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Abstract

Let X be a d-dimensional simplicial complex. A function F : X(k) → {0, 1}k is said to be a direct
product function if there exists a function f : X(1) → {0, 1} such that F (σ) = (f(σ1), . . . , f(σk)) for
each k-face σ. In an effort to simplify components of the PCP theorem, Goldreich and Safra [GS00]
introduced the problem of direct product testing, which asks whether one can test if F : X(k) → {0, 1}k
is correlated with a direct product function by querying F on only 2 inputs. Dinur and Kaufman [DK17]
conjectured that there exist bounded degree complexes with a direct product test in the small sound-
ness regime. We resolve their conjecture by showing that for all δ > 0, there exists a family of high-
dimensional expanders with degree Oδ(1) and a 2-query direct product tester with soundness δ.

We use the characterization given by [BM23a] and independently by [DD23a], who showed that
some form of non-Abelian coboundary expansion (which they called “Unique-Games coboundary ex-
pansion”) is a necessary and sufficient condition for a complex to admit such direct product testers. Our
main technical contribution is a general technique for showing coboundary expansion of complexes with
coefficients in a non-Abelian group. This allows us to prove that the high dimensional expanders con-
structed by [CL23] satisfy the conditions of [BM23a], thus admitting a 2-query direct product tester with
small soundness.

1 Introduction

The primary goal of this paper is to construct direct product testers with constant degree. Earlier works by a
subset of the authors [BM23a] and by Dinur and Dikstein [DD23a] have shown that there are coboundary-
type properties that are sufficient for a complex to have in order to admit such a direct product tester. The
main contribution of the current paper is to establish that the simplicial complex of [CL23] has the sufficient
condition presented in [BM23a], implying that it admits direct product testers with small soundness.

1.1 Direct Product Testers

The goal in direct product testing is to encode the values of a function f : [n] → {0, 1} via a table F which
is testable. By that, we mean that there is an efficient, randomized tester that makes queries to F , performs
a test on the received values, and decides to accept or reject. The tester should always accept if F is indeed
a valid encoding of a function f ; this property is often referred to as the completeness of the test. In the
converse direction, if the tester accepts F with probability at least s > 0, then F must be close (in the case s
is close to 1) or correlated (in the case s is close to 0) to a valid encoding of some function f . This property
is often referred to as the soundness of the tester. The smallest s for which the last property holds is called

*Department of Mathematics, Massachusetts Institute of Technology. mitali.bafna@gmail.com
†Einstein institute of Mathematics, Hebrew University. noamlifshitz@gmail.com. Supported by the Israel Science

Foundation (grant no. 1980/22).
‡Department of Mathematics, Massachusetts Institute of Technology. dminzer@mit.edu. Supported by NSF CCF award

2227876 and NSF CAREER award 2239160.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 20 (2024)



the soundness parameter of the encoding, and the number of queries the algorithm makes is called the query
complexity of the algorithm. In this paper, we will restrict our attention to direct product testers with 2
queries, which is the smallest query complexity one can hope for.

The study of direct product testing and the importance of its parameters such as completeness, soundness
and query complexity, originally comes from the work of Goldreich and Safra [GS00]. Their motivation
was to simplify components in the proof of the PCP theorem [FGL91, AS98, ALM+98], and the parameters
of the direct product tester correspond exactly to the parameters of the PCP verifier. Another motivation
for the study of direct product testing comes from hardness amplification, particularly in the style of the
parallel repetition theorem [Raz98, Hol09, Rao11, DS14a, BG15]. Indeed, direct product testers with small
soundness can be viewed as a combinatorial analog of parallel repetition theorems, and these can sometimes
be turned into proper parallel repetition theorems [IKW09, DM11]. We refer the reader to [DK17, BM23a]
for further discussion on the role of direct product testing in theoretical computer science.

The most natural direct product encoding of a function f : [n] → {0, 1} is given by the Johnson scheme.
Here, for k ∈ N thought of as a constant, one may encode f via the table F :

([n]
k

)
→ {0, 1}k as F [A] =

f |A.1 The Johnson encoding scheme also admits a corresponding natural direct product tester:

1. Sample I ⊆ [n] of size t.

2. Independently sample A,A′ ⊆ [n] of size k containing I .

3. Query F [A] and F [A′] and check that they agree on the coordinates of I .

The above direct product tester has received significant attention, as well as its variations. By now, all
of these are well understood in the entire range of parameters t, see for example [DG08, IKW09, DS14b,
BKM23]. In particular, it is well known that the tester has vanishing soundness in the setting that t ≈

√
k

and for sufficiently large k.2

The primary disadvantage with the Johnson encoding scheme and the corresponding direct product tester
is its size. Indeed, the size of the encoding F of a function f is nk, which is polynomially large in the size of
f . Additionally, if one wishes the soundness of the Johnson direct product tester to be small, say δ, one must
take k to be sufficiently large, hence getting a large blow-up in the encoding size. For some applications,
this size blow-up is too costly. For instance, in applications in PCPs, the blow-up introduced by the use of
parallel repetition theorem is often what dominates the blow-up in the instance size reductions produce.

1.2 Direct Product Testers via High Dimensional Expanders

In the quest for more efficient ways to amplify hardness (often called derandomized hardness amplification),
Dinur and Kaufman [DK17] suggested high dimensional expanders as a sparse object that may facilitate
direct product testers. To describe their result, we first take a quick detour to present several basic notions
from the field of high dimensional expansion, abbreviated HDX henceforth.

A d-dimensional simplicial complex X = (X(0), . . . , X(d)) with vertex set X(1) = [n] is a downwards
closed collection of subsets of [n]. We follow the convention that X(0) = {∅}, and for each i > 1 the set
of i-faces X(i) is a collection of subsets of X(1) of size i. The size of X is the total number of faces in X .
The degree of a vertex v ∈ X(1) is the number of faces containing it, and the degree of X is the maximum
degree over all v ∈ X(1).

1We think of [n] as being order in a canonical way, thus for a set A of size k containing i1 < . . . < ik we define F [A] =
(f(i1), . . . , f(ik)).

2In fact, in that case it is known that the soundness is exponentially small in t.
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Definition 1.1. For a d-dimensional simplicial complex X = (X(0), X(1), . . . , X(d)), 0 ⩽ i ⩽ d− 2 and
I ∈ X(i), the link of I is the (d− i)-dimensional complex XI whose faces are given as

XI(j − i) = {J \ I | J ∈ X(j), J ⊇ I}.

For a d-dimensional complex X = (X(0), X(1), . . . , X(d)) and I ∈ X of size at most d− 2, the graph
underlying the link of I is the graph whose vertices are XI(1) and whose edges are XI(2). We associate
with X a collection of distributions over faces. The distribution µd is the uniform distribution over X(d),
and for each i < d the distribution µi is a distribution over X(i) which results by picking D ∼ µd, and then
taking I ⊆ D of size i uniformly. For convenience, we encourage the reader to think of µi as the uniform
distribution over X(i) (though often times this is not the case, the fact that µi is not actually the uniform
distribution is rarely an issue).

Definition 1.2. We say a d-dimensional simplicial complex X is a γ one-sided local spectral expander if for
every I ∈ X of size at most d − 2, the second eigenvalue of the normalized adjacency matrix of the graph
(XI(1), XI(2)) is at most γ.

With this definition, the result of Dinur and Kaufman [DK17] asserts that if X is a γ one-sided local
spectral expander for a sufficiently small γ, then X admits a 2-query direct product tester with soundness s =
1−ε. Their direct product tester is a direct analog of the Johnson direct product tester. It is parameterized by
k ∈ N which is much smaller than d, and proceeds as follows. Given an assignment F : X(k) → {0, 1}d,
the tester proceeds as follows:

1. Sample D ∼ µd.

2. Sample I ⊆ D of size
√
k uniformly.

3. Sample I ⊆ A,A′ ⊆ D independently.

4. Query F [A] and F [A′] and check that they agree on the coordinates of I .

The result of Dinur and Kaufman [DK17] asserts that provided that γ is small enough, if F passes the above
tester with probability 1 − ε, then there exists f : X(1) → {0, 1} such that with probability 1 − O(ε) over
the choice of A ∼ µk we have that F [A] = f |A. We refer to the above tester as the canonical direct product
tester of X .

The main open problem left from the work [DK17] is whether there are high-dimensional expanders
that facilitate direct product testers in the low soundness regime. With regards to this, the works [BM23a,
DD23a] both show that spectral expansion is insufficient. Namely, there are high-dimensional expanders
with arbitrarily good local spectral expansion for which the above natural direct product tester fails in the
low-soundness regime. These two works then went on to seek additional properties of high-dimensional
expanders that will imply that the canonical direct product tester has small soundness.

1.3 Main Result

The main result of this paper is that there exist families of high-dimensional expanders for which the canon-
ical direct product tester has small soundness. In fact, the complexes we prove this for are variants of
the complexes constructed by Chapman and Lubotzky [CL23, Section 5] for sufficiently large parame-
ters p, n ∈ N, which are explicit and efficiently computable. The relevance of variants of the complexes
of [CL23] was communicated to us in [DDL23].
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Theorem 1.3. For all δ, γ > 0, for sufficiently large d, there is ∆ ∈ N such that the following holds. There
are infinitely many n for which there is a simplicial complex X such that:

1. The complex X has n vertices and is a γ two-sided spectral expander.

2. The canonical direct product tester for X has soundness δ.

3. The complex X has degree at most ∆.

It has been brought to our attention that Dikstein, Dinur, and Lubotzky have concurrently and indepen-
dently established Theorem 1.3.

1.4 UG Coboundary Expansion

The starting point of the proof of Theorem 1.3 is the characterization of [BM23a] of high-dimensional
expanders for which the canonical tester has small soundness. Towards this end, we begin by defining
non-Abelian affine unique games over graphs.

Definition 1.4. An instance of Affine Unique Games Ψ = (G,Π) over the symmetric group Sm consists of a
graph G = (V,E) and a collection of permutations, one for each ordered edge, Π = {πu,v}(u,v)∈E , where
πu,v ∈ Sm and πu,v = π−1

v,u. An assignment to Ψ is a function A : V → Sm, and we denote by val(A) the
fraction of constraints satisfied by A, that is,

val(A) = Pr
(u,v)∼E

[A(u) = πu,vA(v)].

We denote by viol(A) the fraction of constraints violated by A, that is, viol(A) = 1− val(A). The value of
the instance Ψ is defined as val(Ψ) = maxA:V→Sm val(A).

We refer to the above instances as affine Unique Games because they can be thought of as systems
of equations of the form A(u)A(v)−1 = πu,v over Sm, wherein the goal is to find an Sm-labeling of the
vertices that satisfies as many of the equations as possible.

Definition 1.5. Let G = (V,E) be a graph, equipped with a distribution D over triangles in G. We say that
a UG instance Φ = (G, {πu,v}(u,v)∈E(G)) is (1− δ)-triangle consistent if:

Pr
(u,v,w)∼D

[πu,vπv,wπw,u = id] ⩾ 1− δ.

We let incons(Φ) denote the fraction of triangles that are inconsistent.

Note that if we have a graph G = (V,E) and an assignment A : V → Sm, then defining πu,v =
A(u)A(v)−1 gives a fully triangle consistent instance of affine Unique-Games. The property of UG cobound-
ary expansion asserts, roughly speaking, that the only instances that are highly triangle consistent over cer-
tain graphs associated with a complex X arise in this way.

Definition 1.6. Let X be a d-dimensional simplicial complex, and let r ⩽ d/3. We define the graph
Gr[X] whose vertex set is X(r), and whose set of edges Er[X] consists of pairs of vertices (u, v) such
that u ∪ v ∈ X(2r). The distribution over triangles associated with this graph is the distribution where
we pick a face from X(3r) according to the measure µ3r, and then split it randomly as u ∪ v ∪ w where
u, v, w ∈ X(r).
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With the definition of the graph Gr[X], we may now define the notion of UG coboundary expansion.

Definition 1.7. We say that a d-dimensional simplicial complex X is an (m, r, ξ, c) UG coboundary ex-
pander if for all t ⩽ r and for all functions f : Et[X] → Sm that are (1− ξ)-consistent on triangles, there
is g : X(t) → Sm such that

Pr
u∪v∼µ2t

[
π(u, v) = g(u)g(v)−1

]
⩾ 1− c.

The notion of UG coboundary expansion can be seen as a non-Abelian version of the usual notion of
coboundary expansion. For r = 1 this definition appeared in earlier works of [DM19, GK23]; for larger r it
is not clear what is the correct way to generalize the notion of coboundary expansion, as it is often stated for
Abelian groups. Our notion is motivated by looking at the graph as a constraint satisfaction instance. In this
paper, this will be the only notion of coboundary expansion discussed, and as such we will often abbreviate
it as refer to it simply as coboundary expansion.

The main result of [BM23a] asserts that a high-dimensional expander X with sufficiently strong UG
coboundary parameters has a canonical direct product tester with small soundness; see [BM23a, Theorem
1.9, Theorem B.1]. For future reference, we give here the version we use in our application:

Theorem 1.8. There exists c > 0 such that for all ε, δ > 0 there is η and sufficiently large m, r ∈ N, such
that for sufficiently large k, sufficiently large d and sufficiently small γ > 0 the following holds. Suppose
that X is a d-dimensional simplicial complex such that:

1. A γ one-sided local spectral expander.

2. An (m, r, 2−r/ log log log r, c) UG coboundary expander.

If F : X(k) → {0, 1}k passes the canonical direct product tester on X with probability at least δ, then there
exists f : X(1) → {0, 1} such that

Pr
A∼µk

[∆(F [A], f |A) ⩽ εk] ⩾ η.

Using Theorem 1.8, it suffices to construct a complex which is simultaneously a strong spectral expander,
as well as a UG coboundary expander for sufficiently good parameters. With regard to this, we mention the
work of [DD23b] that presents a technique that allows one to prove coboundary-type properties with bounds
that are independent of the dimension of the complex. We also mention the recent work [DD23c] which
shows coboundary-type properties for general buildings with for up to δ = 2−O(r) inconsistent triangles,
and an improved bound of δ = 2−O(

√
r) for the spherical building of type A.

Studying spherical buildings and proving coboundary expansion results for them is a central part of our
proof as well, however the result of [DD23c] is insufficient as far as we know. The spherical buildings we
have to study are spherical buildings of type Cn, and for them we have to be able to handle Unique-Games
instances with δ = 2−o(r) fraction of inconsistent triangles. Indeed, the main technical contribution is a
fairly general technique for proving that a simplicial complex is a UG coboundary expander.

1.5 Our Techniques

The rest of this introductory section is devoted to an overview of the proof of Theorem 1.3, and we start
with the following definition.

5



Definition 1.9. We say that a graph is a (C(G), β(G))-coboundary expander over Sm if for all δ ∈ [0, 1]
and all UG instances Ψ over Sm, with incons(Ψ) ⩽ δ, there exists an assignment A : V → Sm with
violΨ(A) ⩽ C(G)δ + β(G). When β(G) is 0, we say that a graph is a C(G)-coboundary expander over
Sm.

The additive error β(G) is necessary in our proofs, but we encourage the reader to ignore it and think
of it as 0 for the purposes of this section. Fix a simplicial complex X; we will eventually take X to be
Chapman Lubotzky complex with an appropriate choice of parameteres [CL23]. The main components of
our proof proceed as follows:

1. Local to global for cosystolic expansion: we use an idea of [EK16, DD23b] who show that to prove
that a simplicial complex is a cosystolic expander, it suffices to show that its links are coboundary
expanders. Here and throughout, we say that a graph G = (V,E) is a C-cosystolic expander if
for every Unique-Games instances over G with at most δ fraction of inconsistent triangles, we may
modify the constraints of G in at most Cδ fraction of the edges and get that all triangles are fully
consistent. We use this idea to show that if the links of X are coboundary expanders, then X itself is
a cosystolic expander with similar parameters.

2. Vanishing Cohomology of X: inspired by the first item, one is motivated to ask the question of what
is the constraint structure of fully triangle consistent Unique Games instances on the graphs associated
with X . Here, we use the fact, communicated to us by Dikstein, Dinur and Lubotzky [DDL23], that
the parameters of the Chapman–Lubotzky [CL23] can be chosen appropriately so that the complex
has vanishing cohomology over Sm.

3. Coboundary expansion of the links of X: Together, the first two items imply that to prove that X is
a coboundary expander, it suffices to prove that the links of X are coboundary expanders. Indeed, in
that case, if Ψ is a (1−δ)-consistent Unique-Games instance over Sm, by the first item we can modify
the constraints of Ψ on at most Cδ fraction of edges for C = 2o(r) to get an instance Ψ′ which is fully
triangle consistent. Invoking the second item, we conclude a structural result about the constraints of
Ψ′, which automatically implies a similar result for Ψ.

Proving that the links of X have sufficiently good coboundary expansion consists of the bulk of our
effort in this paper. We do so by an inductive argument on the parameter r.

In the rest of this section, we elaborate on the third item above as we consider it to be the main contribution
of this paper. We begin by noting that for our complex X , the links are either isomorphic to the spherical
buildings of type Cn or to product of two such spherical buildings. Given a prime p and a dimension d, the
spherical building of type A refers to the complex whose vertex set is the set of all nontrivial subspaces of
Fd
p, and whose k-faces are k-flags of subspaces, namely {A1, . . . , Ak} where A1 ⊆ A2 ⊆ . . . ⊆ Ak.

The spherical buildings with type C are similar, except that the vertices only consist of isotropic sub-
spaces with respect to a symplectic form. Here, the dimension d is an even number 2n, and one defines a
symplectic form ω : F2n

p × F2n
p → Fp by

ω(x, y) =
n∑

i=1

xiyi+n − xi+nyi.

A subspace V ⊆ F2n
p is then called isotropic if ω(x, y) = 0 for all x, y ∈ V . With this in mind, the spherical

building of type C certainly has a nice structure. However, as we are aiming for an inductive approach which
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will necessitate for us to look at various “restrictions” of this complex, it turns out to be convenient to think

about this complex more abstractly as a measure µ over
n∏

i=1
Xi, where Xi is the collection of all isotropic

subspaces of Fd
p of dimension i. Namely, µ is just the uniform distribution over top dimensional faces of X .

The most crucial feature of µ that makes it easier to work with is the fact that it is an ε-product measure
in the sense of [GLL22], where ε = O(1/

√
p). Informally, an ε-product measure is one in which one can

perform the usual type of discrete Fourier analysis as in product domains such as the Boolean hypercube
{0, 1}n, or product-like domains as the Johnson scheme

([n]
k

)
with constant k. Additionally, ε-productness

is a property that is preserved under conditioning, making it friendly for inductive processes. We defer a
precise definition of ε-product measures to Section 2. Below, we will focus on the measure µ itself, but we
remark that our arguments have to also work with restrictions of µ (which they do; the notations become
somewhat more complicated, and hence we omit this discussion).

1.5.1 Moving to Tripartite Instances and ε-product Distributions

Set-up: moving to the tripartite problem: consider the n-dimensional spherical building of type C
complex X as above, and let Ψ be a Unique-Games instance over its r faces which is (1 − δ)-triangle
consistent. Sample R1, R2, R3 ⊆ [n] independently of size r, and consider the Unique-Games instance Ψ′

induced by Ψ on the tripartite graph T (R1, R2, R3). Here and throughout, the tripartite weighted graph
T (R1, R2, R3) is the graph whose faces are r-faces that are subsets of R1, R2 and R3, and whose edges
and constraints are induced by Ψ. It can be shown via standard arguments that the fraction of inconsistent
triangles in Ψ′ is (1 + o(1))δ. Furthermore, using an idea from [DD23b], we show that it suffices to prove
that the instance Ψ′ has a good cosystolic coefficient for a good fraction of choices of R1, R2, R3. Roughly
speaking, if we show that with probability at least p, the induced instance Ψ′ has cosystolic coefficient C,
then the instance Ψ will have a cosystolic coefficient at most O(C/p).

Our argument will not show a strong enough cosystolic coefficient for every choice of R1, R2, R3, and
it depends on two features of them:

1. Separatedness: we would like the elements in R1 ∪ R2 ∪ R3 to be as far apart as possible form each
other. Note that the expected magnitude of an element in the union is Θ(n), and as we are choosing
3r of them uniformly, we expect them to be roughly Θ(n/r) apart. Ideally, we would have liked any
two distinct elements from R1 ∪ R2 ∪ R3 to be Θ(n/r) apart, however the probability for that (over
the choice of R1, R2, R3) is 2−Θ(r), which is too small for our purposes as we are shooting for a 2o(r)

coboundary constant. We thus settle for weaker separatedness, and for our argument it suffices to have
R1, R2, R3 to be Θ(n/r2)-separated (which happens with probability Θ(1)).

2. Well spread: consider an interval I ⊆ [d], say I = {s, s+ 1, . . . , s+ L− 1}, and think of L as being
of the order n/r0.99. Note that in expectation, each one of R1, R2, R3 contains L r

n element from the
interval. We say that R1 is well spread if for every interval I of length L we have that R1 ∩ I has
size roughly L r

n , and say that R1, R2, R3 is well spread if each one of R1, R2 and R3 is well spread.
We would like R1, R2, R3 to be well spread, and a standard application of concentration bounds show
that the probability a randomly chosen R1, R2, R3 is well spread with probability 1− o(1).

For the rest of this section we fix R1, R2, R3 that are well spread and Θ(n/r2) separated.

Moving to the language of ε-product distributions: now that we are considering tripartite instances Ψ′

over R1, R2, R3, it will be useful to think of the measure µ over
∏

i∈R1∪R2∪R3

Xi that underlies this complex;
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namely, this is the distribution µ3r restricted to triangles in Ψ′. This measure can be proved to be an ε-
product measure for ε = ε(p) which is a vanishing function of the field size p; for our intents this means
that ε can be guaranteed to be as small as we wish compared to the dimension of the complex and r. We
denote by Cr,r,r(µ) the coboundary constant of the tripartite graph underlying Ψ′. With these notations, our
primary objective now is to prove that Cr,r,r(µ) = 2o(r). More generally, for 1 ⩽ t ⩽ r, we define

Ct,t,t(µ) = max
R′

1⊆R1,|R′
1|=t

R′
2⊆R2,|R′

2|=t

R′
3⊆R3,|R′

3|=t

max
a

Coboundary constant of T (R′
1, R

′
2, R

′
3 | x(R1∪R2∪R3)\(R′

1∪R′
2∪R′

3)
= a),

where the graph T (R′
1, R

′
2, R

′
3 | x(R1∪R2∪R3)\(R′

1∪R′
2∪R′

3)
= a) is the induced subgraph of T on the vertices

that agree with the restriction x(R1∪R2∪R3)\(R′
1∪R′

2∪R′
3)

= a. The main benefit of ε-product measures is
that it provides a clean abstraction of he spectral properties of our tripartite graphs which is suitable for
induction.

1.5.2 An Inductive Approach to Coboundary Expansion: the Base Case

To get some intuition, we first consider the case that r = 1. In that case, the underlying graph of Ψ′ is a
tripartite inclusion graph induced by 3 distinct dimensions, say i < j < ℓ, which we know to be Θ(n/r2)
separated. Inspecting this graph, one can show that the diameter of this graph is at most

O

(
max

(
j

|i− j|
,

ℓ

|ℓ− j|

))
= O(r2),

which suggests that the graph is very well connected. In this case, we use the cones method [Gro10, LMM16,
KM22, KM19, KO19]. The cones method is a standard combinatorial “local correction” technique allowing
one to deduce global assignments from good local consistency. The method requires us to construct a set of
canonical paths between vertices which will be used for “propagation”, as well as triangulations of cycles
that are formed by an edge (V,W ) in the graph and the two canonical constructed paths from some vertex
U , using only a small number of triangles.3 To make this possible, we have to construct the set of canonical
paths in a rather careful manner. With these paths, we are able to break each formed cycle between U, V,W
into a small collection of 8-cycles (as well as some triangles), which we then triangulate via careful case
analysis.

In our context, using the cones method we can show that the coboundary constant of the graph under-
lying G is polynomial in its diameter. In particular, this implies that C1,1,1(µ) ⩽ rO(1). We remark that
working with well-separated indices is a useful idea if one wishes to prove results that are independent of the
dimension of the complex, first introduced by [DD23b]. For us, it will be important that the above applies
not only to the measure µ itself, but rather to any restriction of µ leaving at least 3 coordinates alive.

1.5.3 An Inductive Approach to Coboundary Expansion: the Extended Base Case

The inductive base case above for C1,1,1(µ) is insufficient for our purposes; indeed, using it and our inductive
step yields a bound of 2Õ(r) on the coboundary expansion of T (R1, R2, R3).4 To go beyond this bound we

3The cones method also requires sufficient good transitive symmetry from the complex, which holds for free in the case of the
spherical buildings we study.

4We remark that with additional work, this bound may be improved to 2O(r), but we do not know how to break this barrier using
only the base case for r = 1.
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identify another base case, that we explain next, for which we can also directly bound the coboundary
constant.

