform Cstart

into Cgoal by repeatedly adding or removing a single set of F while covering the uni-
verse in any intermediate state. Then, the objective is to minimize the maximize size
of any intermediate cover during transformation. We prove that MINMAX SET COVER

RECONFIGURATION and MINMAX DOMINATING SET RECONFIGURATION are PSPACE-
hard to approximate within a factor of 2− 1

polyloglog N , where N is the size of the universe
and the number of vertices in a graph, respectively, improving upon Ohsaka (SODA
2024) [Ohs24] and Karthik C. S. and Manurangsi (2023) [KM23]. This is the first re-
sult that exhibits a sharp threshold for the approximation factor of any reconfigura-
tion problem because both problems admit a 2-factor approximation algorithm as per
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno (Theor. Comput. Sci.,
2011) [IDHPSUU11]. Our proof is based on a reconfiguration analogue of the FGLSS
reduction [FGLSS96] from Probabilistically Checkable Reconfiguration Proofs of Hira-
hara and Ohsaka (2024) [HO24]. We also prove that for any constant ε ∈ (0,1), MINMAX

HYPERGRAPH VERTEX COVER RECONFIGURATION on poly(ε−1)-uniform hypergraphs
is PSPACE-hard to approximate within a factor of 2−ε.
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1 Introduction

1.1 Background
In the field of reconfiguration, we study the reachability and connectivity over the space of
feasible solutions under an adjacency relation. Given a source problem that asks the exis-
tence of a feasible solution, its reconfiguration problem requires to decide if there exists a
reconfiguration sequence, namely, a step-by-step transformation between a pair of feasible
solutions while always preserving the feasibility of any intermediate solution. One of the
reconfiguration problems we study in this paper is SET COVER RECONFIGURATION [IDH-
PSUU11], whose source problem is SET COVER. In the SET COVER RECONFIGURATION

problem, for a set system F over a universe U and its two covers Cstart and Cgoal of size
k, we seek a reconfiguration sequence from Cstart to Cgoal consisting only of covers of size
at most k+1, each of which is obtained from the previous one by adding or removing a sin-
gle set of F . Countless reconfiguration problems have been defined from a variety of source
problems, including Boolean satisfiability, constraint satisfaction problems, and graph prob-
lems. Studying reconfiguration problems may help elucidate the structure of the solution
space of combinatorial problems [GKMP09].

The computational complexity of reconfiguration problems has the following trend: a re-
configuration problem is likely to be PSPACE-complete if its source problem is intractable
(say, NP-complete); e.g., SET COVER [IDHPSUU11], 3SAT [GKMP09], and INDEPENDENT

SET [HD05, HD09]; a source problem in P frequently induces a reconfiguration problem in
P; e.g., SPANNING TREE [IDHPSUU11] and 2SAT [GKMP09]. Some exception are how-
ever known; e.g., 3COLORING [CvJ11] and SHORTEST PATH [Bon13]. We refer the readers
to the surveys by Nishimura [Nis18] and van den Heuvel [van13] and the Combinatorial
Reconfiguration wiki [Hoa23] for more algorithmic and hardness results of reconfiguration
problems.

To overcome the computational hardness of a reconfiguration problem, we consider its
optimization version, which affords to relax the feasibility of intermediate solutions. For ex-
ample, MINMAX SET COVER RECONFIGURATION [IDHPSUU11] is an optimization version
of SET COVER RECONFIGURATION, where we are allowed to use any cover of size greater
than k+1, but required to minimize the maximum size of any covers in the reconfiguration
sequence (see Section 4.1 for the formal definition). Solving this problem approximately, we
may be able to find a “reasonable” reconfiguration sequence for SET COVER RECONFIGURA-
TION which consists of covers of size at most, say, 1% larger than k+1. Unlike SET COVER,
which is NP-hard to approximate within a factor smaller than lnn [DS14, Fei98, LY94],
MINMAX SET COVER RECONFIGURATION admits a 2-factor approximation algorithm due to
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [IDHPSUU11, Theorem 6].
An immediate question is: Is this the best possible?

Here, we summarize known hardness-of-approximation results on MINMAX SET COVER

RECONFIGURATION. Ohsaka [Ohs24] showed that MINMAX SET COVER RECONFIGURA-
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TION is PSPACE-hard to approximate within a factor of 1.0029 assuming the Reconfigu-
ration Inapproximability Hypothesis [Ohs23], which was recently proved [HO24, KM23].
Karthik C. S. and Manurangsi [KM23] proved NP-hardness of the (2−ε)-factor approxima-
tion for any constant ε ∈ (0,1). Both results are not optimal: Ohsaka’s factor 1.0029 is far
smaller than 2, while Karthik C. S. and Manurangsi’s result is not PSPACE-hardness. This
leaves a tantalizing possibility that there may exist a polynomial-length reconfiguration
sequence that achieves a 1.0030-factor approximation for MINMAX SET COVER RECONFIG-
URATION, and hence the approximation problem may be in NP. Note that the PSPACE-
hardness result of Ohsaka disproves the existence of a polynomial-length witness (in par-
ticular, a polynomial-length reconfiguration sequence) for the 1.0029-factor approximation
under the assumption that NP ̸=PSPACE.

1.2 Our Results
We present optimal results of PSPACE-hardness of approximation for three reconfiguration
problems. Our first result is that MINMAX SET COVER RECONFIGURATION is PSPACE-
hard to approximate within a factor smaller than 2, improving upon Ohsaka [Ohs24, Corol-
lary 4.2] and Karthik C. S. and Manurangsi [KM23, Theorem 4]. This is the first result
that exhibits a sharp threshold for the approximation factor of any reconfiguration problem:
approximating within any factor below 2 is PSPACE-complete and within a 2-factor is in P

[IDHPSUU11].

Theorem 1.1 (informal; see Theorem 4.1). For a set system F of universe size N and its two
covers Cstart and Cgoal of size k, it is PSPACE-complete to distinguish between the following
cases:

• (Completeness) There exists a reconfiguration sequence from Cstart to Cgoal consisting
only of covers of size at most k+1.

• (Soundness) Every reconfiguration sequence contains a cover of size greater than (2−
ε(N))(k+1), where ε(N) := (polyloglog N)−1.

In particular, MINMAX SET COVER RECONFIGURATION is PSPACE-hard to approximate
within a factor of 2− 1

polyloglog N .

As a corollary of Theorem 4.1 along with [Ohs24], the following PSPACE-hardness of ap-
proximation is established for DOMINATING SET RECONFIGURATION, which also admits a
2-factor approximation [IDHPSUU11] (please refer to [Ohs24] for the problem definition).

Corollary 1.2 (from Theorem 4.1 and [Ohs24, Corollary 4.3]). MINMAX DOMINATING SET

RECONFIGURATION is PSPACE-hard to approximate within a factor of 2− 1
polyloglog N , where

N is the number of vertices in a graph.
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Our third result is a similar inapproximability result for HYPERGRAPH VERTEX COVER

RECONFIGURATION, which is defined analogously to SET COVER RECONFIGURATION (see
Section 4.2 for the formal definition). MINMAX HYPERGRAPH VERTEX COVER RECONFIG-
URATION is easily shown to be 2-factor approximable [IDHPSUU11]; we prove that this is
optimal.

Theorem 1.3 (informal; see Theorem 4.3). For any constant ε ∈ (0,1), a poly(ε−1)-uniform
hypergraph, and its two vertex covers Cstart and Cgoal of size k, it is PSPACE-complete to
distinguish between the following cases:

• (Completeness) There exists a reconfiguration sequence from Cstart to Cgoal consisting
only of vertex covers of size at most k+1.

• (Soundness) Every reconfiguration sequence contains a vertex cover of size greater than
(2−ε)(k+1).

In particular, MINMAX HYPERGRAPH VERTEX COVER RECONFIGURATION on poly(ε−1)-
uniform hypergraphs is PSPACE-hard to approximate within a factor of 2−ε.

We highlight here that the size of hyperedges in a HYPERGRAPH VERTEX COVER RE-
CONFIGURATION instance of Theorem 4.3 depends (polynomially) only on the value of ε−1,
whereas the size of subsets in a SET COVER RECONFIGURATION instance of Theorem 4.1
may depend on the universe size N.

