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Abstract

Several theorems and conjectures in communication complexity state or speculate that the
complexity of a matrix in a given communication model is controlled by a related analytic
or algebraic matrix parameter, e.g., rank, sign-rank, discrepancy, etc. The forward direction
is typically easy as the structural implications of small complexity often imply a bound on
some matrix parameter. The challenge lies in establishing the reverse direction, which requires
understanding the structure of Boolean matrices for which a given matrix parameter is small or
large. We will discuss several research directions that align with this overarching theme.

1 Introduction

In 1979, Yao [Yao79] introduced an abstract model for analyzing communication. It quickly became
apparent that the applications of this elegant paradigm go far beyond the concept of communica-
tion. Many results in communication complexity have equivalent formulations in other fields that
are equally natural, and the techniques developed within this framework have proven to be powerful
tools applicable across various domains. Today, communication complexity is a vibrant research
area with many connections across theoretical computer science and mathematics: in learning the-
ory, circuit design, pseudorandomness, data streaming, data structures, computational complexity,
computer networks, time-space trade-offs, discrepancy theory, and property testing.

In this article, we focus on the most standard framework where a communication problem
is simply a Boolean matrix. Formally, there are two parties, often called Alice and Bob, and a
communication problem is defined by a matrix F ∈ {0, 1}X×Y . Alice receives a row index x ∈ X ,
and Bob receives a column index y ∈ Y. Together, they should compute the entry F (x, y) by
exchanging bits of information according to a previously agreed-on protocol tailored to F . There is
no restriction on their computational power; the only measure we care to minimize is the number
of exchanged bits.

Many questions in communication complexity concern the basic structural properties of Boolean
matrices and are relevant to any field that requires an in-depth analysis of them. Mathematicians,
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of course, have studied matrices for centuries through the lenses of linear algebra, geometry, and
analysis. They have produced an extensive collection of tools and theories that apply to any field
dealing with these mathematical objects. However, the assumption of Booleanity introduces a novel
angle and unveils new problems and challenges.

Consider the example of rank. Elementary linear algebra provides several satisfactory structural
descriptions of small-rank matrices. For example, one could construct a small-rank matrix by
summing a few rank-one matrices. In contrast, the structure of small-rank Boolean matrices is the
subject of the most well-known conjecture in communication complexity, the log-rank conjecture.

There are many theorems and conjectures in communication complexity that fall into a similar
paradigm as the log-rank conjecture: They state or speculate that the complexity of a matrix in
a given communication model is essentially determined by a related analytic or algebraic matrix
parameter, e.g., rank, sign-rank, discrepancy, trace norm, approximate trace norm, γ2-factorization
norm, approximate factorization norm. The forward direction is typically easy as the structural
implications of small complexity often imply a bound on some matrix parameter. The challenge
lies in establishing the reverse direction, which requires understanding the structure of Boolean
matrices for which a given matrix parameter is small or large.

In this article, we discuss some new research directions and open problems, as well as some
classical ones, that align with this overarching theme.

Notation: All logarithms are in base 2. Sometimes, we use a ≲ b to denote a = O(b). Let Im
denote the m×m identity matrix and JX×Y denote the X ×Y all-1 matrix. For a positive integer
k, we denote [k] = {1, . . . , k}. We often identify a Boolean matrix FX×Y with the corresponding
function F : X × Y → {0, 1} defined as F : (x, y) 7→ F (x, y). We define the complement of a
communication problem F = FX×Y as ¬F = JX×Y − F . For two X × Y matrices A and B, we
denote their entry-wise product (i.e. Schur product) by A ◦B.

Communication complexity classes: We measure the communication complexity of a matrix
FX×Y in relation to the number of input bits n(F ) := ⌈logmax(|X |, |Y|)⌉. We often consider
2n × 2n matrices Fn : {0, 1}n × {0, 1}n → {0, 1}, where the inputs of Alice and Bob are n-bit
strings. Moreover, similar to computational complexity, the goal is to understand the asymptotic
complexity, and therefore, a communication problem typically refers to an infinite family of Boolean
matrices rather than a single matrix.

For example, Equality is the family of matrices EQn : {0, 1}n×{0, 1}n → {0, 1} with EQ(x, y) =
1 iff x = y. Equivalently, EQn is the 2n×2n identity matrix, where the rows and columns are labelled
with n-bit strings.

In the theory of Turing machines, a polynomial complexity is considered efficient, but this is not
a suitable criterion for communication since even in the deterministic model, communication com-
plexity is at most n+1. In an influential paper, Babai, Frankl, and Simon [BFS86] proposed poly-
logarithmic complexity as the criteria for efficiency and used it to define the communication classes
Pcc,NPcc,RPcc,BPPcc,PPcc,UPPcc, analogous to the classical computational complexity classes.
The definition of communication classes by [BFS86] provides a formal paradigm to compare the
power of different communication models.

Since in this article, we only study communication classes, to make the notation less cumber-
some, from this point on, we will drop the superscript cc and denote these communication classes
simply as P,NP,RP,BPP,PP,UPP.
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Constant-cost communication classes: For many communication problems, it may not be
completely natural to allow the communication complexity to depend on the matrix size. For
example, consider the geometric problem where Alice receives a point x ∈ R2, and Bob receives
a closed half-space H ⊆ R2, and they wish to know whether x ∈ H. Alternatively, consider the
problem where Alice and Bob receive points x, y ∈ R2, respectively, and they wish to know whether
the distance between these points is at most 1. In these examples, the number of possible inputs
is infinite, and even if we artificially restrict the number of possible inputs to a finite set, the most
natural way to represent the inputs is by vectors in R2. Therefore, it is more natural to consider
communication protocols that solve the problem (in a certain communication model or under some
promised guarantees about the inputs) using a bounded number of communicated bits, independent
of the number of possible inputs.

Furthermore, many parameters studied in communication complexity are also relevant to other
areas of theoretical computer science, where the Boolean matrices are either infinite or their size
is of lesser significance than other features. For example, in learning theory, notions such as VC
dimension, Littlestone dimension, margin complexity, and Threshold dimension of binary concept
classes are of primary interest rather than the class size. Viewing binary concept classes as Boolean
matrices, these parameters are directly related to notions such as stability, discrepancy, and sign-
rank that play a central role in communication complexity.

The definition of communication classes by [BFS86], no doubt, is natural and has successfully
led to many fruitful lines of research seeking to prove separations between different communication
classes. However, if one wishes to view communication complexity in these broader contexts, it be-
comes essential also to analyze communication problems that have uniformly bounded complexity.
Indeed, there is already a rapidly growing body of work dedicated to studying constant-cost commu-
nication [LMSS07, LS09a, BCK14, HHL20, Har20, HWZ22, HHP+22, EHK22, HHH23, CHHS23,
ACHS23, HZ24].

These considerations motivate the definition of the constant-cost analogues of the communica-
tion classes of [BFS86]. Here, the criterion of effectiveness is a O(1) complexity, independent of
the input size n. We will denote these classes by adding a 0 subscript to the corresponding poly-
logarithmic class, where 0 refers to the power d in the polylogarithmic complexity O(logd(n)). For
example, a family of Boolean matrices Fn is in P0 if their deterministic communication complexity
is uniformly bounded by a constant C = O(1).

We will formally define and discuss the classes P0,NP0,RP0,BPP0,PP0,UPP0 later, but for now,
let us mention that, unlike in the poly-logarithmic communication classes where P ⊊ RP ⊊ NP and
BPP ⊊ PP, here we have P0 = NP0 ⊊ RP0 and BPP0 = PP0. We also believe that BPP0 ̸⊆ UPP0,
while Newman’s lemma [New91] implies that BPP ⊆ UPP.

Monochromatic rectangles: A monochromatic rectangle in a Boolean matrix FX×Y refers to
a submatrix FS×T , where all entries share the same value. Monochromatic rectangles are the
building blocks of every communication protocol, and many results and problems in communication
complexity focus on describing the structure of Boolean matrices in terms of these rectangles or
showing the existence of large monochromatic rectangles in them.