Let k be a parameter to be thought of as a small power of r, and consider subsets S1, S2, S3 ⊆ R1 ∪
R2 ∪R3 with the following properties:

1. Equal sizes: we have that |S1| = |S2| = |S3| = 3k and |Si ∩Rj | = k for any i, j ∈ {1, 2, 3}.

2. Well ordered: we have that maxs1∈S1 s1 < mins2∈S2 s2 ⩽ maxs′2∈S2
s′2 < mins3∈S3 s3. In words, all

elements of S1 are smaller than all elements of S2, and all elements of S2 are smaller than all elements
of S3.

Our extended base case gives good bounds for the coboundary constant of the graph T (S1, S2, S3;µ). To get
some intuition, note that when we attempt to construct paths and triangulations in the graph T (S1, S2, S3),
incidences between vertices depend only on partial information on them. For example, if U ∈ supp(µS1)
and V ∈ supp(µS2) are vertices, then the fact of whether (U, V ) is an edge or not depends only on the
subspace in U corresponding to dimension maxs1∈S1 s1 and the subspace in V corresponding to dimension
mins2∈S2 s2. Thus, incidences in this graph depend only on the 4 parameters in the second condition above,
and it thus stands to reason one can extend the triangulation from the case r = 1 to the current case.

Luckily, it turns out there is a surprisingly clean way to go about proving a statement along these lines
that only uses the base case r = 1 in a black box manner. Indeed, letting i = maxs1∈S1 s1, j = mins2∈S2 s2,
j′ = maxs2∈S2 s2 and ℓ = mins3∈S3 s3, we show, using an argument similar to the inductive step explained
below, that

C(T (S1, S2, S3;µ)) ⩽ C(T ({i}, {j}, {ℓ};µ) ·max(C1, C2, C3), (1)

where

C1 = max
a

C(T (S1 \ {i}, S2, S3;µ | Xi = a)), C2 = max
b

C(T (S1, S2 \ {j}, S3;µ | Xj = b)),

C3 = max
c

C(T (S1, S2, S3 \ {ℓ};µ | Xℓ = c)).

The first term on the right hand side of (1) can be bounded by the base case r = 1 above. The second term,
namely max(C1, C2, C3), is more interesting, and we focus on C1 for concreteness. Thinking of µ as the
uniform distribution over top faces of the type C spherical building, one observes that once we condition on
the vertex of dimension i in a face, the vertices of dimension strictly less than i and the vertices of dimension
more than i form a product structure. In particular, since all elements of S1 \ {i} are smaller than i and all
elements of S2, S3 are bigger than it, we have that for ν = µ | Xi = a it holds that

ν(S1\{i})∪S2 = νS1\{i} × νS2 , ν(S1\{i})∪S3 = νS1\{i} × νS3 .

Thus, the tripartite graph T (S1 \ {i}, S2, S3; ν) is composed of the bipartite graph between S2 and S3, and
the graph between S1 \ {i} and them is complete. This trivializes the task of constructing triangulations,
and indeed we show that the coboundary constant C1 is dominated by the diameter of the bipartite graph
between S2 and S3, which is easily seen to be O(r2) using the separatedness.

Overall, the extended base case allows us to argue that C(S1, S2, S3;µ) ⩽ rO(1) even when the sets S1,
S2 and S3 are large, so long as they are “well ordered”. The ability to find well ordered subsets is precisely
the reason we require R1, R2, R3 to be well spread.

Remark 1.10. We remark that the additional feature of µ we use here is that restricting a coordinate of it
breaks µ into a proper product distribution of 2 distributions. While this property is easy to see directly for
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type A and C spherical buildings discussed herein, it is in fact more general for any spherical building. This
is best seen by looking at the Coxeter diagrams that correspond to a given spherical building, and inspecting
that removing a vertex from them (which corresponds to the operation of restriction/ taking a link) either
turns a type into an easier-to-handle type, or else it disconnects the diagram, in which case the product
structure as discussed above emerges.

1.5.4 The Inductive Approach: the Inductive Step

Armed with the base case, we are now ready to describe an inductive approach to bound Ct(µ) = Ct,t,t(µ).

Restrictions and finding good local solutions: Suppose that we have R′
1 ⊆ R1, R′

2 ⊆ R2 and R′
3 ⊆ R3

of size t during our induction, and choose disjoint well ordered subsets S1, S2, S3 of R′
1∪R′

2∪R′
3 that each

contains k elements from each one of R1, R2 and R3. An easy argument shows that for appropriate choice
of parameters, so long as t ⩾ r0.99 we are able to find such S1, S2, S3, and we fix such sets henceforth. We
later explain how to handle the case t < r0.99.

Choose restrictions (a1, a2, a3) ∼ µS1∪S2∪S3 . We may consider 3 distinct induced graphs on T =
T (R′

1, R
′
2, R

′
3) corresponding to these restrictions, which are T1 = T (R′

1 \ S1, R
′
2 \ S1, R

′
3 \ S1 | µ | xS1 =

a1), T2 = T (R′
1 \S2, R

′
2 \S2, R

′
3 \S2 | µ | xS2 = a2) and T3 = T (R′

1 \S3, R
′
2 \S3, R

′
3 \S3 | µ | xS3 = a3).

Each one of these graphs refers to the induced graph on vertices that agree with the restriction a1, a2 and a3
respectively, and we may consider the induced affine Unique-Games instance Ψ′

a1 Ψ
′
a2 and Ψ′

a3 on them. Let
εa1 , εa2 and εa3 denote the fraction of inconsistent triangles in Ψ′

a1 , Ψ′
a2 and Ψ′

a3 respectively, and choose
Xa1 Xa2 and Xa3 to assignments that satisfy the maximum fraction of constraints. Thus, by definition we
get that

viol(Xa1 ;T1) ⩽ Ct−kεa1 , viol(Xa2 ;T2) ⩽ Ct−kεa2 , viol(Xa3 ;T3) ⩽ Ct−kεa3 .

Since we are working with affine instances of Unique-Games, once we have one good solution we may
apply affine shifts to it to get a collection of good solutions; in our case, for each π ∈ Sm we may define
La1 [π] = Xa1π, and have that La1 consists of solutions to Ψa1 each satisfying all but Ct−kεa1 of the
constraints. Similarly, we may define La2 and La3 .

Relating good local solutions: consider now the instance induced by Ψ on the graph

Ga1,a2 = T (R′
1, R

′
2, R

′
3 | xS1∪S2 = (a1, a2)).

Denote by viol(Xa1 ;Ga1,a2), viol(Xa2 ;Ga1,a2) the fraction of constraints violated by Xa1 , Xa2 in Ga1,a2

respectively. From the point of view of the restriction S1, a1, this is a randomly chosen induced sub-instance
of T1, and hence we expect that viol(Xa1 ;Ga1,a2) ≲ viol(Xa1), and analogously viol(Xa2 ;Ga1,a2) ≲
viol(Xa2). Using the ε-productness of µ, the graph Ga1,a2 has second singular value bounded away from 1,
and therefore any two good solutions to an Affine Unique-Games over it must be the same up to an affine
shift (we remark that this is an idea whose origin is algorithms for solving affine Unique-Games over some
special classes of graphs [BBK+21, BM23b]). Thus, we may find a shift πa1,a2 ∈ Sm that nearly forms a
matching between the lists La1 , La2 . More precisely, we are able to show that

E
a1,a2

[
Pr

u∈Ga1,a2

[Xa1(u) ̸= πa1,a2Xa2(u)]

]
≲ E

a1,a2
[viol(Xa1 ;Ga1,a2) + viol(Xa2 ;Ga1,a2)] ≲ Ct−kδ.
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Using our observations so far, we may consider the tripartite graph over restrictions, whose triangles
correspond to a triplet of restrictions a1, a2, a3 that are valid under µ. We consider an Affine Unique-Games
instance Ψrestrict on it, that has the constraint π−1

a1,a2 on the edge (a1, a2), and the goal is to choose labels
from Sm to each vertex so as to satisfy as many of the constraints as possible. Using our arguments so far, we
can argue that the fraction of inconsistent triangles is at most η = O (Ct−kδ), and as the underlying graph
of Ψrestrict is T (S1, S2, S3) we are able to conclude that we may find a solution to Ψrestrict that satisfies
all but O(CkCt−kδ) of constraints. Going in this route, one can conclude the recursion Ct ≲ CkCt−k,
which ultimately gives Ct ⩽ 2O(t log r). This is, of course, insufficient, and the reason for why we require
the extended base case. Using it, we have that C(T (S1, S2, S3)) ⩽ rO(1) giving us the recursion Ct ⩽
rO(1)Ct−k so long as t ⩾ r0.99. Iterating, this gives

Cr ⩽ rr/kCr0.99 ⩽ rr/k2O(r0.99 log r) ⩽ 2O(r1−c)

for some absolute constant c > 0.
To complete the overall picture, we now explain how we lift good solutions to Ψrestrict to a good solution

of Ψ′. Suppose that A is an assignment to Ψrestrict satisfying 1 − η fraction of constraints, and let U be a
vertex in Ψ′, say U ∈ supp(µR′

1) without loss of generality. The idea is to ask the opinion of a random vertex
in S1 that is consistent with U , and assign U accordingly. More precisely, we sample a1 ∼ µ | xR′

1
= U ,

and assign B[U ] = A[a1](U). Indeed, using standard spectral arguments, we show that for typical U , the
value of A[a1](U) for a1 chosen in this way is almost fixed, and furthermore that the assignment B satisfies
all but η fraction of constraints in Ψ′.

2 Preliminaries

Notations: We use standard big-O notations: we denote A = O(B) or A ≲ B if A ⩽ c · B for some
absolute constant c > 0. Similarly, we denote A = Ω(B) or A ≳ B if A ⩾ cB for some absolute constant
c > 0. We also denote k ≪ d to denote the fact that d is taken to be sufficiently large compared to any
function of k. For a distribution µ over X1 × . . .×Xr and a subset S ⊆ [r], we denote by µS the marginal
distribution of µ on the coordinates of S. We denote by supp(µ) the support of µ, and for a subset S ⊆ [r]
and an assignment V ∈

∏
i∈S

Xi we denote by µ | XS = V the distribution of X ∼ µ conditioned on

XS = V . If A is a finite set and i ⩽ |A|, the notation B ⊆i A means that we sample a subset of size i of A
uniformly.

2.1 Graphs Associated with Distributions and ε-product Distributions

Let µ over X1× . . .×Xr. The following definition describes bipartite graphs that can be associated with µ:

Definition 2.1. Let µ be a distribution on X1 × . . . × Xr. Let L,R ⊆ [r] be two disjoint non-empty sets.
Let A(L,R;µ) be the bipartite graph produced as follows: the vertices are supp(µL) and supp(µR) and
to sample an edge we choose a sample X from µ, and output (XL, XR). We will let AL,R denote the
corresponding operator AL,R : L2(XL, µ

L) → L2(XR, µ
R), with AL,Rf(v) = Ew∼µL|XR=v[f(w)].

Similarly, one can create tripartite graphs from µ:

Definition 2.2. Let µ be a distribution on X1 × . . .×Xr. Let S1, S2, S3 ⊆ [r] be three disjoint non-empty
sets. Let T (S1, S2, S3;µ) be the tripartite graph produced as follows: the vertices are supp(µS1), supp(µS2)
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and supp(µS3), and to sample an edge we choose a sample X from µ, and with probability 1/3 each output
(XSi , XSj ) for i ̸= j, i, j ∈ [3].

Note that when one of the Si’s is ∅, say S1, the graph T (∅, S2, S3;µ) denotes the tripartite graph with
one vertex ∅ in its first part, supp(µS2 |a), supp(µS3 |a) in its second and third parts, and we sample an edge
by sampling X ∼ µ and and outputting the pairs (∅, XS2), (∅, XS3) or (XS2 , XS3) with equal probability.
When more of the Si’s are ∅ we can similarly create these tripartite graphs.

We now discuss the definition of ε-product distributions from [GLL22]. We begin by defining ε-
pseudorandom distributions.

Definition 2.3. We say that a distribution D over X1×X2 is ε-pseudorandom if the second largest singular
value of A{1},{2} is at most ε.

Next, we define the notion of having ε-pseudorandom skeletons.

Definition 2.4. We say that a distribution D over Y1 × . . . × Yt has ε-pseudorandom skeletons if for all
i ̸= j ∈ [t], the marginal distribution D{i,j} is ε-pseudorandom.

We are now ready to define the notion of ε-product distributions.

Definition 2.5. We say that µ is an ε-product distribution over X1 × . . . ×Xr if for all S ⊆ [r] of size at
most r − 2 and all V ∈ supp(µS), the conditional distribution µ|XS = V has ε-pseudorandom skeletons.

Many properties of ε-product distributions were established in [GLL22], and we will require a few of
them. In particular, we will need [GLL22, Lemma 3.3], which asserts that if L,R ⊆ [r] are disjoint and µ is
an ε-product distribution, then the second singular values of the bipartite graphs A(L,R;µ) are small.

Lemma 2.6. Let µ be an ε-product distribution over X1 × . . .×Xr and let L,R ⊆ [r] be two disjoint sets.
Then the second largest singular value of AL,R and AR,L is at most poly(r)ε.

2.2 Properties of Expanders

We need the following well known version of the expander mixing lemma for bipartite graphs.

Lemma 2.7. Let G = (U, V,E) be a bipartite graph in which the second singular value of the normalized
adjacency matrix is at most λ. Then for all A ⊂ U and B ⊂ V we have that∣∣∣∣ Pr

(u,v)∈E
[u ∈ A, v ∈ B]− µ(A)µ(B)

∣∣∣∣ ⩽ λ
√
µ(A)(1− µ(A))µ(B)(1− µ(B)).

We also use the following standard sampling property of bipartite expanders.

Lemma 2.8. Let G = (U, V,E) be a weighted bipartite graph with second singular value at most λ. Let
B ⊂ U and set T = {v ∈ V | Pru∼v[u ∈ B] > ε+ Pr[B]}. Then Pr[T ] ⩽ λ2δ/ε2.

2.3 Properties of Local Spectral Expanders

Recall that we associated with each d-dimensional simplicial complex X a sequence of measures {µk}1⩽k⩽d,
where µk is a probability measure over X(k). Note that for all 0 ⩽ t ⩽ r ⩽ d, a sample according to µt

can be drawn by first sampling R ∼ µr, and then sampling T ⊆t R uniformly. The converse is also true:
a sample from µr can be drawn by first sampling T ∼ µt, and then sampling R from µr conditioned on
containing T . These observations give rise to the standard “up” and “down” operators, which we present
next. We only mention a few of their properties that are necessary for our arguments, and refer the reader
to [DDFH18] for a more comprehensive exposition.
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Definition 2.9. The operator U i+1
i is a map from L2(X(i);µi) to L2(X(i+ 1);µi+1) defined as

U i+1
i f(u) = E

v⊂iu

[
f(v)

]
for all u ∈ X(i+1). For j ⩾ k+1, we define U j

k via composition of up operators: U j
k = U j

j−1 ◦ . . .◦U
k+1
k .

Definition 2.10. The operator Di+1
i is a map from L2(X(i+ 1);µi+1) to L2(X(i);µi) defined as

Di+1
i f(u) = E

v⊇i+1u

[
f(v)

]
for all u ∈ X(i). For j ⩾ k+1, we define Dj

k via composition of down operators: Dj
k = Dk+1

k ◦ . . .◦Dj
j−1.

Abusing notations, we use the notations U j
k , D

j
k to denote the operators, as well as the real valued

matrices associated with them. A key property of the down and up operators is that they are adjoint:

Claim 2.11. For all k ⩽ j ⩽ d, U j
k and Dj

k are adjoint operators: for all functions f : X(k) → R and
g : X(j) → R it holds that ⟨U j

kf, g⟩ = ⟨f,Dj
kg⟩.

We need the following result due to [Opp18] known as the trickling-down theorem that uses the eigen-
values of links at X(d− 2) to show that X is a one-sided local spectral expander.

Theorem 2.12. Let X be a d-dimensional simplicial complex such that the 1-skeleton of every link (includ-
ing the empty one) is connected and for all I ∈ X(d− 2), the 1-skeleton of I has second eigenvalue at most
λ. Then X is a λ

1−(d−1)λ -one-sided local spectral expander.

We need the following lemma regarding the second eigenvalue of the down-up walks U j
kD

j
k on X(j)

(j ⩾ k), that can be found in [AL20].

Lemma 2.13. Let (X,µ) be a d-dimensional γ one-sided local spectral expander. For all i ⩽ d and
α ∈ (1/i, 1), the largest singular value of U i

αi and Di
αi is at most

√
α + poly(i)γ. Thus the down-up

random walk U i
αiD

i
αi on X(i) has second largest singular value at most α+ poly(i)γ.

2.4 Spherical Buildings of Type A

Analyzing the Chapman-Lubotzky complex will require us to study its links. In this section and in the next
one, we present the spherical buildings of type A and of type C, which are morally the graphs we will end
up needing to study.

Definition 2.14. The spherical building of type A over Fd+1
q is a d-dimensional complex denoted by SBA

d (Fq)
with the set of maximal faces:

{(V1, . . . , Vd) : V1 ⊂ . . . ⊂ Vd, Vi ⊂i Fd+1
q }.

The d-faces are equipped with the uniform distribution which we also denote by SBA
d (Fq).

The following is a well-known fact, but we give the proof here for completeness.

Lemma 2.15. The distribution SBA
d (Fq) is a O(1/

√
q)-product distribution.
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Proof. Let µ = SBA
d (Fq). Take any set S ⊆ [d], |S| ⩽ r − 2 and a valid restriction of it, say V . We

need to show that µ|XS = V has 1/q-pseudorandom skeletons. Consider two coordinates i ̸= j ∈ [d] \ S
and let Ai,j be the bipartite graph/normalized adjacency operator corresponding to µ{i,j}|XS = V . If there
exists k ∈ S such that i < k < j, then Ai,j has second largest singular value 0. So let us consider the
case where there is no such coordinate k between i and j. Let i′ be the largest coordinate in S that is less
than i and j′ be the smallest coordinate in S that is greater than j (i′ < i < j < j′). Then the bipartite
graph Ai,j is isomorphic to the weighted inclusion graph between i− i′ and j− i′-dimensional subspaces of
Fj′−i′
q . It is well-known (see for example [BCN12, GM16]) that this graph has second largest singular value

≲ 1/
√

qj−i ⩽ 1/
√
q. This shows that µ|XS = V has 1/

√
q-pseudorandom skeletons for all S and V , thus

showing that µ is a 1/
√
q-product distribution.

2.5 Spherical Buildings of Type C

Next, we present the spherical buildings of type C. Like the spherical buildings of type A, type C spherical
buildings are too defined using subspaces. However, we only consider subspaces that are isotropic with
respect to a symplectic form.

Definition 2.16. A symplectic bilinear form is a mapping ω : F2n × F2n → F is a map which bi-linear,
anti-symmetric – ω(v, w) = −ω(w, v),∀v, w ∈ F2n and non-degenerate – ω(u, v) = 0 for all v implies
u = 0.

In this paper we fix the symplectic form:

ω =

(
0 In

−In 0

)
,

which gives the bi-linear form ω(v, w) =
∑n

i=1 viwn+i − wivn+i. One can check that ω(·, ·) is a valid
symplectic bilinear form.

Definition 2.17. A subspace V ⊆ F2d
q is called isotropic if ω(v, w) = 0 for all v, w ∈ V .

Definition 2.18. The symplectic group Sp(2d, F ) is defined as the set of 2d × 2d matrices M over a field
F that preserve the symplectic form ω. This group is characterized by matrices in GL2d(F) that satisfy
MTωM = ω, where ω is the matrix representation of the symplectic form.

Properties of SP2d(F): For an invertible matrix M and subspace V ⊆ F2d, let M ◦V denote the subspace
span(Mv)v∈V . Then the group SP2d(F) has the following properties:

1. If V is a t-dimensional isotropic subspace of F2d
q , then M◦V is also a t-dimensional isotropic subspace

of F2d
q .

2. Furthermore, SP2d(F) acts transitively on the set of t-dimensional isotropic subspaces for all t ⩽ d.

Definition 2.19. The spherical buildings of type C over F2d
q is a d-dimensional complex denoted by SBC

d (Fq)
with the set of maximal faces:

{(V1, . . . , Vd) : V1 ⊂ . . . ⊂ Vd, Vi is an isotropic subspace of dimension i}.

The d-faces are equipped with the uniform distribution which we also denote by SBC
d (Fq).
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The following lemma asserts that the natural distribution associated with the spherical building of type
C is ε-product for a small ε.

Lemma 2.20. Let d, q ∈ N with q ⩾ poly(d). Then µ = SBC
d (Fq) is a O(1/

√
q)-product distribution.

Proof. Fix ε = O(1/
√
q). One can check that proving µ is a λ-product distribution is equivalent to showing

that SBC
d (Fq) denoted by X is a λ-one-sided local spectral expander, and we focus on the latter task. To

do so, it suffices to show that the 1-skeleton of all links I ∈ X(d − 2) have second eigenvalue at most ε.
Once we show that, the trickling-down theorem, Theorem 2.12, implies that X is a ε

1−dε ≲ ε one-sided
local spectral expander.

Fix a (d−2)-sized link I , and say that it fixes the set of coordinates S ⊂ [d] of size d−2 to the isotropic
subspaces Va, a ∈ S, that form a valid inclusion chain. Let i < j ∈ [d] be the two unfixed coordinates and
let D be the resulting conditional distribution on X{i,j}. The second largest eigenvalue of the 1-skeleton of
I is equal to the second largest singular value of A({i}, {j};D), since the 1-skeleton is a bipartite graph.
We bound the latter using case analysis.

Coordinates i, j are not consecutive: In this case there exists k ∈ S such that i < k < j. So we know
that D is a product distribution and A({i}, {j};D) is the complete bipartite graph, hence the corresponding
second largest singular value is 0.

Coordinates i, j are consecutive but not equal to (d− 1, d): In this case, j = i+ 1 and the coordinates
i+2 and i−1 belong to S. Then the resulting bipartite graph is over the set of isotropic subspaces contained
within Vi+1 and containing Vi−1. Since Vi+1 is an isotropic subspace and every subspace within an isotropic
subspace is isotropic, we get that A({i}, {j};D) is isomorphic to the bipartite weighted inclusion graph
between 1 and 2-dimensional subspaces of F3

q . This has largest singular value ⩽ ε as we saw in Lemma 2.15.

Coordinates (i, j) = (d − 1, d): In this case the coordinate (d − 2) belongs to S. The set of d − 1 and
d-dimensional isotropic subspaces containing Vd−2 is in one-to-one correspondence with the set of 1 and
2-dimensional subspaces respectively, that are symplectically orthogonal to Vd−2 and are not contained in
Vd−2. Taking a quotient by Vd−2 we get that this is the set of 1 and 2-dimensional isotropic subspaces of
F4
q . Therefore A({i}, {j};D) is isomorphic to the bipartite inclusion graph between 1 and 2-dimensional

isotropic subspaces of F4
q . Using [BCN12, Theorem 9.4.3], we get that this graph has second largest singular

value ≲ ε as required.

3 A Local to Global Theorem for Coboundary Expansion

The primary goal of this section is to present an inductive approach to prove upper bounds on the coboundary
constants corresponding to the level r faces of a simplicial complex X . Roughly speaking, starting with an
initial assumption regarding the coboundary constant of X on constant levels, we show how to lift it to a
reasonable bound on higher levels.

3.1 Tools

3.1.1 Basic Notions and Properties of the Tripartite Graph T (R1, R2, R3)

In this section, we present some of the tools and notions that are necessary for our proof. Throughout this
section, we fix a set of indices I = {i1, . . . , i3r} and an ε-product distribution µ over

∏
i∈I Xi. Here and
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throughout, ε should be thought of as very small compared to all other parameters, and we encourage the
reader to think of ε = 0 at first reading.

We begin by formally defining the notion of coboundary expansion (with additive error) for measures.

Definition 3.1. Let µ be a measure over
∏
i∈I

Xi and let 0 ⩽ r1, r2, r3 ⩽ r ∈ N be integers. We say that µ

is a (Cr1,r2,r3 , βr1,r2,r3)-coboundary expander over Sm if for all sets S of size at most 3r − (r1 + r2 + r3),
for all restrictions a ∈ supp(µS), and for all disjoint R1, R2, R3 ⊆ I \ S of sizes r1, r2, r3 respectively, the
tripartite graph T (R1, R2, R3;µ|XS = a) with respect to the distribution µ∪Ri |(XS = a) over triangles, is
a (Cr1,r2,r3 , βr1,r2,r3)-coboundary expander over Sm as per Definition 1.9.

When βr1,r2,r3 = 0, we simply say that µ is a Cr1,r2,r3-coboundary expander over Sm.

Definition 3.1 will be of central interest to us, and to use it we must develop some tools to investi-
gate coboundary expansion in the tripartite graphs T (R1, R2, R3;µ). We begin with the following claim,
asserting that this graph always has second singular value bounded away from 1.

Claim 3.2. Let µ be an ε-product distribution over X1× . . .×Xr, and let S1, S2, S3 ⊆ [r] be three disjoint
non-empty sets. Let T be the normalized adjacency operator of the graph T (S1, S2, S3;µ). Then the second
largest singular value of T is at most 1/2 + poly(r)ε.