1.3 Proof Overview
At a high level, our proofs of Theorems 1.1 and 1.3 are given by combining the ideas devel-
oped in [HO24, KM23, Ohs23, Ohs24]. Karthik C. S. and Manurangsi [KM23] proved NP-
hardness of the (2−ε)-factor approximation of MINMAX SET COVER RECONFIGURATION as
follows.

1. Starting from the PCP theorem for NP [ALMSS98, AS98], they applied the FGLSS
reduction [FGLSS96] to prove NP-hardness of the O(ε−1)-factor approximation of an
intermediate problem, which we call MAX PARTIAL 2CSP.

2. The O(ε−1)-factor approximation of MAX PARTIAL 2CSP is reduced to the (2−ε)-factor
approximation of a reconfiguration problem, which we call LABEL COVER RECONFIG-
URATION (Problem 2.3).

3. LABEL COVER RECONFIGURATION can be reduced to MINMAX SET COVER RECON-
FIGURATION via approximation-preserving reductions of Lund and Yannakakis [LY94]
and Ohsaka [Ohs24].
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Here, MAX PARTIAL 2CSP is defined as follows. The input consists of a graph G = (V ,E), a
finite alphabet Σ, and constraints ψe : Σ2 → {0,1} for each edge e ∈ E. A partial assignment
is a function f : V → Σ∪ {⊥}, where the symbol ⊥ indicates “unassigned.” The task is to
maximize the fraction of assigned vertices in a partial assignment f that satisfies ψe for
every e = (v,w) ∈ E; i.e., ψe( f (v), f (w))= 1 if f (v) ̸= ⊥ and f (w) ̸= ⊥.

To improve this NP-hardness result to PSPACE-hardness, we replace the starting point
with the PCRP (Probabilistically Checkable Reconfiguration Proof) system of Hirahara and
Ohsaka [HO24], which is a reconfiguration analogue of the PCP theorem. We also replace
MAX PARTIAL 2CSP with its reconfiguration analogue, which we call PARTIAL 2CSP RE-
CONFIGURATION (Problem 2.2). The proof of PSPACE-hardness is outlined as follows.

1. Starting from the PCRP theorem for PSPACE [HO24], we apply the FGLSS reduction
[FGLSS96] to prove PSPACE-hardness of PARTIAL 2CSP RECONFIGURATION (Sec-
tions 3.1 and 3.2).

2. We reduce PARTIAL 2CSP RECONFIGURATION to LABEL COVER RECONFIGURATION

(Section 3.3).

3. We reduce LABEL COVER RECONFIGURATION to MINMAX SET COVER RECONFIGU-
RATION by the reductions of [LY94, Ohs24] (Section 4.1).

The second and third steps are similar to the previous work [KM23]. Our main technical
contribution lies in the first step, which we explain below.

Roughly speaking, the PCRP theorem [HO24] shows that any PSPACE computation on
inputs of length n can be encoded into a sequence π(1), · · · ,π(T) ∈ {0,1}poly(n) of exponentially
many proofs such that any adjacent pair of proofs π(t) and π(t+1) differs in at most one bit, and
each proof π(t) can be probabilistically checked by reading q(n) bits of the proof and using
r(n) random bits, where q(n) = O(1) and r(n) = O(logn). The FGLSS reduction [FGLSS96]
transforms such a proof system into a graph G = (V ,E), an alphabet Σ, and constraints
(ψe)e∈E such that each vertex v ∈V := {0,1}r(n) corresponds to a coin flip sequence of a veri-
fier, each value α ∈Σ= {0,1}q(n) corresponds to a local view of the verifier, and the constraints
ψe check the consistency of two local views of the verifier. This reduction works in the case
of the PCP theorem and proves NP-hardness of MAX PARTIAL 2CSP [KM23]. However,
the reduction does not work in the case of the PCRP theorem: We need to ensure that the
reconfiguration sequence of proofs π(1), · · · ,π(T) is transformed into a sequence of partial as-
signments f (1), · · · , f (T), each adjacent pair of which differs in at most one vertex. The issue
is that changing one bit in the original proof π(t) may result in changing the assignments of
many vertices in a partial assignment f (t) : V→Σ∪ {⊥}.

To address this issue, we employ the ideas developed in [Ohs23, Ohs24], called the al-
phabet squaring trick, and modify the FGLSS reduction as follows. Given a verifier that
reads q(n) bits of a proof, we define the alphabet as Σ= {0,1,01}q(n). Intuitively, the symbol
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“01” means that we are taking 0 and 1 simultaneously. This enables us to construct a re-
configuration sequence of partial assignments f (1), · · · , f (T) from a reconfiguration sequence
of proofs π(1), · · · ,π(T). Details can be found in Section 3.2.

1.4 Related Work
Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, and Uno [IDHPSUU11] showed that
optimization versions of SAT RECONFIGURATION and CLIQUE RECONFIGURATION are NP-
hard to approximate, relying on NP-hardness of approximating MAX SAT [Hås01] and MAX

CLIQUE [Hås99], respectively. Note that their NP-hardness results are not optimal since
SAT RECONFIGURATION and CLIQUE RECONFIGURATION are PSPACE-complete. Toward
PSPACE-hardness of approximation for reconfiguration problems, Ohsaka [Ohs23] proposed
the Reconfiguration Inapproximability Hypothesis (RIH), which postulates that a reconfigu-
ration analogue of CONSTRAINT SATISFACTION PROBLEM is PSPACE-hard to approximate,
and demonstrated PSPACE-hardness of approximation for many popular reconfiguration
problems, including those of 3SAT, INDEPENDENT SET, VERTEX COVER, CLIQUE, DOMI-
NATING SET, and SET COVER. Ohsaka [Ohs24] adapted Dinur’s gap amplification [Din07]
to demonstrate that under RIH, optimization versions of 2CSP RECONFIGURATION and
SET COVER RECONFIGURATION are PSPACE-hard to approximate within a factor of 0.9942
and 1.0029, respectively.

Very recently, Hirahara and Ohsaka [HO24] and Karthik C. S. and Manurangsi [KM23]
announced the proof of RIH independently, implying that the above PSPACE-hardness re-
sults hold unconditionally. Karthik C. S. and Manurangsi [KM23] further proved that (op-
timization versions of) 2CSP RECONFIGURATION and SET COVER RECONFIGURATION are
NP-hard to approximate within a factor smaller than 2, which is quantitatively tight be-
cause both problems are (nearly) 2-factor approximable. Our result partially resolves an
open question of [KM23, Section 6]: “Can we prove tight PSPACE-hardness of approximation
results for GapMaxMin-2-CSPq and Set Cover Reconfiguration?”

Other reconfiguration problems whose approximability was investigated include those
of SET COVER [IDHPSUU11], SUBSET SUM [ID14], and SUBMODULAR MAXIMIZATION

[OM22]. We note that optimization variants of reconfiguration problems frequently re-
fer to those of the shortest reconfiguration sequence [BHIKMMSW20, IKKKO22, KMM11,
MNPR17], which are orthogonal to this study.

2 Preliminaries

2.1 Notations
For a nonnegative integer n ∈N, let [n] := {1,2, . . . ,n}. Unless otherwise specified, the base
of logarithms is 2. A sequence S of a finite number of objects S(1), . . . ,S(T) is denoted by
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(S(1), . . . ,S(T)), and we write S(t) ∈S to indicate that S(t) appears in S. Let Σ be a finite set
called alphabet. For a length-n string π ∈Σn and a finite sequence of indices I ⊆ [n]∗, we use
π|I := (πi)i∈I to denote the restriction of π to I. The Hamming distance between two strings
f , g ∈ Σn, denoted by ∆( f , g), is defined as the number of positions on which f and g differ;
namely,

∆( f , g) :=
∣∣∣{i ∈ [n]

∣∣∣ f i ̸= g i

}∣∣∣ . (2.1)

2.2 Reconfiguration Problems on Constraint Graphs
Constraint Graphs. In this section, we formulate reconfiguration problems on constraint
graphs. The notion of constraint graph is defined as follows.

Definition 2.1. A q-ary constraint graph is defined as a tuple G = (V ,E,Σ,Ψ) such that

• (V ,E) is a q-uniform1 hypergraph called the underlying graph,

• Σ is a finite set called the alphabet, and

• Ψ= (ψe)e∈E is a collection of q-ary constraints, where each ψe : Σe → {0,1} is a circuit.

A binary constraint graph is simply referred to as a constraint graph.

