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Abstract. A ZAP is a witness-indistinguishable two-message public-coin interactive proof with the
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1 Introduction

Since shortly after the notion of zero-knowledge interactive proofs was introduced [13], a goal has been
constructing such protocols with the minimal round-complexity necessary under the minimal assumptions
for every language in NP. Ideally, such a protocol would be completely non-interactive, consisting of a single
message from the prover to the verifier. Or, barring that, a protocol that is comprised of a single round of
interaction (two messages): one message from the verifier and a single response from the prover.

Unfortunately, it was discovered relatively early on that non-trivial zero-knowledge is unachievable with
such limited interaction patterns [12]. While non-interactive zero-knowledge is possible in the presence of
a trusted setup (public common reference string, or CRS), such trust assumptions are not always feasible.
Fortunately, weaker notions of “zero-knowledge” exist that do not suffer from such limitations.

A witness-indistinguishable (WI) proof for an NP language has the property that the verifier cannot
distinguish which witness was used to generate the proof. In particular, for any two witnesses for the NP
language, w0, w1, it should be hard to distinguish the case that the transcript was generated from witness w0

or from witness w1. This notion is weaker than zero-knowledge and is sometimes even trivial: for example,
if the language has unique witnesses. Nonetheless, witness-indistinguishability has many applications (such
as constructing multi-theorem NIZKs, witness-hiding proofs, deniable authentication, and more), has desir-
able properties not inherent in zero-knowledge proofs (such as security under parallel composition), and is
interesting in its own right. WI proofs are often used as a critical building block in zero-knowledge proofs
with robust properties, as well as other relaxations of zero-knowledge such as witness-hiding proofs.

Witness-indistinguishability avoids the round-complexity barriers for zero-knowledge. ZAPs, introduced
by Dwork and Naor [9], are two message public coin witness indistinguishable proofs. Dwork and Naor showed
ZAPs for NP could be constructed assuming (enhanced) trapdoor permutations, or more generally efficient-
prover non-interactive zero-knowledge for NP (NIZK) in the uniform random string (URS) model. Barak,
Ong, and Vadhan [6] showed that fully non-interactive witness-indistinguishable proofs (NIWI), consisting
of only a single message and no setup, follow from ZAPs and certain derandomization assumptions.

Towards understanding the minimal assumptions necessary for (non-trivial) ZAPs, Ball et al. [5] showed
that one-way permutations suffice to construct ZAPs for NP with provers that run in subexponential time.
(Note that NIWI/ZAP is trivial to achieve if the prover can run in exponential time: the prover that simply
outputs the lexicographically first witness is witness indistinguishable. However, witness indistinguishabil-
ity becomes nontrivial if the prover is forced to run in arbitrarily small subexponential time, assuming
the subexponential-hardness of NP.) Moreover, they additionally observed that applying Barak, Ong, Vad-
han’s compiler [6] in this setting yields a NIWI with subexponential time prover if one additionally makes
derandomization assumptions.

However, it was not clear whether one-way permutations were required to construct such inefficient prover
ZAPs. In this work, we show that not only do one-way functions suffice to construct such ZAPs, but an even
weaker notion suffices: something we call “hard-to-invert functions.” These are functions that are hard to
efficiently invert but are not necessarily easy to compute. Instead, it is only required that one can efficiently
recognize the set of valid preimage-image pairs.

1.1 Our Results

Our final result for ZAPs is proved by first constructing an Offline-NIZK (oNIZK) in the URS model from
hard-to-invert functions, and then applying a transformation of [5] that converts oNIZK with inefficient
provers to ZAPs. We therefore begin by introducing the notion of hard-to-invert functions and reviewing the
notion of oNIZK introduced in [5].

Hard-to-Invert Functions. We introduce a relaxation of one-way functions we call hard-to-invert functions,
or HIF. These are functions, f , such that it is infeasible to find a pre-image of f(Uκ) with non-negligible
probability, and yet one can efficiently recognize pre-image/image pairs (with a proof). In otherwords, f is
hard to invert and {(x, f(x)} ∈ NP. Unlike one-way functions, f need not be efficiently computable. See
Definition 2.1 for more details.

HIFs follow from assumptions not known to imply OWFs. For example, if there is a problem P in
TFUP (TFNP with unique witnesses) that is hard-on-average relative to the uniform distribution, then HIFs
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exist (and moreover injective HIF exist).3 Rosen, Segev, and Shahaf showed that there can be no black-box
construction of a one-way function from the average-case hardness of a particular problem in TFUP [16].