Proof. Let T be the normalized adjacency operator of T (S1, S2, S3;µ) and let f be the second eigenvector
of T with E[f ] = 0 and ∥f∥2 = 1. We will now bound ∥Tf∥2.

For any i = 1, 2, 3, let fi be the function f restricted to XSi thought of as an element in L2(XSi ;µ
Si);

we also denote ai = E[fi] = |Ex∼µSi [f(x)]|. We have that for all x ∈ S1,

Tf(x) =
1

2
AS2,S1f(x) +

1

2
AS3,S1f(x),

and similarly for x ∈ S2 or S3. Similarly, we denote by (Tf)i the restriction of Tf to XSi . With these
notations, we have that

∥(Tf)1∥2 ⩽
1

2
∥AS2,S1f2∥2 +

1

2
∥AS3,S1f3∥2 ⩽

1

2
(a2 + poly(r)ε) +

1

2
(a3 + poly(r)ε),

where in the last transition we used Claim 2.6 to bound the second singular value of AS2,S1 and AS3,S1 to
bound ∥AS2,S1f2 − a2∥2 = ∥AS2,S1(f2 − a2)∥2 ⩽ poly(r)ε. Squaring and simplifying gives us that

∥(Tf)1∥22 ⩽
1

4
(a2 + a3)

2 + poly(r)ε.

As a1 + a2 + a3 = 3E[f ] = 0, we conclude that ∥(Tf)1∥22 ⩽ 1
4a

2
1 + poly(r)ε, and similarly ∥(Tf)2∥22 ⩽

1
4a

2
2 + poly(r)ε and ∥(Tf)3∥22 ⩽ 1

4a
2
3 + poly(r)ε. Multiplying by 1/3 and summing up we get

∥Tf∥22 = E
i∈[3]

[∥(Tf)i∥22] ⩽
1

12
(a21 + a22 + a23) + poly(r)ε

=
1

12
(E[f1]

2 + E[f2]
2 + E[f3]

2) + poly(r)ε

⩽
1

12
(E[f2

1 ] + E[f2
2 ]

2 + E[f2
3 ]) + poly(r)ε

=
1

4
∥f∥22 + poly(r)ε,

which is at most 1
4 + poly(r)ε as ∥f∥2 = 1. Taking a square root gives that ∥Tf∥2 ⩽ 1/2 + poly(r)ε.
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3.1.2 Almost Uniqueness of Good Solutions to Affine UG Instances

We begin by defining shifts of assignments to Affine Unique-Games instances G.

Definition 3.3. Given an affine Unique-Games instance Φ with alphabet Sm, an assignment A to it and
π ∈ Sm, we denote by A ◦ π denote the assignment that (A ◦ π)(v) = X(v)π.

Suppose Φ is an instance of affine Unique-Games as in Definition 1.4, and suppose that A is an assign-
ment to it. It can easily be seen that val(A) = val(A ◦ π) for every π ∈ Sm. Thus, if A satisfies many of
the constraints of Ψ, then so does A ◦ π. The following claim says that if the underlying constraint graph is
an expander, then all good assumptions are essentially shifts of one good assignment X . This idea appeared
in [BBK+21] in the context of the Abelian version of affine Unique-Games, but the proof in the non-Abelian
case is essentially the same and we give it for completeness.

Claim 3.4. Let Φ = (G,Π, Sm) be a UG instance on G which is an expander graph with second eigenvalue
λ, and let X,X ′ ∈ S

V (G)
m be two solutions to Φ. Then there exists a permutation π ∈ Sm such that

Pr
v∈G

[X(v) ̸= X ′(v)π] ⩽
viol(X) + viol(X ′)

1− λ
.

Proof. Fix X and X ′ as in the statement of the claim, and partition V (G) = ∪π∈SmCπ where for each
π ∈ Sm we define Cπ = {u ∈ G : X(v) = X ′(v)π}. Note that if an edge (u, v) ∈ G is satisfied by both X
and X ′, then its endpoints lie in the same part Cπ. Indeed, suppose that X(v) = X ′(v)π, then

X(u) = πu,vX(v) = πu,vX
′(v)π = X ′(u)π.

Thus, if (u, v) goes across distinct parts of the partition {Cπ}π∈Sm , then it must be violated either by X or
by X ′.

For a set of vertices S let µ(S) denote the measure of S in V (G) and for a set of edges T let µ(T ) denote
the measure of T in E(G). Let E(S, S) denote the set of edges that cross between S and its complement.
By (the easy direction of) Cheeger’s inequality, for each π ∈ Sm we have that

1

2
µ(E(Cπ, Cπ)) ⩾ (1− λ)µ(Cπ)(1− µ(Cπ)).

Summing this over π ∈ Sm we get,

1

2

∑
π∈Sm

µ(E(Cπ, Cπ)) ⩾ (1− λ)(1−
∑
π

µ(Cπ)
2).

Note that each edge that crosses between distinct parts of {Cπ}π∈Sm is counted twice on the left side, and
by our earlier observation it must be violated either by X or by X ′, and so 1

2µ(E(Cπ, Cπ)) ⩽ viol(X) +
viol(X ′). Plugging this and simplifying gives that∑

π

µ(Cπ)
2 ⩾ 1− viol(X) + viol(X ′)

1− λ
,

and as
∑

π∈Sm

µ(Cπ)) = 1, it follows that there exists π ∈ Sm such that µ(Cπ) ⩾ 1− viol(X)+viol(X′)
1−λ .
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3.2 Exponential Bound on the Coboundary Constant via Lopsided Induction

Our bounds on the coboundary constants Cr1,r2,r3 will always follow an inductive strategy. All of our
inductive arguments will be of similar spirit, though they differ in some technical aspects that tailor them
for different uses. This section is devoted for the most simplistic of these inductive approaches, for which
we have two utilities. First, it will be useful for us to handle r1, r2, r3 that are relatively small (e.g. r0.99).
Secondly, it will be useful for us when we extend the base case into the extended base case as described the
introduction. In this case, we have the following result:

Lemma 3.5. There exists an absolute constant K > 0 such that the following holds. Suppose that µ is an
ε-product measure with ε ⩽ r−K which is a (C1,1,1(µ), β1,1,1(µ))-coboundary expander over Sm. Then for
all k1, k2, k3 ∈ N such that k1+ k2+ k3 ⩽ r, µ is a (Ck1,k2,k3(µ), βk1,k2,k3(µ))-coboundary expander over
Sm with

Ck1,k2,k3(µ) ⩽ O(C1,1,1(µ))
k1+k2+k3 , βk1,k2,k3(µ) ⩽ O(C1,1,1(µ))

k1+k2+k3β1,1,1(µ).

Proof. Fix any three pairwise disjoint sets R1, R2, R3 with sizes 0 < r1, r2, r3 ∈ N such that
∑

ri ⩽
r, indices j1 ∈ R1, j2 ∈ R2 and j3 ∈ R3, a set S ⊂ [d] \

⋃
Ri, and a restriction A0 ∈ supp(µS).

Let D denote µ | XS = A0. For any restriction a1 ∈ supp(Dj1), let Ga1 denote the induced subgraph
T (R1 \ j1, R2, R3;D|Xj1 = a1) and similarly define the graphs Ga2 , Ga3 for every a2 ∈ supp(Dj2), a3 ∈
supp(Dj3). Then we will show that,

C(T (R1, R2, R3;D)) ⩽ C(T ({j1}, {j2}, {j3};D)) · max
i∈[3]

ai∈supp(Dji )

(C(Gai)). (2)

β(T (R1, R2, R3;D)) ⩽ C(T ({j1}, {j2}, {j3};D)) · max
i∈[3]

ai∈supp(Dji )

(β(Gai)) + β(T ({j1}, {j2}, {j3};D)).

(3)

Additionally, when either of the ri’s are 0 we show that C(T (R1, R2, R3;D)) ⩽ 1, as well as that
β(T (R1, R2, R3;D)) = 0. This along with the equations above is enough to conclude the lemma as we
show in the end of the proof.

To prove (2) and (3) fix any affine UG instance Φ on T (R1, R2, R3;D) which has δ-fraction of incon-
sistent triangles.

Setting up lists on restrictions: For every ai ∈ supp(Dji) let Xai ∈ S
V (Gai )
m be an assignment on V (Gai)

with maximum value, and let Lji→ai be an ordered list of solutions indexed by permutations in Sm, where
LSi→ai [π] = Xai ◦ π.

Setting up permutations between restrictions: For every two restrictions of different parts, say a of j1
and b of j2 where (a, b) is a valid restriction (that is, where (a, b) ∈ supp(D{j1,j2})), let Ga,b be the induced
subgraph T (R1, R2, R3;D|(Xj1 = a,Xj2 = b)). Then by Claim 3.4 there exists a permutation πa,b that
satisfies the following:

Pr
v∼Ga,b

[Xa(v) ̸= Xb(v)πa,b] ⩽
viol(Xa;Ga,b) + viol(Xb;Ga,b)

1− λ(Ga,b)
≲ viol(Xa;Ga,b) + viol(Xb;Ga,b), (4)
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where we used Claim 3.2 to bound λ(Ga,b) ⩽ 1/2 + poly(r)ε ⩽ 0.51. Let

Bad(a, b) = {v ∈ Ga,b | Xa(v) ̸= Xb(v)πa,b}.

For any restriction b as above, let Lb ◦ π denote the list where Lb ◦ π[π′] = Lb[ππ
′] = Xb ◦ ππ′. With these

notations and the definition of Bad(a, b), we get that La|Ga,b∩Bad(a,b) = Lb ◦ πa,b|Ga,b∩Bad(a,b).

Counting bad triangles: For any restriction (a1, a2, a3) ∈ supp(D{j1,j2,j3}) let Ga1,a2,a3 denote the graph
T (R1 \ j1, R2 \ j2, R3 \ j3;D|(a1, a2, a3)). Clearly, we have that,

E
a3∼Dj3 |(a1,a2)

[µGa1,a2,a3
(Bad(a1, a2))] = µGa1,a2

(Bad(a1, a2)).

Fix a1, a2. Using Markov’s inequality and (4) it follows that

Pr
a3∼Dj3 |(a1,a2)

[
µGa1,a2,a3

(Bad(a1, a2)) >
1

100

]
≲ viol(Xa1 ;Ga1,a2) + viol(Xa2 ;Ga1,a2). (5)

We say a restriction (a1, a2, a3) is bad if µGa1,a2,a3
(Bad(ai, ak)) > 1/100 for some i ̸= k. By (5) we get

E
(a1,a2,a3)∼D∪ji

[I((a1, a2, a3) is bad)]

⩽
∑
i∈[3]

E
(aℓ,ak)∼Djℓ∪jk

ℓ,k ̸=i

E
ai∼Dji |(aℓ,ak)

[I(µGa1,a2,a3
(Bad(aℓ, ak)) >

1

100
)]

≲
∑
i∈[3]

E
(aℓ,ak)∼Djℓ∪jk

ℓ,k ̸=i

[viol(Xaℓ ;Gaℓ,ak) + viol(Xak ;Gaℓ,ak)]

≲
∑
i∈[3]

E
ai∼Dji

[viol(Xai ;Gai)], (6)

where in the first inequality we used the union bound, the second inequality we used (5). By definition we
have that viol(Xa1 ;Ga1) ⩽ C(Ga1)εa1 + β(Ga1), where εa1 is the fraction of violated triangles in Ga1 .
Therefore,

(6) ≲
∑
i∈[3]

E
ai∼Dji

[C(Gai)εai + β(Gai)] ≲ max
i∈[3]

ai∈supp(Dji )

(C(Gai))δ + max
i∈[3]

ai∈supp(Dji )

(β(Gai)) := δ′.

Creating a UG instance on graph over restrictions: Let Ψ be the following UG instance on H =
T ({j1}, {j2}, {j3};D): each edge (ai, ak) has the constraint π−1

ai,ak
. That is, we want to find a solution A

that maximizes the fraction of edges satisfying A(ai) = π−1
ai,ak

A(ak). Note that a triangle (a1, a2, a3) is
consistent if π−1

a3,a1π
−1
a1,a2π

−1
a2,a3 = id or equivalently if πa2,a3πa1,a2πa3,a1 = id.

First note that if a triangle (a1, a2, a3) is not bad, then it is consistent. To see this, note that in this case,
by the union bound we have µGa1,a2,a3

(Bad(a1, a2) ∪ Bad(a2, a3) ∪ Bad(a1, a3)) ⩽ 0.03, which gives that
µGa1,a2,a3

(Good(a1, a2, a3)) ⩾ 0.97 > 0, where the latter set is defined as those vertices in Ga1,a2,a3 that
don’t belong to any of Bad(ai, ak). We have that:

La1 |Good(a1,a2,a3) = La2 ◦ πa1,a2 |Good(a1,a2,a3)
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La2 |Good(a1,a2,a3) = La3 ◦ πa2,a3 |Good(a1,a2,a3)

La3 |Good(a1,a2,a3) = La1 ◦ πa3,a1 |Good(a1,a2,a3),

which implies that:

La3 |Good(a1,a2,a3) = La3 ◦ πa2,a3 ◦ πa1,a2 ◦ πa3,a1 |Good(a1,a2,a3) = La3 ◦ πa2,a3πa1,a2πa3,a1 |Good(a1,a2,a3).

Taking any v ∈ Good(a1, a2, a3) we get that, La3 [id][v] = La3 ◦ πa2,a3πa1,a2πa3,a1 [id][v], where the former
is Xa3(v) and the latter is Xa3(v)πa2,a3πa1,a2πa3,a1 , which implies πa2,a3πa1,a2πa3,a1 = id.

Using the coboundary expansion of the graph T ({j1}, {j2}, {j3};D) we get that there exists a UG
solution to the vertices violating at most (C(H)δ′ + β(H))-fraction of the edges. Call this solution A.

Lifting the solution: We will now use A to create a highly satisfying solution B to G = T (R1, R2, R3;D).
To each vertex u ∈ Ri, define B(u) = Lu|ji [A(u|ji)][u]. We will now upper bound the fraction of edges
that B violates for Φ.

Consider an edge (ui, uk) ∈ G between parts Ri, Rk, and let (ai, ak) denote the edge (ui|ji , uk|jk) in
the restriction graph H . Let Good(G) be the set of edges where the following three events hold: (1) A
satisfies the edge (ai, ak), i.e. A(ai) = π−1

ai,ak
A(ak), (2) Xai satisfies the edge (ui, uk), i.e. Xai(ui) =

πui,uk
Xai(uk) and (3) uk does not belong to Bad(ai, ak), i.e. Xai(uk) = Xak(uk)πai,ak . It is easy to see

that B satisfies every good edge, that is, B(ui) = πui,uk
B(uk). Indeed, using the events (1), (2) and (3), we

have that,

B(ui) = Lai [A(ai)][ui] = Xai(ui)A(ai)

= Xai(ui)π
−1
ai,ak

A(ak) by (1)

= πui,uk
Xai(uk)π

−1
ai,ak

A(ak) by (2)

= πui,uk
Xak(uk)πai,akπ

−1
ai,ak

A(ak) by (3)

= πui,uk
B(uk).

So it suffices to upper bound the fraction of edges that are not in Good(G), which we denote by Bad(G).
Sampling an edge, we can upper bound the probability it doesn’t satisfy at least one of the events. For (1),

Pr
(ui,uk)∈G

[A(ai) ̸= π−1
ai,ak

A(ak)] = viol(A) ≲ C(H)δ′ + β(H).

For (2),

Pr
(ui,uk)∈G

[Xai(ui) ̸= πui,uk
Xai(uk)] = E

i∼[3]
ai∼Dji

E
(u1,u2,u3)∼D|(Xji

=ai)

k∼[3]\i

[I(Xai(ui) ̸= πui,uk
Xai(uk))]

≲ E
i∼[3]

ai∼Dji

[viol(Xai ;Gai)] ≲ δ′.

For (3), using (4) we have

Pr
(ui,uk)∈G

[uk ̸∈ Bad(ai, ak)] ≲ E
(ai,ak)∼Dji∪jk

E
(ui,uk,uℓ)∼D|(ai,ak)

r∼{i,k}

[I(ur ̸∈ Bad(ai, ak))]

≲ E
(ai,ak)∼Dji∪jk

[viol(Xai ;Gai,ak) + viol(Xak ;Gai,ak)]

20



≲ E
ai∼Dji

[viol(Xai ;Gai)]

≲ δ′.

Adding up these probabilities we get,

Pr
(ui,uk)∈G

[(ui, uk) ∈ Bad(G)] ≲ δ′ + C(H)δ′ + β(H)

≲

C(H) max
i∈[3]

ai∈supp(Dji )

(C(Gai))

 δ +

C(H) max
i∈[3]

ai∈supp(Dji )

(β(Gai)) + β(H)

 ,

which completes the proof of (2) and (3).

Proving base cases when ri’s are 0: Without loss of generality assume that |R1| = 0. Recall that the
graph G = T (R1, R2, R3;D) has one vertex ∅ in its first part that is connected to all the vertices supp(µR2)
and supp(µR3) in the second and third parts named P2, P3. We can show that C(G) ⩽ 1 via the following
algorithm to get a satisfying solution to Φ. We assign the identity permutation to ∅, and then propagate this
solution to all the vertices in parts P2 and P3. Now note that by definition all the edges between ∅ and P2

or P3 are satisfied. For an edge (u, v) between P2, P3, it is violated only if the triangle (∅, u, v) is violated
which happens only with probability δ. Therefore we get a solution violating at most δ/3-fraction of the
edges of G, which shows that C(G) ⩽ 1. The same argument holds when more of the Ri’s have size 0.

Concluding the induction: Firstly note that (2), (3) imply that:

Cr1,r2,r3(µ) ≲ C1,1,1(µ)C
′, βr1,r2,r3(µ) ≲ C1,1,1(µ)β

′ + β1,1,1(µ) (7)

where we take C ′ = max(Cr1−1,r2,r3(µ), Cr1,r2−1,r3(µ), Cr1,r2,r3−1(µ)) and analogously pick β′ to be
β′ = max(βr1−1,r2,r3(µ), βr1,r2−1,r3(µ), βr1,r2,r3−1(µ)).

To prove the final statement we can then use induction on
∑3

i=1 ri. The base case of induction is when
either

∑
ri = 3 and each ri = 1, or one of the ri’s is 0. In the first case Cr1,r2,r3(µ) ⩽ C1,1,1(µ) ⩽

O(C1,1,1(µ))
3, βr1,r2,r3(µ) ⩽ β1,1,1(µ) ⩽ O(C1,1,1(µ))

3β1,1,1(µ) and in the second case Cr1,r2,r3 ⩽ 1 ⩽
O(C1,1,1(µ))

∑
ri , βr1,r2,r3 = 0 ⩽ C1,1,1(µ)

∑
riβ1,1,1(µ) too. Therefore now let us assume the lemma

statement holds for all (r1, r2, r3) with
∑

ri ⩽ t and let us prove it for (r′1, r
′
2, r

′
3) with

∑
r′i = t + 1 and

each r′i > 0. Applying (7) on Cr′1,r
′
2,r

′
3
(µ) we get that,

Cr′1,r
′
2,r

′
3
(µ) ⩽ O(C1,1,1(µ))C

′ ⩽ O(C1,1,1(µ))O(C1,1,1(µ))
r′1+r′2+r′3−1 = O(C1,1,1(µ))

r′1+r′2+r′3 ,

where in the second inequality we used the inductive bound on Cr′1−1,r′2,r
′
3
(µ), Cr′1,r

′
2−1,r′3

(µ), Cr′1,r
′
2,r

′
3−1(µ).

A similar argument for βr′1,r′2,r′3(µ) completes the induction thus proving the lemma.

3.3 Subexponential Bounds via Non-Lopsided Induction

Throughout this section we fix k = r0.01, three r-sized pairwise disjoint sets R1, R2, R3 ⊂ [d], I =⋃
i∈[3]Ri and µ over

∏
i∈I Xi that satisfy the following assumptions:

Assumption 1. The following conditions hold:
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1. The measure µ is an ε-product distribution with ε ⩽ 2−r12 .

2. For all k ⩽ r, S ⊆ I of size at most 3r − 3k and restrictions a0 ∈ supp(µS), for all k-sized pairwise
disjoint sets A,B,C of I \ S, such that

max
a∈A

a < min
b∈B

b ⩽ max
b∈B

b < min
c∈C

c,

the graph T (A,B,C;µ|XS = a0) is a (poly(r), 2−r12)-coboundary expander over Sm.

3. For each interval Ij =
{

jdk10

r , . . . , (j+1)dk10

r

}
and for each i ∈ [3] we have that

k10 − k6 ⩽ |Ri ∩ Ij | ⩽ k10 + k6.

In words, the number of elements in Ri in the interval Ij is roughly k10 (which is the number of points
a typical interval of that length has).

The main result of this section is the following lemma, asserting that if µ satisfies Assumption 1, then
the corresponding tripartite graph is a coboundary expander with good parameters. More precisely:

Lemma 3.6. Let R1, R2, R3 ⊆ and let µ be a probability measure over
∏

i∈I Xi satisfying Assumption 1.
Then the graph T (R1, R2, R3;µ) is a (poly(r)r/k, 2−Ω(r12))-coboundary expander over Sm.

Proof. Let Ij ⊂ [d] denote the interval
{

jdk10

r , . . . , (j+1)dk10

r

}
, and write |Ri ∩ Ij | = k10 + ci,j where

ci,j ∈ [−k6, k6]; note that
∑

j ci,j = 0. We will use induction to prove the lemma. Throughout the
induction, we will have three sets R′

1, R
′
2, R

′
3, satisfying:

1. R′
i ⊆ Ri.

2. For all i, j, |R′
i ∩ Ij | = rj + ci,j for some rj ⩽ k10.

3. There exist at least three intervals with rj ⩾ k9, say Ij1 , Ij2 , Ij3 , with j1 < j2 < j3.

Initially, we will take R′
1 = R1, R′

2 = R2, R′
3 = R3, and later steps will take subsets of these. Note that in

particular (2) above implies that all R′
i are equal in size. Henceforth, we fix such R′

1, R
′
2, R

′
3. Note that by

the second and third items, we may find three 3k-sized disjoint sets S1, S2, S3 satisfying that Si ⊂ Iji for
i = 1, 2, 3 and furthermore for all j ∈ [3], |Si ∩ (R′

j ∩ Iji)| = k, and we fix such S1, S2, S3 henceforth.
Consider a distribution D = µ|XB = B0, where B ⊆ I \

⋃
i∈[3]R

′
i and B0 ∈ supp(µB). The bulk of

the argument will be devoted to proving that

C(T (R′
1, R

′
2, R

′
3;D)) ⩽ poly(r) · max

i∈[3],
ai∈supp(DSi )

(C(T (R′
1 \ Si, R

′
2 \ Si, R

′
3 \ Si;D|XSi = ai))), (8)

β(T (R′
1, R

′
2, R

′
3;D)) ⩽ poly(r) · max

i∈[3],
ai∈supp(DSi )

(β(T (R′
1 \ Si, R

′
2 \ Si, R

′
3 \ Si;D|XSi = ai))). (9)

Once we establish these two inequalities, it is straightforward to conclude the lemma, and we do so in the
end of the proof. Towards proving (8) and (9), fix any UG instance Φ on G = T (R′

1, R
′
2, R

′
3;D) with

δ-fraction of inconsistent triangles.
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Setting up lists on restrictions: For every Si and every restriction a ∈ supp(DSi), let Ga be the subgraph
T (R′

1 \ Si, R
′
2 \ Si, R

′
3 \ Si;D|XSi = a). Let Xa ∈ S

V (Ga)
m be an assignment on V (Ga) with maximum

value, and let La be an ordered list of solutions indexed by permutations in Sm, where La[π] = Xa ◦ π.

Setting up permutations between restrictions: For every i ̸= j, and every restriction a of Si and b of
Sj where (a, b) ∈ supp(DSi∪Sj ), let Ga,b be the induced subgraph T (R′

1, R
′
2, R

′
3;D|(XSi = a,XSj = b)).

Let viol(Xa;Ga,b) denote the fraction of edges in Ga,b that are violated by the assignment Xa. Then by
Claim 3.4 there exists a permutation πa,b satisfying that

Pr
v∼Ga,b

[Xa(v) ̸= Xb(v)πa,b] ⩽
viol(Xa;Ga,b) + viol(Xb;Ga,b)

1− λ(Ga,b)
≲ viol(Xa;Ga,b) + viol(Xb;Ga,b), (10)

where we used Claim 3.2 to bound λ(Ga,b) by 1/2 + poly(r)ε < 0.51. Let

Bad(a, b) = {v ∈ Ga,b | Xa(v) ̸= Xb(v)πa,b}.

For any restriction b as above, let Lb ◦ π denote the list where Lb ◦ π[π′] = Lb[ππ
′] = Xb ◦ ππ′. With these

notations and the definition of Bad(a, b), we get that La|Ga,b∩Bad(a,b) = Lb ◦ πa,b|Ga,b∩Bad(a,b).

Counting bad triangles: Let S =
⋃

i Si. For any restrictions a1, a2, a3 of S1, S2, S3 let Ga1,a2,a3 denote
the graph T (R′

1 \S,R′
2 \S,R′

3 \S;D|(a1, a2, a3)) when (a1, a2, a3) is a valid restriction. Clearly, we have
thats

E
a3∼DS3 |(a1,a2)

[µGa1,a2,a3
(Bad(a1, a2))] = µGa1,a2

(Bad(a1, a2)).