Define the rectangle ratio of a Boolean matrix FX×Y as

rect(F ) := max
R

|R|
|X × Y|

,

where the maximum is over monochromatic rectangles in F .
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Concerning communication complexity, the parameter rect(·) has a few drawbacks: While
adding new rows and columns to a matrix can only increase the communication complexity, it
can deteriorate rect(F ) by creating large monochromatic rectangles. Moreover, repeating a row or
column of F does not change its communication complexity, but it can affect rect(F ). Therefore,
it is more natural to consider the following version of rect that considers weighted monochromatic
rectangles, first studied by Impagliazzo and Williams [IW10].

Definition 1.1 (Weighted Rectangle Ratio). For every Boolean matrix F , define

wrect(F ) := inf
µ

max
R

µ(R),

where the infimum is over all product probability measures µ = µX × µY on X × Y, and the
maximum is taken over all monochromatic rectangles in F .

Both rect(·) and wrect(·) are natural parameters that measure the existence of structure in
Boolean matrices. As we will discuss throughout the paper, they play a crucial role in several
applications in communication complexity, and some basic and consequential questions regarding
these quantities remain open.

2 Deterministic communication complexity and rank

A deterministic communication protocol is defined by a binary tree, where every internal node v
specifies which player speaks at that node and what bit they must send. For example, if an internal
node v is associated with Alice, it is labelled with a function av : X → {0, 1}, which prescribes the
bit sent by Alice at this node. After this bit is sent, the players move to the corresponding child
of v: they move to the left child if the bit is 0 and to the right child if the bit is 1. They continue
this process until they reach a leaf. Every leaf is labelled with 0 or 1, which corresponds to the
output of the protocol. The cost of the protocol is the height of the tree, which is equal to the
maximum number of bits exchanged on any input. The deterministic communication complexity
of F , denoted by D(F ), is the smallest cost of a protocol that computes F correctly on all inputs.
Let P and P0 be, respectively, the class of problems with poly-logarithmic and O(1) deterministic
communication complexity.

The fact that the bit communicated at every node depends only on one of the inputs implies
the most useful fact in communication complexity: for every node v, the set of all inputs that lead
the protocol to v is a combinatorial rectangle, which is a product set Rv = Sv × Tv with Sv ⊆ X
and Tv ⊆ Y.

For every b ∈ {0, 1}, a combinatorial rectangle R is called a b-monochromatic rectangle if
F (x, y) = b for every entry (x, y) ∈ R. Note that for every b-labelled leaf ℓ, the set Rℓ must be a
b-monochromatic rectangle. Therefore, the leaves of a deterministic protocol partition the matrix
into monochromatic rectangles.

A Boolean matrix F with small D(F ) is highly structured, as it consists of at most 2D(F )

monochromatic rectangles. This partition of F into at most 2D(F ) disjoint monochromatic rectangles
implies

D(F ) ≥ log(1/rect(F )). (1)

Moreover, since the real rank of a monochromatic rectangle is at most 1, we have rk(F ) ≤ 2D(F ),
where rk(F ) denotes the real rank of F . Combined with the easy fact D(F ) ≤ rk(F ) + 1, we have

log rk(F ) ≤ D(F ) ≤ rk(F ) + 1. (2)
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Therefore, P0 coincides with the class of problems with bounded rank. However, the exponential
gap between the lower bound and the upper bound is too wide to provide a characterization of P
in terms of rank. The log-rank conjecture speculates that the lower bound is essentially sharp and
D(F ) and log rk(F ) are polynomially equivalent.

Conjecture 1 (The log-rank conjecture [LS88]). There exists a universal constant C > 0 such that
for every Boolean matrix F ,

D(F ) ≤ C (log rk(F ))C .

The log-rank conjecture, if true, provides a structural description for Boolean matrices of small
rank. Namely, they must have the same tree-like partition into monochromatic rectangles as ma-
trices with small deterministic communication complexity. Nisan and Widgerson [NW95] showed
that to prove the log-rank conjecture, it suffices to show the existence of one large monochromatic
rectangle.

Conjecture 2 (The log-rank conjecture - equivalent formulation). There exists a universal constant
C > 0 such that every Boolean matrix F satisfies

rect−1(F ) ≤ C logC rk(F ).

To date, the strongest known bound is still exponentially far from that in Conjecture 1. Con-
cretely, Lovett [Lov16] showed that D(f) ≤ O(

√
rk(f) log rk(f)), which was recently improved by

Sudakov and Tomon [ST23] to O(
√
rk(f)). On the lower bound side, a construction of [GPW18a]

shows that the constant C cannot be strictly less than 2. We refer to surveys [Lov14, LS23] for a
detailed discussion of the log-rank conjecture.

3 Equality oracles and γ2-Factorization norm

The results discussed in this section mostly stem from joint work by Lianna Hambardzumyan and
the authors [HHH23]. Regarding communication complexity, we will focus on the deterministic
model with access to an Equality oracle. We will show that this model has compelling ties to
harmonic analysis and operator theory. In particular, we will discuss a conjecture in communication
complexity with profound links to the characterization of the idempotents of the algebra of Schur
multipliers and Cohen’s celebrated idempotent theorem, a well-known and notable theorem in
harmonic analysis.

3.1 An analytic version of the rank lower-bound

The rank lower bound on D(F ) follows from the observation that every Boolean matrix F can be

written as F =
∑2D(F )

i=1 Bi, where each Bi is a rank-one Boolean matrix. If instead of counting the
number of rank-one Boolean matrices in this sum, we focus on the sum of the coefficients, we can
establish an alternative lower bound on D(F )—a lower bound with an analytical flavour.

Define the µ-norm of a real matrix A as

∥A∥µ = inf
λi,Bi

{∑
i

|λi| : A =
∑
i

λiBi

}
,
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where each Bi is a rank-one Boolean matrix and each λi is a real number. Note that ∥ · ∥µ satisfies
all the axioms of a norm, and we have

log ∥F∥µ ≤ D(F ). (3)

The µ-norm is not well-known in functional analysis, and its definition is tailored to its purpose
as a lower bound in communication complexity. Fortunately, the Grothendieck inequality shows
that the µ-norm is equivalent to the well-studied γ2-factorization norm.

Definition 3.1. The γ2-norm of a real matrix AX×Y , denoted by ∥A∥γ2, is the inifimum of c
such that there exists a positive integer d and vectors ux, vy ∈ Rd for x ∈ X and y ∈ Y with
⟨ux, yv⟩ = A(x, y) and ∥ux∥2 · ∥vy∥2 ≤ c for all x, y.

A key property of the γ2-norm is that for every two X × Y real matrices A1 and A2, we have

∥A1 ◦A2∥γ2 ≤ ∥A1∥γ2∥A2∥γ2 , (4)

where we recall that A1 ◦A2 is the entry-wise product of A1 and A2.
The Grothendieck inequality implies that for every real matrix A, we have

∥A∥γ2 ≤ ∥A∥µ ≤ 4K∥A∥γ2 ,

where K ≤ π
2 ln(1+

√
2)

≈ 1.7822 is the so-called Grothendieck constant for real numbers. In light of

this equivalence, we will rephrase the lower bound Equation (3) in terms of the γ2-norm:

log ∥F∥γ2 ≤ D(F ). (5)

If we compare this lower bound to Equation (2), it is natural to wonder whether we can bound
D(F ) from above by a function of ∥F∥γ2 . The answer is negative. The γ2-norm of every identity
matrix is 1, but identity matrices can be of arbitrarily large rank and, therefore, of arbitrarily large
deterministic communication complexity.

Proposition 3.2. For every m, the γ2-norm of the m×m identity matrix Im is 1,

Proof. Note that since the standard basis e1, . . . , em ∈ Rm satisfies

⟨ei, ej⟩ =
®
1 i = j

0 i ̸= j
,

by Definition 3.1, Im satisfies ∥Im∥γ2 ≤ 1. Moreover, it is clear from the definition of the γ2-norm
that for every matrix A, we have ∥A∥γ2 ≥ ∥A∥∞ := maxx,y |A(x, y)|, and therefore, ∥Im∥γ2 ≥ 1.