We note that we believe HIF to actually be a more robust assumption than average-case hardness of
TFUP, because HIF are not required to be injective. In fact, a main technical contribution of our work is to
deal with precisely the case where images of the HIF can have different numbers of preimages. It is unclear
if HIF are implied by the average-case hardness of TFNP, or NP for that matter.

A somewhat related notion of “quasi-one-way functions” was introduced by Bogdanov et al. [7], however,
our definition differs from theirs in a variety of aspects. Most importantly: quasi-one-way functions have a
much weaker restriction on the verifier (allowing it to accept strings that are not necessarily preimage/image
pairs, so long as it remains hard to find a “preimage” that it will accept with a random image).4 This
condition means that {(x, f(x)} may not be in NP if f is quasi-one-way, whereas this must be the case if f
is hard-to-invert.

Offline NIZK (oNIZK). The standard notion of zero knowledge in the non-interactive setting requires the
existence of a single simulator Sim, that for any statement x ∈ L produces a distribution over CRS’s
and proofs (CRS′, π′) that is computationally indistinguishable from honest CRS’s and proofs (CRS, π). In
contrast, the Offline Non-Interactive Zero-Knowledge (NIZK) notion requires existence of a distribution DSim

over small circuit simulators Sim, such that for any statement x ∈ L, the distribution over (CRS′, π′) obtained
by drawing Sim from DSim and outputting (CRS′, π′) ← Sim(x) is computationally indistinguishable from
honest CRS’s and proofs (CRS, π). Note that this definition does not trivialize the zero knowledge property,
since the draw of Sim from DSim is independent of the statement x. Another way to view this definition, is
that we allow the simulator Sim to perform an expensive “offline” pre-processing step that is independent
of the statement x (corresponding to the draw of the circuit from the potentially inefficiently samplable
distribution DSim).

Our construction of oNIZK in the URS model consists of two steps. In the first step we obtain an oNIZK
in which the Verifier requires non-uniform advice about the hard-to-invert function f : {0, 1}κ → {0, 1}κ′

.
(Note that even if the algorithm verifying the hard-to-invert function f is uniform, the Verifier still requires
this non-uniform advice which provides statistical information about the distribution of f(Uκ).) Specifically,
we show:

Theorem 1.1 (Informal). Assume the existence of a hard-to-invert function verifiable by a non-uniform
family of poly-sized circuits. There exists an oNIZK proof system in the URS model with non-uniform verifiers
and prover complexity 2κ for all of NP.

In the second step, we remove the requirement for non-uniform advice by the Verifier. Specifically, as long
as the hard-to-invert function f is itself uniformly verifiable, the Verifier can leverage the inefficient prover
to learn the required information about f(Uκ). Specifically, we obtain the following:

Theorem 1.2 (Informal). Assume hard-to-invert functions exist. There exists an oNIZK proof system in
the URS model with uniform verifiers and prover complexity poly(κ) · 2κ for all of NP.

Finally, applying a theorem of [5], which transforms oNIZK in the URS model with inefficient provers to
ZAPs, we obtain the following:

Corollary 1.3 (Informal). Assume hard-to-invert functions exist. There exists a ZAP system with uniform
verifiers and prover complexity poly · 2κ for all languages in NP.
3 Consider f(x, r) = (x, y) where y = (r⊕w, ) where w is the unique witness such that V (x,w) = 1 (and V verifies the
hard problem P ∈ TFUP). Given (x, r), (x, y) one can easily verify that f(x, r) = (x, y), by checking V (x, y⊕r) = 1.
Thus, if one can invert the function, one can solve the search problem.

4 Three more differences: (1) Quasi-one-way functions have the fine-grained promise that they can be computed
in polynomial in the forward direction and security holds only for probabilistic adversaries running in (smaller)
fixed polynomial time. (2) Bogdanov et al. allow quasi-one-way functions to be randomized. Unlike OWF, it is
not clear how to derandomize quasi-one-way functions unconditionally. However, Bogdanov et al. observe that
they can be derandomized assuming incompressible functions [8,2]. (3) Some of their techniques do not extend to
security against non-uniform algorithms. Our reductions are non-uniform and hence we require security against
non-uniform adversaries.
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1.2 Technical Overview

Our main technical contribution is the construction of a new primitive Verifiable Hardcore of a Random
String (VHCR) from any hard-to-invert function (See Section 4 for the formal definition). A VHCR consists
of a tuple (Gen,Open,Verify) of algorithms as well as a hardcore predicate DecRand. Gen is a deterministic
function that on input security parameter, outputs public parameters PP that in our construction will consist
of statistics about the hard-to-invert function f . The public parameters PP will then be inputted to each
of the other algorithms Open,Verify, and DecRand. Since Gen is an inefficient algorithm, we will alternately
view its output PP as non-uniform advice given to the poly-time verification algorithm Verify. We explain
the functionality of the Open,Verify and DecRand algorithms alongside a discussion of our target application
for the VHCR primitive, which is oNIZK in the URS model.