Fix a1, a2. Using Markov’s inequality and (10) we get

Pr
a3∼DS3 |(a1,a2)

[
µGa1,a2,a3

(Bad(a1, a2)) >
1

100

]
≲ viol(Xa1 ;Ga1,a2) + viol(Xa2 ;Ga1,a2). (11)

We say a restriction (a1, a2, a3) is bad if µGa1,a2,a3
(Bad(ai, aj)) > 1/100 for some i ̸= j. By (11) we

get that,

E
(a1,a2,a3)∼D∪Si

[I((a1, a2, a3) is bad)]

⩽
∑
i∈[3]

E
(aj ,ak)∼DSj∪Sk

j,k ̸=i

E
ai∼DSi |(aj ,ak)

[I(µGa1,a2,a3
(Bad(aj , ak)) >

1

100
)]

≲
∑
i∈[3]

E
(aj ,ak)∼µSj∪Sk

j,k ̸=i

[viol(Xaj ;Gaj ,ak) + viol(Xak ;Gaj ,ak)]

=
∑
i∈[3]

E
ai∼DSi

[viol(Xai ;Gai)], (12)

where in the first inequality we used the union bound and in the second inequality we used (11). By definition
we have that viol(Xai ;Gai) ⩽ C(Gai)εai + β(Gai), where εai is the fraction of violated triangles in Gai .
Therefore,

(12) ⩽
∑
i∈[3]

E
ai∼DSi

[C(Gai)εai + β(Gai)] ≲ max
i∈[3]

ai∈supp(DSi )

(C(Gai)δ + β(Gai)) := δ′′.
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Creating a UG instance on graph over restrictions: Let Ψ be the following UG instance on H =
T (S1, S2, S3;D): each edge (ai, aj) has the constraint π−1

ai,aj . That is, we want to find a solution A that
maximizes the fraction of edges satisfying A(ai) = π−1

ai,ajA(aj). Note that a triangle (a1, a2, a3) is consis-
tent if π−1

a3,a1π
−1
a1,a2π

−1
a2,a3 = id or equivalently if πa2,a3πa1,a2πa3,a1 = id.

First note that if a triangle (a1, a2, a3) is not bad, then it is consistent. The proof is the same as that in
Lemma 3.5 hence we omit it here. Using the coboundary expansion of H , we get that there exists a UG
solution A to the vertices violating at most C(H)δ′′ + β(H)-fraction of the edges.

Since Si ⊂ Iji for all i, we get that maxa∈S1 a < minb∈S2 b and maxb∈S2 b < minc∈S3 c. Therefore by
Assumption 1, C(H) ⩽ poly(r) and β(H) ⩽ 2−r12 . Therefore viol(A) ⩽ poly(r)δ′′ + 2−r12 := δ′.

Lifting the solution: We will now use A to create a highly satisfying solution B to G = T (R′
1, R

′
2, R

′
3;D).

For every vertex v ∈ supp(µR′
i) and restriction a ∈ supp(DS1 |(XR′

i
= v)), let ga(v) denote the permutation

La[A(a)][v]. We will choose a randomized assignment as follows: to every vertex u ∈ supp(µR′
i), choose a

random s ∼ DS1 |(XR′
i
= u) and assign B(u) = gs(u). We will now upper bound the expected fraction of

edges that B violates for Φ.
Consider an edge (ui, uj) ∈ G between parts R′

i, R
′
j . This edge is satisfied if there exists s′ ∈

supp(DS1 |(XR′
i
= ui, XR′

j
= uj)) such that, (1) B(ui) = gs′(ui), (2) B(uj) = gs′(uj) and (3) The

assignment (gs′(ui), gs′(uj)) satisfies the edge (ui, uj) or equivalently (ui, uj) is satisfied by the assign-
ment Xs′ . To evaluate the probability there is such s′, we sample s′ ∼ DS1 |(XR′

i
= ui, XR′

j
= uj) and

consider each one of the events, starting with event (1). For it, the probability it doesn’t hold is at most

E
B

E
(ui,uj)∼G

E
s′∼DS1 |(XR′

i
=ui,XR′

j
=uj)

[I(B(ui) ̸= gs′(ui))] = E
u∈G

E
s,s′∼DS1 |u

[I(gs′(u) ̸= gs(u))].

To calculate this, let us first calculate a bound on:

E
u∈G

E
i ̸=j∈[3]

(s,s′)∼DSi∪Sj |u

[I(gs′(ui) ̸= gs(ui))].

Fix a vertex u ∈ R′
i for some i. It is easy to check that an if an edge (s, s′) ∈ T (S1, S2, S3;D|u) is satisfied

by A and u ̸∈ Bad(s, s′), then gs(u) = gs′(u). Thus,

E
u∈G

E
i ̸=j∈[3]

(s,s′)∼DSi∪Sj |u

[I(gs′(u) ̸= gs(u))]

⩽ E
u∈G

E
i ̸=j∈[3]

(s,s′)∼DSi∪Sj |u

[I((s, s′) not satisfied by A)] + E
u∈G

E
i ̸=j∈[3]

(s,s′)∼DSi∪Sj |u

[I(u ∈ Bad(s, s′))]

= viol(A) + E
(s,s′)∼E(T (S1,S2,S3;D))

u∈Gs,s′

[I(u ∈ Bad(s, s′))]

= δ′ + 2 E
u∈T (S1,S2,S3;D)

[viol(Xu)]

≲ δ′.

We are ready to bound the probability that event (1) does not happen. Towards this end, for each vertex
u define pu := Pr(s,s′)∼DS1∪S2 |u[gs′(u) ̸= gs(u)], so that the above inequality translates to Eu∈G[pu] ≲ δ′.
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Let p′u = Prs,s′∼DS1 |u[gs′(u) ̸= gs(u)]. By Lemma 2.6, the second largest singular value of the bipartite
graph A(S1, S2;D|u) is at most ε ·poly(r) ⩽ 0.01 for all u, so by the easy direction of Cheeger’s inequality
we get that, p′u ⩽ O(pu), which gives us that,

E
u∈G

E
s,s′∼DS1 |u

[I(gs′(u) ̸= gs(u))] ≲ δ′,

thus bounding the probability of event (1). One can check that the probability of event (2) is the same as
event (1), hence let us proceed to event (3). For that we get,

E
(ui,uj)∼G

E
s∼DS1 |(XR′

i
=ui,XR′

j
=uj)

[I((ui, uj) ∈ viol(Xs))] ≲ δ′.

We see that sampling an edge (ui, uj), s and s′ fails to satisfy at least one of the events (1), (2) and (3) with
probability at most O(δ′). Thus, with probability at most O(δ′) over the choice of (ui, uj) and s, there is
no s′ like that and otherwise we get that s′ satisfies all of (1), (2) and (3). This shows that in expectation
the assignment B that we get violates at most O(δ′) ⩽ poly(r)maxi∈[3]ai∈supp(DSi )(C(Gai)δ + β(Gai))
fraction of the edges of G, which completes the proof of (8), (9).

Concluding the induction: Let us now use (8), (9) to prove the lemma. For any sets R′
1, R

′
2, R

′
3 satisfying

the first two items in our assumption about R′
i’s above with |R′

i| = ℓk and distribution D as above we will
show by induction that C(T (R′

1, R
′
2, R

′
3;D)) ⩽ poly(r)ℓ·poly(r)r/k and β(T (R′

1, R
′
2, R

′
3;D)) ⩽ 2−Ω(r12).

Let us prove the base case first. When ℓ = 1, we can use Lemma 3.5 to bound C(T (R′
1, R

′
2, R

′
3;D)) by

O(C1,1,1(µ))
3k ⩽ poly(r)k ⩽ poly(r)r/k, since C1,1,1(µ) ⩽ poly(r) by Assumption 1. Our next base case

is when the sets R′
i’s do not satisfy the third item in the assumptions about R′

i’s. That is, for all but at most
two intervals Ij , |R′

i∩Ij | ⩽ k9+ci,j ⩽ k9+k6. This implies that |R′
i| ⩽ (r/k10)·(k9+k6)+2·(k10+k6) ≲

r/k. In this case, again using Lemma 3.5 we get that C(T (R′
1, R

′
2, R

′
3;D)) ⩽ poly(r)r/k as required.

Let us now show the inductive step. Assume that we have proved the statement for ℓ and let us prove it
for sets R′

i’s satisfying assumptions (1), (2) and (3) with |R′
i| = (ℓ+1)k. Applying (8) we get that there are

3k-sized Si’s so that,

C(T (R′
1, R

′
2, R

′
3;D)) ⩽ poly(r) · max

i∈[3],
ai∈supp(DSi )

(C(T (R′
1 \ Si, R

′
2 \ Si, R

′
3 \ Si;D|XSi = ai))).

One can now check that the sets (R′
1 \ S1, R

′
2 \ S1, R

′
3 \ S1) satisfy assumptions (1) and (2), therefore

C(T (R′
1 \ S1, R

′
2 \ S1, R

′
3 \ S1;D|a1)) ⩽ poly(r)ℓ · poly(r)r/k by the induction hypothesis. The same

holds for S2 and S3, thus giving us that, C(T (R′
1, R

′
2, R

′
3;D)) ⩽ poly(r)ℓ+1poly(r)r/k as required. This

implies that for ℓ = r/k, we get that C(T (R1, R2, R3;µ)) ⩽ poly(r)r/k.
Applying a similar argument on β gives that β(T (R1, R2, R3;µ)) ⩽ 2−Ω(r12).

4 Base Case and Extended Base Case for Spherical Buildings

In this section we establish bounds on the coboundary constants that serve as the base case presented in this
section. The discussion will be specialized to spherical buildings of type A, type C (for technical reasons,
in the end we will also have to discuss tensors of two types, but this will be straightforward).

To establish the base case of our induction we will use the cones method [Gro10, LMM16, KM22,
KM19, KO19]. The cones method allows one to prove coboundary expansion properties for a graph given
an efficient way triangulate certain cycles in our graphs of interest.
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Definition 4.1. A triangulation of a cycle C in a graph G is given by a set of vertices SC ⊆ V (G) such that
the induced subgraph on SC ∪ V (C) breaks into a union of triangles, where any two distinct triangles are
either disjoint or share an edge.

Notations: throughout this section, for subspaces A,B, we will often use the notation (A,B) to denote
the subspace A + B. Similarly, for a vector v and a subspace A, we will denote by (v,A) the subspace
span({v}) +A.

4.1 The Base Case for Spherical Buildings of Type A

Let Grd(k1, k2, k3) denote the tripartite graph whose vertices are k1, k2, k3-dimensional subspaces of Fd
q and

an edge is sampled by sampling a random chain V1 ⊂ V2 ⊂ V3 and choosing (Vi, Vj), i ̸= j ∼ [3]. We drop
the subscript d when clear from context.

Lemma 4.2. For all m ∈ N, k1 < k2 < k3 integers, let K = max(⌈ k2
k3−k2

⌉, ⌈ k2
k2−k1

⌉). Then Grd(k1, k2, k3)
is an (O(K2),poly(K)/q)-coboundary expander over Sm.

We break the proof into two cases according to which term larger, k2−k1 or k3−k2. Let us first discuss
the case when k3 − k2 ⩽ k2 − k1 and then later we discuss how to modify the proof in the other case.
For simplicity of notation we will assume that k1, k2, k3 are all multiples of k3 − k2, so set k = k3 − k2,
t = k3/k and t′ = k1/k. The same proof with some slight modifications works when this is not the case,
hence we omit those details.

Let G denote the graph Grd(k1, k2, k3) and Gi denote the vertices of dimension ki. First fix an arbi-
trary vertex U ∈ G3 and an arbitrary basis for it: u1, . . . , uk3 . Let U(1) denote the set of first k vectors,
{u1, . . . , uk}, U(2) the second set of k vectors and so on upto U(t). We now fix a set of paths from U to V
for most V ∈ G. Let B be a set of “block decompositions” for each subspace V ∈ G, i.e. B assigns V ∈ Gi

the blocks, B(V ) = (V(1), . . . , V(t)) with V(i) = U(i) for all i ⩽ t− ki/k and V = (V>t−ki/k).

4.1.1 Set of Good Vertices and Edges with respect to B when k3 − k2 ⩽ k2 − k1

1. Let Goodi(B) ⊆ Gi be the set of V ∈ Gi that satisfy for all i ∈ [t], dim(V(1), . . . , V(i), U>i) = k3. In
particular taking i = t this implies that dim(U⩽t−ki/k, V ) = k3.

2. For all b < a ∈ [3] let Goodab(B) ⊆ E(Ga, Gb) be the set of edges (V,W ) with W ⊂ V that satisfy

(a) Both V,W ∈
⋃

a′∈[3] Gooda′(B).
(b) For all j < i ∈ [t], dim(V⩽j ,W(j+1), . . . ,W(i), U>i) = k3.

Claim 4.3. Let V1, V2 ⊆ Fd
q be d1, d2 dimensional subspaces respectively, and suppose that d3 + d1 ⩽ d2.

Then
Pr

V3⊆d3
V2

[dim(V3 + V1) < d3 + d1] ⩽
1

q − 1
.

Proof. Let U = V1 ∩ V2 and write V = U + V ′
1 with V ′

1 ∩ V2 = {0}. Then:

Pr
V3⊂d3

V2

[V3 ∩ U = {0}] ⩾
d3−1∏
i=0

(
qd2 − qd1+i

qd2

)
⩾ 1− 1

q − 1
.

If V3 ∩ U = {0} then V3 ∩ V1 = {0} too, hence dim(V3 + V1) = d3 + d1 thus completing the proof.
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Lemma 4.4. There exists a block decomposition B such that for all b < a ∈ [3]:

Pr
V∼Ga

[V ∈ Gooda(B)] ⩾ 1−O

(
t

q

)
Pr

V∼Ga
W⊂bV

[(V,W ) ∈ Goodab(B)] ⩾ 1− poly(t)

q
.

Proof. Let us consider a random block decomposition B, that for each subspace V ∈ Ga, picks a sequence
of random subspaces:

V(t−ka/k+1) ⊂k (V(t−ka/k+1), V(t−ka/k+1)) ⊂2k . . . ⊂ka−k V,

and sets V(i) = U(i) for all i ⩽ t − ka/k. Let us prove that with high probability V ∈ Gooda. Fix some
i ∈ [t] and let F ⊂ [t] be the set {1, . . . , t − ka/k} ∪ {i + 1, . . . , t}. For a set S ⊂ [t], let US denote the
subspace span(U(i) | i ∈ S). Then using Claim 4.3 we get,

Pr
V∼Ga,B

[dim(V⩽i, U>i) = k3] = Pr
V∼Ga,B

[dim(VF , UF ) = k3] ⩾ 1− 1

q − 1
,

where we used that VF is distributed as a uniformly random k(t − |F |)-dimensional subspace. Taking a
union bound over i ∈ [t] we get that,

Pr
V∼Ga,B

[V ∈ Gooda(B)] ⩾ 1− t

q − 1
, (13)

establishing the first item. For the second item, fix b < a ∈ [3], j < i ∈ [t], and let

F = [t− ka/k] ∪ {i+ 1, . . . , t} ∪ ([t− kb/k] ∩ {j + 1, . . . , i}), R1 = [j] \ F, R2 = {j + 1, . . . , i} \ F.

We have:

Pr
W⊂k1

V,B
[dim(V⩽j ,W(j+1), . . . ,W(i), U>i) = k3]

= Pr
W⊂V,B

[dim(VR1 ,WR2 , UF ) = k3]

= Pr
V,B

[dim(VR1 , UF ) = (|R1|+ |F |)k]

· Pr
W⊂k2

V,B
[dim(VR1 ,WR2 , UF ) = k3 | dim(VR1 , UF ) = (|R1|+ |F |)k]. (14)

The first term is at least 1 − 1
q−1 by Claim 4.3, and we next lower bound the second term. By symmetry,

it suffices to bound it for a fixed VR1 which satisfies dim(VR1 , UF ) = (|R1| + |F |)k. We will first show
that the distribution over WR2 conditioned on VR1 is O(1/q)-close to uniform. Indeed, by Claim 4.3 with
probability 1−O(1/q) we have that W ∩T = {0}. Conditioned on this, WR2 is a uniformly random |R2|k-
dimensional subspace amongst |R2|k-dimensional subspaces intersecting VR1 at {0}. The latter distribution
is O(1/q)-close to a uniformly random |R2|k-dimensional subspace, as by Claim 4.3 the probability a ran-
dom |R2|k-dimensional subspace intersects VR1 at {0} is 1−O(1/q). When WR2 is chosen to be a uniformly
random |R2|k-dimensional subspace we can easily bound the probability that dim(VR1 ,WR2 , UF ) = k3 us-
ing Claim 4.3. Therefore we get,

Pr
W⊂k2

V,B
[dim(VR1 ,WR2 , UF ) = k3 | dim(VR1 , UF ) = (|R1|+ |F |)k] ⩾ 1−O(1/q).
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Plugging this back into (14) and taking a union bound over all j < i ∈ [t] we get,

Pr
(V,W )∼E(Ga,Gb),B

[(V,W ) ∈ Goodab(B)] ⩾ 1− poly(t)

q
. (15)

An averaging argument on (13) and (15) now gives us that there is a B for which most vertices and edges
are good as required.

Henceforth fix a block decomposition B satisfying the conclusions of Lemma 4.4.

4.1.2 Constructing the Paths when k3 − k2 ⩽ k2 − k1

In this section, fixing U , we construct collections of canonical paths between U and good vertices in our
graph. For each V ∈

⋃
i∈[3] Goodi(B), this is achieved using the block decomposition of V as follows:

P (U, V ) =(U(1), . . . , U(t)) → (U(2), . . . , U(t)) → (V(1), U(2), . . . , U(t))

→ (V(1), U(3), . . . , U(t)) → (V(1), V(2), U(3), . . . , U(t)) → . . .

→ (V(1), . . . , V(t−1), U(t)) → (V(1), . . . , V(t−1)) → (V(1), . . . , V(t)) → V,

where we omit the last step if V ∈ G3 since V = (V(1), . . . , V(t)). Note that since V ∈ Goodi, this path
alternates between vertices from S3 and S2. When V ∈ G1 or G2, the subspace U appears more than once
on the path, and the path from U to V could be shortened. We use this longer path instead to keep things
notationally simpler, since now all paths are of length either 2t or 2t+ 1.

4.1.3 Triangulating Cycles when k3 − k2 ⩽ k2 − k1

Having constructed paths from U to all good vertices, we notice that if (W,V ) is an edge in the graph, then
together with the paths from U we have a cycle C(U, V,W ). In the following lemma, we show how to
triangulate this cycle using a small number of triangles.

Lemma 4.5. When k3−k2 ⩽ k2−k1, for every edge (V,W ) ∈
⋃

b<a∈[3] Goodab(B), the cycle C(U, V,W ) =

U
P (U,V )−−−−→ V → W

P (W,U)−−−−−→ U has a triangulation of size O(( k3
k3−k2

)2).

Proof. To make notation simpler we will give a triangulation T (U, V,W ) of the cycle with some repeating
vertices. We put in edges between two vertices that are the same, and label them with the identity permu-
tation. These are called “equality edges”. This introduces triangles that might have at least two identical
vertices, but it is easy to see that such a triangle is consistent, hence we can use these triangles essentially
for free.

Tiling by 8-cycles when V ∈ G3 and W ∈ G2: Let W ′ = (W(1), . . . ,W(t)) with W(1) = U(1), W =

(W⩾2), and V = (V(1), . . . , V(t)). To get a triangulation we first create paths between the (2i)th vertex on the
path P (U, V ) and the (2i)th vertex on P (U,W ) for all i ∈ {1, . . . , t}. Recall that P2i(U, V ) = (V⩽i, U>i)
and P2i(U,W ) = (W⩽i, U>i). For i ∈ [t] we take the obvious path Ri(U, V,W ) between P2i(U,W ) and
P2i(U, V ) that flips a block of W to a block of V one at a time:

Ri(U, V,W ) :=P2i(U,W ) → (W(2), . . . ,W(i), U>i) → (V(1),W(2), . . . ,W(i), U>i) → . . . → P2i(U, V ),
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that alternates between k3 and k2 dimensional vertices. Here we used the fact that (V,W ) ∈ Good32(B)
which implies that the intermediate odd vertices – (V⩽j ,W(j+1), . . . ,W(i), U>i), on the path Ri above are
of dimension k3.

Let us henceforth drop the notation U, V,W in Ri(U, V,W ) since U, V,W are fixed. First note that by
creating the paths Ri, we have broken the original cycle C(U, V,W ) into O(t) cycles of the form:

Ci = P2i(U,W )
Ri

−→ P2i(U, V ) → P2i+1(U, V ) → P2i+2(U, V )
Ri+1

−−−→ P2i+2(U,W ) → P2i+1(U,W )

→ P2i(U,W ),

for i ∈ [t− 1] and

Ct = W ′ = (W(1), . . . ,W(t))
Rt

−→ V = (V(1), . . . , V(t)) → W → V.

We will tile each Ci by 8-cycles and triangles, starting with i ∈ [t − 1]. For all j ∈ [1, i + 1], let Ri
j

denote the (2j − 1)th vertex on the path Ri, that is,

Ri
j = (V<j ,W(j), . . . ,W(i), U>i).

It is easy to see that for all j ∈ [1, i+ 1], the vertices Ri
j and Ri+1

j are connected via a path of length two:

Ri
j → (V<j ,W(j), . . . ,W(i), U⩾i+2, . . . , U(t)) → Ri+1

j .

As for the last part of the cycle, the vertex P2i+1(U, V ), occurs as the middle vertex in all the following
length 2 paths: 1) Ri

i+1 = P2i(U, V ) → Ri+1
i+1, 2)P2i(U, V ) → P2i+2(U, V ) and Ri+1

i+1 → Ri+1
i+2. Thus using

equality edges between these vertices we can check that the whole cycle has been broken into O(t) 8-cycles
and O(1) triangles (see figure below).

Let us now tile the cycle Ct. We have that the first three vertices of Rt are W ′, (W⩾2) and (V(1),W⩾2)
which are all connected to W . Additionally including (V(1),W⩾2), every other odd vertex on Rt, i.e. for all
j ∈ [2, t+ 1], Rt

j = (V<j ,W(j), . . . ,W(t)) is contained (as a subspace) in V since both W and V ′ are in V .
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Since the dimensions match it means that these are all equal to V and therefore we can put in equality edges
between them. Similarly every intermediate vertex (k2-dimensional) on Rt is contained in V . This means
that Ct is broken into O(t) triangles. So overall C(U, V,W ) has been broken into O(t2) 8-cycles and O(t)
triangles.

Tiling by 8-cycles when V ∈ G3 and W ∈ G1: Let W ′ = (W(1), . . . ,W(t)), where W = (W>t−k1/k+1) ⊂
V . Now we create the same paths Ri of length 2i+ 1 between P2i(U,W ) → P2i(U, V ) for all i ∈ [t], and
each vertex on these paths is in S3 or S2 because (V,W ) ∈ Good31(B). This breaks the cycle into the cycles
Ci, for i ∈ [t]. The tiling of Ci, i ∈ [t − 1] proceeds identical to the first case, therefore let us discuss the
tiling of the last cycle:

Ct = W ′ = (W(1), . . . ,W(t))
Rt

−→ V = (V(1), . . . , V(t)) → W → W ′.

As in the case above, we have that the first 2(t − k1/k) + 1 vertices of Rt are all connected to W , since
they are of the form (V<j , U(j), . . . , U(t−k1/k),W ). After that all subsequent odd vertices on Rt, i.e. for all
j ∈ [t − k1/k + 1, t], Rt

j = (V<j ,W(j), . . . ,W(t)) are connected to V . This means that Ct is broken into
O(t) triangles. So overall C(U, V,W ) has been broken into O(t2) 8-cycles and O(t) triangles.

(V,W ) is an edge between G2 and G1: We can show that C(U, V,W ) in this case too can be broken into
O(t2) 8-cycles and O(t) triangles. The proof for the cycles Ci for i ∈ [t−1] is the same, so we only discuss
the tiling of Ct. We have that,

Ct = W ′ = (W(1), . . . ,W(t))
Rt

−→ V ′ = (V(1), . . . , V(t)) → V → W → W ′,

where W = (W>t−k1/k), V = (V>t−k2/k). Again we have that the first 2(t − k1/k) + 1 vertices of
Rt are all connected to W , since they are of the form (V<j , U(j), . . . , U(t−k1/k),W ). Then the vertex
(V⩽t−k1/k,W ) is additionally connected to V ′, V . After that all subsequent vertices on Rt, i.e. for all
j ∈ [t− k1/k+1, t− 1], Rt

j = (V⩽j ,W(j), . . . ,W(t)) and the intermediate vertices in G1 are all connected
to V ′, by the same reasoning as the above two cases. This means that Ct is broken into O(t) triangles.