What are the Boolean matrices with small γ2-norm then? It follows from ∥A∥γ2 ≥ ∥A∥∞
that the γ2-norm of every non-zero Boolean matrix is at least 1. Let us first study the Boolean
matrices whose γ2-norm is exactly 1.

Proposition 3.2 shows that all identity matrices have γ2-norm 1. Note that the proof of Propo-
sition 3.2 generalizes to a larger class of matrices, which we call blocky matrices.

Definition 3.3 (Blocky matrices). A Boolean matrix FX×Y is blocky if there exist disjoint sets
Xi ⊆ X and disjoint sets Yi ⊆ Y such that the support of F is exactly

⋃
iXi × Yi.
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Let Blocky denote the set of all blocky matrices. It turns out that Blocky is precisely the set of
Boolean matrices with γ2-norm 1.

Proposition 3.4 (Livshits [Liv95]). A Boolean matrix F satisfies ∥F∥γ2 = 1 iff F ∈ Blocky.

Proof. It is observed in [Liv95] that ∥∥∥∥∥∥
1 1

0 1

∥∥∥∥∥∥
γ2

=
2√
3
> 1.

Since ∥ · ∥γ2 norm is invariant under row and column permutations, a Boolean matrix F with
∥F∥γ2 = 1 cannot have any 2 × 2 submatrices with exactly 3 ones. It is straightforward to verify
that a Boolean matrix satisfying this property must be blocky.

Since every Boolean matrix with γ2-norm 1 is blocky, it is natural to ask whether Boolean
matrices of bounded γ2-norm can be characterized through blocky matrices.

We first show that if F is generated by entry-wise operations from a few blocky matrices, it
must have a small γ2-norm.

Proposition 3.5. Consider X × Y blocky matrices B1, . . . , Br and a combining function Γ :
{0, 1}r → {0, 1}. The Boolean matrix FX×Y defined as

F (x, y) := Γ(B1(x, y), . . . , Br(x, y)) (6)

satisfies ∥F∥γ2 ≤ 3r.

Proof. We prove the statement by induction on r. The base case r = 0 is trivial. Next, consider
a Boolean matrix F satisfying Equation (6), and write F = (B1 ◦ F1) + (J − B1) ◦ F2, where the
entries of F1 and F2 depend only on B2, . . . , Br and J is the all-1 matrix. Note that J is a blocky
matrix and satisfies ∥J∥γ2 = 1. We have

∥F∥γ2 ≤ ∥B1 ◦ F1∥γ2 + ∥(J−B1) ◦ F2∥γ2
≤ ∥F1∥γ2 + (∥J∥γ2 + ∥B1∥γ2)∥F2∥γ2 ≤ 3r−1 + 2 · 3r−1 = 3r.

In [HHH23], we conjectured that Boolean matrices of small γ2-norm are precisely those of the
form Equation (6).

Conjecture 3. Suppose that F is a Boolean matrix with ∥F∥γ2 ≤ c. Then we may write

F =
L∑
i=1

±Bi, (7)

where Bi are blocky matrices and L ≤ ℓ(c) for some integer ℓ(c) depending only on c.

Conjecture 3 is inspired by Cohen’s idempotent theorem, and it is known to be true for a large
class of Boolean matrices, including the xor-lifts of Boolean functions.

Recall that the xor-lift of a function f : Zn
2 → {0, 1} is the matrix f⊕ : Zn

2 × Zn
2 → {0, 1}

defined as f⊕(x, y) = f(x+ y).
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The sum of the absolute values of the Fourier coefficients of a function f : Fn
2 → R is called the

Fourier algebra norm or spectral norm of f and is denoted by

∥f∥A := ∥f̂∥1 =
∑
χ∈“G |f̂(χ)|.

The following identity relating the Fourier algebra norm of f to the γ2-norm of its xor lift is due
to [LS09b, Lemma 36].

∥f∥A = ∥f⊕∥γ2 . (8)

Therefore, in the case of xor-lifts, the assumption ∥f⊕∥γ2 ≤ c of Conjecture 3 is equivalent ∥f∥A ≤
c. The structure of Boolean functions f : Zn

2 → {0, 1} with ∥f∥A ≤ c is characterized by the
quantitative version of the so-called Cohen’s idempotent theorem for Zn

2 .

Theorem 3.6 (Quantitative Cohen’s theorem for Zn
2 [Coh60, GS08]). If S ⊆ Zn

2 satisfies ∥1S∥A ≤
c, we may write

1S =

L∑
i=1

±1Hi+ai , (9)

where Hi + ai are cosets and L ≤ ℓ(c) for some integer ℓ(c) depending only on c.

Note that the xor-lift of every 1Hi+ai is a blocky matrix, and therefore, Theorem 3.6 verifies
Conjecture 3 for xor-lifts. In fact, these results extend to every finite group. Given a finite group
G, we can generalize the notion of xor-lifts to group-lifts, where we define F (x, y) = f(y−1x) for
f : G → C. The notion of algebra norm also generalizes to other finite groups. We will not give
the original definition of the algebra norm, but for the purposes of this paper, it suffices to know
that similar to Equation (8), we have ∥f∥A = ∥F∥γ2 . This identity was observed in [HHH23] based
on a result of Davidson and Donsig [DD07].

Theorem 3.7 (Quantitative Cohen’s theorem for finite groups [San11]). There exists a function
ℓ : N → N such that the following holds. For every finite group G and every S ⊆ G, if FG×G(x, y) =
1S(y

−1x) satisfies ∥F∥γ2 ≤ c, we may write

1S =

L∑
i=1

±1Hiai , (10)

where Hiai are cosets and L ≤ ℓ(c). In particular, F =
∑L

i=1±Bi, where Bi are blocky matrices.

Theorem 3.7 verifies Conjecture 3 for the adjacency matrix of every Cayley (directed) graph.
On the other hand, for general Boolean matrices, it is not even known whether ∥F∥γ2 ≤ c implies
rect(F ) ≥ κ(c) for some κ(c) > 0, which would be an easy consequence of Conjecture 3.

Regarding the bound in Theorem 3.7, for general finite groups, one can take ℓ(c) = A(6, O(c)),
where A is the Ackerman function [San11]. For the case of finite Abelian groups, a better bound
of ℓ(c) = 2O(c4 polylog(c)) is due to [San20].

In the special case of Zn
2 which corresponds to the xor-lifts, the best bound [San19] that

appears in the literature is ℓ(c) ≤ 2O(c3 polylog(c)). However, recently, Gowers, Green, Manners,
and Tao [GGMT23] announced a proof for Morton’s conjecture (aka polynomial Freiman–Ruzsa
conjecture). Substituting this result in Sanders proof for [San19, Proposition 2] shows that in the
case of Zn

2 , one may take ℓ(c) = 2O(cpolylog(c)).
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3.2 Equality Oracle Protocols

Equality is the canonical problem with the strongest possible separation between deterministic
and randomized communication complexities. We have D(EQn) = n+1, which is the largest possible
value for any n-bit communication problem. On the other hand, as we will discuss in Section 5.1,
the randomized communication complexity of EQn is only O(1).

We know that the deterministic model cannot solve Equality efficiently. What if we augment
the model with an equality oracle? Does this result in a significantly stronger model? Can this
model efficiently solve every problem with small randomized communication complexity?

Formally, in the deterministic communication model with access to an Equality oracle, a
protocol for a Boolean matrix FX×Y corresponds to a binary tree. Each non-leaf node v in the tree
is labelled with two functions av : X → {0, 1}m and bv : Y → {0, 1}m for some m. On this node, the
players map their inputs to strings av(x) and bv(y), respectively, and the oracle will broadcast the
value of EQm(av(x), bv(y)) to both players. This will contribute only 1 to the cost of the protocol.
Note that the oracle queries can simulate sending one-bit messages from each party to the other
one. For example, if it is Alice’s turn to send a bit a, the query EQ1(a, 1) can transmit it to Bob.
Hence, in this model, we can assume that all the communication is through oracle queries.