For an assignment f : V→Σ, we say that f satisfies a hyperedge e = {v1, . . . ,vq} ∈ E (or a
constraint ψe) if ψe( f (e))= 1, where f (e) := ( f (v1), . . . , f (vq)), and f satisfies G if it satisfies all
the hyperedges of G. In the qCSP RECONFIGURATION problem, for a q-ary constraint graph
G and its two satisfying assignments f start and f goal, we are required to decide if there exists
a reconfiguration sequence from f start to f goal consisting only of satisfying assignments for
G, each adjacent pair of which differs in at most one vertex. qCSP RECONFIGURATION is
PSPACE-complete in general [GKMP09, IDHPSUU11]; thus, we formulate its two optimiza-
tion versions.

PARTIAL 2CSP RECONFIGURATION. For a constraint graph G = (V ,E,Σ,Ψ = (ψe)e∈E),
a partial assignment is defined as a function f : V→Σ∪ {⊥}, where the symbol ⊥ indicates
“unassigned.” We say that a partial assignment f : V→Σ∪{⊥} satisfies an edge e = (v,w) ∈ E
if ψe( f (v), f (w))= 1 whenever f (v) ̸= ⊥ and f (w) ̸= ⊥. The size of f , denoted by ∥ f ∥, is defined
as the number of vertices whose value is assigned; namely,

∥ f ∥ :=
∣∣∣{v ∈V

∣∣∣ f (v) ̸= ⊥
}∣∣∣ . (2.2)

For two satisfying partial assignments f start and f goal for G, a reconfiguration partial as-
signment sequence from f start to f goal is a sequence F = ( f (1), . . . f (T)) of satisfying partial

1A hypergraph is said to be q-uniform if each of its hyperedges has size exactly q.
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assignments such that f (1) = f start, f (T) = f goal, and ∆( f (t), f (t+1)) É 1 (i.e., f (t) and f (t+1) dif-
fer in at most one vertex) for all t. For any reconfiguration partial assignment sequence
F = ( f (1), . . . , f (T)), we define ∥F∥min as

∥F∥min := min
1ÉtÉT

∥ f (t)∥. (2.3)

PARTIAL 2CSP RECONFIGURATION is formally defined as follows:

Problem 2.2 (PARTIAL 2CSP RECONFIGURATION). For a constraint graph G = (V ,E,Σ,Ψ=
(ψe)e∈E) and its two satisfying partial assignments f start, f goal : V→Σ∪{⊥}, we are required
to find a reconfiguration partial assignment sequence F from f start to f goal such that ∥F∥min
is maximized.

Let MaxParG( f start↭ f goal) denote the maximum value of ∥F∥min
|V | over all possible reconfigu-

ration sequences F from f start to f goal; namely,

MaxParG( f start↭ f goal) := max
F=( f start,..., f goal)

∥F∥min

|V | . (2.4)

Note that 0 É MaxParG( f start ↭ f goal) É 1. For every numbers 0 É s É c É 1, GAPc,s PAR-
TIAL 2CSP RECONFIGURATION requests to determine for a constraint graph G and its
two satisfying partial assignments f start and f goal, whether MaxParG( f start ↭ f goal) Ê c or
MaxParG( f start↭ f goal)< s. Note that we can assume ∥ f start∥ = ∥ f goal∥ = |V | when c = 1.

LABEL COVER RECONFIGURATION. For a constraint graph G = (V ,E,Σ,Ψ), a multi-
assignment is defined as a function f : V → 2Σ. We say that a multi-assignment f satisfies
edge e = (v,w) ∈ E if there exists a pair (α,β) ∈ f (v)× f (w) such that ψe(α,β)= 1. The size of
f , denoted by ∥ f ∥, is defined as the sum of | f (v)| over all v ∈V ; namely,

∥ f ∥ := ∑
v∈V

| f (v)|. (2.5)

For two satisfying multi-assignments f start and f goal for G, a reconfiguration multi-assignment
sequence from f start to f goal is a sequence F = ( f (1), . . . , f (T)) of satisfying multi-assignments
such that f (1) = f start, f (T) = f goal, and∑

v∈V

∣∣∣ f (t)(v)△ f (t+1)(v)
∣∣∣É 1 for all t. (2.6)

For any reconfiguration multi-assignment sequence F = ( f (1), . . . , f (T)), we define ∥F∥max as

∥F∥max := max
1ÉtÉT

∥ f (t)∥. (2.7)

LABEL COVER RECONFIGURATION is formally defined as follows.2

2This problem can be thought of as a reconfiguration analogue of MIN REP [CHK11].
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Problem 2.3 (LABEL COVER RECONFIGURATION). For a constraint graph G = (V ,E,Σ,Ψ)
and its two satisfying multi-assignments f start, f goal : V → 2Σ, we are required to find a
reconfiguration multi-assignment sequence F from f start to f goal such that ∥F∥max is mini-
mized.

Let MinLabG( f start↭ f goal) denote the minimum value of ∥F∥max
|V |+1 over all possible reconfigu-

ration multi-assignment sequences F from f start to f goal; namely,

MinLabG( f start↭ f goal) := min
F=( f start,..., f goal)

∥F∥max

|V |+1
. (2.8)

Note that MinLabG( f start ↭ f goal) Ê |V |
|V |+1 . For every numbers 1 É c É s, GAPc,s LABEL

COVER RECONFIGURATION requests to determine whether MinLabG( f start ↭ f goal) É c or
MinLabG( f start↭ f goal)> s for a constraint graph G and its two satisfying multi-assignments
f start and f goal. Note that we can assume ∥ f start∥

|V |+1 = ∥ f goal∥
|V |+1 É 1 when c = 1.

2.3 Probabilistically Checkable Reconfiguration Proof Systems
First, we formally define the notion of verifier.

Definition 2.4. A verifier with randomness complexity r : N → N and query complexity
q : N → N is a probabilistic polynomial-time algorithm V that given an input x ∈ {0,1}∗,
tosses r = r(|x|) random bits R and uses R to generate a sequence of q = q(|x|) queries
I = (i1, . . . , iq) and a circuit D : {0,1}q → {0,1}. We write (I,D) ∼ V (x) to denote the random
variable for a pair of the query sequence and circuit generated by V on input x ∈ {0,1}∗.
Denote by Vπ(x) := D(π|I) the output of V on input x given oracle access to a proof π ∈ {0,1}∗.
We say that V (x) accepts a proof π if Vπ(x)= 1; i.e., D(π|I)= 1 for (I,D)∼V (x).

We proceed to the definition of Probabilistically Checkable Reconfiguration Proofs (PCRPs)
due to Hirahara and Ohsaka [HO24], which offer a PCP-type characterization of PSPACE.
For any pair of proofs πstart,πgoal ∈ {0,1}ℓ, a reconfiguration sequence from πstart to πgoal is
a sequence (π(1), . . . ,π(T)) ∈ ({0,1}ℓ)∗ such that π(1) = πstart, π(T) = πgoal, and ∆(π(t),π(t+1)) É 1
(i.e., π(t) and π(t+1) differ in at most one bit) for all t.

Theorem 2.5 (PCRP theorem of Hirahara and Ohsaka [HO24]). For any language L in
PSPACE, there exists a verifier V with randomness complexity r(n)=O(logn) and query com-
plexity q(n)=O(1), coupled with polynomial-time computable functions πstart,πgoal : {0,1}∗ →
{0,1}∗, such that the following hold for any input x ∈ {0,1}∗:

• (Completeness) If x ∈ L, there exists a reconfiguration sequence Π = (π(1), . . . ,π(T)) from
πstart(x) to πgoal(x) over {0,1}poly(|x|) such that V (x) accepts every proof with probability
1; namely,

∀t ∈ [T], P
[
V (x) accepts π(t)

]
= 1. (2.9)
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• (Soundness) If x ∉ L, every reconfiguration sequence Π = (π(1), . . . ,π(T)) from πstart(x) to
πgoal(x) over {0,1}poly(|x|) includes a proof that is rejected by V (x) with probability more
than 1

2 ; namely,

∃t ∈ [T], P
[
V (x) accepts π(t)

]
< 1

2
. (2.10)

We further introduce the notion of regular verifier. We say that a verifier is regular if
each position in its proof is equally likely to be queried.3

Definition 2.6. For a verifier V and an input x ∈ {0,1}∗, the degree of a position i of a proof
is defined as the number of times i is queried by V (x) over r(|x|) random bits; namely,∣∣∣{R ∈ {0,1}r(|x|)

∣∣∣ i ∈ IR

}∣∣∣= P

(I,D)∼V (x)

[
i ∈ I

]
·2r(|x|), (2.11)

where r is the randomness complexity of V and IR is the query sequence generated by V (x)
on the randomness R. A verifier V is said to be ∆-regular if the degree of every position is
exactly equal to ∆.