Triangulating the 8-cycles: Having shown that the cycle C(U, V,W ) can always be tiled by at most O(t2)
8-cycles and O(t) triangles, it suffices to show that each one of the resulting 8-cycles can be triangulated in-
dividually. Towards this end, we first notice that the 8-cycles we formed consist of edges between subspaces
of dimension k3 and k2. Thus, to triangulate them we will have to use auxiliary vertices of dimension k1.

Note that each 8-cycle in the above tiling is of the following form for some 1 ⩽ j < i ∈ [t]:

(W(j), U(i), X) → (W(j), X) → (W(j),W(i), X) → (W(i), X)

→ (V(j),W(i), X) → (V(j), X) → (V(j), U(i), X) → (U(i), X) → (W(j), U(i), X),

with X = (V⩽j−1,W(j+1), . . . ,W(i−1), U(>i)). We know that dim(X) = k2 − k = 2k2 − k3 and since
k2 − k1 ⩾ k3 − k2, dim(X) ⩾ k1. This implies that there is some k1-dimensional subspace Y ⊆ X that is
contained within all the vertices of this 8-cycle. Putting this vertex in the middle of the 8-cycle completes
the triangulation of this cycle.

Size of Triangulation: In total we used O((k3/k3 − k2)
2) 8-cycles, each of which used O(1) triangles

thus completing the proof.
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4.1.4 The Case that k3 − k2 > k2 − k1

We now move on to discuss the case that k2 − k1 ⩽ k3 − k2 and let k = k2 − k1, t = k2/k henceforth.
We will need to use a different set of paths, and towards this end we fix an arbitrary vertex U ∈ G2 and an
arbitrary basis for it: u1, . . . , uk2 . Let U(1) denote the set of first k vectors, {u1, . . . , uk}, U(2) the second
set of k vectors and so on up to U(t). We now fix a set of paths from U to V for most V ∈ G. We will
choose a block decomposition B for each subspace V ∈ G, namely:

1. For V ∈ G2, B(V ) = (V(1), . . . , V(t)) = V .

2. For every V ∈ G1, let V ′ = (V(1), . . . , V(t)) for V(1) = U(1) and V = (V⩾2).

3. For V ∈ G3, the decomposition B first associates with V a k2-dimensional subspace V ′ ⊆ V along
with its block decomposition V ′ = (V(1), . . . , V(t)).

As before, we will need the block decomposition B to satisfy several genericness properties, that we explain
next.

Set of Good Vertices and Edges with respect to B when k3 − k2 > k2 − k1:

1. Let Goodi(B) ⊆ Gi be the set of V ∈ Gi that satisfy for all i ∈ [t],dim(V(1), . . . , V(i), U>i) = k2.

2. For all b < a ∈ [3] let Goodab(B) ⊆ E(Ga, Gb) be the set of edges (V,W ) with W ⊂b V that satisfy,

(a) Both V,W ∈
⋃

a∈[3] Gooda(B).
(b) For all j < i ∈ [t],dim(V⩽j ,W(j+1), . . . ,W(i), U>i) = k2.

Analogously to Lemma 4.4 one can show that there is a B for which 1− poly(t)/q-fraction of vertices
and edges are good, and we fix such B henceforth.

4.1.5 Constructions the Paths when k3 − k2 > k2 − k1

For a vertex V ∈
⋃

i∈[3] Goodi(B), we first construct a path P (U, V ′), where V ′ = (V(1), . . . , V(t)), by
flipping a block of U to a block of V ′ one at a time. One can check that this path alternates between k2 and
k1-dimensional vertices since V is good. If V ∈ G2, then V ′ = V and we are done, else in the last step we
go from V ′ → V .

4.1.6 Triangulating Cycles when k3 − k2 > k2 − k1

Having formed the paths P (U, V ), we now note that if (V,W ) is an edge, then P (U, V ), (V,W ), P (U,W )
form a cycle. We call this cycle C(U, V,W ) as before, and show that it can be triangulated using a small
number of triangles.

Lemma 4.6. Suppose that k2 − k1 ⩽ k3 − k2, and let (V,W ) ∈
⋃

b<a∈[3] Goodab(B) be an edge. Then

cycle C(U, V,W ) = U
P (U,V )−−−−→ V → W

P (W,U)−−−−−→ U has a triangulation of size O(( k2
k2−k1

)2).

Proof. We only give a proof sketch here since the details are exactly the same as Lemma 4.5. To create
the paths Ri we take the obvious path between P2i(U,W ) and P2i(U, V ) by flipping one block at a time,
alternating between k2 and k1-dimensional vertices (instead of k2, k3-dimensional ones). Then putting in
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the length two paths between Ri
j and Ri+1

j (that are two k2-dimensional vertices, that can be connected
using one k1-dimensional vertex) we break the cycle into O(t2) 8-cycles and O(t) triangles.

Note that each 8-cycle in the above tiling is of the following form for some 1 ⩽ j < i ∈ [t]:

(W(j), U(i), X) → (W(j), X) → (W(j),W(i), X) → (W(i), X)

→ (V(j),W(i), X) → (V(j), X) → (V(j), U(i), X) → (U(i), X) → (W(j), U(i), X),

with X = (V⩽j−1,W(j+1), . . . ,W(i−1), U(>i)), with dim(X) = k1−k = 2k1−k2. Since k3−k2 ⩾ k2−k1,
we get that k3 ⩾ k2+k. Therefore to tile this cycle we can use the vertices: X0 = (V(j),W(j), X, Y0), where
Y0 is chosen so that dim(X0) = k2, X1 = (X0, U(i), Y1), and X2 = (X0,W(i), Y2) where Y1, Y2 are chosen
so that dim(X1) = dim(X2) = k3. This is possible since dim(X0,W(i)), dim(X0, U(i)) ⩽ k2 + k ⩽ k3.
The figure below shows that after adding these in the cycle breaks into triangles.

As for the size of the triangulation: we had O(t2) 8-cycles, each tiled by O(1) triangles, which gives an
overall triangulation size of O((k2/k2 − k1)

2) as required.

4.1.7 Proof of Lemma 4.2

Given the paths P (U, V ) and triangulations T (U, V,W ) for every good edge (V,W ), it is easy to complete
the proof of Lemma 4.2 using the fact that GLd(Fq) acts transitively on the triangles of Gr(k1, k2, k3).

For each invertible linear transformation L ∈ GLd(Fq), and a subspace V let L(V ) denote the sub-
space span(Lv | v ∈ V ) and let L−1(V ) denote the subspace W such that L(W ) = V . For every
V ∈

⋃
i∈[3] Goodi(B) let PL(L(U), L(V )) denote the path from L(U) → L(V ) where at the ith-step

we have the vertex L(Pi(U, V )). It is easy to see that this is a valid path from L(U) to L(V ). For a tri-
angle ∆ let L(∆) denote the triangle whose vertices are L(Ui), ∀Ui ∈ ∆. In fact for every good edge

(V,W ) we can let TL(L(U), L(V ), L(W )) be the triangulation of the cycle L(U)
PL(L(U),L(V ))−−−−−−−−−→ L(V ) →

L(W )
PL(L(W ),L(U))−−−−−−−−−−→ L(U) where a triangle in this triangulation is given by L(∆) for ∆ ∈ T (U, V,W ).

Again it is easy to see that this is a valid triangulation of the cycle for every edge (V,W ) ∈
⋃

b<a Goodab(B)
with the same size as T (U, V,W ).

We have the following randomized algorithm to get a highly satisfying UG solution to an arbitrary UG
instance Φ.
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Algorithm 1 (Φ = (Gr(k1, k2, k3),Π)).
Input: UG instance Φ on Gr(k1, k2, k3).
Output: A function f : V (Gr(k1, k2, k3)) → Sm.

1. Choose a random linear transformation L ∈ GLd(Fq) and set f(L(U)) = id.

2. For each subspace V ∈ ∪i∈[3]Goodi(B), assign fL(L(V )) the label obtained by propagating the
label of L(U) to L(V ) via the path PL(L(U), L(V )), chosen appropriately according to whether
k3 − k2 or k2 − k1 is larger.

3. For every subspace V /∈ ∪i∈[3]Goodi(B) choose an arbitrary label for L(V ).

We now complete the proof of Lemma 4.2 via the following lemma:

Lemma 4.7. Let Φ be any UG instance over Sm with incons(Φ) = δ. Then in expectation over L ∼
GLd(Fq), the algorithm violates at most O(K2)δ + poly(K)/q-fraction of edges, where

K = max

(⌈
k2

k3 − k2

⌉
,

⌈
k2

k2 − k1

⌉)
.

Proof. Suppose the propagation algorithm chooses a linear transformation L. Let fL : V (Gr(k1, k2, k3)) →
Sm denote the assignment outputted by Algorithm 2 in this case. Let E denote E(Gr(k1, k2, k3)) and let
Good(E) =

⋃
b<a Goodab(B). For every (V,W ) ∈ Good(E), the edge (L(V ), L(W )) is satisfied by fL

if the cycle L(U)
PL(L(U),L(V ))−−−−−−−−−→ L(V ) → L(W )

PL(L(W ),L(U))−−−−−−−−−−→ L(U) is consistent. Furthermore this
is true if every triangle in TL(L(U), L(V ), L(W )) is consistent. Recall that this is the set of triangles
L(∆),∆ ∈ T (U, V,W ). So we get that,

viol(fL) ⩽ Pr
(V,W )∼E

[(V,W ) /∈ Good(E)] + E
(V,W )∼Good(E)

[I(∃∆ ∈ T (L(U), L(V ), L(W )) ∩ incons(Φ)]

⩽
poly(K)

q
+ max

(V,W )∈Good(E)
(|T (U, V,W )|) E

(V,W )∼Good(E)
E

∆∈T (U,V,W )
[I(L(∆) ∈ incons(Φ)]

⩽
poly(K)

q
+O(K2) E

(V,W )∼Good(E)
E

∆∈T (U,V,W ))
[I(L(∆) ∈ incons(Φ)],

where in the second inequality we used Lemma 4.4 and the last one we used Lemmas 4.5 and 4.6 to bound
the size of the triangulation. Now taking an expectation over L ∼ GLd(Fq) we get:

E
L
[viol(fL)] ⩽

poly(K)

q
+O(K2) E

(V,W )∼Good(E)
E

∆∈T (U,V,W ))
E
L
[I(L(∆) ∈ incons(Φ)]

⩽
poly(K)

q
+O(K2)δ,

which completes the proof.

4.2 The Base Case for Spherical Buildings of Type C

Let µ be the uniform distribution over chains of isotropic subspaces (V1 ⊂ . . . Vd) of F2d
q , with dim(Vi) = i.

For k1, k2, k3 ⩽ d let Sd(k1, k2, k3) denote the tripartite graph T ({k1}, {k2}, {k3};µ), where we drop the
subscript d when clear from context. We will prove that:
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Lemma 4.8. For all m ∈ N, 0 < k1, k2, k3 ⩽ d, let K = max(⌈ k2
k3−k2

⌉, ⌈ k2
k2−k1

⌉). Then S(k1, k2, k3) is an
(O(K2), poly(K)/q)-coboundary expander over Sm.

The proof of this statement will follow closely along the lines of Lemma 4.2.

4.2.1 Auxiliary Claims

Claim 4.9. For t < k < d ∈ N, given isotropic subspaces W1,W2 ⊆ F2d
q with dim(W1) = d0 − k and

dim(W2) = d0, there exists an isotropic subspace W ⊆ W2 satisfying dim(W ) = k, and W ∩(W1∩W2) =
{0} such that W +W1 is a d0-dimensional isotropic subspace.

Proof. Define U = W1 ∩W2 and denote d1 = dim(U). We can write W1 = U +W ′
1 and W2 = U +W ′

2

with W ′
1 ∩W ′

2 = {0}. Let V be the subspace of vectors v satisfying ω(v, w′) = 0 for all w′ ∈ W ′
1. Note

that V has dimension 2d− dim(W ′
1) = 2d− d0 + k + d1. Also

dim(V ∩W ′
2) = dim(V ) + dim(W ′

2)− dim(V +W ′
2) ⩾ (2d− d0 + k + d1) + (d0 − d1)− 2d = k.

Take W ⊆ V ∩W ′
2 of dimension k. Since W ⊆ W ′

2 we get that W is isotropic, and as W ⊆ V we get that
W +W ′

1 is isotropic. Next, note that W ∩W1 ∩W2 ⊆ W ⊆ W ′
2 ∩ U = {0}. Finally, now that

dim(W +W1) = k + (d0 − k)− dim(W ∩W1) = d0,

as W ∩W1 ⊆ W ∩W1 ∩W ′
2 ⊆ W ∩W1 ∩W2 = {0}.

For an isotropic subspace U , let Symp(U) denote the subspace that is symplectically orthogonal to U , i.e.
for all w ∈ Symp(U), u ∈ U, ω(w, u) = 0. We note the standard facts that dim(Symp(U)) = 2d−dim(U)
and Symp(U ⊕ V ) = Symp(U) ∩ Symp(V ). We also have that dim(U ∩ Symp(W )) = dim(U) −
dim(W )+dim(Symp(U)∩W ). In particular, when dim(U) = dim(W ) we get that dim(U∩Symp(W )) =
dim(Symp(U) ∩W ).

Claim 4.10. The following facts are true for sufficiently large q:

1. Fix a subspace U , let 1 ⩽ i ⩽ d and choose an isotropic subspace W of dimension i uniformly at
random. Then:

(a) With probability at least 1− 4
q we have that

dim(U ∩ Symp(W )) = max(0,dim(U)− dim(W )).

(b) With probability at least 1− 4
q we have that

dim(Symp(U) ∩W ) = max(0,dim(W )− dim(U)).

2. Choosing maximal isotropic subspaces U,W of F2d
q randomly, we have that U ∩ W = {0} with

probability at least 1− 4
q .

Proof. We prove each item separately, and we begin with the first item. We start with (a), and assume that
dim(U) ⩾ i; otherwise we replace U by a subspace of dimension i that contains it. Choose w1, . . . , wi

uniformly conditioned on wj being symplectically orthogonal to w1, . . . , wj−1 for all j. Define the vectors
w′
1, . . . , w

′
i by wj(s) = −wj(s + d) for s ⩽ d, and wj(s) = wj(s − d) for s > d. Thus, the space
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U ∩ Symp({w1, . . . , wi}) corresponds to all vectors in U that are orthogonal to w′
1, . . . , w

′
i. Note that for

each 1 ⩽ j ⩽ i and α1, . . . , αj−1 ∈ Fq, the marginal distribution of w′
j +

j−1∑
ℓ=1

αℓw
′
ℓ is uniform, and hence

it is orthogonal to U with probability at most q(2d−dim(U))−2d = q− dim(U). It follows that no vector in
span({w′

1, . . . , w
′
i}) is orthogonal to U with probability at least

1−
i∑

j=1

qj−1q− dim(U) ⩾ 1− 2

q(i−1)−dim(U)
⩾ 1− 2

q
,

where we used the fact that dim(U) ⩾ i. Next, we note that the probability that w1, . . . , wi is linearly
independent is at least

1−
i∑

j=1

q2j

q2d
⩾ 1− 2

q2i

q2d
,

in which case w′
1, . . . , w

′
i are linearly independent too. It follows from the union bound that with probability

at least 1− 3
q , the set w1, . . . , w

′
i is linearly independent and no vector in it is orthogonal to U , in which case

the subspace in U of vectors orthogonal to w1, . . . , w
′
i has dimension dim(U)− i, and (a) follows.

We move on to proving (b). Note that

dim(Symp(U) ∩W ) = dim(Symp(U)) + dim(W )− dim(Symp(U)⊕ dim(W ))

= dim(Symp(U)) + dim(W )− 2d+ dim(U ∩ Symp(W ))

= i− dim(U) + dim(U ∩ Symp(W )),

and the result follows from (a).
The second item follows immediately from the first item with i = d.

Claim 4.11. Let A,B be such that dim(A) = dim(B) = k. Then there exists a randomized algorithm to
choose A′ ⊆k−1 A, b ∈ B such that A′ + span({b}) is an isotropic subspace and for all d0-dimensional C
where (A+ C) and (B + C) are two d0 + k-dimensional isotropic subspaces,

Pr
A′,b

[dim(A′ + span({b}) + C) = d0 + k] ⩾ 1−O

(
1

q

)
.

Proof. We know that A ∩ C = B ∩ C = {0}, and there are two cases:

1. If there is no b ∈ B that is isotropic to all of A, then choose A′ ⊂k−1 A arbitrarily, and let b ∈ B so
that A′ + span({b}) is a k-dimensional isotropic subspace by Claim 4.9. In this case, we know that
B ∩ (A + C) = {0}, because every vector in A + C is in Symp(A). Therefore b /∈ A′ + C, which
gives that,

dim(A′ + span({b}) +C) = dim(A′ +C) + dim(span({b})) = dim(A′) + dim(C) + 1 = d0 + k,

as required.

2. If there is some non-zero b0 ∈ B ∩ Symp(A), then choose b = b0 and choose a uniformly random
A′ ⊂k−1 A. Note that A′+ span({b}) is an isotropic subspace. Furthermore dim((C+ span({b0}))∩
A) ⩽ 1 since dim(C∩A) = 0. If dim((C+span({b0}))∩A) = 0, then dim(C+span({b0})+A′) =
d0+ k, as required. Else, (C+ span({b0}))∩A = span({v}) for some v ̸= 0; by Claim 4.3 we know
that A′ ∩ span({v}) = {0} with probability 1 − O(1/q), in which case (C + span({b0})) ∩ A′ = ∅
and dim(C + span({b0}) +A) = d0 + k as required.
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4.2.2 Constructing Paths

In this section, we set up paths between vertices in the spherical building that will be convenient for us to
triangulate. Let Si denote the vertices of dimension ki, and let k = k2 − k1. For simplicity of notation
we will assume that k2 is a multiple of k and that k1 ⩾ k (and so k1 is also a multiple of k). The same
proof with some slight modifications works when this is not the case, and in Section 4.2.6 we explain the
necessary modifications.

Fix an arbitrary vertex U ∈ S2, and pick an arbitrary basis for U : {u1, . . . , uk2}. Let U(1) denote the set
of first k vectors, {u1, . . . , uk}, U(2) the second set of vectors and so on up to U(t) for t = k2/k. Note that
k1 = k(t− 1). Define:

1. Good1 ⊆ S1 to be the set of subspaces V that satisfy the following: V ∩ U = {0}, and for all
i ∈ [t−1], dim(V ∩Symp(U>i)) = (i−1)k and dim(Symp(V )∩Symp(U>i)) = 2d−k1−k2+ ik.

2. Good2 ⊆ S2 to be the set of subspaces V that satisfy the following: V ∩ U = {0}, and for all
i ∈ [t− 1], dim(V ∩ Symp(U>i)) = ik.

3. Good3 ⊆ S3 to be the set of subspaces V that satisfy the following: V ∩ U = {0} and dim(V ∩
Symp(U)) = k3 − k2.

Lemma 4.12. For all i ∈ [3]:

Pr
V∼Si

[V ∈ Goodi] ⩾ 1−O

(
t

q

)
.

Proof. Immediate from Claim 4.10 and the union bound.

Setting up Paths from U : We will now be interested in constructing paths from U to other vertices V
in the graph. Towards this end, for fixed U and V we will associate with V a vertex V ′. In the case
that dim(V ) = k2, we will take V ′ = V , and otherwise V ′ will be an appropriately chosen subspace or
superspace of V .

1. For a vertex V of dimension k2, using Claim 4.9 on V and U⩾2 we find V(1) ⊆k V such that
(V(1), U(2), . . . , U(t)) ∈ S2. Applying this claim iteratively, we find V(2) such that

(V(1), V(2), U(3), . . . , U(t)) ∈ S2,

and so on. Then consider the following path from U → V which flips a block of U to a block of V
one at a time:

P (U, V ) =(U(1), . . . , U(t)) → U⩾2 → (V(1), U⩾2) → (V(1), U⩾3) → (V(1), V(2), U⩾3) → . . .

→ (V<t, U(t)) → V<t → V.

Note that this path alternates between vertices of S2 and S1. We set V ′ = V .

2. For a vertex V of dimension k3, we know that dim(V ∩Symp(U)) = k3−k2, and thus we may choose
V ′ ⊂k2 V such that V ′ ∩ Symp(U) = {0}. Consider its block decomposition V ′ = (V(1), . . . , V(t))
such that for all i ⩽ t, (V(1), . . . , V(i), U(i+1), . . . , U(t)) ∈ S2. As shown above, we know that such a
decomposition is possible using Claim 4.9 iteratively. Then consider the following path from U → V
which flips a block of U to a block of V one at a time similar to the above:

P (U, V ) =(U(1), . . . , U(t)) → U⩾2 → (V(1), U⩾2) → (V(1), U⩾3) → (V(1), V(2), U⩾3) → . . .

→ V ′ → V.
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3. We only give a path from U to V ∈ Good1. For such a V , we first find V(1) of dimension k such that
(V(1), V ) and (V(1), U⩾2) are in S2 and V(1) ∩ U(1) = 0. Such a subspace exists because

dim(Symp(U⩾2) ∩ Symp(V )) = 2d− k1 − k2 + k ⩾ 2(d− k2) + 2k ⩾ 2k.

By Claim 4.10 picking a random k-dimensional isotropic subspace V(1) from the intersection will
satisfy that V(1) ∩ Symp(U(1)) = {0}, since Symp(V ) ∩ Symp(U) is a co-dimension k subspace of
Symp(U⩾2)∩Symp(V ). Additionally both (V(1), V ) and (V(1), U⩾2) are isotropic. Since V ∈ Good1,
Symp(V )∩U⩾2 = V ∩Symp(U⩾2) = {0}, which gives us that V(1)∩V = V(1)∩U⩾2 = {0} implying
that (V(1), V ) and (V(1), U⩾2) are in S2.

Now set V ′ = (V(1), V ) and consider the a path from U → V . This path is the result of the above
process for k2 dimensional vertices applied on V ′, where we already picked V(1), followed by a final
step from V ′ to V .

P (U, V ) =U → U⩾2 → (V(1), U⩾2) → (V(1), U⩾3) → (V(1), V(2), U⩾3) → . . .

→ (V(1), . . . , V(t)) → V.

Note that this path too alternates between vertices from S2 and S1.

The block decomposition above satisfies the following properties:

Claim 4.13. Fix U and take V ∈
⋃

i∈[3] Goodi, let V ′ be the associated vertex with V and write V ′ =
(V(1), . . . , V(t)) the block decomposition chosen by the path from U as above. Then for all i ∈ [t], V(i) ∩
Symp(Ui) = {0}.

Proof. We split the proof to cases.

The case that dim(V ) = k2: in that case, by construction and definition of Good2 we have that for i ⩾ 2
it holds that V ∩ Symp(U⩾i) = V⩽i−1. By this equality for i + 1 instead of i, it follows that each v ∈ V(i)

is symplectic to U⩽i+1, and we conclude that

V(i) ∩ Symp(Ui) = V(i) ∩ Symp(U⩾i) = V(i) ∩ V ∩ Symp(U⩾i) = V(i) ∩ V⩽i−1 = {0}.

The case that dim(V ) = k3. In that case, we picked V ′ ⊆ V of dimension k2 such that V ′ ∩ Symp(U) =
{0}, and the proof is exactly as in the previous case.

The case that dim(V ) = k1: by construction V(1) ∩ Symp(U1) = {0}. For i ⩾ 2, the fact that V(i) ∩
Symp(Ui) = {0} follows from the same argument above, as the path from U to V ′ is constructed in the
same way.

4.2.3 Constructing the Triangulations: Handling Special 8-cycles

With the paths P (U, V ), we would like to construct triangulations of cycles that they form. Towards this
end, we will have to triangulate 8-cycles of a special form as in the following lemma:
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Lemma 4.14. Let k ⩽ k1 < k2 < k3 ⩽ d with k3 ⩾ k2 + k, let A,B,C,D be k-dimensional isotropic
subspaces, let X be a k2− 2k-dimensional isotropic subspace and let X1, X2 ⊆ X be of dimension k1− k.
Suppose that C ∩ Symp(D) = Symp(C) ∩D = {0}. Then the following 8-cycle, whose odd vertices are in
S2 and even ones are in S1,

C8 = (A,C,X) → (A,X1) → (A,D,X) → (D,X2) → (B,D,X)

→ (B,X1) → (B,C,X) → (C,X2) → (A,C,X),

has a triangulation of size O(1).

Proof. We break the proof into two cases. We will use the fact that d ⩾ k3 ⩾ k2 + k.

Case 1–A ⊆ Symp(B): This implies that B ⊆ Symp(A) too. Let Z = (A,B,X) and dim(Z) = k2 − ℓ
for some ℓ ∈ [0, k]. Let V be a subspace such that: V ⊆ Symp(Z) and V ∩ Z = {0}. We get that
dim(V ) ⩾ 2d−2(k2−ℓ) ⩾ 2k+2ℓ. Let G1 ⊆ V be such that G1 ⊆ Symp(C)∩V and G2 ⊆ V ∩Symp(D).
We get that dim(G1), dim(G2) ⩾ dim(V )− k, therefore:

dim(G1 ∩G2) ⩾ dim(V )− 2k ⩾ 2ℓ.