Let DEQ(F ) denote the smallest cost of a deterministic protocol with equality oracle for the
matrix F , and define PEQ and PEQ

0 to be, respectively, the class of problems with poly-logarithmic
and constant communication costs in this model.

In the same way that combinatorial rectangles are the building blocks of deterministic com-
munication protocols, blocky matrices serve as the foundational components of equality oracle
protocols. Indeed, every node v of an equality oracle protocol for computing F (x, y) corresponds
to Bv(x, y) = EQ(av(x), bv(y)) where Bv is a blocky matrix.

Equation (2) characterizes P0 as the set of problems with O(1) rank. Can we obtain a similar
characterization for PEQ

0 via the blocky matrices? To this end, let us define a notion of rank based
on blocky matrices.

Definition 3.8 (Blocky Rank). The blocky rank of a real matrix A, denoted rkBlocky(A), is the
smallest integer r such that A is a real linear combination of r blocky matrices.

Blocky rank has interesting connections to circuit and communication complexity theory [AY22,
HHH23]. The following proposition shows analogous bounds to Equation (5) on DEQ(F ), and implies
that a matrix family {Fn} is in PEQ

0 iff rkBlocky(Fn) = O(1).

Proposition 3.9 ([HHH23]). For every Boolean matrix FX×Y , we have

1

2
log rkBlocky(F ) ≤ DEQ(F ) ≤ rkBlocky(F )

and
log ∥F∥γ2 ≤ 2 · DEQ(F ). (11)

Proof. We first prove DEQ(F ) ≤ rkBlocky(F ). Let k = rkBlocky(F ). We construct an EQ-oracle protocol

for F . In advance, Alice and Bob agree on a decomposition F =
∑k

i=1 λiBi, where Bi is a blocky
matrix and λi ∈ R for i ∈ [k]. Since each blocky matrix Bi corresponds to an EQ query, for an input
(x, y), Alice and Bob make k queries to the oracle to determine F (x, y).

For the lower bounds, let d = DEQ(M). Consider a leaf ℓ in the EQ-oracle protocol tree computing
F and let Pℓ denote the path of length kℓ ≤ d from the root to ℓ. Note that each non-leaf node
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v in the tree corresponds to a query to the equality oracle, and each such query corresponds to a
blocky matrix Bv. Define B1

v = Bv and B0
v = ¬Bv = JX×Y −Bv.

Suppose Pℓ = v1, v2, . . . , vkℓ , ℓ, and consider the matrix

FPℓ
:= B

σv1
v1 ◦Bσv2

v2 ◦ . . . ◦B
σvkℓ
vkℓ

,

where σvi ∈ {0, 1} and σvi = 1 iff the edge (vi−1, vi) is labeled by 1. Hence, after simplification,
FPℓ

can be written as a sum of at most 2d summands with ±1 coefficients, where each summand
is a Schur product of at most kℓ blocky matrices. Observe that the Schur product of two blocky
matrices is a blocky matrix. Thus, FPℓ

is a sum of at most 2d blocky matrices with ±1 coefficients.
Summing over all the leaves that are labelled by 1, we get F =

∑
ℓ is a 1-leaf FPℓ

. As the number
of leaves is bounded by 2d, and each FPℓ

is a ±1 linear combination of at most 2d blocky matrices,
we have rkBlocky(F ) ≤ 22d and ∥F∥γ2 ≤ 22d.

3.3 Analogue of the log-rank conjecture for blocky rank is false

The log-rank conjecture speculates that the deterministic communication complexity is polynomi-
ally equivalent to the logarithm of the rank. In light of Proposition 3.9 it is natural to ask a similar
question for DEQ and log rkBlocky . Arkadev Chattopadhyay3 observed that the recent counter-example
to the so-called log-approximate-rank conjecture by Chattopadhyay, Mande, and Sherif [CMS19]
implies that the answer is negative.

Recall that a node in a directed graph is called a sink if all of its adjacent edges are incoming.

Define a function SINKm : {0, 1}(
m
2 ) → {0, 1} where the input of length

(m
2

)
specifies the orientation

of the edges of the complete graph on m vertices. The function outputs 1 if there is a vertex that
is a sink in the given orientation of edges and 0 otherwise.

Fix m, and for i ∈ [m], define ψi : {0, 1}(
m
2 ) → {0, 1} to be the indicator function of whether i

is a sink in the orientation given by ψi. Note that

ψi(x) = 1 ⇔ xj,i = 1 ∀j ̸= i, (12)

where xj,i = 1 indicates that the edge between i and j is oriented towards i. Since no orientation
of the complete graph has more than one sink, we have

SINKm(x) =

m∑
i=1

ψi(x).

We will consider the family of xor-lifts of sink functions. Recall that the xor-lift of a function
f : {0, 1}n → R is f⊕ : {0, 1}n × {0, 1}n → R with f⊕(x, y) := f(x⊕ y). We have

SINK⊕m =

m∑
i=1

ψ⊕
i .

It follows from Equation (12) that each ψ⊕
i is a blocky matrix, and therefore rkBlocky(SINK

⊕
m) ≤ m.

On the other hand, Chattopadhyay, Mande, and Sherif [CMS19] prove that the R(SINK⊕m) = Θ(m).
Since R provides a lower bound on DEQ (see Equation (15)), we obtain the following theorem.

Theorem 3.10 (Chattopadhyay, Mande, and Sherif [CMS19]). For the family of Boolean matrices
Fm = SINK⊕m, we have DEQ(Fm) = Ω̃(m) and rkBlocky(Fm) ≤ m.

3private communication, no pun intended!
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3.4 Blocky matrices and Idempotents of Schur Multipliers

Let X and Y be countable sets, and let B(Y,X ) denote the space of bounded linear operators
A : ℓ2(Y) → ℓ2(X ) endowed with the operator norm:

∥A∥ = sup
x∈ℓ2(Y): ∥x∥2=1

∥Ax∥2.

A matrix MX×Y is called a Schur multiplier if, for every A ∈ B(Y,X ), we have M ◦A ∈ B(Y,X ).
In other words, ∥M ◦A∥ <∞ for every A = AX×Y with ∥A∥ <∞. Note that Schur multipliers form
an algebra with addition and Schur product: If M1 and M2 are Schur multipliers, then M1 +M2

and M1 ◦M2 are both Schur multipliers.
Every Schur multiplier M defines a map B(Y,X ) → B(Y,X ) via A 7→M ◦A, which assigns an

operator norm to it:

∥M∥m := ∥M∥B(Y,X )→B(Y,X ) = sup
A∈B(Y,X )
∥A∥=1

∥M ◦A∥.

Note that ∥ · ∥m is an algebra norm as for every M1 and M2, we have

∥M1 ◦M2∥m ≤ ∥M1∥m∥M2∥m.

In other words, the algebra of Schur multipliers endowed with the norm ∥ · ∥m is a Banach algebra.
A classical result, due to Grothendieck, shows that the multiplier norm coincides with the γ2-norm.

Proposition 3.11 (See [Pis96, Theorem 5.1]). For every matrix A, we have ∥A∥m = ∥A∥γ2.

An element a of a Banach algebra is said to be an idempotent (aka projection) if a2 = a. The
following question arises naturally.

What are the idempotents of the algebra of Schur multipliers?

Every idempotent F of this algebra must satisfy F = F ◦F and, therefore, is a Boolean matrix.
However, not every (infinite) Boolean matrix is a bounded Schur multiplier, as it is possible to
have ∥F∥m = ∞ for a Boolean matrix F . Proposition 3.4 shows that blocky matrices are precisely
the set of all contractive idempotents. In other words, an idempotent Schur multiplier satisfies
∥F∥m ≤ 1 iff it is a blocky matrix.

Question 4. Are the idempotent Schur multipliers precisely those Boolean matrices that can be
written as a ±1-linear combination of finitely many contractive idempotents (equivalently, blocky
matrices)?

A simple compactness argument, as outlined in [HHH23], shows that this problem is equivalent
to Conjecture 3. Therefore, a positive to Conjecture 3 would characterize idempotents of Schur mul-
tipliers, analogous to Cohen’s [Coh60] characterization of the idempotents of the Fourier–Stieltjes
algebra.
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4 Nondeterministic Model and PNP

In a nondeterministic protocol π for a problem FX×Y , the parties receive a shared advice string a
and use it in a standard deterministic protocol πa. We say that a protocol computes F if

F (x, y) = 1 ⇔ ∃a, πa(x, y) = 1.