3 Subconstant Error PCRP Systems and FGLSS Reduc-
tion

In this section, we construct a bounded-degree PCRP verifier with subconstant error us-
ing Theorem 2.5 in Section 3.1, and prove PSPACE-hardness of approximation for PARTIAL

2CSP RECONFIGURATION and LABEL COVER RECONFIGURATION by the FGLSS reduction
[FGLSS96] in Sections 3.2 and 3.3, respectively.

3.1 Bounded-degree PCRP Systems with Subconstant Error
Starting from Theorem 2.5, we first obtain a regular PCRP verifier for any PSPACE lan-
guage, whose proof uses the degree reduction technique due to Ohsaka [Ohs23].

Proposition 3.1. For any language L in PSPACE, there exists a ∆-regular PCRP verifier V
with randomness complexity r(n) = O(logn), query complexity q(n) = O(1), perfect complete-
ness, and soundness 1−ε, for some constant ∆ ∈N and ε ∈ (0,1).

Proof. Here, the suffix “W” will designate the restricted case of qCSP RECONFIGURATION

whose alphabet size |Σ| is W . By Theorem 2.5, for some integer q ∈ N, there is a PCRP
verifier V for L with randomness complexity O(logn), query complexity q, perfect complete-
ness, and soundness 1

2 . For an input x ∈ {0,1}∗, the verifier V (x) can be transformed into an

3Note that regular verifiers are sometimes called smooth verifiers, e.g., [Par21]. Since the term “regularity”
is compatible with that of (hyper) graphs, we do not use the term “smoothness” but “regularity.”
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problem/verifier alph. size soundness notes reference

q-query verifier 2 1
2 — [HO24, Theorem 5.1]

2CSP RECONF 3 1 − ε (ε de-
pends on q)

— [Ohs23, Lemmas 3.2 and 3.6]

2CSP RECONF 6 1 − ε (ε de-
pends on ε)

max. degree ∆
depends on ε

[Ohs23, Lemma 3.7]

3SAT RECONF 2 1−Ω(ε) each variable
appears O(∆)
times

[Ohs23, Lemma 3.2]

3-query verifier 2 1−Ω
(
ε
∆

)
O(∆)-regular —

Table 1: Sequence of reductions used in Proposition 3.1.

instance of GAP1, 1
2

qCSP2 RECONFIGURATION in a canonical manner, e.g., [HO24, Proposi-
tion 4.9]. By [Ohs23, Lemmas 3.2 and 3.6], we then obtain an instance of GAP1,1−ε 2CSP3

RECONFIGURATION, where ε ∈ (0,1) depends only on q. Further applying the degree reduc-
tion step of [Ohs23, Lemma 3.7], we get an instance of GAP1,1−ε 2CSP6 RECONFIGURATION,
whose underlying graph has maximum degree bounded by ∆, where ε ∈ (0,1) and ∆ ∈N de-
pend only on ε. Using [Ohs23, Lemma 3.2], an instance of GAP1,1−Ω(ε) 3SAT RECONFIGURA-
TION is produced, where each Boolean variable appears in at most O(∆) clauses. By padding
with trivial constraints, this instance is transformed into an instance of GAP1,1−Ω( ε∆ ) 3CSP2

RECONFIGURATION, whose underlying graph is O(∆)-regular. That is to say, there exists
a 3-query O(∆)-regular PCRP verifier Ṽ for L with randomness complexity O(logn), query
complexity O(1), perfect completeness, and soundness 1− ε′, where ε′ = Ω

(
ε
∆

)
, as desired.

See Table 1 for a sequence of reductions used to obtain Ṽ .

Subsequently, using a randomness-efficient sampler over expander graphs (e.g., [HLW06,
Section 3]), we construct a bounded-degree PCRP verifier with subconstant error.

Proposition 3.2. For any language L in PSPACE and any function δ : N→ R with δ(n) =
Ω(n−1), there exists a bounded-degree PCRP verifier V with randomness complexity r(n) =
O(logδ(n)−1 + logn), query complexity q(n) = O(logδ(n)−1), perfect completeness, and sound-
ness δ(n). Moreover, for any input x ∈ {0,1}∗, the degree of any position is poly(δ(|x|)−1).

Verifier Description. Our PCRP verifier is described as follows. By Proposition 3.1, let
V be a ∆-regular PCRP verifier for a PSPACE-complete language L with randomness com-
plexity r(n) = O(logn), query complexity q(n) = q ∈N, perfect completeness, and soundness
1−ε, where ∆ ∈N and ε ∈ (0,1). The proof length, denoted by ℓ(n), is polynomially bounded
since ℓ(n) É q(n)2r(n) = poly(n). Hereafter, for any r(n) random bit sequence R, let IR and

12



DR respectively denote the query sequence and circuit generated by V (x) on the randomness
R. Given a function δ : N→R with δ(n)=Ω(n−1), we construct the following verifier Ṽ :

Bounded-degree verifier Ṽ with subconstant error.

Input: a ∆-regular verifier V with soundness 1−ε, a function δ : N→R, and an input
x ∈ {0,1}n.

Oracle access: a proof π ∈ {0,1}ℓ(n).
1: construct a (d,λ)-expander graph X over vertex set {0,1}r(n) with λ

d < ε
4 .

2: let ρ := ⌈2
ε

lnδ(n)−1⌉=O(logδ(n)−1).
3: uniformly sample a (ρ−1)-length random walk R= (R1, . . . ,Rρ) over X using r(n)+
ρ · logd random bits.

4: for each 1É k É ρ do
5: execute V (x) on Rk to generate a query sequence IRk = (i1, . . . , iq) and a circuit

DRk : {0,1}q → {0,1}.
6: if DRk (π|IRk

)= 0 then
7: declare reject.
8: declare accept.

Correctness. The perfect completeness and soundness for a fixed proof π ∈ {0,1}ℓ(n) are
shown below, whose proof relies on the property about random walks over expander graphs
due to Alon, Feige, Wigderson, and Zuckerman [AFWZ95].

Claim 3.3. If V (x) accepts π with probability 1, then Ṽ (x) accepts π with probability 1. If
V (x) accepts π with probability less than 1−ε, then Ṽ (x) accepts π with probability less than
δ(n).

To prove Claim 3.3, we refer to the following property about random walks over expander
graphs.

Lemma 3.4 (Alon, Feige, Wigderson, and Zuckerman [AFWZ95]). Let X be a (d,λ)-expander
graph, S be any vertex set of X , and R := (R1, . . . ,Rρ) be a ρ-tuple of random variables de-
noting the vertices of a uniformly chosen (ρ−1)-length random walk over X . Then, it holds
that ( |S|

|V(X )| −2
λ

d

)ρ
ÉP

R

[
∀k ∈ [ρ], Rk ∈ S

]
É

( |S|
|V(X )| +2

λ

d

)ρ
. (3.1)

Proof of Claim 3.3. Suppose first V (x) accepts π with probability 1; then, it holds that

P

[
Ṽ (x) accepts π

]
=P

R

[
∀k ∈ [ρ], DRk (π|IRk

)= 1
]
= 1. (3.2)

Suppose then V (x) accepts π with probability less than 1−ε. Define

S :=
{
R ∈ {0,1}r(n)

∣∣∣ DR(π|IR )= 1
}
. (3.3)
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Note that |S|
|V(X )| < 1−ε. Then, it holds that

P

[
Ṽ (x) accepts π

]
=P

R

[
∀k ∈ [ρ], DRk (π|IRk

)= 1
]
=P

R

[
∀k ∈ [ρ], Rk ∈ S

]
. (3.4)

Applying Lemma 3.4, we derive

P

R

[
∀k ∈ [ρ], Rk ∈ S

]
É

( |S|
|V(X )| +2

λ

d

)ρ
<

(
1− ε

2

)ρ
(by

λ

d
< ε

4
)

É exp
(
−ε

2
ρ
)

É δ(n), (by ρ =
⌈

2
ε

lnδ(n)−1
⌉

)

(3.5)

completing the proof.