Pick an arbitrary ℓ-dimensional isotropic subspace Y ⊂ G1 ∩ G2 and add in the isotropic subspace Z0 =
(Z, Y ). As Y ⊂ V it follows that Y ∩Z = {0}, and therefore dim(Z0) = k2. Then add in the vertices Z1 =
(Z, Y,C, Y1) and Z2 = (Z, Y,D, Y2), where Y1, Y2 are chosen such that Z1, Z2 are k3-dimensional isotropic
subspaces. This is possible since (Z, Y,C), (Z, Y,D) are subspaces of dimension ⩽ dim(Z, Y ) + k ⩽ k3
and they are isotropic since Y ⊂ G1 ∩ G2. The figure below shows that adding in Z0, Z1, Z2 breaks the
8-cycle into triangles.

Case 2 – A may not be in Symp(B): Write A = A1+A2, where A1 ⊂ Symp(B) and A2∩Symp(B) = 0.
Similarly write B = B1 + B2, where B1 ⊂ Symp(A) and B2 ∩ Symp(A) = 0. We know that dim(A1) =
dim(B1), and say they are equal to k− ℓ for some ℓ ∈ [0, k]; thus dim(A2) = dim(B2) = ℓ. We know that
dim(A1, B1, X) ⩽ 2(k− ℓ)+k2−2k = k2−2ℓ, and so we write dim(A1, B1, X) = k2−2ℓ− z for some
z ⩾ 0. Let us find a subspace V ′ that satisfies:

V ′ ⊆ Symp(A2) ∩ Symp(B2) ∩ Symp(C) ∩ Symp(D) ∩ Symp(A1, B1, X), V ′ ∩ (A1, B1, X) = {0},

38



By dimension counting we get,

dim(V ′) ⩾ 2d− dim(A2)− dim(B2)− dim(C)− dim(D)− 2 dim(A1, B1, X)

= 2d− 2ℓ− 2k − 2(k2 − 2ℓ− z)

= 2(d− k2 − k) + 2(ℓ+ z)

⩾ 2(ℓ+ z).

We can now pick any (ℓ+z)-dimensional isotropic subspace V inside V ′. Also fix an arbitrary ℓ-dimensional
subspace Ṽ inside V .

Below we elaborate on the vertices we add inside the cycle. It is easy to check that by construction each
of these vertices are isotropic subspaces, therefore we will only check that they are of the correct dimensions
(k1, k2 or k3). Let A′ = (B1, Ṽ ).

1. (A′, X1): By construction V ∩ (B1, X1) = {0} and Ṽ ⊆ V , hence (B1, X1) ∩ Ṽ = {0} and by the
dimension formula we get

dim(A′, X1) = dim(B1, X1)+dim(Ṽ ) = dim(B1)+dim(X1)+dim(Ṽ ) = k−ℓ+k1−k+ℓ = k1.

2. (A,B1, V,X): This is equal to (A2, A1, B1, X, V ). We know that A2 ∩ (A1, B1, V,X) = {0},
since the latter is symplectically orthogonal to B and A2 ∩ Symp(B) = {0}. Also, by construction
V ∩ (A1, B1, X) = {0}, and applying the dimension formula twice we get that:

dim(A,B1, V,X) = dim(A2) + dim(A1, B1, X) + dim(V ) = ℓ+ k2 − 2ℓ− z + ℓ+ z = k2.

3. (A,B1, V, C,X, Y1) where Y1 is chosen so that the whole subspace is k3-dimensional. This is possible
since:

dim(A,B1, V, C,X) = dim(A2) + dim(C) + dim(A1, B1, X) + dim(V ) = k2 + k ⩽ k3,

where we used that A2 ∩ (A1, B1, V, C) = {0} since the latter is symplectically orthogonal to B and
A2 ∩ Symp(B) = {0}, and further C ∩ (A1, B1, V,X), since the latter is symplectically orthogonal
to D and C ∩ Symp(D) = {0} by assumption.

4. (A′, C,X): This equals (B1, Ṽ , C,X) and like the above, we get

dim(A′, C,X) = dim(C) + dim(B1) + dim(X) + dim(Ṽ ) = k2.

5. (A,B1, V,D,X, Y2) where Y2 is chosen so that the whole subspace is k3-dimensional, where the
proof that this is possible is the same as the third item above.

6. (A′, D,X): This is a k2-dimensional isotropic subspace like the fourth item above.

The figure below shows that this breaks the cycle into triangles and another 8-cycle corresponding to the
subspaces A′, B,C,D,X,X1, X2.
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Now note that A′ = (B1, Ṽ ) satisfies A′ ⊆ Symp(B). Therefore we can triangulate the remaining 8-
cycle (in blue above) using Case 1, which gives a triangulation of the original cycle using O(1) triangles.

4.2.4 Triangulating General Cycles

Lemma 4.15. For every edge (V,W ) ∈ S(k1, k2, k3), where V,W ∈
⋃3

i=1 Goodi, the cycle C(U, V,W ) =

U
P (U,V )−−−−→ V → W

P (W,U)−−−−−→ U has a triangulation of size O(K2), where K = max
(

k2
k2−k1

, k2
k3−k2

)
.

Proof. Without loss of generality we assume that dim(V ) > dim(W ), meaning that W ⊂ V . First, we
break the cycle C(U, V,W ) into O(t2) cycles of length 8 and O(t) triangles. This step is slightly different
depending on which type of edge we have, and we proceed by case analysis.

Tiling by 8-cycles when V ∈ S3,W ∈ S2: Let V ′ ⊂ V be the vertex chosen by the path from U , with
V ′ = (V(1), . . . , V(t)) being the corresponding block decomposition. Let (W(1), . . . ,W(t)) be the block
decomposition of W . For all 0 ⩽ i < j ⩽ t we can check that:

(V(1), . . . , V(i),W(i+1), . . . ,W(j), U(j+1), . . . , U(t)) ∈ S2. (16)

Indeed, fix i, j. First note that this vertex is an isotropic subspace because (1) we know that (V⩽i, U>i) ∈ S2

so V⩽i is symplectically orthogonal to U>j , (2) (W⩽j , U>j) ∈ S2 implying (W(i+1), . . . ,W(j)) is sym-
plectically orthogonal to U>j , and (3) W,V ′ ⊂ V implying that (W(i+1), . . . ,W(j)), V⩽i are symplectically
orthogonal. Therefore all vectors in the subspace in (16) are symplectically orthogonal to each other.

Second, we check that the dimension of the space in (16) is tk. Since W ∈ Good2, dim(W ∩
Symp(U>i)) = dim(W ) − dim(U>i) = ik. Since dim(W⩽i) = ik, and by construction W⩽i is sym-
plectic to U>i, it follows that W ∩ Symp(U>i) = W⩽i, and so nothing in W>i is symplectically orthogonal
to U>i. Thus, as V⩽i ⊂ Symp(U>i), we conclude that V⩽i ∩W>i = {0}. We also argue that

(V⩽i,W(i+1), . . . ,W(j)) ∩ (U>j) = {0}.

Indeed, if v + w ∈ (V⩽i,W(i+1)) and w ̸= 0, then v is symplectic to U>j and w is not, so v + w is not
symplectic to U>j and hence v+w ̸∈ U>j . If w = 0, then the claim follows as V⩽i ∩U>j = {0} for i ⩽ j.
Combining everything, we get from the dimension formula that

dim(V⩽i,W(i+1), . . . ,W(j), U>j) = dim(V⩽i,W(i+1), . . . ,W(j)) + dim(U>j)
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= dim(V⩽i) + dim(W(i+1), . . . ,W(j)) + dim(U>j)

= tk.

Recall that P2i(U, V ) = (V⩽i, U>i) and same for W . We will now create paths Ri of length 2i + 1
between P2i(U,W ) and P2i(U, V ) for all i ∈ [t] using the intermediate vertices from (16). These paths are
constructed as:

Ri :=P2i(U,W ) → (W(2), . . . ,W(i), U>i) → (V(1),W(2), . . . ,W(i), U>i) → . . . → P2i(U, V ).

Note that this is a valid path because the odd vertices (starting from P2i(U,W )) are in S2 by (16), which
also implies that the even vertices are in S1. By creating the paths Ri, we have broken the original cycle
C(U, V,W ) into O(t) cycles of the form:

Ci = P2i(U,W )
Ri

−→ P2i(U, V ) → P2i+1(U, V ) → P2i+2(U, V )
Ri+1

−−−→ P2i+2(U,W ) → P2i+1(U,W )

→ P2i(U,W ),

for i ∈ [1, t− 1] and

Ct = W
Rt

−→ V ′ = (V(1), . . . , V(t)) → V → W.

We will tile each Ci by 8-cycles and triangles, starting with i ∈ [t − 1]. For all j ∈ [1, i + 1], let Ri
j

denote the (2j − 1)th vertex on the path Ri, that is,

Ri
j = (V<j ,W(j), . . . ,W(i), U>i).

It is easy to see that for all j ∈ [1, i+ 1], the vertices Ri
j and Ri+1

j are connected via a path of length two:

Ri
j → (V<j ,W(j), . . . ,W(i), U⩾i+2, . . . , U(t)) → Ri+1

j .

Additionally the middle vertex in the length 2 path is equal to P2i+1(U, V ) in the path from Ri
i+1 =

P2i(U, V ) → Ri+1
i+1, P2i(U, V ) → P2i+2(U, V ) and Ri+1

i+1 → Ri+1
i+2, thus showing that the whole cycle

has been broken into O(t) 8-cycles and O(1) triangles.
Let us now tile the cycle Ct. We have that for all j ∈ [1, t+1], Rt

j = (V<j ,W(j), . . . ,W(t)) is contained
in V since both W and V ′ are in V . This means that Ct is broken into O(t) triangles. So overall C(U, V,W )
has been broken into O(t2) 8-cycles and O(t) triangles.

Tiling by 8-cycles when V ∈ S3,W ∈ S1: Let V ′ ⊂ V be the vertex chosen by the path from U ,
with V ′ = (V(1), . . . , V(t)) being the corresponding block decomposition. Let W(1) be the additional
vertex used in the path from U to W , with the block decomposition W ′ = (W(1), . . . ,W(t)), where
W = (W(2), . . . ,W(t)) ⊂ V . For all 0 ⩽ i < j ∈ [t], using the same argument as in (16) we have
that

(V(1), . . . , V(i),W(i+1), . . . ,W(j), U(j+1), . . . , U(t)) ∈ S2. (17)

Now we create the same paths Ri of length 2i+ 1 between P2i(U,W ) → P2i(U, V ) for all i ∈ [t], and
each vertex on these paths is in S2 or S1 because of (17). This breaks the cycle into the cycles Ci, for i ∈ [t].
The tiling of Ci, i ∈ [t − 1] proceeds identical to the first case, therefore let us discuss the tiling of the last
cycle:

Ct = W ′ = (W(1), . . . ,W(t))
Rt

−→ V ′ = (V(1), . . . , V(t)) → V → W → W ′.
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We have that the first three vertices of Rt are W ′, (W⩾2) and (V(1),W⩾2) which are connected to W . Addi-
tionally including (V(1),W⩾2), every other vertex on Rt, i.e. for all j ∈ [2, t+1], Rt

j = (V<j ,W(j), . . . ,W(t))
and the intermediate vertices in S1, is contained in V since both W and V ′ are in V . This means that Ct is
broken into O(t) triangles. So overall C(U, V,W ) has been broken into O(t2) 8-cycles and O(t) triangles.

Tiling by 8-cycles when V ∈ S2,W ∈ S1: We can show that C(U, V,W ) in this case too can be broken
into O(t2) 8-cycles and O(t) triangles. The proof for the cycles Ci for i ∈ [t − 1] is the same, so we only
discuss the tiling of Ct. We have that,

Ct = W ′ = (W(1), . . . ,W(t))
Rt

−→ V = (V(1), . . . , V(t)) → W → W ′,

where W = (W(2), . . . ,W(t)). The first and second vertex on Rt, W ′,W are connected to W , and then
one can check that every vertex on Rt except for the first one, is connected to V . This breaks Ct into O(t)
triangles.

Triangulating the 8-cycles: Having shown that the cycle C(U, V,W ) can always be tiled by at most O(t2)
8-cycles and O(t) triangles, it suffices to show that each one of the resulting 8-cycles can be triangulated
individually. Towards this end, we first notice that the 8-cycles we formed consist of edges between isotropic
subspaces of dimension k1 and isotropic subspaces of dimension k2. Thus, to triangulate them we will have
to use auxiliary vertices of dimension k3. Intuitively, the difference k2 − k1 measures how “different”
adjacent vertices in the cycle are, and it stands to reason that the closer these vertices are, the easier time we
will have triangulating it. In the proof below we handle two cases separately: the case k2 − k1 ⩽ k3 − k2,
and the case that k2 − k1 > k3 − k2, and we begin with the former easier case.

Triangulating the 8-cycles when k3 − k2 ⩾ k2 − k1: Note that each 8-cycle in the above tiling is of the
following form for some 1 ⩽ j < i ∈ [t]:

(W(j), U(i), X) → (W(j), X) → (W(j),W(i), X) → (W(i), X)

→ (V(j),W(i), X) → (V(j), X) → (V(j), U(i), X) → (U(i), X) → (W(j), U(i), X), (18)

with X = (V⩽j−1,W(j+1), . . . ,W(i−1), U(>i)). Let A = W(j), B = V(j), C = U(i), D = W(i). By
Claim 4.13, C ∩ Symp(D) = {0}. Furthermore each of these blocks are of size k = k2 − k1 and our
assumption reads that k3 ⩾ k2 + k. This cycle therefore satisfies the assumptions of Lemma 4.14 and can
thus be triangulated with O(1) triangles.

Triangulating the 8-cycles when k3−k2 ⩽ k2−k1: This case is more difficult, and we first start with an
8-cycle of the form we created, and transform it into an 8-cycle that can be triangulated using Lemma 4.14.
Fix some i0 < j0 ∈ [t] consider an 8-cycle as in (18), namely:

C8 = (A,C,X) → (A,X) → (A,D,X) → (D,X) → (B,D,X)

→ (B,X) → (B,C,X) → (C,X) → (A,C,X),

where A,B,C,D,X are defined appropriately as in the above paragraph. We have the property that C ∩
Symp(D) = D ∩ Symp(C) = {0}.

Picture the 8-cycle as a square, with the k2-dimensional vertices at the 4 corners. We will construct
two “horizontal” paths: (A,C,X) → (A,C,D) and (B,C,X) → (B,D,X) and two vertical paths:
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(A,C,X) → (B,C,X) and (A,C,X) → (B,D,X). To do so first we apply the randomized algorithm
from Claim 4.11 on the subspaces C1 := C,D := D1 to get C2 ⊂k−1 C1, d1 ∈ D such that (d1, C2) is an
isotropic subspace. We can then write D = D2 + d1, such that D2 ∩ span({d1}) = ∅, and apply Claim 4.11
again to get d2 ∈ D2, C3 ⊂k−2 C2 such that (d2, C3) is an isotropic subspace and in fact (d1, d2, C3) is also
isotropic. Similarly applying the claim k times we get a sequence of subspaces:

C, (d1, C2), (d1, d2, C3), . . . , (d1, . . . , dk−1, Ck), D.

We know that Ck ⊂1 Ck−1 ⊂2 . . . C2 ⊂1 C. Similarly we create the following sequence between A and B:

A, (b1, A2), (b1, b2, A2), . . . , (b1, . . . , bk−1, Ak), B.

We will show that for all i, j ∈ [k]:

Pr
a,b,c,d

[dim(b⩽i, Ai, d⩽j , Cj , X) = 2k] ⩾ 1− poly(k)

q
. (19)

This is because:

Pr
a,b

[dim(b⩽i, Ai, X) = k] =

i∏
i′=1

Pr
a,b

[dim(b⩽i′−1, bi′ , Ai′ , X) = k | dim(b⩽i′−1, Ai′−1, X) = k]

⩾

(
1−O

(
1

q

))i

⩾ 1−O

(
k

q

)
,

where for each term in the product we used Claim 4.11 with the subspaces C = (b⩽i′−1, X), A = Ai′−1

and B = Bi′−1. To prove (19) we use the same trick again:

Pr
a,b,c,d

[dim(b⩽i, Ai, d⩽j , Cj , X) = 2k]

= Pr
a,b

[dim(b⩽i, Ai, X) = k] Pr
a,b,c,d

[dim(b⩽i, Ai, d⩽j , Cj , X) = 2k | dim(b⩽i, Ai, X) = k]

⩾

(
1−O

(
k

q

)) j∏
j′=1

Pr
a,b,c,d

[dim(d⩽j′−1, b⩽i, Ai, dj′ , Cj′ , X) = 2k | dim(d⩽j′−1, Cj′−1, b⩽i, Ai, X) = 2k]

⩾ 1−O

(
poly(k)

q

)
,

where for each term in the product we used Claim 4.11 with the subspaces C = (d⩽j′−1, b⩽i, Ai, X),
A = Cj′−1 and B = Dj′−1, which proves (19). Since q > poly(k) we can now union bound over all
choices of i, j ∈ [k] to get that there exists a choice of a, b, c, d’s such that for all i, j ∈ [k]:

dim(b⩽i, Ai, d⩽j , Cj , X) = 2k. (20)

Henceforth fix such a choice of a, b, c, d’s.
Denote k′ = k3 − k2 and write k = t′k′ + r′, with r′ < k′ and t′ ⩾ 1. For all i ∈ [0, t′], set

Pi(C,D) = (d⩽ik′ , Cik′+1) and Pt′+1(C,D) = D. Then we have the path

R1 = (A,C,X) → (A,X) → (A,P1(C,D), X) → . . .

→ (A,X) → (A,Pt′(C,D), X) → (A,X) → (A,D,X)
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that alternates between S2 and S1 by (20). Similarly for all i ∈ [0, t′], let Pi(A,B) denote the subspace,
(b⩽ik′ , Aik′+1) and Pt′+1(A,B) = B. We get the following parallel path between (B,C,X) and (B,D,X):

R2 = (B,C,X) → (B,X) → (B,P1(C,D), X) → . . .

→ (B,X) → (B,Pt′(C,D), X) → (B,X) → (B,D,X).

We now create horizontal paths between (A,X,Pi(C,D)) and (B,X,Pi(C,D)) for all 0 ⩽ i ⩽ t′ + 1:

H i = (A,Pi(C,D), X) → (Pi(C,D), X) → (P1(A,B), Pi(C,D), X) → . . .

→ (Pi(C,D), X) → (Pt′(A,B), Pi(C,D), X) → (Pi(C,D), X) → (B,Pi(C,D), X),

where every vertex is either in S2 or S1 by (20). Let H i
j denote the vertex (Pj(A,B), Pi(C,D), X) – this

is connected to H i+1
j via the vertex (Pj(A,B), X) ∈ S1. Therefore we have broken the whole cycle into

multiple triangles on the periphery and a grid of 8-cycles of the form:

(Pj(A,B), Pi(C,D), X) → (Pj(A,B), X) → (Pj(A,B), Pi+1(C,D), X)

→ (Pi+1(C,D), X) → (Pj+1(A,B), Pi+1(C,D), X) → (Pj+1(A,B), X)

→ (Pj+1(A,B), Pi(C,D), X) → (Pi(C,D), X) → (Pj(A,B), Pi(C,D), X),

for i, j ∈ [t′]. To rewrite this cycle in a more convenient form, let Ajk′+1 = A(j+1)k′+1 + A′, for
some k′-dimensional A′ satisfying A′ ∩ A(j+1)k′+1 = {0}. Let B′ = (bjk′+1, . . . , b(j+1)k′), and YAB =
(b⩽jk′ , A(j+1)k′+1). In these notations we have that

Pj(A,B) = (RA, YAB) Pj+1(A,B) = (bjk′+1, . . . , b(j+1)k′ , YAB).

Let D′ = (dik′+1, . . . , d(i+1)k′), so that Dik′+1 = D(i+1)k′+1 + D′. Let C ′ = Symp(D(i+1)k′+1) ∩
Cik′+1, and YCD = (d⩽ik′ , C(i+1)k′+1). We will now show that C ′ ∩ Symp(D′) = 0 and dim(C ′) =
k′. First note that for all x ∈ [t′], Cx ∩ Symp(Dx) = Symp(Cx) ∩ Dx = {0}. This is because
D = span(d⩽x−1) + Dx and Cx ⊂ Symp(d⩽x−1) therefore if any vector v ∈ Cx was symplectically
orthogonal to Dx, then v would be symplectically orthogonal to D and we would get a contradiction to
C ∩ Symp(D) = {0}; thus Cx ∩ Symp(Dx) = {0}, and the proof for Symp(Cx)∩Dx = {0} is analogous.
Since C(i+1)k′+1 ∩ Symp(D(i+1)k′+1) = {0}, we get that C(i+1)k′+1 ∩ C ′ = 0. By dimension counting we
know that dim(C ′) ⩾ k′, which gives us the decomposition:

Cik′+1 = C(i+1)k′+1 + C ′,

and dim(C ′) = k′. Since Cik′+1 ∩ Symp(Dik′+1) = {0} and C(i+1)k′+1 ⊂ Symp(D′), we conclude that
C ′ ∩ Symp(D′) = {0}. Finally we get that,

Pi(C,D) = (C ′, YCD) Pi+1(C,D) = (dik′+1, . . . , d(i+1)k′ , YCD).

Letting Y = (YAB, YCD), we can rewrite the cycle as:

(A′, C ′, Y ) → (A′, YAB) → (A′, D′, Y ) → (D′, YCD) → (B′, D′, Y )

→ (B′, YAB) → (B′, C ′, YAB) → (C ′, YCD) → (A′, C ′, Y ).

We have shown that each of A′, B′, C ′, D′ is of size k′ = k3−k2, with C ′∩Symp(D′) = 0 and k3 ⩾ k2+k′.
Thus the cycle satisfies the assumptions of Lemma 4.14 and can be triangulated in O(1) triangles.
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Size of triangulation: Since we showed a tiling of C(U, V,W ) by O(t2) 8-cycles, and a tiling of each
8-cycle by O(⌈k2−k1/k3−k2⌉2) triangles, C(U, V,W ) has a triangulation of size O(K2) as required.

4.2.5 Using Triangulations for Coboundary Expansion

Given the triangulations from Lemma 4.15 and as is standard in applications of the cones method, we will
use the property that SP2d(Fq) acts transitively on the triangles of S(k1, k2, k3) to complete the proof of
Lemma 4.8.

For a matrix M ∈ SP2d(F), and a subspace V recall that M(V ) denotes the subspace span(Mv |
v ∈ V ). Let M−1(V ) denote the subspace W such that M(W ) = V . Given a path P (U, V ) from U
to V , let PM (M(U),M(V )) denote the path from M(U) to M(V ) where at the ith-step we have the
vertex M(Pi(U, V )). It is easy to see that this is a valid path from M(U) to M(V ) if V ∈

⋃
i∈[3] Goodi.

For a triangle ∆ let M(∆) denote the triangle whose vertices are M(Ui),∀Ui ∈ ∆. In fact we can let
TM (M(U),M(V ),M(W )) be the triangulation of the cycle

M(U)
PM (M(U),M(V ))−−−−−−−−−−−→ M(V ) → M(W )

PM (M(W ),M(U))−−−−−−−−−−−→ M(U)

where a triangle in this triangulation is given by M(∆) for ∆ ∈ T (U, V,W ). Again it is easy to see that
this is a valid triangulation of the cycle.

We have the following randomized algorithm to get a good solution to an arbitrary UG instance Φ.

Algorithm 2 (Φ = (S(k1, k2, k3),Π)).
Input: UG instance Φ on S(k1, k2, k3).
Output: A function f : V (S(k1, k2, k3)) → Sm.

1. Choose a random linear transformation M ∼ SP2d(Fq) and set f(M(U)) = id.

2. For each subspace V ∈
⋃

i Goodi, assign M(V ) the label obtained by propagating the label of
M(U) to M(V ) via the path PM (M(U),M(V )). For V /∈

⋃
i Goodi, assign an arbitrary label

to M(V ).

We now complete the proof of Lemma 4.8 via the following lemma:

Lemma 4.16. Let Φ be any UG instance over Sm with incons(Φ) = δ. Then in expectation over M ∼
SP2d(Fq), the algorithm violates at most O(K2)δ + poly(K)/q-fraction of edges where

K = max

(⌈
k2

k3 − k2

⌉
,

⌈
k2

k2 − k1

⌉)
.

Proof. Suppose the propagation algorithm chooses a linear transformation M . Consider the assignment
fM : V (S(k1, k2, k3)) → Sm that Algorithm 2 outputs in this case. For V,W ∈

⋃
i Goodi, an edge

(M(V ),M(W )) is satisfied if the cycle M(U)
PM (M(U),M(V ))−−−−−−−−−−−→ M(V ) → M(W )

PM (M(W ),M(U))−−−−−−−−−−−→
M(U) is consistent, i.e. the permutations on the edges product to id. Furthermore this is true if every triangle
in TM (M(U),M(V ),M(W )) is consistent. Recall that this is the set M(∆) as ∆ ranges over T (U, V,W ).
Let E denote E(S(k1, k2, k3)) and Good(E) denote the set of edges (V,W ) for V,W ∈

⋃
i Goodi. We get

that,

viol(fM ) ⩽ Pr
(V,W )∼E

[(V,W ) /∈ Good(E)] + E
(V,W )∼Good(E)

[I(∃∆ ∈ TM (M(U),M(V ),M(W )) ∩ incons(Φ)]
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⩽ O

(
K

q

)
+ max

(V,W )∈Good(E)
(|T (U, V,W )|) E

(V,W )∼Good(E)
E

∆∈T (U,V,W )
[I(M(∆) ∈ incons(Φ)]

⩽ O

(
K

q

)
+O(K2) E

(V,W )∼Good(E)
E

∆∈T (U,V,W ))
[I(M(∆) ∈ incons(Φ)],

where in the second inequality we used Lemma 4.12 and the last one we used Lemmas 4.15 to bound the
size of the triangulation.