The cost of the protocol is the bit-length of a plus the maximum cost of πa(x, y) over all choices of
a, x, y. The nondeterministic communication complexity of F , denoted by N(F ), is the minimum
cost of such a protocol for F . A matrix family is in the class NP if they have poly-logarithmic
nondeterministic communication complexity.

Unlike in the Turing-Machine complexity, in the communication framework, it is known that
P = NP ∩ coNP, which follows from D(F ) = O(N(F ) · N(¬F )); see [KN97, Theorem 2.11]. How-
ever, nondeterministic protocols are provably more powerful than deterministic ones, as can be
demonstrated by the important example of the set intersection problem.

The Set-Int problem, INTn, is defined by INTn(x, y) = 1 if there exists a coordinate i such that
xi = yi = 1. Since the players can use their nondeterminism to guess the intersecting coordinate
i, we have N(INTn) = O(log n). However, it is easy to see that D(INTn) = n+ 1. In fact, [BFS86]
already in the 1980s proved that Set-Int does not belong to PEQ.

The structural properties of NP: The nondeterministic communication complexity of a prob-
lem is fully captured by its monochromatic rectangle covering number. Let C1(F ) denote the
minimum number of 1-monochromatic rectangles required to cover the 1 entries of F . It is easy to
see [KN97] that

N(F ) = log
(
C1(F )

)
+O(1). (13)

Combined with D(F ) = O(C1(F )), we have

D(F ) ≤ O(2N(F )). (14)

Therefore, P0 = NP0 = coNP0. The following proposition shows that nondeterministic protocols,
while more powerful than deterministic ones, satisfy the same quantitative bound on wrect(·).

Proposition 4.1. For every Boolean matrix F ,

N(F ) ≳ log(1/wrect(F )).

Proof. Let FX×Y be a Boolean matrix, and c = C1(F ) = O(2N(F )). Let µX × µY be a product
probability measure on X ×Y, and let S1×T1, . . . , Sc×Tc be a 1-monochromatic rectangle covering
of F . The case c ≤ 1 is trivial, so assume c > 1.

If there exists i with µX (Si) · µY(Ti) ≥ 1/4c2, then we are done. So, assume otherwise that for
every i, we have µX (Si) · µY(Ti) < 1/4c2. Let I to be the set of indices i such that µX (Si) < 1/2c.
Note that, if i /∈ I, then µY(Ti) < 1/2c. Now define, A = X \∪i∈ISi and B = Y \∪j ̸∈ITi. It is easy
to see that A×B is a 0-monochromatic rectangle of F and µX (A) · µY(B) > 1/4.

Impagliazzo and Williams [IW10] extended the bound in Proposition 4.1 to the more powerful
model of deterministic communication with access to NP oracles. Let us first define this model
formally.
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An oracle communication protocol for a communication problem F is a protocol where each
node v is either a regular communication node or it is labelled with a triple (Pv, av, bv) where Pv

is Boolean matrix, and Pv(av(x), bv(y)) is used to decide whether to travel to the left or the right
child of v.

The complexity class PNP. The DNP cost of an oracle communication protocol is the largest
cost of a path from the root to a leaf, which is the sum of the communicated bits plus the sum of
N(Pv) for every v on the path.

Define DNP(F ) to be the smallest DNP cost of an oracle communication protocol for F . The
complexity class PNP is the class of problems {Fn} with DNP(Fn) = polylog n.

Among the extensive list of complexity classes detailed in Göös, Pitassi, and Watson’s ar-
ticle [GPW18b], titled “the landscape of communication complexity classes”, PNP is the largest
non-probabilistic class for which an explicit lower bound is known. For example, consider the inner
product problem IPn : {0, 1}n × {0, 1}n → {0, 1} defined as IPn(x, y) = x1y1 + · · ·+ xnyn mod 2.
A simple argument, based on dimension and orthogonality (see [RY20, Claim 1.17]), shows that
every monochromatic rectangle in IPn is of size at most 2n, and therefore, wrect(IPn)

−1 ≥ 2Ω(n).
The following theorem of [IW10] shows that DNP(IPn) = Ω(n).

Theorem 4.2 (Impagliazzo and Williams [IW10]). For every Boolean matrix F , we have

DNP(F ) ≳ log
(
wrect(F )−1

)
.

One might ask whether log
(
wrect(F )−1

)
and DNP(F ) are polynomially equivalent. The answer

is negative as [GKPW17] constructs an explicit family of Boolean matrices exhibiting a large gap
between the two quantities.

Theorem 4.3 (Göös, Kamath, Pitassi, and Watson [GKPW17]). There exists a sequence of 2n×2n

Boolean matrices Fn satisfying DNP(Fn) ≥ nΩ(1) and log
(
wrect(Fn)

−1
)
≤ logO(1)(n).

5 Probabilistic Communication Models

Next, we discuss probabilistic communication protocols where the players can act in a randomized
fashion. Randomness can be introduced in two different ways: private randomness and public
randomness.

In a private-coin randomized protocol, each player has access to their own independent random
bits and can use them to decide which bit to send next. More precisely, Alice and Bob have access
to random strings RA and RB, respectively. These two strings are chosen independently, each
according to some probability distribution described by the protocol. The bit sent by Alice at
a node v is determined by a function av of both x and RA. Similarly, the bits sent by Bob are
determined by functions of y and RB.

In the public-coin model, the players have access to a shared source of randomness. In other
words, Alice and Bob both receive the same random string R. The public-coin model is stronger
than the private-coin model as the former can simulate the latter by setting R = (RA, RB).

The cost of a randomized protocol is the maximum number of communicated bits over all inputs
and all choices of random strings. A probabilistic protocol is allowed to make errors. It is common
to consider three types of errors:
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• Two-sided error (BPP): For every x, y, the probability that the protocol makes an error
on (x, y) is at most ϵ for some ϵ < 1/2. When ϵ is a fixed constant strictly less than 1/2,
the protocol is called a bounded-error protocol. The particular choice of ϵ is unimportant
as a simple error reduction shows that it affects the complexity by only a constant factor.
Therefore, as it is common, we will fix the error parameter to ϵ = 1/3.

• One-sided error (RP): In this setting, the protocol can only make an error if F (x, y) = 1.
In other words, for every x, y with F (x, y) = 0, the protocol must always correctly output 0,
but for every x, y with F (x, y) = 1, it might output a wrong answer with probability at most
ϵ for some fixed ϵ < 1. We will fix the error parameter to ϵ = 1/3.

• Zero-error (ZPP): In this case, the output of a protocol is 0, 1, or ⊥, where ⊥ indicates a
failure to compute F (x, y). The protocol must never output 0 or 1 erroneously; however, on
every input, it is allowed to output ⊥ with probability at most 1

2 .

A classical result in communication complexity, called Newman’s lemma, states that in the two-
sided error, one-sided error, and zero-error settings, the following is true. The difference between
public-coin and private-coin randomized communication complexities of any n-bit communication
problem is O(log(n)).

Newman’s lemma shows that when defining the poly-logarithmic communication complexity
classes BPP,RP,ZPP, it is unimportant whether we use shared randomness or private randomness.
However, to define constant-cost classes BPP0,RP0,ZPP0, we need to make a choice. It turns out
that in the setting of private-coin, all these classes collapse to P0. Therefore, we shall define these
classes in the public-coin model.

Regarding the zero-error protocols, the following theorem shows that even in the public-coin
model, the zero-error randomized communication complexity of a matrix F is polynomially equiv-
alent to D(F ) and in particular ZPP0 = P0.

Theorem 5.1 ([DHP+22, Theorem 2.1]). The public-coin zero-error randomized communication
complexity of every Boolean matrix F is at least Ω(D(F )1/4).

It is an open problem whether this bound can be improved to Ω(
√

D(F )), which, if true,
would be sharp. We will not further discuss the zero-error model and refer the interested reader
to [DHP+22] for further reading.