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. We first show the perfect completeness and soundness. Suppose
x ∈ L, then there exists a reconfiguration sequence Π= (π(1), . . . ,π(T)) from πstart(x) to πgoal(x)
such that P[V (x) accepts π(t)] = 1 for all t. By Claim 3.3, we have P[Ṽ (x) accepts π(t)] = 1
for all t. Suppose x ∉ L, then for every reconfiguration sequence Π = (π(1), . . . ,π(T)) from
πstart(x) to πgoal(x), it holds that P[V (x) accepts π(t)]< 1−ε for some t. By Claim 3.3, we have
P[Ṽ (x) accepts π(t)]< δ(n) for such t.

Since ρ =O(logδ(n)−1), the randomness complexity of Ṽ is equal to r̃(n)= r(n)+ρ ·logd =
O(logδ(n)−1 + logn), and the query complexity is q̃(n) = q(n) ·ρ = O(logδ(n)−1). Note that
d and λ may depend only on ε, and a (d,λ)-expander graph X over {0,1}r(n) can be con-
structed in polynomial time in 2r(n) = poly(n), e.g., by using an explicit construction of near-
Ramanujan graphs [Alo21, MOP21].

Observe finally that Ṽ queries each position i ∈ [ℓ(n)] of a proof with probability equal to

P

R

[ ∨
1ÉkÉρ

(
i ∈ IRk

)]
. (3.6)

Since V is ∆-regular, it holds that

P

R∼{0,1}r(n)

[
i ∈ IR

]
= ∆

2r(n) . (3.7)

Using the fact that each Rk is uniformly distributed over {0,1}r(n), we bound Eq. (3.6) as
follows:

P

R

[ ∨
1ÉkÉρ

(
i ∈ IRk

)]
É︸︷︷︸

union bound

∑
k∈[ρ]
P

R

[
i ∈ IRk

]
= ρ ·∆

2r(n) =O
(
logδ(n)−1

2r(n)

)
. (3.8)
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Consequently, the degree of each position i with respect to Ṽ is at most

P

R

[ ∨
1ÉkÉρ

(
i ∈ IRk

)]
·2r̃(n) =O

(
logδ(n)−1

2r(n)

)
·2r(n)+ρ·logd

=O(logδ(n)−1) ·2O(logδ(n)−1)

= poly(δ(n)−1),

(3.9)

which completes the proof.

3.2 FGLSS Reduction and PSPACE-hardness of Approximation for
PARTIAL 2CSP RECONFIGURATION

We now establish the FGLSS reduction from Proposition 3.2 and show that PARTIAL 2CSP
RECONFIGURATION is PSPACE-hard to approximate within a factor arbitrarily close to 0.

Theorem 3.5. For any function ε : N→R with ε(n) =Ω
(

1
polylogn

)
, GAP1,ε(N) PARTIAL 2CSP

RECONFIGURATION with alphabet size poly(ε(N)−1) is PSPACE-complete, where N is the
number of vertices.

Reduction. We describe a reduction from a bounded-degree PCRP verifier to PARTIAL

2CSP RECONFIGURATION. Define δ(n) := ε(poly(n))
2 , whose precise expression is given later.

For any PSPACE-complete language L, let V be a bounded-degree PCRP verifier of Propo-
sition 3.2 with randomness complexity r(n) = O(logδ(n)−1 + logn), query complexity q(n) =
O(logδ(n)−1), perfect completeness, and soundness δ(n). The proof length ℓ(n) is polynomi-
ally bounded. Suppose we are given an input x ∈ {0,1}n. Let πstart,πgoal ∈ {0,1}ℓ(n) be the two
proofs associated with V (x). Because the degree of V is bounded by poly(δ(n)−1), for some
constant κ ∈N, we have

P

(I,D)∼V (x)

[
i ∈ I

]
É δ(n)−κ

2r(n) for any i ∈ [ℓ(n)]. (3.10)

Hereafter, for any r(n) random bit sequence R, let IR and DR denote the query sequence
and the circuit generated by V (x) on the randomness R, respectively. Construct a constraint
graph G = (V ,E,Σ,Ψ) as follows:

V := {0,1}r(n), (3.11)

E :=
{
(R1,R2) ∈V ×V

∣∣∣ IR1 ∩ IR2 ̸= ;
}
, (3.12)

Σ :=
{
{0}, {1}, {0,1}

}q(n)
, (3.13)

Ψ := {ψe}e∈E , (3.14)
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where we defineψR1,R2 : Σ×Σ→ {0,1} for each edge (R1,R2) ∈ E so thatψR1,R2( f (R1), f (R2))=
1 for an assignment f : V→Σ if and only if the following three conditions are satisfied:

∀α ∈ ∏
i∈IR

f (R1)i, DR1(α)= 1, (3.15)

∀β ∈ ∏
i∈IR

f (R2)i, DR2(β)= 1, (3.16)

∀i ∈ IR1 ∩ IR2 , f (R1)i ⊆ f (R2)i or f (R1)i ⊇ f (R2)i. (3.17)

Here, for the sake of simple notation, we consider f (R) as if it were indexed by IR (rather
than [q(n)]); namely, f (R) ∈ {{0}, {1}, {0,1}}IR . Thus, f (R) for each R ∈V corresponds the local
view of V (x) on R.

For any proof π ∈ {0,1}ℓ(n), we associate it with an assignment fπ : V→Σ such that

fπ(R) :=
(
{πi}

)
i∈IR

for all R ∈V . (3.18)

Note that fπ(R) ∈ {{0}, {1}}IR . Constructing two assignments f start from πstart and f goal from
πgoal by Eq. (3.18), we obtain an instance (G, f start, f goal) of PARTIAL 2CSP RECONFIGU-
RATION. Observe that f start and f goal satisfy G and ∥ f start∥ = ∥ f goal∥ = |V |. Note that
N := |V | É nc for some constant c ∈ N. Letting δ(n) := ε(nc)

2 = Ω
(

1
polylogn

)
ensures that the

alphabet size is |Σ| = O(3q(n)) = poly(ε(N)−1). This completes the description of the reduc-
tion.

Correctness. We first prove the completeness.

Lemma 3.6 (Completeness). If x ∈ L, then MaxParG( f start↭ f goal)= 1.

Proof of Lemma 3.6. It is sufficient to consider the case that πstart and πgoal differ in exactly
one position, say, i⋆ ∈ [ℓ(n)]; namely, πstarti⋆ ̸= π

goal
i⋆ and πstarti = π

goal
i for all i ̸= i⋆. Note

that f start and f goal may differ in two or more vertices. Consider a reconfiguration partial
assignment sequence F from f start to f goal obtained by the following procedure:

Reconfiguration sequence F from f start to f goal.

1: for each R ∈V such that i⋆ ∈ IR do
2: change the i⋆th entry of R’s current value from f start(R)i⋆ = {πstarti⋆ } to {0,1}.
3: for each R ∈V such that i⋆ ∈ IR do
4: change the i⋆th entry of R’s current value from {0,1} to f goal(R)i⋆ = {πgoali⋆ }.

Observe that any partial assignment f ◦ of F satisfies G for the following reasons:

• Since f ◦(R)i⋆ ⊆ {0,1} = {πstarti⋆ ,πgoali⋆ } = f start(R)i⋆ ∪ f goal(R)i⋆ when i⋆ ∈ IR , f ◦ satisfies
Eqs. (3.15) and (3.16).
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• Letting K := { f ◦(R)i⋆ | i⋆ ∈ IR}, we find K to be either {{0}}, {{1}}, {{0,1}}, {{0}, {0,1}}, or
{{1}, {0,1}} by construction; i.e., f ◦ satisfies Eq. (3.17).

Since ∥ f ◦∥ = |V |, it holds that MaxParG( f start↭ f goal)Ê ∥F∥max
|V | = 1, completing the proof.

Lemma 3.7 (Soundness). If x ∉ L, then

MaxParG( f start↭ f goal)< δ(n)+ q(n) ·δ(n)−κ

2r(n) . (3.19)

The proof of Theorem 3.5 follows from Lemmas 3.6 and 3.7 because for any sufficiently
large n such that q(n)·δ(n)−κ

2r(n) É δ(n) (note that δ(n)=Ω
(

1
polylogn

)
), the following hold:

• (Perfect completeness) If x ∈ L, then MaxParG( f start↭ f goal)= 1;

• (Soundness) If x ∉ L, then MaxParG( f start↭ f goal)< 2δ(n)= ε(N).