Recall that M acts transitively on the set of t-dimensional isotropic subspaces, therefore the distribution
M(∆) over M ∼ SP2d(Fq) is uniform over the triangles in S(k1, k2, k3). Using this fact, we can now take
an expectation over M ∼ SP2d(Fq) for the above equation to get:

E[viol(fM )] ⩽ O

(
K

q

)
+O(K2) E

(V,W )∼Good(E)
E

∆∈T (U,V,W ))
E
M
[I(M(∆) ∈ incons(Φ)]

⩽ O

(
K

q

)
+O(K2)δ,

which completes the proof.

4.2.6 Modifications in Triangulations in Edge Cases

In this section, we explain the necessary modifications to the triangulation argument in the case that k2 and
k1 are not multiples of k = k2 − k1. Let k2 = (t − 1)k + a for some 2 ⩽ t ∈ N and a ∈ {0, . . . , k − 1}.
Then k1 = (t− 2)k+ a. Fix a vertex U ∈ S2 and let U = (U(1), . . . , U(t)) where each block has dimension
k, except for the last one which has dimension a. We can define the set

⋃
i Goodi accordingly which gives

the following set of paths from U .

Set of Paths from U : The paths from U are the same for all but the second to last step. For every V we
will associate with V a vertex V ′. In the case that dim(V ) = k2, we will take V ′ = V , and otherwise V ′ will
be an appropriately chosen subspace or superspace of V . We will also associate with V an a-dimensional
subspace V ′

(t−1) which is a subset of V(t−1) that is obtained while creating a path from U to V .

1. For a vertex V of dimension k2, using Claim 4.9 on V and U⩾2 we find V(1) ⊆k V such that
(V(1), U(2), . . . , U(t)) ∈ S2. Applying this claim iteratively, we find V(2) such that

(V(1), V(2), U(3), . . . , U(t)) ∈ S2,

and so on. Let V ′
(t−1) be a random a-dimensional subspace of V(t−1). Then consider the following

path from U → V which flips a block of U to a block of V one at a time:

P (U, V ) =(U(1), . . . , U(t)) → U⩾2 → (V(1), U⩾2) → (V(1), U⩾3) → (V(1), V(2), U⩾3) → . . .

→ (V<t, U(t)) → (V<t−1, V
′
(t−1)) → V.

Note that this path alternates between vertices of S2 and S1. We set V ′ = V .

2. We do the same for vertices in Good1,Good3. The paths remain the same for all but the step where
we put in the vertex (V<t−1, V

′
(t−1)) and one can show that these are valid paths alternating between

S2 and S1.
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Triangulating the cycles C(U, V,W ): Let us focus on the case where (V,W ) is an edge for V ∈
Good2,W ∈ Good1. The other two cases follow analogously. We create the same paths Ri from P2i(U,W )
to P2i(U, V ). The only path that is slightly different is the path Rt:

Rt := P2i(U,W ) → (W(2), . . . ,W(t)) → (V(1),W(2), . . . ,W(t)) → . . . → (V<t,W(t)) → (V<t−1, V
′
(t−1))

→ P2i(U, V ).

One can now tile each cycle Ci created using 8-cycles and triangles in an identical manner when i ∈
[1, t− 2] ∪ {t}. Let us discuss the tiling of Ct−1. Putting in horizontal length two paths between Rt−1

j and
Rt

j we can break Ct−1 into 8-cycles of the form:

(W(1), U(t), X, Y ) → (W(1), X) → (W(1),W(t), X, Y ) → (W(t), X, Y )

→ (V(1),W(t), X, Y ) → (V(1), X) → (V(1), U(t), X, Y ) → (U(t), X, Y ) → (W(1), U(t), X, Y ), (21)

with X = (W(2), . . . ,W(t−2),W
′
(t−1)) and Y = W ′′

(t−1)), where W ′′
(t−1) +W ′

(t−1) = W(t−1) and W ′′
(t−1) ∩

W ′
(t−1) = {0}. The only difference in this 8-cycle from the one in (18) is that the vertices (W(1), U(t), X, Y )

and (W(1),W(t), X, Y ) have an intersection (W(1), X, Y ) which is larger than the k1-dimensional subspace
(W(1), X), and the same holds for the vertices (V(1), U(t), X, Y ) and (V(1),W(t), X, Y ). Intuitively this is
only easier to tile than (18) where every two adjacent points on the square intersect in a k1-dimensional
subspace. Indeed this holds, and in both the cases k3 − k2 ⩾ k2 − k1 and k3 − k2 ⩽ k2 − k1 we can use the
same strategy to tile this 8-cycle with triangles.

Given this tiling of C(U, V,W ), the rest of the proof remains the same and we omit the details.

4.3 The Extended Base Cases

In this section we use Lemmas 4.2 and 4.8 to show that the spherical buildings of type A and C, and their
tensor products, satisfy the Assumptions 1. That is, we will prove a bound on the coboundary constant of
tripartite graphs T (A,B,C;µ|XS = A0), where maxa∈A a < minb∈B b and maxb∈B b < minc∈C c, and µ
is the uniform distribution over the maximal faces of one of these complexes.

4.3.1 The Extended Base Case for Restrictions of Type A and Type C

To establish Assumption 1 we proceed in two steps. First, we prove an auxiliary lemma handling the case
that µ has a product structure in the sense that µS1∪S2 = µS1 × µS2 and µS1∪S3 = µS1 × µS3 . Let diam(G)
denote the diameter of a graph G.

Lemma 4.17. Let µ be a distribution over
∏

i∈[d]Xi, and let G be a group acting on
∏

Xi such that for all
g ∈ G it holds that g(Xi) = Xi and g(supp(µ)) = supp(µ), as well as for all X ∈ supp(µ), the distribution
over g(X) for a uniformly chosen g ∈ G is µ. Then for all pairwise disjoint sets S1, S2, S3 ⊂ [d] that satisfy
µS1∪S2 = µS1 × µS2 and µS1∪S3 = µS1 × µS3 , we get that

C(T (S1, S2, S3;µ)) ≲ diam(A(S2, S3;µ)).

Proof. We first construct a set of paths and triangulations for propagation. Let Pi denote the set of vertices
corresponding to the set Si in H = T (S1, S2, S3;µ). Since µS1,S2 and µS1,S3 are both product distributions,
we have an edge between U,W for all U ∈ P1 and W ∈ P3, as well as between any U ∈ P1 and V ∈ P2.
Fix two vertices U0 ∈ P1, V0 ∈ P2. For every V ∈ P2 fix the path P (U0, V ) = U0 → V and similarly for

47



W ∈ P3 fix the path P (U0,W ) = U0 → W . For any U ∈ P1 fix the path P (U0, U) = U0 → V0 → U .
Now for an edge (V,W ) between P2 and P3 the cycle (U0, V,W ) is already a triangle, therefore has a
triangulation of size 1. For an edge (U, V ) we need to tile the cycle U0 → V0 → U → V → U0. To
do so we use a path R of length diam(A(S2, S3;µ)) from V0 → V that alternates between vertices of P2

and P3. Every vertex in this path is connected to both U and U0 therefore this cycle has a triangulation of
size ≲ diam(A(S2, S3;µ)). We can follow the same strategy for triangulating the cycle U0 → W → U →
V0 → U0 corresponding to the edge (V,W ) – we build a path R of length diam(A(S2, S3;µ)) from V0 to
W , and given that every vertex in the path is connected to both U0 and U this gives us a triangulation of size
≲ diam(A(S2, S3;µ)). We can now use the fact that the triangles in H are transitive under the action of G
to get that the coboundary constant of H is ≲ diam(A(S2, S3;µ)). The proof of this fact is the same as that
of Lemma 4.7, wherein the group G was GLd(Fq), and therefore we omit the details.

Armed with Lemma 4.17, we now prove that the restrictions of type A spherical building give tripartite
graphs that are coboundary expanders.

Lemma 4.18. Let µ = SBA
d (Fq). For all t ⩽ d/3, S ⊆ I of size at most d − 3t and restrictions A0 ∈

supp(µS), for all t-sized pairwise disjoint sets A,B,C of I \ S, with i = maxa∈A a, j = minb∈B b, j′ =
maxb∈B b and k = minc∈C c satisfying i < j ⩽ j′ < k, the graph T (A,B,C;µ|XS = A0) is a
(poly(K), poly(K)/q)-coboundary expander over Sm, for K = max

(
k

j−i ,
k

k−j′

)
.

Proof. In this proof we will apply Lemma 4.17 multiple times. To do so, we will use the fact that for
all S ⊆ [d], A0 ∈ supp(µS), the subgroup H of GLd(Fq) that fixes A0, has the property that for all
X ∈ supp(D), the distribution h(X), h ∼ H is equal to D for D = µ|XS = A0.

We first consider the case of t = 1. Fix a set S ⊂ [d] of size at most d− 3, A0 ∈ supp(µS) and consider
coordinates i, j, k ∈ [d] \ S with i < j < k. Let D denote the distribution µ|XS = A0. We divide the proof
into two cases:

There exists ℓ ∈ S such that ℓ ∈ (i, j) or ℓ ∈ (j, k): Let us assume that there is ℓ ∈ S with ℓ ∈ (i, j).
Then note that D{i},{j} = D{i} ×D{j} and D{i},{k} = D{i} ×D{k}. Therefore we can apply Lemma 4.17
to get that C(T ({i}, {j}, {k};D)) ≲ diam(A({j}, {k};D)), which we know is at most O(k/(k − j)).

The same proof works when ℓ ∈ (j, k) to give a coboundary constant O(j/j − i).

There is no ℓ ∈ S with ℓ ∈ (i, k): In this case, let d1 ∈ S be the largest index smaller than i and let
d2 ∈ S be the smallest index larger than k. We know that G is isomorphic to Gr(i − d1, j − d1, k −
d1) over the ambient space Fd2−d1

q . Therefore we can use Lemma 4.2 to conclude that our graph is a
(poly(K ′), poly(K ′)/q)-coboundary expander for

K ′ = max

(
j − d1

(j − d1)− (i− d1)
,

j − d1
(k − d1)− (j − d1)

)
⩽ max

(
k

k − j
,

k

j − i

)
⩽ K,

as required.

We now move on to the case that t > 1. Namely fix a set S ⊂ [d] of size at most d − 3t, A0 ∈ µS

and consider three pairwise disjoint t-sized sets A,B,C ⊂ [d] \ S with i < j < j′ < k. Let D denote the
distribution µ|XS = A0. Using the argument in Lemma 3.5, and more specifically (2), we get that

C(T (A,B,C;D)) ⩽ C(T ({i}, {j}, {k};D))·
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max
a∈supp(Di)
b∈supp(Dj)

c∈supp(Dk)

(C(T (A \ {i}, B,C;D|a)), C(T (A,B \ {j}, C;D|b)), C(T (A,B,C \ {k};D|c)))

The first term above is at most K using the case t = 1 from above. As for the second term, consider for
instance C(T (A \ {i}, B,C;D|a), and consider D′ = D|a and A′ = A \ {i}. Note that (D′)A

′∪B =
(D′)A

′ × (D′)B and (D′)A
′∪C = (D′)A

′ × (D′)C , so applying Lemma 4.17 we get that the second term
above is at most diam(A(S2, S3;D′)). Note that the diameter of the graph A(S2, S3;D′) is at most a constant
times the diameter of A({j′}, {k};D′), which is easily seen to be at most O

(
k

k−j′

)
⩽ O(K). Combining

the two bounds, we conclude that C(T (A,B,C;D)) ≲ K2. Similarly using (3) It is easy to check that the
additive error β is at most poly(K)/q.

Next, we handle restrictions of type C spherical buildings.

Lemma 4.19. Let µ = SBC
d (Fq). For all t ⩽ d/3, S ⊆ I of size at most d − 3t and restrictions A0 ∈

supp(µS), for all t-sized pairwise disjoint sets A,B,C of I \ S, with i = maxa∈A a, j = minb∈B b, j′ =
maxb∈B b and k = minc∈C c satisfying i < j ⩽ j′ < k, the graph T (A,B,C;µ|XS = A0) is a
(poly(K), poly(K)/q)-coboundary expander over Sm, for K = max

(
k

j−i ,
k

k−j′

)
.

Proof. The proof is very similar to the proof of Lemma 4.18, and we will need to use the following facts
(which were already used in Lemma 2.20):

1. Let Vi′ ⊂ Vk′ be two i′ and k′-dimensional isotropic subspaces. For i′ < i < j < k < k′, the
tripartite graph over i, j and k-dimensional isotropic subspaces that are contained in Vk′ and contain
Vi′ is isomorphic to Grk′−i′(i− i′, j − i′, k − i′) as defined in Section 4.1.

2. Let Vi′ be some i′-dimensional isotropic subspace. For i′ < i < j < k, the tripartite graph over i, j
and k-dimensional isotropic subspaces that contain Vi′ , is isomorphic to Sd−i′(i− i′, j − i′, k− i′) as
defined in Section 4.2.

We will again apply Lemma 4.17 and to do so, we will use the fact that for all S ⊆ [d], A0 ∈ supp(µS),
the subgroup H of SP2d(Fq) that fixes A0, has the property that for all X ∈ supp(D), the distribution
h(X), h ∼ H is equal to D for D = µ|XS = A0.

With these facts in mind, we begin with the proof in the case that t = 1. Let D = µ|XS = A0. We now
prove that G = T ({i}, {j}, {k}};D) is a (poly(K), poly(K)/q)-coboundary expander, and there are a few
cases to consider depending on the set of coordinates S that we restricted.

There exists ℓ ∈ S such that ℓ ∈ (i, j) or ℓ ∈ (j, k): Let us assume that there is ℓ ∈ S with ℓ ∈ (i, j).
Then note that D{i},{j} = D{i} ×D{j} and D{i},{k} = D{i} ×D{k}. Therefore we can apply Lemma 4.17
to get that C(T ({i}, {j}, {k};D)) ≲ diam(A({j}, {k};D)), which we can check is at most O(k/(k − j)).
The same proof works when ℓ ∈ (j, k) to give a coboundary constant O(j/j − i).

There is no ℓ ∈ S with ℓ ∈ (i, k) and there is k′ ∈ S, k′ > k: In this case, let k′ ∈ S be the smallest
index larger than k and let i′ ∈ S be the largest index smaller than i (set it to 0 if no such index). By
the above, G is isomorphic to Grk′−i′(i − i′, j − i′, k − i′) which is a (poly(K),poly(K)/q)-coboundary
expander by Lemma 4.2.
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There is no ℓ ∈ S with ℓ ∈ (i, k) and no k′ ∈ S, k′ > k: In this case, again let k′ ∈ S be the smallest
index larger than k and let i′ ∈ S be the largest index smaller than i (i′ = 0 if no such index). By Fact
2 above, we know that G is isomorphic to Sd−i′(i − i′, j − i′, k − i′) which is a (poly(K),poly(K)/q)-
coboundary expander by Lemma 4.8.

We now move on to handle t > 1. Using the argument in Lemma 3.5, and more specifically (2), we get
that

C(T (A,B,C;D)) ⩽ C(T ({i}, {j}, {k};D))·
max

a∈supp(Di)
b∈supp(Dj)

c∈supp(Dk)

(C(T (A \ {i}, B,C;D|a)), C(T (A,B \ {j}, C;D|b)), C(T (A,B,C \ {k};D|c)))

The first term above is at most K using the case t = 1 from above. As for the second term, consider for
instance C(T (A\{i}, B,C;D|a), and consider D′ = D|a and A′ = A\{i}. Note that (D′)A

′∪B = (D′)A
′×

(D′)B and (D′)A
′∪C = (D′)A

′ × (D′)C , so applying Lemma 4.17 we get that the second term above is at
most diam(A(S2, S3;D′)) ≲ K. Combining the two bounds, we conclude that C(T (A,B,C;D)) ≲ K2.
Similarly using (3) It is easy to check that the additive error β is at most poly(K)/q.

4.3.2 The Extended Base Case for Tensors of Type A and C

We now extend the base case from the previous section to a base case regarding tensors of type A and type
C complexes.

Definition 4.20. Let X = (X(0), X(1), . . . , X(d1)) and Y = (Y (0), Y (1), . . . , Y (d2)) be simplicial
complexes. We define the tensored simplicial complex X ⊗Y as the complex (Z(0), . . . , Z(d1+d2)) where
for each 1 ⩽ ℓ ⩽ d1 + d2 we have

Z(ℓ) = {A ∪B |A ∈ X,B ∈ Y, |A|+ |B| = ℓ }.

We note that if we let µ, ν be the uniform distributions on top dimensional faces of X,Y respectively,
then the distribution µ ⊗ ν is uniform over the top dimensional faces of X ⊗ Y . Thus, it will often be
convenient for us to discuss tensors of complexes using the language of associated probability distributions.

Lemma 4.21. Let µ1, µ2 be two distributions over the domains
∏

i∈[d1]Xi and
∏d

i=d1+1Xi, with µ1 being
either SBA

d1
(Fq) or SBC

d1
(Fq) and µ2 being either SBA

d−d1
(Fq) or SBC

d−d1
(Fq). Let µ = µ1×µ2, t ⩽ d/3,

S ⊆ [d] be of size at most d − 3t, A0 ∈ supp(µS) a restriction of S, and let A,B,C ⊆ [d] \ S be of size t
such that

i = max
a∈A

a < j = min
b∈B

b ⩽ j′ = max
b∈B

b < k = min
c∈C

c.

Then the graph G = T (A,B,C;µ|XS = A0) is a (poly(K),poly(K)/q)-coboundary expander over Sm

for K = max
(

k
k−j′ ,

k
j−i

)
.

Proof. Let G1 = GLd1(Fq) or SP2d1(Fq) depending on whether µ1 is SBA
d1
(Fq) or SBC

d1
(Fq), and similarly

define G2 as GLd−d1(Fq) or SP2(d−d1)(Fq). The set supp(µ) is transitive under the action of G1 ×G2 and
moreover for all S ⊆ [d], A0supp(µ

S), the subgroup H of G1 ×G2 that fixes A0, has the property that for
all X ∈ supp(D), the distribution h(X), h ∼ H is equal to D for D = µ|XS = A0.

Given this fact, we begin with the case that t = 1. Fix a set S ⊂ [d] of size at most d − 3, A0 ∈
supp(µS) and consider coordinates i, j, k ∈ [d] \ S with i < j < k. Let D = µ|XS = A0, I1 = [d1] and
I2 = {d1 + 1, . . . , d}. We divide the proof into 4 cases:
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The case that i ∈ I1 and j, k ∈ I2: First note that D{i,j} and D{i,k} are both product distributions. Hence
we can apply Lemma 4.17 to get that the coboundary constant of G is ≲ diam(A({j}, {k};D)) ≲ K.

The case that i, j ∈ I1 and k ∈ I2: This case is similar to the above and we get a bound of O(j/(j−i)) ≲
K on the coboundary constant.

All three coordinates in I2: Depending on whether µ1 is SBA
d1

or SBC
d1

we can use Lemma 4.18 or 4.19
to get that G is a (poly(K), 2−Ω(r12))-coboundary expander.

All three coordinates in I1: This case follows analogously to the third case above.

We now move on to the case that t > 1, and the argument here is the same as in Lemma 4.18 and 4.19.
Using the argument in Lemma 3.5, and more specifically (2), we get that

C(T (A,B,C;D)) ⩽ C(T ({i}, {j}, {k};D))·
max

a∈supp(Di)
b∈supp(Dj)

c∈supp(Dk)

(C(T (A \ {i}, B,C;D|a)), C(T (A,B \ {j}, C;D|b)), C(T (A,B,C \ {k};D|c)))

The first term above is at most K using the case t = 1 from above. As for the second term, consider for
instance C(T (A\{i}, B,C;D|a), and consider D′ = D|a and A′ = A\{i}. Note that (D′)A

′∪B = (D′)A
′×

(D′)B and (D′)A
′∪C = (D′)A

′ × (D′)C , so applying Lemma 4.17 we get that the second term above is at
most diam(A(S2, S3;D′)) ≲ K. Combining the two bounds, we conclude that C(T (A,B,C;D)) ≲ K2.
Similarly using (3) It is easy to check that the additive error β is at most poly(K)/q.

5 UG coboundary expansion of Spherical Buildings

We can now use the base case of induction along with the local to global lemma to get that the spherical
buildings of type A and C are UG coboundary expander.

Claim 5.1. There is a constant C > 0 such that if α(r) is a function of r such that α(r) ⩾ 6, and suppose
that d ⩾ 10rα(r). Then

Pr
i1,...,ir∼[d]

[
min

j ̸=k∈[r]
|ij − ik| ⩾

d

rα(r)

]
⩾ 2−r/α(r)C .

Proof. Denote r′ = rα(r) for simplicity. We will show that the event holds even if we pick elements from
[d] with repetitions, which is clearly stronger. To do so, we first choose a1, then calculate the probability
that a2 lies outside the d/r′ interval around a1, then further calculate the probability that a3 lies outside the
d/r′ interval around a1 and a2 and so on. Formally it suffices to lower bound:

Pr
ai∼[d]

[
min

a∈{a1,...,ai−1}
|a− ai| ⩾

d

r′

∣∣∣ a1, . . . ai−1

]
,

for all i ∈ [k].
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Let us start by bounding the first expression, and let us fix an i. There are a total of at most (i − 1) d
r′

elements that are d
r′ -close to some ai′ for 1 ⩽ i′ ⩽ i− 1. Thus, the probability ai is chosen among them is

at most i−1
r′ , so the first expression is at least 1− i−1

r′ .
As the probability of the event we are interested in the product of the expressions over i = 1, . . . , r, we

get that

Pr
a1,...,ar∼[d]

[
min

a̸=b∈∪ai
|a− b| ⩾ d

r′

]
⩾

∏
i∈[r]

(
1− i− 1

r′

)
⩾

(
1− r

r′

)r
⩾ 2−O(r/α(r)).

Definition 5.2. Let r ⩽ 3d and D be a distribution over
∏

i∈[d]Xi. We define a
(
d
r

)
-partite graph Gr(D) as

follows: for every S ⊂r [d], let the part PS contain the vertices supp(DS) and to sample an edge we sample
S, S′ ⊂r [d] with S ∩ S′ = ∅, X ∼ D and output (XS , XS′). We associate Gr(D) with the distribution on
triangles that samples disjoint sets S1, S2, S3 ⊂r [d], X ∼ D and outputs (XS1 , XS2 , XS3).

The next lemma shows that the graph Gr(D) is a coboundary expander over Sm with strong parameters
if D is any restriction of a spherical building of type A, of type C or a tensor of them.

Lemma 5.3. Let m, r, d, q ∈ N with r ≪ d ≪ q and let µ be the distribution SBA
d (Fq), SBC

d (Fq)
or one of their tensor products. Then for all S ⊂⩽r [d] and A0 ∈ supp(µS), Gr(µ|XS = A0) is a
(2O(r0.99 log r), 2−Ω(r12))-coboundary expander over Sm.

Proof. Let us fix µ to be the distribution corresponding to the spherical building of type C. The proof when
µ equals SBA

d (Fq) is identical except that we use Lemmas 2.15 and 4.18 for type A instead of Lemmas 2.20
and 4.19 for type C that are used below. Similarly, in the case that µ is one of the various possible tensor
products, we use the fact that µ is an O(1/

√
q)-product distribution (being the product of two O(1/

√
q)-

product distributions), and Lemma 4.21 instead of Lemma 4.19.
Consider D = µ|(XS = A0) for S ⊂ [d] of size at most r and A0 ∈ supp(µS). Let Φ = (Gr(D),Π)

be a UG instance over Sm with incons(Φ) = δ. Let S be the set of tuples (S1, S2, S3) of subsets of [d] \ S
of size r that are pairwise disjoint, and let S ′ ⊆ S be the set of tuples (S1, S2, S3) ∈ S where ∪Si is
Ω(d/r2)-separated and satisfies the third item in Assumption 1. Using Claim 5.1 we have

Pr
(S1,S2,S3)∈S

[(S1, S2, S3) ∈ S ′] ⩾ Ω(1)− Pr
(S1,S2,S3)∈S

[∃j ∈ [r0.9], i ∈ [3] such that ||Si∩Ij |−r0.1| ⩾ r0.06].

(22)
By the union bound, symmetry and the fact that r ⩽

√
d we have that

Pr
(S1,S2,S3)∈S

[∃j ∈ [r0.9], i ∈ [3] such that ||Si ∩ Ij | − r0.1| ⩾ r0.06] ≲ rPr
S1

[||S1 ∩ I1| − r0.1| ⩾ r0.06].