5.1 The power of randomness: BPP

The randomized communication complexity of a Boolean matrix F , denoted by R(F ), is the min-
imum cost of a public-coin randomized protocol with two-sided error ≤ 1/3. Let BPP and BPP0

be, respectively, the class of problems with poly-logarithmic and O(1) randomized communication
complexities.

Are probabilistic protocols more powerful than deterministic protocols? The example of Equal-
ity shows that randomness can provide a significant advantage. To test whether x ̸= y, Alice and
Bob can use their shared randomness to jointly sample a random subset S ⊆ {0, 1}n at no cost and
then, by exchanging two bits of information, indicate to each other whether their inputs belong to
S. If they see a disparity, they can conclude confidently that x ̸= y. They can run this test twice,
and if they do not detect x ̸= y, they declare x = y. Note that the probability of error is ≤ 1/4.

14



Therefore, R(EQn) = O(1), and Equality ∈ BPP0. In particular, we have the relations P ⊊ BPP
and BPP0 ̸⊆ P. Also note that R(EQn) = O(1) implies via standard error-reduction that

R(F ) ≲ DEQ(F ) logDEQ(F ), (15)

which establishes PEQ ⊆ BPP and PEQ
0 ⊆ BPP0.

Which problems have efficient randomized protocols? A substantial portion of the literature in
communication complexity is dedicated to lower-bound techniques against randomized communi-
cation complexity, and many celebrated results establish such lower bounds for important concrete
problems, such as Set Disjointness [Raz92], Gap Hamming Distance [CR12], and Halfspace [She08].
While it is possible to write a voluminous book about the lower bounds against randomized com-
munication complexity, we know very little about what is inside BPP and BPP0. In fact, until
recently, it was not known whether there is any problem in BPP that is not in PEQ. Let us list some
classical problems in BPP.

• Greater-Than is the family of communication problems GTn : [2n] × [2n] → {0, 1} where
GTn(x, y) = 1 iff x ≤ y. It is known [Nis93, Vio15, RS15] that R(GTn) = Θ(log(n)), and
therefore,

Greater-Than ∈ BPP \ BPP0.

• Hypercube is the family of communication problems Qn : {0, 1}n × {0, 1}n → {0, 1} where
Qn(x, y) = 1 iff x and y differ in exactly one coordinate. Given x, y ∈ {0, 1}n, Alice and Bob
can pick a uniform partition of [n] into 8 sets S1, . . . , S8 and accept if for exactly one i ∈ [8],
it holds that (⊕j∈Sixj)⊕ (⊕j∈Siyj) = 1. It is easy to see that the communication cost of this
protocol is constant and that the error probability is at most 1/3. Therefore, R(Qn) = O(1).
On the other hand, [HHH23, Lemma 2.15] and Equation (8) shows that ∥Qn∥γ2 ≥ Ω(

√
n) and

therefore, DEQ(Qn) ≥ Ω(log n). We have

Hypercube ∈ BPP0 \ PEQ
0 ;

see also [HWZ22] for a different proof of this fact.

• More generally, let ℓ(n) < n/2 be an integer, and Sn ⊆ {0, . . . , ℓ(n)} ∪ {n− ℓ(n), . . . , n} and
denote the hamming weight of an x ∈ {0, 1}n by |x|. If ℓ(n) = polylog(n), then the family of
the xor-lifts 1⊕Sn

: {0, 1}n × {0, 1}n → {0, 1} defined as 1⊕Sn
(x, y) = 1Sn(|x ⊕ y|) is in BPP.

If ℓ(n) = O(1), then this family is in BPP0 [Yao03]. Note that Hypercube corresponds to
Sn = {1}.

• Integer Inner product: Given a fixed positive integer t, the communication problem IIPt
is the family of functions IIPt,n : [−2n, 2n]t×[−2n, 2n]t → {0, 1} with IIPt,n([x1, . . . , xt], [y1, . . . , yt]) =
1 iff x1y1 + . . .+ xtyt = 0. To check the validity of the equation, Alice and Bob can choose a
random prime p ≈ log(n) and exchange xi mod p and yi mod p for i = 1, . . . , t. This leads
to a randomized protocol for IIPt with cost O(log(n)), which shows IIPt ∈ BPP. On the
other hand, for any fixed t > 2, it was shown in [CLV19] that DEQ(IIPt,n) ≥ Ω(n). In fact, as
[CHHS23] shows, one even has ∥ IIPt,n ∥γ2 ≥ 2Ω(n). Hence, for t > 2,

IIPt ∈ BPP \ PEQ.
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We are unaware of any examples in BPP that fundamentally differ from those listed above.
In fact, IIPt, which was introduced by Chattopadhyay, Lovett, and Vinyals [CLV19], is the only
known example of a communication problem in BPP that is not in PEQ (see also [PSS23, CHHS23]).
Let us mention a conjecture about IIPt before proceeding further. We do not know how to prove
any ω(1) lower bound for R(IIPt,n).

Conjecture 5 (See [CHHS23, Conjecture 6.4]). For t > 2, IIPt ̸∈ BPP0.

Note that disproving Conjecture 5 would imply that BPP0 ̸⊆ PEQ.
The communication problems in PEQ are highly structured as they are linear combinations of

a few blocky matrices. On the other hand, the only known example in BPP \ PEQ is the integer
inner product, which has a low-dimensional geometric representation (i.e. bounded sign-rank)
and enjoys nice structural properties. All these known examples contain large monochromatic rect-
angles. Does every Boolean matrix with an efficient randomized communication protocol contain a
large monochromatic rectangle? More specifically, Göös, Kamath, Pitassi, and Watson [GKPW17]
asked the following question.

Question 6. Is it the case that for every family of n-bit communication problems Fn in BPP, there
exists c > 0 such that rect(Fn) ≥ 2−c(logn)c?

By Theorem 4.2, a negative answer to Question 6 would imply that BPP ̸⊆ PNP, a relation that
remains unknown.

Conjecture 7. BPP ̸⊆ PNP.

Independently from [GKPW17], and also motivated by Conjecture 7, [CLV19] asked whether
there exists a c > 0 such that every communication problem F satisfies rect(F ) ≥ 2−cR(F )c . In fact,
we do not know whether there is a uniform lower bound on rect(F ) depending only on R(F ).

Question 8 ([CLV19, HHH23]). Is there a function κ : N → (0, 1) such that rect(F ) ≥ κ(R(F ))?

As we shall see in Theorem 5.6, a negative answer to Question 8 would imply that BPP0 ̸⊆ UPP0,
which is currently unknown.

5.2 Is two-sided error necessary?

Define the one-sided randomized communication complexity R1(F ) and its corresponding complex-
ity classes RP and RP0 analogous to the two-sided error counterparts R(F ), BPP, and BPP0.

Are two-sided error protocols genuinely more powerful than one-sided error protocols?

One could give an affirmative answer to this question by referring to Equality, which satisfies
R(EQn) = O(1) while R1(EQn) = Ω(n). This, however, is not a fully satisfactory separation. Indeed,
since R1(¬EQn) = O(1), we can solve Equality with a single oracle query to the Nonequality
problem which belongs to RP0. In other words, Equality ∈ coRP0.

If we examine all the known examples in BPP, we realize that they all essentially boil down to
solving problems with one-sided error in the sense that they are either in RP ∪ coRP, or they are
composed of a few components, each belonging to RP∪coRP. We find this surprising, as we are not
aware of any evident reasons as to why a two-sided error protocol might be simulated by a series
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of steps that can be performed by efficient one-sided error protocols. We suspect this phenomenon
to be due to our limited knowledge of examples in BPP.

Define the class PRP similarly to PNP, except that the protocol is now charged R1(Pv) for its
oracle queries Pv at a node v. The simple inclusions of RP ⊆ BPP, PRP ⊆ BPP and PRP

0 ⊆ BPP0

are immediate from the definitions.

Question 9. Is it true that BPP = PRP?