Proof of Lemma 3.7. We prove the contrapositive. Suppose MaxParG( f start ↭ f goal) Ê Γ for
some Γ ∈ (0,1), and there is a reconfiguration partial assignment sequence F = ( f (1), . . . , f (T))
from f start to f goal such that ∥F∥min = MaxParG( f start ↭ f goal). Define then a (not neces-
sarily reconfiguration) sequence Π = (π(1), . . . ,π(T)) over {0,1}ℓ(n) such that each proof π(t) is
determined based on the plurality vote over f (t); namely,

π(t)
i := argmax

b∈{0,1}

∣∣∣{R ∈V
∣∣∣ i ∈ IR and b ∈ f (t)(R)i

}∣∣∣ for all i ∈ [ℓ(n)], (3.20)

where ties are broken so that 0 is chosen. In particular, π(1) =πstart and π(T) =πgoal. Observe
the following:

Observation 3.8. For any t ∈ [T] and R ∈V , it holds that

f (t)(R) ̸= ⊥ =⇒ DR(π(t)|IR )= 1. (3.21)

Since PR∼V [ f (t)(R) ̸= ⊥]= ∥ f (t)∥ ÊΓ, by Observation 3.8, we have that for all t,

P

[
V (x) accepts π(t)

]
= P

R∼{0,1}r(n)

[
DR(π(t)|IR )= 1

]
Ê P

R∼V

[
f (t)(R) ̸= ⊥

]
ÊΓ. (3.22)

Unfortunately, Π is not a reconfiguration sequence because π(t) and π(t+1) may differ in two
or more positions. Since f (t) and f (t+1) differ in a single vertex R ∈V , we have π(t)

i ̸= π(t+1)
i

only if i ∈ IR , implying ∆(π(t),π(t+1)) É |IR | = q(n). Using this fact, we interpolate between
π(t) and π(t+1) to find a valid reconfiguration sequence Π(t) such that V (x) accepts every proof
of Π(t) with probability Γ− o(1).

Claim 3.9. There exists a reconfiguration sequence Π(t) from π(t) to π(t+1) such that for every
proof π◦ of Π(t),

P

[
V (x) accepts π◦

]
ÊΓ− q(n) ·δ(n)−κ

2r(n) . (3.23)
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Concatenating Π(t)’s of Claim 3.9 for all t, we obtain a valid reconfiguration sequence Π
from πstart to πgoal such that

min
1ÉtÉT

P

[
V (x) accepts π(t)

]
ÊΓ− q(n) ·δ(n)−κ

2r(n) . (3.24)

Substituting δ(n)+ q(n)·δ(n)−κ
2r(n) for Γ, we have that if MaxParG( f start↭ f goal)Ê δ(n)+ q(n)·δ(n)−κ

2r(n) ,
then V (x) accepts every proof π(t) of Π with probability at least δ(n); i.e., x ∈ L. This com-
pletes the proof of Lemma 3.7.

What remains to be done is to prove Observation 3.8 and Claim 3.9.

Proof of Observation 3.8. Suppose f (t)(R) ̸= ⊥ for some t ∈ [T] and R ∈V . We will show that
π(t)

i ∈ f (t)(R)i for every i ∈ IR . Define

K :=
{

f (t)(R′)i

∣∣∣ ∃R′ ∈V s.t. i ∈ IR′ and f (t)(R′) ̸= ⊥
}
. (3.25)

Then, any pair α,β ∈ K must satisfy that α⊆β or α⊇β because otherwise, f (t) would violate
Eq. (3.17) at edge (R1,R2) such that i ∈ R1 ∩R2, f (t)(R1)i = α, and f (t)(R2)i = β, which is a
contradiction. For each possible case of K , the result of the plurality vote π(t)

i is shown below,
implying that π(t)

i ∈ f (t)(R)i.

K {} {{0}} {{1}} {{0,1}} {{0}, {0,1}} {{1}, {0,1}}

π(t)
i 0 0 1 0 0 1

Since f (t)(R) must satisfy a self-loop (R,R) ∈ E, by the definition of ψR,R , we have

∀α ∈ ∏
i∈IR

f (t)(R)i, DR(α)= 1, (3.26)

On the other hand, it holds that

π(t)|IR ∈ ∏
i∈IR

f (t)(R)i, (3.27)

implying DR(π(t)|IR )= 1, as desired.

Proof of Claim 3.9. Recall that π(t) and π(t+1) may differ in at most q(n) positions. Consider
any trivial reconfiguration sequence Π(t) from π(t) to π(t+1) by simply changing at most q(n)
positions on which π(t) and π(t+1) differ. By construction, any proof π◦ of Π(t) differs from π(t)
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in at most q(n) positions, say, I◦ ∈ ( ℓ(n)
Éq(n)

)
. Then, we derive the following:

P

[
V (x) accepts π◦

]
= P

(I,D)∼V (x)

[
D(π◦|I)= 1

]
Ê P

(I,D)∼V (x)

[
D(π◦|I)= 1 and I ∩ I◦ =;

]
= P

(I,D)∼V (x)

[
D(π(t)|I)= 1 and I ∩ I◦ =;

]
= P

(I,D)∼V (x)

[
D(π(t)|I)= 1

]
︸ ︷︷ ︸

=P[V (x) accepts π(t)]ÊΓ

− P

(I,D)∼V (x)

[
D(π(t)|I)= 1 and I ∩ I◦ ̸= ;

]

ÊΓ− P

(I,D)∼V (x)

[
I ∩ I◦ ̸= ;

]
.

Recall that P(I,D)∼V (x)[i ∈ I]É δ(n)−κ
2r(n) for any i ∈ [ℓ(n)] by assumption. Since |I◦| É q(n), taking

a union bound, we have

P

(I,D)∼V (x)

[
I ∩ I◦ ̸= ;

]
É ∑

i∈I◦
P

(I,D)∼V (x)

[
i ∈ I

]
É q(n) ·δ(n)−κ

2r(n) , (3.28)

implying that

P

[
V (x) accepts π◦

]
ÊΓ− q(n) ·δ(n)−κ

2r(n) . (3.29)

This completes the proof.

3.3 Reducing PARTIAL 2CSP RECONFIGURATION to LABEL COVER

RECONFIGURATION

Subsequently, we show PSPACE-hardness of approximation for LABEL COVER RECONFIG-
URATION by reducing from PARTIAL 2CSP RECONFIGURATION, whose proof is similar to
[KM23]. Note that LABEL COVER RECONFIGURATION admits a 2-factor approximation,
similarly to MINMAX SET COVER RECONFIGURATION (see Section 4.1).

Theorem 3.10. For any function ε : N→R with ε(n)=Ω
(

1
polylogn

)
, GAP1,2−ε(N) LABEL COVER

RECONFIGURATION with alphabet size poly(ε(N)−1) is PSPACE-complete, where N is the
number of vertices. In particular,

• for any constant ε ∈ (0,1), GAP1,2−ε LABEL COVER RECONFIGURATION with constant
alphabet size is PSPACE-complete, and

• GAP1,2− 1
polyloglog N

LABEL COVER RECONFIGURATION with alphabet size polyloglog N is
PSPACE-complete.
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Proof. We present a gap-preserving reduction from GAP1, ε(N)
2

PARTIAL 2CSP RECONFIGU-

RATION to GAP1,2−ε(N) LABEL COVER RECONFIGURATION. Let (G = (V ,E,Σ,Ψ), f start, f goal)
be an instance of PARTIAL 2CSP RECONFIGURATION with N variables and alphabet size
poly(ε(N)−1), where ∥ f start∥ = ∥ f goal∥ = |V |. Without loss of generality, we can safely as-
sume that N is sufficiently large so that N Ê 4

ε(N) because ε(N) = Ω
(

1
polylog N

)
. Construct

then multi-assignments f ′start, f ′goal : V → 2Σ such that f ′start(v) := { f start(v)} and f ′goal(v) :=
{ f goal(v)} for all v ∈V . Observe that f ′start and f ′goal satisfy G; thus, (G, f ′start, f ′goal) is an
instance of LABEL COVER RECONFIGURATION, completing the reduction.