We bound the latter probability using the multiplicative Chernoff bound (that holds for sampling without
replacement too):

Pr
S1⊂r[d]

[||S1 ∩ I1| − r0.1| ⩾ r0.06] ⩽ 2−Ω(r0.1(r0.06/r)2) = 2−Ω(r0.02).

Overall, plugging in these estimates into (22) we get that

Pr
(S1,S2,S3)∈S

[(S1, S2, S3) ∈ S ′] ≳ 1.
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Let T be the set of S4 ⊂r [d] \ S with S4 ∩ (∪i∈[3]Si) = ∅, and note that

E
(S1,S2,S3)∼S′

E
(a1,a2,a3)∼µ∪Si

[(a1, a2, a3) ∈ incons(Φ)] ≲ δ, (23)

E
(S1,S2,S3)∼S′

E
S4∼T

E
(a1,a2,a4)∼µS1∪S2∪S4

[(a1, a2, a4) ∈ incons(Φ)] ≲ δ, (24)

and
E

(S1,S2,S3)∼S′
E

S4,S5∼T :
S4∩S5=∅

E
(a1,a4,a5)∼µS1∪S4∪S5

[(a1, a4, a5) ∈ incons(Φ)] ≲ δ, (25)

where we used the fact that the expectations of the same event under (S1, S2, S3) ∼ S is equal to δ. Using
Markov’s inequality we can henceforth fix a tuple (S1, S2, S3) ∈ S ′ where both the above expectations are
bounded by O(δ). Let I = ∪i∈[3]Si. We verify that DI and I satisfy the Assumptions 1. Indeed,

1. By Lemma 2.20, the measure D is an ε-product distribution with ε ≲ 1/
√
q which can be made at

most 2−r12 by taking q large.

2. The second item in Assumption 1 follows from Lemma 4.19.

3. The third item holds by the definition of S ′.

This means that we may apply Lemma 3.6, and indeed we do so.

Solving Φ on H = T (S1, S2, S3;DI): Since DI and I satisfy Assumption 1 we can apply Lemma 3.6 to
get that H is an (2O(r0.99 log r), 2−Ω(r12))-coboundary expander over Sm. In particular if Φ|H is the restricted
UG instance on H then there exists a solution A to the vertices of H with:

viol(A) ⩽ 2O(r0.99 log r)incons(Φ|H) + 2−Ω(r12)) ⩽ 2O(r0.99 log r)δ + 2−Ω(r12).

Lifting the solution: We will now use A to create a highly satisfying solution B to G = Gr(D). This
proof is similar to the lifting proof from Lemma 3.6, but we give the full proof here for completeness. For
every S4 ∈ T , every vertex u ∈ supp(DS4) and every restriction s ∈ supp(DSi |XS4 = u), i ∈ [3], let
gs(v) denote the permutation π(v, s)A(s). We will choose a randomized assignment as follows: for every
set S4 ∈ T , every vertex u ∈ supp(DS4), choose a random s ∼ DS1 |(XS4 = u) and assign B(u) = gs(u).
We will now upper bound the expected fraction of edges that B violates for Φ.

Consider an edge (u, v) ∈ G between two parts S4, S5 ∈ T (with S4 ∩S4 = ∅). This edge is satisfied if
there exists s′ ∈ supp(DS1 |(XS4 = u,XS5 = v)) such that, (1) B(u) = gs′(u), (2) B(v) = gs′(v) and (3)
The triangle (s′, u, v) is consistent.

To evaluate the probability there is such s′, we sample s′ ∼ DS1 |(XS4 = u,XS5 = v) and consider
each one of the events, starting with event (1). For it, the probability it doesn’t hold is at most

E
B

E
(u,v)∼DS4∪S5

E
s′∼DS1 |(XS4

=u,XS5
=v)

[I(B(u) ̸= gs′(u))] = E
u∼DS4

E
s,s′∼DS1 |u

[I(gs′(u) ̸= gs(u))].

To calculate this, let us first calculate a bound on:

E
u∼DS4

E
(s,s′)∼DS1∪S2 |u

[I(gs(u) ̸= gs′(u))].
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It is easy to check that an if an edge (s, s′) ∈ T (S1, S2, S3;D|u) is satisfied by A, and the triangle (s, s′, u)
is consistent then gs(u) = gs′(u). Thus,

E
u∈DS4

E
(s,s′)∼DS1∪S2 |u

[I(gs′(u) ̸= gs(u))]

⩽ E
u∈G

E
(s,s′)∼DS1∪S2 |u

[I((s, s′) not satisfied by A)] + E
u∈DS4

E
(s,s′)∼DS1∪S2 |u

[I((s, s′, u) ∈ incons(Φ))]

≲ viol(A) + E
(s,s′,u)∼DS1∪S2∪S4

[I((s, s′u) ∈ incons(Φ))] := δ′(S4).

We are ready to bound the probability that event (1) does not happen. Towards this end, for each vertex
u ∈ supp(DS4) define pu := Pr(s,s′)∼DS1∪S2 |u[gs′(u) ̸= gs(u)], so that the above inequality translates to
Eu∼DS4 [pu] = δ′(S4). Let p′u = Prs,s′∼DS1 |u[gs′(u) ̸= gs(u)]. By Lemma 2.6, the second largest singular
value of the bipartite graph A(S1, S2;D|u) is at most ε · poly(r) ⩽ 0.01 for all u, so by the easy direction
of Cheeger’s inequality we get that, p′u ⩽ O(pu), which gives us that,

E
u∼DS4

E
s,s′∼DS1 |u

[I(gs′(u) ̸= gs(u))] ≲ δ′(S4),

thus bounding the probability of event (1). One can check that the probability of event (2) is the same as
event (1), hence let us proceed to event (3). For that we get,

E
(u,v)∼DS4∪S5

E
s′∼DS1 |(XS1

=u,XS2
=v)

[I((s′, u, v) ∈ incons(Φ))] = E
(s′,u,v)∼DS1∪S4∪S5

[I((s′, u, v) ∈ incons(Φ))].

Adding up the probabilities that events (1),(2) or (3) do not happen and taking an expectation over S4, S5 ∼
T with S4 ∩ S5 = ∅ we get that,

E
B

E
S4,S5∼T :
S4∩S5

E
(u,v)∼DS4∪S5

E
s′∼DS1 |(u,v)

[I[events (1),(2), or (3) don’t hold]] ≲ 2O(r0.99 log r)δ + 2−Ω(r12) := δ′,

where we used (24) and (25).
We see that sampling sets S4, S5 ∼ T and an edge (u, v) ∼ DS4∪S5 , the restrictions su, sv chosen by

the randomized assignment B and s′ fails to satisfy at least one of the events (1), (2) and (3) with probability
≲ δ′. Thus, with probability at most O(δ′) over the choice of S4, S5, (u, v), su, sv, there is no s′ that satisfies
all events and otherwise we get that s′ satisfies all of (1), (2) and (3). This shows that in expectation the
assignment B that we get violates ≲ δ′-fraction of the edges of G that are between disjoint S4, S5 ∈ T .
Noting that this is a 1− o(1)-fraction of all the edges of G (since r ≪ d) completes the proof.

6 Construction of Sparse UG Coboundary Expander

We show that the complex from [CL23] is a sufficiently strong UG coboundary expander. As an immediate
corollary of [BM23a] we get that the Chapman-Lubotzky complex admits direct product testers.

6.1 Vanishing Cohomology for G1[X] over Sm

The main goal of this section is to present the Chapman-Lubotzky complex. In particular, we need the state-
ment that for all m ∈ N, for an appropriate choice of parameters, this complex has vanishing 1-cohomology.
This statement was communicated to us by Dikstein, Dinur and Lubotzky [DDL23], and below we give an
alternative proof.
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Definition 6.1. We say a graph G has vanishing cohomology with respect to Sm if the following holds. Let
Φ be a Unique-Games instance on G over Sm in which every triangle in G is consistent. Then there exists
a solution S ∈ S

V (G)
m that satisfies all the constraints of Φ. A complex X has vanishing 1-cohomology over

Sm if G1[X] has vanishing cohomology over Sm.

We note that the above definition is equivalent to the standard topological definition of vanishing 1-
cohomology. Therein, given a function f : E → H defined on the edges where H is some finite group, one
defines the coboundary map ∂f on triangles via

∂f(u, v, w) = f(u, v)f(v, w)f(w, u).

With these notations, we care about functions f such that ∂f ≡ id. If f(u, v) = g(u)g(v)−1 for all edges
(u, v) ∈ E for some g : V → H , then ∂f ≡ id clearly. The first cohomology group of G with coefficients
in H is defined via

H1(G,H) = {f | ∂f ≡ id}\{f | ∃g : V → H, f(u, v) = g(u)g(v)−1},

and note that the fact that G has vanishing cohomology over Sm with respect to the definition above is
equivalent to H1(G,H) = 0. We will use this language henceforth in this section.

First, we need the following general lemma that relates the cohomology of a complex to the homomor-
phisms of groups.

Lemma 6.2. Let G be a group acting transitively on a contractible topological space X , let Γ be a discrete
subgroup of G that acts simply on X , and let H be a finite group. Then H1(Γ\X,H) ∼= Hom(Γ, H).

Proof. We may identify functions on Γ\X with functions on X that are invariant under Γ. For a cycle
x let us write [x] for its equivalence class modulo the boundaries. Given [f ] ∈ H1(Γ\X,H) we ob-
tain that ∂(f) = id. Since X is contractible, we may find a function g on X with ∂(g) = f. Without
loss of generality g(x) = id for some x ∈ X . We now set φ(γ) = g(γ(x)) for each γ ∈ Γ. We
assert that φ is a homomorphism. Indeed, for each γ in Γ choose a path from γx to x. By hypothe-
sis, f = ∂(g) is invariant under left-multiplication by Γ. Therefore, the value of ∂(g) on the path is
φ(γ) = g(γx)g(x)−1 = g(γτx)g(τ(x))−1 = φ(γτ)φ(τ)−1. This yields that φ is indeed a homomorphism.
To show that the homomorphism is well defined we need to show that if g is γ-invariant, then φ = 1, which
of course holds. To construct the homomorphism in the reverse direction we choose a representative x for
each coset Γx and define a function g on X by setting its value on γx to be φ(γ). We then obtain back
an element [∂(g)] ∈ H1(Γ\X,H). It is easy to verify that the maps that we defined are inverses of each
other.

Recall that a quarternion algebra over F is a field extension F[i, j, k] with i2 = a, j2 = b, k2 = c and
k = ij = −ji for a, b, c ∈ F. Let Qp be the p-adic rationals and Q∞ be R. Let ν be either a prime p or
infinity. A quarternion algebra D over Q is said to be split at ν if D⊗Qp is isomorphic to the algebra of 2×2
matrices over Qν . Otherwise, it is a division ring and it is said to be ramified or unsplit. Given a quarternion
algebra D there exists a natural involution τ sending each of i, j, k to its negation. For a matrix A with
coordinates in D let us write A∗ = (τ(aji)). Then the group SU(n,D) consists of all the matrices with
coordinates in D, such that A∗A = I . The first result from number theory used by Chapman and Lubotzky
is the following.

Fact 6.3. For every p0 there exits a quarternion algebra that is ramified (non-split) only over p0 and ∞.
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The Chapman-Lubotzky high dimensional expanders consist of Γ\B, where Γ is a lattice and B is the
Bruhat-Tits building of type C̃n over Qp. The lattice Γ is given by taking a lattice inside the set SU(n,D),
where D is a quarternion algebra splitting over p0,∞ for some p0,∞. In our case we choose the prime p0 to
be larger than m. The lattice is obtained as follows: we first embed SU(n,D) diagonally inside the product∏

ν ̸=p,∞ SU(n,D ⊗ Qν). We then intersect it with a product of the compact groups Kν , where each Kν

can be an arbitrary compact open subgroup, which we choose to be SP2n(Zν) for each ν ̸= p0, and when
ν = p0, Kν can be taken to be a pro p0-group, which means that all its finite quotients have order which is
a power of p0:

Fact 6.4. The subgroup SU(n,D)⊗Qp contains a compact open pro-p group for each p.

Following Chapman-Lubotzky we set K =
∏

ν ̸=p,∞Kν and Γ = K ∩ SU(n,D).
Finally, using the congruence subgroup property and the strong approximation theorem, Chapman–

Lubotzky showed that K is the profinite completion of Γ, which means that every homomorphism from
γ to a finite group can be extended uniquely into K. The final number theoretic facts that we need is
the following. Recall that a discrete subgroup L ⩽ G is said to be a lattice if there exists a G-invariant
probability measure on L\G.

Fact 6.5. Γ is a lattice inside SP2n(Qp).

We are now ready to state the main lemma of this section.

Lemma 6.6. For all m ∈ N, choosing n and p to be sufficiently lage, the Chapman-Lubotzky Γ\B has
vanishing cohomology. Namely, H1(Γ/B, Sm) = 0.

The rest of this section is devoted to the proof of Lemma 6.6. First, we note that Lemma 6.2, to show
that H1(Γ\B,Sm) = 0 it suffices to show that Hom(Γ, Sm) = 0. By the above, it is sufficient to establish
that Hom(Kν , Sm) = 0 for each ν ̸= p,∞.

When ν = p0, this follows from the fact that Kν is a pro p0-group and p0 > m. This implies that its
quotients are p-groups and therefore cannot be embedded inside Sm when m < p.

For ν ̸= p0 this follows from the fact that the minimal dimension of a sub-representation of SP2n(Zp)
goes to infinity with n, and so if n is sufficiently large Hom(SP2n(Zp), Sm) = 0 as each such permutation
representation would give rise to a complex representation of dimension m, which would therefore have to
be trivial. The lower bound on the dimension can be easily deduced by adapting the method due to Howe
and Gurevich of U -rank, and we give the details below. 5

Lemma 6.7. The minimal dimension of a non-trivial representation of SP2n(Zp) tends to infinity as a
function of n uniformly over all p.

Proof. Let χ = tr ◦ ρ be the character of a nontrivial representation. Let B be the Abelian group of
symmetric matrices over Zp and let G = GLn(Zp), which acts on the group B via AB = BtAB. The group
SP2n(Zp). Recall that the group SP2n(Zp) conists of the matrices that preserves a symplectic form. They

are generated by the matrices of the form
(
I A
O I

)
, where A is symmetric matrix with entries in Zp, those

matrices of the form
(
C O

O
(
Ct

)−1

)
, where C is in GLn(Zp) together with the element w =

(
O I
−I O

)
.

5A stronger form of the lemma below will appear in a future paper of Evra, Kindler, Lifshitz, and Pirani that will extend the
theory of U -rank over p-adic groups.
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Let us denote the first group of elements by B and the second group of elements G. Then the product
BG is a semi direct product B ⋊G and it known as the Siegel parabolic subgroup.

Now the normal subgroup that B generates can easily be seen to be all of SP2n(Zp). This shows that
the restriction of ρ to B is also nontrivial. Indeed, if the restriction of ρ to B is trivial this would imply that
ρ on all the conjugates of B and therefore also on the normal subgroup that it generates.

Therefore, the restriction of χ to B is a a non-constant function. Let us denote the restriction by f . Then
since f is invariant under the conjugation action of G on B we have f(BtAB) = f(A) for all B ∈ G. This
implies that for each character χX in the Pontryagin dual of B all its equivalence classes χBXBt also lies in
the support of f . Now the dimension of χ is equal to f(1) and standard representation theory implies that
the Fourier coefficients of f are nonnegative integers.

We may therefore lower bound the dimension χ(1) by the minimal size of an orbit of a nontrivial
character in the Pontryagin dual of B. Each character in the Pontryagin dual corresponds to a symmetric
matrix X over Z/pk and χX(A) = ω

tr(XA)
p . Now the orbit of X under the action of G can be lower bounded

by the orbit of P iX for each i. We may therefore multiply X by powers of p until all its entries are multiples
of pk−1 and lower bound the orbit of the resulting character. However, the resulting matrix has entries in Fp

and the lower bound on the orbit of X was established for that case by Gurevich and Howe [GH17].

6.2 Cosystolic Expansion for Gr[X]

In this section we show that Gr[X] has sufficiently strong cosystolic expansion. To prove this we use a local
to global theorem of [DD23b] that shows that when the links are coboundary expanders then the complex is a
cosystolic expander. Let us first show that the vertex links of the Chapman-Lubotzky complex are spherical
buildings of type C, as well as tensor products of type A and type C buildings.

Lemma 6.8. The Chapman-Lubotzky complex X discussed in Section 6.1 has vertex links that are spherical
buildings of either type Cn−1, tensor of type A1 and type Cn−2, or tensor of type Ck and type Cn−k−1.
Furthermore, X is an O(1/

√
p)-one-sided local spectral expander.

Proof. Consider the complex X , and note that by construction the links of X are the same as the links of
Γ. The affine building Γ has a Coxeter diagram of type C̃n. By [AB08, Proposition 3.16], the links of
Γ correspond to spherical buildings whose Coxeter diagram is the result of deleting one vertex from the
diagram C̃n (see also [Ess10, Lemma 3.1.13]). By inspection, it follows that all links are spherical buildings
that are either type Cn−1, tensor of type A1 and type Cn−2, or tensor of type Ck and type Cn−k−1. These
complexes correspond to subspaces over the field Fp (see [Nel23] for a description of the C̃n building).

Using Lemmas 2.20 and 2.15 we know that the spherical buildings of type C and type A are O(1/
√
p)-

product distributions or equivalently O(1/
√
p)-one-sided local spectral expanders. This implies that the

same also holds for their tensor products. Using the trickling-down theorem, Theorem 2.12 we then get that
X is also an O(1/

√
p)-one-sided local spectral expander.

Below we state the formal definition of cosystolic expansion for graphs and complexes that will be useful
for us.

Definition 6.9. We say a graph G is a C-cosystolic expander with respect to Sm if the following holds. Let
Φ be a Unique-Games instance on G over Sm with incons(Φ) = δ. Then one can change the constraints of
Φ on Cδ-fraction of the edges to get Φ′ such that incons(Φ′) = 0. We say that a complex X is a C-cosystolic
expander over Sm if the graph G1[X] is a C-cosystolic expander over Sm.
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In literature the above definition is known as the 1-cosystolic expansion of X over Sm, and has various
generalizations to higher levels of X (when Sm is replaced by an Abelian group) but we refrain from stating
those definitions.

Let us now state the local to global theorem. For a complex X let Y = X⩽R denote the “cutoff” of X ,
i.e. Y = (X(1), . . . , X(R)), equipped with the same distributions.

Theorem 6.10 ([DD23b] Theorem 1.2 modified). There exists a constant R such that for all β, λ > 0 and
m, d,C ∈ N with β, λ ⩽ poly(1/C) the following holds. Let X be a d-dimensional complex such that X⩽R

is a λ-one-sided local spectral expander and for all v ∈ X(1), G1[Xv] is a (C, β)-coboundary expander
over Sm. Then X is a poly(C)-cosystolic expander over Sm.

Proof. First, [DD23b, Theorem 1.2] asserts that if the one-skeletons of all links of X are λ-one-sided
expanders and for all v ∈ X(1) the complex Xv is a C-coboundary expander over Sm, then X is a poly(C)
cosystolic expander over Sm.

We discuss how to change their argument to get the stronger theorem. Firstly their argument only uses
the link expansion to derive spectral gaps of the up-down walks on X on R′ < R levels. Therefore we can
look at Y = X⩽R instead and using the local spectral expansion of Y , derive that these up-down walks on
Y are sufficiently expanding. But these are the same as the walks on X therefore hence the latter also have
the required expansion properties. Hence we only require the local spectral expansion assumption on X⩽R.

Now let us discuss the requirements on the coboundary expansion of links – we only have that the
1-links are (C, β)-coboundary expanders over Sm, instead of C-coboundary expanders. Their argument
works as is, except in the step that they apply coboundary expansion. They use the fact that given any UG
instance: incons(Φ) ⩾ 1

C viol(Φ), but we can instead get that, incons(Φ) ⩾ 1
C viol(Φ) − β

C . This error of
β/C gets absorbed into the other additive errors that depend on “η” (check the proof overview) and λ as
long as β ⩽ poly(1/C). Hence this error does not affect the rest of the argument and we get the same
conclusion.

Lemma 6.11. For all r ≪ d ≪ q the following holds. Let X be the d-dimensional Chapman-Lubotzky
complex over Fq. Then Gr[X] is a 2O(r0.99 log r)-cosystolic expander over Sm for all m ∈ N.

Proof. Consider the complex Xr, with

Xr(1) = {v | v ∈ X(r)}, Xr(2) = {(u, v) | u, v ∈ X(r) such that u ∪ v ∈ X(2r)}

and more generally

Xr(ℓ) = {(u1, . . . , uℓ) : u1, . . . , uℓ ∈ X(r) such that u1 ∪ . . . ∪ uℓ ∈ X(ℓr)}.

Note that that Gr[X] = G1[X
r]. We intend to use Theorem 6.10, and for that we verify that the constant-

sized links have one-sided expansion on the 1-skeletons, and that the 1-links of Xr are coboundary ex-
panders over Sm.

One-sided local spectral expansion of (Xr)⩽R: We will show that (Xr)⩽R is an exp(−r10)-one-sided
local spectral expander. Let us fix an i-face F of Xr for i ⩽ R − 2 and upper bound the second eigenvalue
of the 1-skeleton of (Xr)F . Let Y be the complex XF with d′ := dim(Y ) = d − ir. Then bounding the
second eigenvalue of the 1-skeleton corresponds to bounding the second eigenvalue of the random walk W
that picks a random r-face A ∈ Y (r), goes up to a random 2r-face (A,B) ∈ Y (2r) and then outputs the
r-face B ∈ Y (r). We can check that W is 1−O(r2/d′)-close to the walk W ′ that picks a random d′-face I
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in Y and two uniformly random r-faces inside I . This is because W ′ conditioned on outputting two disjoint
r-faces is the same as W . The probability that W ′ outputs disjoint faces is at least 1− O(r2/d′), therefore
giving us that the second eigenvalues of W and W ′ differ by at most O(r2/d′). But W ′ is the same as the
up-down walk from X(r) → X(d′) → X(r), which by Lemma 2.13 has a second eigenvalue of at most
O(r/d′) since XF is a O(1/

√
q)-one-sided local spectral expander. This gives us that every i-link of Xr

has a second eigenvalue of at most O(r/(d − ir)) which is at most 2−r12 by taking d to be a large enough
function of r,R, as required.

Coboundary expansion of 1-links of Xr: We will show that for all links I ∈ Xr(1), G1[(X
r)I ] are

(2O(r0.99 log r), exp(−r10))-coboundary expanders. Fix some I ∈ Xr(1). By definition of Xr, I corresponds
to an r-face in X , which we also denote by I . Let v ∈ X(1) be some vertex that belongs to I . By Lemma 6.8
we know that Xv is a spherical building either of type Cn−1, tensor of type A1 and type Cn−2, or tensor
of type Ck and type Cn−k−1. Let Y = Xv, associated with the distribution µ over its maximal faces. We
get that the complex XI is some r − 1-link of Y denoted by YS→A0 and associated with the distribution
µ|YS = A0. One can check that the complex (Xr)I is then equal to (XI)

r which in turn equals (YS→A0)
r.

So we get that, G1[(X
r)I ] = G1[(YS→A0)

r] = Gr(µ|XS = A0) which is a (2O(r0.99 log r), 2−Ω(r12))-
coboundary expander by Lemma 5.3. So we get that all the vertex links of Xr are coboundary expanders.

In the two paragraphs above, we have shown that Xr satisfies the hypotheses of Lemma 6.10. Therefore
applying the lemma on Xr we get that Xr or equivalently the graph G1[X

r] = Gr[X] is a 2O(r0.99 log r)-
cosystolic expander over Sm.

6.3 Chapman-Lubotzky complex is a UG Coboundary Expander

Theorem 6.12. For all m, r ≪ d ≪ q ∈ N the following holds. Let X be the d-dimensional Chapman-
Lubotzky complex over Fq. Then X is an (m, r, α(r), α(r))-UG coboundary expander for

α(r) = 2O(r0.99 log r).

Proof. From Lemma 6.6 we know that X has vanishing 1-cohomology over Sm. We also know that X is a
well-connected clique complex [CL23]. We now use [DD23a, Lemma 3.7], which asserts that if a complex
X is a well-connected clique complex with G1[X] having vanishing cohomology then Gr[X] also has
vanishing cohomology. We also know from Lemma 6.11 that Gr[X] is an 2O(r0.99 log r)-cosystolic expander
over Sm. Combining the two facts proves that Gr[X] is an 2O(r0.99 log r)-coboundary expander over Sm,
therefore an (m, r, α(r), α(r))-UG coboundary expander.

6.4 Proof of Theorem 1.3

Fix ε, δ > 0 and take r and m sufficiently large. Take the Chapman Lubotzky complex X for sufficiently
large n and prime p, which is a one-sided local spectral expander [CL23]. Combining this with Theorem 6.12
we get that X satisfies the conditions of Theorem 1.8, and therefore we conclude that the canonical direct
product tester of X has soundness at most δ.
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