It is known that nondeterministic protocols can simulate one-sided protocols with a logarithmic
loss,

N(F ) ≤ R1(F ) +O(log n). (16)

This shows that RP ⊆ NP and PRP ⊆ PNP. In particular, Conjecture 7 would imply a negative
answer to Question 9.

It is interesting to ask the above questions in the constant-cost setting.

Question 10. Is it true that BPP0 = PRP
0 ?

Theorem 5.2 below implies that for every communication problem in PRP
0 , we have wrect(F ) =

Ω(1). In particular, a negative answer to Question 8 would imply BPP0 ⊊ PRP
0 .

Theorem 5.2 ([HHH23, Theorem 3.8]). For every communication problem F ,

wrect(F ) ≥ 2−O(R1(F )).

5.3 Sign-rank and UPP

The unbounded-error communication complexity of F , denoted by U(F ), is the smallest communi-
cation cost of a private-coin randomized protocol π that satisfies

Pr[π(x, y) ̸= f(x, y)] <
1

2
∀x, y.

In other words, the protocol is only required to outperform a random guess. The complexity classes
corresponding to this measure are UPP and UPP0.

It is crucial that in this communication model, the players have only access to private ran-
domness. Otherwise, given access to shared randomness, they could jointly sample a random
input (x0, y0) at no cost and use two bits of communication to verify whether (x, y) = (x0, y0). If
(x, y) = (x0, y0), then they know the output F (x, y), and if it is not, they can output a random
bit. This protocol has an error probability strictly less than 1/2.

Paturi and Simon [PS86] proved that the unbounded-error communication complexity is pre-
cisely determined by an elegant matrix parameter called sign-rank.

To discuss sign-rank, it is more convenient to switch from Boolean matrices to sign matrices,
which are matrices with ±1 entries. The sign-rank rk±(F ) of a sign matrix FX×Y is the smallest
rank of a real matrix AX×Y such that the entries of A are nonzero and have the same signs as their
corresponding entries in F . Geometrically, sign-rank corresponds to the smallest dimension where
we can represent F as points and homogeneous half-spaces.

We can reformulate the definition of sign-rank as follows.

Definition 5.3 (Sign-rank). The sign-rank of a sign matrix FX×Y is the smallest d such that there
exist vectors ux, vy ∈ Rd with F (x, y) = sgn(⟨ux, vy⟩) for all (x, y) ∈ X × Y.
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Recall that the log-rank conjecture speculates that for deterministic protocols, the communica-
tion complexity is polynomially related to the logarithm of the rank of the corresponding matrix.
Paturi and Simon proved that a similar and tighter connection is true for unbounded-error proto-
cols, except that rank is replaced by sign-rank.

Theorem 5.4 (Paturi and Simon [PS86]). For every sign-matrix F , we have

U(F ) = log rk±(F )±O(1).

In light of Theorem 5.4, to study U(F ), one can set aside the intricacies of communication and
focus on the geometric notion of sign-rank.

Number of matrices of small sign-rank: Shortly after the introduction of sign-rank in [PS86],
Alon, Frankl, and Rödl [AFR85] used results of [Mil64, Tho65, War68] on the number of connected
components of real algebraic varieties and obtained a linear lower bound on the sign-rank of random
sign matrices. This argument was later refined in [AMY16, Lemma 24] to the following bound on
the number of low sign-rank matrices.

Lemma 5.5 (See [AMY16, Lemma 24]). For d ≤ m
2 , the number of m × m sign matrices of

sign-rank at most d does not exceed (O(m/d))2dm ≤ 2O(dm log(m)).

Lemma 5.5 shows that there are very few matrices with small sign-rank and that a typical
m × m sign matrix has sign-rank Ω(m). This scarcity of small-sign-rank matrices suggests that
they might possess strong structural properties.

Large monochromatic rectangles: [APP+05] used the geometric properties of sign-rank to

prove that every X ×Y sign matrix of sign-rank d contains an |X |
2d+1 ×

|Y|
2d+1 monochromatic rectangle.

Their result uses a theorem of Yao and Yao [YY85], which is based on the Borsuk-Ulam theorem, a
result in topology. Slightly different bounds are also obtained in [FPS16] using the cutting lemma of
Chazelle [Cha93]. In our notation, we have the following relation between sign-rank and wrect(F ).

Theorem 5.6 (See [APP+05, Theorem 1.3]). For every sign-matrix F , we have

rk±(F ) ≳ log
(
wrect(F )−1

)
. (17)

On the other hand, [HHP+22] used a counting argument to show that there are matrices with
wrect(A)−1 = O(1) and very large sign-rank.

Theorem 5.7 ([HHP+22, Theorem 3.2]). There exists m×m sign matrices A such that

wrect(A)−1 ≤ 215, while rk±(A) = Ω

Ç
m1/3

log(m)

å
.

It is known that PNP ⊊ UPP (see [GPW18b]). Therefore, Theorem 5.7 is stronger than the sep-
aration of Theorem 4.3, as it shows the existence of communication problems with wrect(F )−1 =
O(1) that are not in UPP. This answers an open problem by Göös, Kamath, Pitassi, and Wat-
son [GKPW17].

The caveat of Theorem 5.7 is that its existential proof does not provide any explicit construc-
tion. In fact, regarding explicit examples that separate sign-rank and wrect(·)−1, our knowledge is
embarrassingly limited. The following problem is open.
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Problem 11. Construct an explicit sequence of matrices Fn such that wrect(Fn)
−1 = O(1) and

lim
n→∞

rk±(Fn) = ∞.

By Theorem 5.7, we know such matrices exist, and in fact, with very large sign-ranks. On the
other hand, none of the known lower bound techniques can directly imply a solution to Problem 11.
Indeed, in addition to the monochromatic rectangle lower bound, there are only two other known
methods for proving lower bounds on the sign-rank of explicit matrices: (i) Sign-rank is at least the
VC-dimension: rk±(A) ≥ VC(A); (ii) Forster’s method, which states that sign-rank is at least the
inverse of the largest possible average margin among the representations of the matrix by points and
half-spaces: rk±(F ) ≥ mavg(F )−1. We refer the reader to [HHP+22] for the definition of average
margin and a thorough discussion of these facts.

Qualitatively, Equation (17) is the strongest known method for proving lower bounds on the
sign-rank of an explicit matrix. If it fails to provide a super-constant lower bound for the sign-rank
of a matrix, then the other two methods will also fail. More precisely, we have»

VC(A) ≤ mavg(A)−1 ≤ wrect−1(A). (18)

In this sense, Problem 11 captures the limitation of the currently known lower bound techniques
for sign-rank.

Sign-rank of hypercubes and BPP0 vs UPP0: Linial, Mendelson, Schechtman, and Shraib-
man [LMSS07] asked whether sign-rank can be bounded from above by a function of the so-called
margin complexity. The relation between margin complexity, discrepancy, and randomized com-
munication complexity, which were discovered later, allows us to rephrase their question as follows.

Question 12. Is it true that BPP0 ⊆ UPP0? Equivalently, is it possible to upper bound rk±(F ) by
a function of R(F )?

We believe the answer to this question to be negative. Consider the sign version of the Hy-
percube problem, that is, let Qn be the sign matrix whose rows and columns are indexed with the
elements of {0, 1}n, and Qn(x, y) = −1 if x and y differ in exactly one coordinate. As we discussed
earlier, R(Qn) = O(1). We conjecture that the sign-rank of Qn tends to infinity as n grows, which,
if true, would imply BPP0 ̸⊆ UPP0.

Conjecture 13 (Sign-rank of Hypercube [HHP+22]). We have

lim
n→∞

rk±(Qn) = ∞.

It is worth pointing out that proving Conjecture 13 in the positive would likely require some
new lower bound techniques, as wrect(Qn)

−1 = O(1), shown in [HHP+22]. Note that, a positive
answer to Conjecture 13 would also solve Problem 11.

Equality oracles, PEQ
0 ⊊ UPP0: It is easy to show that the EQn ∈ UPP0, as its sign-rank is 3.