We first show the perfect completeness; namely,

MaxParG( f start↭ f goal)Ê 1 =⇒ MinLabG( f ′start↭ f ′goal)É 1. (3.30)

Suppose there is a reconfiguration partial assignment sequence F = ( f (1), . . . , f (T)) from f start

to f goal such that ∥F∥min = |V |. Construct then a sequence F ′ = ( f ′(1), f ′(1.5), . . . , f ′(T−0.5), f ′(T))
of multi-assignments such that f ′(t)(v)= { f (t)(v)} for all t ∈ [T] and v ∈V , and f ′(t+0.5) for each
t ∈ [T −1] is defined as follows: Given that f (t) and f (t+1) differ only in v⋆, we let

f ′(t+0.5)(v) :=
{{

f (t)(v⋆), f (t+1)(v⋆)
}

if v = v⋆,{
f (t)(v)

}
otherwise,

for all v ∈V . (3.31)

In particular, it holds that f ′(1) = f ′start and f ′(T) = f ′goal. Observe that f ′(t+0.5) is a satisfying
multi-assignment with ∥ f ′(t+0.5)∥ = N+1 for all t, and that

∑
v∈V | f ′(t)△ f ′(t+0.5)| = 1; i.e., F ′ is

a reconfiguration multi-assignment sequence from f ′start to f ′goal such that ∥F ′∥max = N +1;
i.e., MinLabG( f ′start↭ f ′goal)É ∥F ′∥max

N+1 = 1.
We then prove the soundness; i.e.,

MaxParG( f start↭ f goal)< ε(N)
2

=⇒ MinLabG( f ′start↭ f ′goal)> 2−ε(N). (3.32)

Suppose we are given a reconfiguration multi-assignment sequence F ′ = ( f ′(1), . . . , f ′(T)) from
f ′start to f ′goal such that ∥F ′∥max

N+1 =MinLabG( f ′start↭ f ′goal). Define

V
(t)

1 :=
{
v ∈V

∣∣∣ | f ′(t)(v)| = 1
}
. (3.33)

Construct then a sequence F = ( f (1), . . . , f (T)) of partial assignments such that each f (t) : V→
Σ∪ {⊥} is defined as follows:

f (t)(v) :=
{

unique α ∈ f ′(t)(v) if v ∈V (t)
1 ,

⊥ otherwise,
for all v ∈V . (3.34)

In particular, it holds that f (1) = f start and f (T) = f goal. Observe easily that f (t) is a satisfying
partial assignment, and f (t) and f (t+1) differ in at most one vertex; i.e., F is a reconfigura-
tion partial assignment sequence from f start to f goal. By assumption, there exists a partial
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assignment f (t) in F such that |V (t)
1 | = ∥ f (t)∥ < ε(N)

2 ·N. Simple calculation derives that

∥ f ′(t)∥ Ê 1 · |V (t)
1 |+2 · |V \V (t)

1 |
= 2N −|V (t)

1 |
>

(
2− ε(N)

2

)
·N

Ê︸︷︷︸
NÊ 4

ε(N)

(2−ε(N)) · (N +1),

(3.35)

implying that MinLabG( f ′start ↭ f ′goal) = ∥F ′∥max
N+1 Ê ∥ f ′(t)∥

N+1 > 2− ε(N), which completes the
proof.

4 Applications
In this section, we apply Theorem 3.10 to show optimal PSPACE-hardness of approximation
results for MINMAX SET COVER RECONFIGURATION (Theorem 4.1) and MINMAX HYPER-
GRAPH VERTEX COVER RECONFIGURATION (Theorem 4.3).

4.1 PSPACE-hardness of Approximation for SET COVER RECONFIG-
URATION

We first prove that MINMAX SET COVER RECONFIGURATION is PSPACE-hard to approx-
imate within a factor smaller than 2. Let U be a finite set called the universe and F =
{S1, . . . ,Sm} be a family of m subsets of U . A cover for a set system (U ,F ) is a subfamily
of F whose union is equal to U . For any pair of covers Cstart and Cgoal for (U ,F ), a recon-
figuration sequence from Cstart to Cgoal is a sequence C = (C(1), . . . ,C(T)) of covers such that
C(1) = Cstart, C(T) = Cgoal, and |C(t)△C(t+1)| É 1 (i.e., C(t+1) is obtained from C(t) by adding or
removing a single set of F ) for all t. In SET COVER RECONFIGURATION [IDHPSUU11], for
a set system (U ,F ) and its two covers Cstart and Cgoal of size k, we are asked to decide if
there is a reconfiguration sequence from Cstart to Cgoal consisting only of covers of size at
most k+1. Next, we formulate its optimization version. Denote by opt(F ) the size of the
minimum cover of (U ,F ). For any reconfiguration sequence C = (C(1), . . . ,C(T)), its cost is
defined as the maximum value of |C(t)|

opt(F )+1 over all C(t)’s in C; namely,4

costF (C) := max
C(t)∈C

|C(t)|
opt(F )+1

, (4.1)

4Here, division by opt(F )+1 is derived from the nature that we must first add at least one set whenever
|Cstart| = |Cgoal| = opt(F ) and Cstart ̸= Cgoal.
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In MINMAX SET COVER RECONFIGURATION, we wish to minimize costF (C) subject to C =
(Cstart, . . . ,Cgoal). For a pair of covers Cstart and Cgoal for (U ,F ), let costF (Cstart ↭ Cgoal)
denote the minimum value of costF (C) over all possible reconfiguration sequences C from
Cstart to Cgoal; namely,

costF (Cstart↭ Cgoal) := min
C=(Cstart,...,Cgoal)

costF (C). (4.2)

For every 1É c É s, GAPc,s SET COVER RECONFIGURATION requests to distinguish whether
costF (Cstart↭ Cgoal)É c or costF (Cstart↭ Cgoal)> s.

For the sake of completeness, we here present a 2-factor approximation algorithm for
MINMAX SET COVER RECONFIGURATION of [IDHPSUU11]:5

2-factor approximation for MINMAX SET COVER RECONFIGURATION.

1: ▷ start from Cstart. ◁

2: insert each set of Cgoal \Cstart into the current cover in any order.
3: discard each set of Cstart \Cgoal from the current cover in any order.
4: ▷ end with Cgoal. ◁

Our main result is stated below, whose proof uses a gap-preserving reduction from
LABEL COVER RECONFIGURATION to MINMAX SET COVER RECONFIGURATION [LY94,
Ohs24].

Theorem 4.1. GAP1,2− 1
polyloglog N

SET COVER RECONFIGURATION is PSPACE-complete, where
N is the universe size. In particular, MINMAX SET COVER RECONFIGURATION is PSPACE-
hard to approximate within a factor of 2− 1

polyloglog N .

Theorem 4.1 along with [Ohs24] implies that MINMAX DOMINATING SET RECONFIG-
URATION is PSPACE-hard to approximate within a factor of 2− 1

polyloglog N , where N is the
number of vertices (see Corollary 1.2).

Proof of Theorem 4.1. The reduction from LABEL COVER RECONFIGURATION to MINMAX

SET COVER RECONFIGURATION is almost the same as that due to Lund and Yannakakis
[LY94] and Ohsaka [Ohs24]. Let (G = (V ,E,Σ,Ψ), f start, f goal) be an instance of LABEL

COVER RECONFIGURATION with N vertices and alphabet size |Σ| = polyloglog N, where
∥ f start∥ = ∥ f goal∥ = |V |. Define B := {0,1}Σ. For each α ∈ Σ and S ⊆ Σ, we construct Qα ⊂ B
and QS ⊂ B according to [Ohs24] in 2O(|Σ|) time. Let ≺ be an arbitrary order over V . Create
an instance of MINMAX SET COVER RECONFIGURATION as follows. For each vertex v ∈V
and each value α ∈Σ, we define Sv,α ⊂ E×B as

Sv,α :=
( ⋃

e=(v,w)∈E:v≺w
{e}×Qα

)
∪

( ⋃
e=(v,w)∈E:v≻w

{e}×Qπe(α)

)
, (4.3)

5Similarly, a 2-factor approximation algorithm can be obtained for MINMAX DOMINATING SET RECONFIG-
URATION and MINMAX HYPERGRAPH VERTEX COVER RECONFIGURATION.
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where πe(α) := {β ∈Σ |ψe(α,β)= 1}. Then, a set system (U ,F ) is defined as

U := E×B and F :=
{
Sv,α

∣∣∣ v ∈V ,α ∈Σ
}
. (4.4)

For a satisfying multi-assignment f : V → 2Σ for G with ∥ f ∥ = |V |,6 we associate it with a
subfamily Cf ⊂F such that

Cf :=
{
Sv,α

∣∣∣ v ∈V ,α ∈ f (v)
}
, (4.5)

which is a minimum cover for (U ,F ) [Ohs24]; i.e., |Cf | = |V | = opt(F ). Constructing min-
imum covers Cstart from f start and Cgoal from f goal by Eq. (4.5), we obtain an instance
((U ,F ),Cstart,Cgoal) of MINMAX SET COVER RECONFIGURATION. This completes the de-
scription of the reduction.

Here, we will show that

MinLabG( f start↭ f goal)= costF (Cstart↭ Cgoal), (4.6)

which implies the completeness and soundness; for this, we use the following lemma [Ohs24].

Lemma 4.2 ([Ohs24, Observation 4.4, Claim 4.7]). Let f : V → 2Σ be a multi-assignment
and C ⊆ F be a subfamily such that for any v ∈V and α ∈Σ, α ∈ f (v) if and only if Sv,α ∈ C.
Then, f satisfies an edge e = (v,w) ∈ E if and only if C covers {e}×B. In particular, f satisfies
G if and only if C covers E×B. Moreover, it holds that ∥ f ∥ = |C|.
We first show that MinLabG( f start ↭ f goal) Ê costF (Cstart ↭ Cgoal). For any reconfigura-
tion multi-assignment sequence F = ( f (1), . . . , f (T)) from f start to f goal such that ∥F∥max =
MinLabG( f start ↭ f goal), we can construct a reconfiguration sequence C = (Cf (1) , . . . ,Cf (T))
from Cstart to Cgoal by Eq. (4.5). By Lemma 4.2, each Cf (t) covers U ; thus, C is a valid re-
configuration sequence from Cstart to Cgoal. Moreover, costF (Cstart ↭ Cgoal) É costF (C) =
∥F∥max =MinLabG( f start ↭ f goal), as desired. We then show that MinLabG( f start ↭ f goal) É
costF (Cstart ↭ Cgoal). For any reconfiguration sequence C = (C(1), . . . ,C(T)) from Cstart to
Cgoal such that costF (C)= costF (Cstart↭ Cgoal), we can construct a sequence F = ( f (1), . . . , f (t))
of multi-assignments such that f (t) : V→ 2Σ is defined as follows:

f (t)(v) :=
{
α ∈Σ

∣∣∣ Sv,α ∈ C(t)
}

for all v ∈V . (4.7)

By Lemma 4.2, each f (t) satisfies G; thus, F is a valid reconfiguration multi-assignment
sequence from f start to f goal. Moreover, MinLabG( f start ↭ f goal) É ∥F∥max = costF (C) =
costF (Cstart↭ Cgoal), which completes the proof of Eq. (4.6).

Since |Σ| = polyloglog N, the reduction takes polynomial time in N, and it holds that
|U | = |E×B| =O(N2·2polyloglog N)=O(N3); i.e., N =Ω(|U | 1

3 ). By Theorem 3.10, GAP1,2− 1
polyloglog N

6In other words, each f (v) is a singleton.
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LABEL COVER RECONFIGURATION with alphabet size polyloglog N is PSPACE-complete;
thus, GAP1,2− 1

polyloglog |U |
SET COVER RECONFIGURATION is PSPACE-complete as well, accom-

plishing the proof.

4.2 PSPACE-hardness of Approximation for HYPERGRAPH VERTEX

COVER RECONFIGURATION

We conclude this section with a similar inapproximability result for MINMAX HYPERGRAPH

VERTEX COVER RECONFIGURATION on O(1)-uniform hypergraphs. A vertex cover of a hy-
pergraph H = (V ,E) is a vertex set C ⊆V that intersects every hyperedge in E; i.e., e∩C ̸= ;
for every e ∈ E. For any pair of vertex covers Cstart and Cgoal of H, a reconfiguration sequence
from Cstart to Cgoal is a sequence C = (C(1), . . . ,C(T)) of vertex covers such that C(1) = Cstart,
C(T) = Cgoal, and |C(t)△C(t+1)| É 1 for all t. Denote by β(H) the size of the minimum ver-
tex cover of H. For a reconfiguration sequence C = (C(1), . . .C(T)), its cost is defined as the
maximum value of |C(t)|

β(H)+1 over all C(t)’s in C; namely,

costH(C) := max
C(t)∈C

|C(t)|
β(H)+1

. (4.8)

In the MINMAX HYPERGRAPH VERTEX COVER RECONFIGURATION problem, for a hyper-
graph H and its two vertex covers Cstart and Cgoal, we wish to minimize costH(C) subject to
C = (Cstart, . . . ,Cgoal). Let costH(Cstart ↭ Cgoal) denote the minimum value of costH(C) over
all possible reconfiguration sequences C from Cstart to Cgoal; namely,

costH(Cstart↭ Cgoal) := min
C=(Cstart,...,Cgoal)

costH(C). (4.9)

For every 1 É c É s, GAPc,s HYPERGRAPH VERTEX COVER RECONFIGURATION requires to
distinguish whether costH(Cstart ↭ Cgoal) É c or costH(Cstart ↭ Cgoal) > s. Our inapprox-
imability result is shown below, whose proof reuses the reduction of Theorem 4.1.

Theorem 4.3. For any constant ε ∈ (0,1), GAP1,2−ε HYPERGRAPH VERTEX COVER RECON-
FIGURATION on poly(ε−1)-uniform hypergraphs is PSPACE-complete. In particular, MIN-
MAX HYPERGRAPH VERTEX COVER RECONFIGURATION on poly(ε−1)-uniform hypergraphs
is PSPACE-hard to approximate within a factor of 2−ε.

Proof. We build an “inverted index” of GAP1,2−ε SET COVER RECONFIGURATION of The-
orem 4.1. Let (G = (V ,E,Σ,Ψ), f start, f goal) be an instance of LABEL COVER RECONFIGU-
RATION with N variables and alphabet size |Σ| = poly(ε−1), where ∥ f start∥ = ∥ f goal∥ = |V |.
Define B := {0,1}Σ and Sv,α’s by Eq. (4.3). Construct then a hypergraph H = (W ,F ) as
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follows:

W :=V ×Σ, (4.10)

F :=
{
Te,q ⊂W

∣∣∣ (e,q) ∈ E×B
}
, where (4.11)

Te,q :=
{
(v,α) ∈W

∣∣∣ (e,q) ∈ Sv,α

}
for all (e,q) ∈ E×B. (4.12)

Note that the size of hyperedge Te,q is

|Te,q| =
∣∣∣{(v,α) ∈W

∣∣∣ (e,q) ∈ Sv,α

}∣∣∣
É

∣∣∣{(v,α) ∈V ×Σ
∣∣∣ v ∈ e

}∣∣∣
É 2|Σ| = poly(ε−1).

(4.13)

To make H into 2|Σ|-uniform, we simply augment each hyperedge Te,q with a set of fresh
2|Σ|− |Te,q| vertices. For a satisfying multi-assignment f : V→ 2Σ for G with ∥ f ∥ = |V |, we
associate with it a vertex set Cf ⊂W such that

Cf :=
{
(v,α) ∈V ×Σ

∣∣∣ v ∈V ,α ∈ f (v)
}
, (4.14)

which is a minimum vertex cover of H (i.e., |Cf | = |V | =β(H)), shown similarly to the proof of
Theorem 4.1. Constructing minimum vertex covers Cstart from f start and Cgoal from f goal by
Eq. (4.14), we obtain an instance (H,Cstart,Cgoal) of MINMAX HYPERGRAPH VERTEX COVER

RECONFIGURATION on a poly(ε−1)-uniform hypergraph. This completes the description of
the reduction.

Similarly to the proof Theorem 4.1, we can show that

MinLabG( f start↭ f goal)= costH(Cstart↭ Cgoal), (4.15)

implying the completeness and soundness. By Theorem 3.10, GAP1,2−ε LABEL COVER RE-
CONFIGURATION with alphabet size poly(ε−1) is PSPACE-complete; thus, GAP1,2−ε HYPER-
GRAPH VERTEX COVER RECONFIGURATION on poly(ε−1)-uniform hypergraphs is PSPACE-
complete as well, which completes the proof.
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