The following theorem shows that, in fact, PEQ
0 ⊆ UPP0. The example of Greater-Than shows

that this inclusion is strict. It is easy to see that Greater-Than ∈ UPP0 as its sign-rank is 2.
This fact combined with R(GTn) = Θ(log n) shows that

Greater-Than ∈ UPP0 \ BPPEQ
0 ⊆ UPP0 \ PEQ

0 .
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Theorem 5.8 ([HHP+22]). For every sign matrix FX×Y , we have rk±(F ) ≤ 4D
EQ(F ). In particular,

U(F ) ≤ 2DEQ(F ) +O(1).

Proof. We proceed by induction on d := DEQ(A). When d = 1, F corresponds to a blocky matrix,
which in fact has rk±(F ) ≤ 3. For larger d, consider a cost d protocol for a sign matrix F
and suppose the equality query at the root of the tree is EQ(a(x), b(y)), where here we assume
without loss of generality a(x) and b(y) take integer values. Let SX×Y be the matrix with entries
Sxy = 1a(x)=b(y). We branch according to the output of the first query either to the left or the right
subtree of the root, each corresponding to a protocol with cost at most d−1. Let the corresponding
matrices for these protocols be Π1 and Π2, and note that

F = S ◦Π1 + (J− S) ◦Π2,

where J := JX×Y is the all-ones matrix. By the induction hypothesis, Π1 and Π2 have sign-rank at
most ≤ 4d−1. Let Π̃1 and Π̃2 be real matrices with rank at most 4d−1 that satisfy sgn(Π̃1) = Π1

and sgn(Π̃2) = Π2. Let EX×Y be the rank-3 matrix with entries Exy = (a(x) − b(y))2. Note that
for a sufficiently large k, we have

A = sgn(Π̃1 + kE ◦ Π̃2).

Finally, we have

rk(Π̃1 + kΠ̃2 ◦ E) ≤ rk(Π̃1) + rk(Π̃2) · rk(E) ≤ 4d−1 + 3 · 4d−1 = 4d.

The above theorem combined with Equation (15) shows that PEQ
0 ⊆ UPP0 ∩ BPP0. Both the

inclusions PEQ
0 ⊊ UPP0 and PEQ

0 ⊊ BPP0 are strict; the former follows from the example of Greater-
Than and the latter holds for Hypercube [HHH23, HWZ22]. The question of whether these
separations can be obtained simultaneously was asked recently by [HZ24].

Question 14 ([HZ24]). Is it the case that PEQ
0 = UPP0 ∩ BPP0?

Since Hypercube ̸∈ PEQ
0 and Hypercube ∈ BPP0, a positive answer to Question 14 would

imply Hypercube ̸∈ UPP0 and solve Conjecture 13.
In the converse direction, Conjecture 13 would imply a positive answer to Question 14 for the

special case of xor-lifts. Indeed, if Hypercube ̸∈ UPP0, then the result of [CHZZ22] would imply
that every family of xor-lift f⊕n ∈ UPP0 ∩ BPP0 must satisfy ∥fn∥A = O(1) and therefore by
Theorem 3.7 and Proposition 3.9, we must have f⊕n ∈ PEQ

0 .

5.4 Weakly unbounded-error complexity, PP

The weakly unbounded-error communication complexity of a problem FX×Y is defined as

PP(F ) := min
ϵ<1/2

Rϵ(F ) + log

Ç
1

1
2 − ϵ

å
,

where Rϵ(F ) is the minimum cost of a public-coin randomized protocol with two-sided error at
most ϵ.
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Define PP and PP0 to be the class of families of n-bit problems Fn with PP(Fn) = polylog n and
PP(Fn) = O(1), respectively. It is immediate from the definitions and Newman’s lemma [New91]
that

BPP ⊆ PP ⊆ UPP, and PP0 = BPP0.

As discussed before, the Greater-Than problem separates UPP0 from BPP0 = PP0. Babai,
Frankl, and Simon [BFS86] asked whether UPP = PP. Their question remained unanswered for
over two decades, until [BVdW07, She08] independently showed that there are 2n×2n sign matrices
F with rk±(F ) = n but PP(F ) = nΩ(1). The separation was strengthened in subsequent works to
rk±(F ) = n and PP(F ) = Ω(n) in [She21].

The example proposed in [BVdW07], in fact, belongs to PNP, and therefore also shows that
PNP ̸⊆ PP. It turns out that the opposite direction of this inclusion is not true either, as follows
from an argument involving bounds on the rectangle ratio.

Theorem 5.9. There exists a family of n-bit communication problems Fn with PP(Fn) = O(log(n))
and rect(Fn)

−1 = 2Ω(n). In particular, DNP(Fn) = Ω(n) and PP ̸⊆ PNP.

Proof. Let Fn(x, y) = 1 iff x and y differ on at least n/2 bits. It is known through classical results
from combinatorics [FF81] that rect(Fn)

−1 = 2Ω(n). Thus by Theorem 4.2, we get DNP(Fn) = Ω(n).
To see the inclusion in PP, note that the simple protocol where two parties pick a random index

i uniformly at random and output 1 iff xi ̸= yi, has cost O(log n).

Finally, recent works have shown that PP does not even contain UPP0. Indeed, [HHL20,
ACHS23] gave simple constructions of n-bit communication problems F with rk±(F ) = 3 and
PP(F ) = Ω(n).

6 Final remarks

We discussed several open problems that indicate significant gaps in our understanding of commu-
nication complexity and capture the limitations of the currently available techniques. For example,
disproving BPP = PRP, BPP ⊆ PNP, or giving a negative answer to Question 6 or Question 8,
requires constructing a family of matrices in BPP that is fundamentally different from all the cur-
rently known examples. Conversely, proving that any of these statements is true would be a major
stride toward achieving a structural description of BPP. Similarly, Conjecture 13 and Problem 11
require a new lower-bound technique for sign-rank that can reach beyond the log wrect(·)−1 bound
of Theorem 5.6.

We hope that similar to the introduction of communication classes by [BFS86], the formal
paradigm of constant-cost communication classes will catalyze future research—That the efforts
to establish separations between these classes will lead to the discovery of new examples and
lower-bound techniques and give us a deeper understanding of communication models and their
connections to other areas of theoretical computer science.

Due to space limitations, we did not discuss quantum communication models, multi-party mod-
els, search problems, and various related query models, most notably parity decision trees. The
questions that are being discussed in this article can be asked in a similar way for these models.

We conclude by presenting, in Figure 1 and Figure 2, the known relations and separations among
various classes discussed in this article. These figures include a selected list of classes, excluding
easier-to-handle classes such as P,RP,NP,P0 = NP0. We define the classes Rect and Rect0 to consist
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of matrix families with wrect−1(·) bounded from above by 2polylogn and O(1), respectively. The
class Rect appears in [GKPW17] with the different name of PM (for Product Method).

PEQ
0 PRP

0 BPP0 UPP0 Rect0 PEQ PRP BPP PP UPP PNP Rect

PEQ
0 = ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆

PRP
0 ̸⊆ = ⊆ ? ⊆ ? ⊆ ⊆ ⊆ ⊆ ⊆ ⊆

BPP0 ̸⊆ ? = ? ? ? ? ⊆ ⊆ ⊆ ? ?

UPP0 ̸⊆ ̸⊆ ̸⊆ = ⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ⊆ ? ⊆

Rect0 ̸⊆ ̸⊆ ̸⊆ ̸⊆ = ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ⊆

PEQ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ = ⊆ ⊆ ⊆ ⊆ ⊆ ⊆

PRP ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ = ⊆ ⊆ ⊆ ⊆ ⊆

BPP ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ? = ⊆ ⊆ ? ?

PP ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ = ⊆ ̸⊆ ̸⊆

UPP ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ = ̸⊆ ̸⊆

PNP ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ⊆ = ⊆

Rect ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ ̸⊆ =

Figure 1: The entry at a row A and a column B indicates whether A ⊆ B or A ̸⊆ B. A question
mark indicates that the relationship is unknown. The separations in grey entries follow trivially
via padding.

BPP0

PRP
0

PEQ
0

UPP0

Rect0

PEQ

BPP

PP

UPP Rect

PRP

PNP

Figure 2: A → B indicates A ⊆ B.
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