At a high level, our oNIZK construction in the URS model (See Section 5 for our oNIZK construction
from VHCR) will proceed by splitting the URS ρ into blocks [ρi,j ]i∈[n′],j∈[n]. For each i ∈ [n′], we will use the
sequences of bits [DecRand(PP, ρi,j)]j∈[n] as the bits inputted to a hidden bits NIZK proof system (Phb, Vhb).
To allow us to argue the zero knowledge property of the oNIZK construction, we therefore require that
strings that decode to 0 or 1 under DecRand are indistinguishable to poly-time adversaries. This is what we
mean by saying that DecRand is a hardcore predicate. The honest Prover will run Open(PP, ρi,j) to obtain
an opening to a hidden bit that will convince the Verifier, running Verify, that the claimed bit is correct.
Thus, we require that Open runs in time poly(κ) · 2κ, that Verify runs in polynomial time, and we require the
completeness property, which says that honestly opened bits can be correctly verified. On the other hand, in
order for the oNIZK construction to be sound, we define a corresponding soundness property of the VHCR
which says that for a given ρi,j there should not exist two openings that are both accepted by the Verify
algorithm, and that correspond to openings to the bits 0 and 1, respectively.

Given the above informal description of the functionality of the VHCR, we next describe the high level
ideas of our construction of VHCR from any hard-to-invert function (See Section 4.1 for the formal con-
struction). Let f : {0, 1}κ → {0, 1}κ′

be a hard-to-invert function and let H : {0, 1}κ′ → {0, 1}m1 and
h : {0, 1}κ → {0, 1}m2 be ℓ-wise independent hash functions (for sufficiently large but polynomial ℓ). H will
be used to hash y = f(Uκ) to obtain y′ (which we will argue is close to uniformly distributed), while h will
be used to hash the preimage of y′ (i.e. the set f−1(H−1(y′))) down to a polynomial-size set. Let Sh be the
set of x ∈ {0, 1}κ such that h(x) = 0m2 .

We begin by viewing the random input ρi,j to DecRand as a sequence of uniformly random blocks of the
form (y′, H, h, u) ∼ {0, 1}m1+2κ̃+B·κ. Consider the set of pre-images Sy′,H,h := (H ◦ f)−1(y′, H, h) ∩ Sh of
size at most B ∈ poly(κ) (we show in Section 3.1, Claim 3.4 that a slight modification of Sy′,H,h has size at
most B with all but negligible probability).

We first consider obtaining a hardcore predicate from a single random block of the form (y′, H, h, u).
We would like to show that if f is a hard-to-invert function, then when (y′, H, h, u) is chosen uniformly
at random, ⟨Sy′,H,h, u⟩ is hardcore (see Section 3.2 and Lemma 3.6). By this notation, we mean to take a
lexicographical ordering of the at most B elements of Sy′,H,h and view this as a {0, 1}-vector of dimension
B · κ, and then take the inner product modulo 2 with vector u. By applying the Goldreich-Levin hardcore
theorem, it is sufficient to argue that computing the set Sy′,H,h is hard for every non-uniform, polynomial
time adversary A. To show this, we must create a reduction from inverting f to computing the set Sy′,H,h.
The natural thing for such a reduction to do is to obtain y = f(x) for uniformly random x, choose H,h at
random, and submit (y′ = H(y), H, h) to adversary A. If A is successful, it returns the set Sy′,H,h. The hope
is that Sy′,H,h contains at least one inverse of y–i.e. at least one x value such that f(x) = y.

For this approach to work, there are two main obstacles. First, the (y′, H, h) submitted to A which is
sampled as above may not be uniformly random, so the adversary A may fail on this distribution, while
succeeding with respect to uniformly random (y′, H, h).

Second, even though y is a preimage H−1(y′), there is no guarantee that y ∈ f(Sy′,H,h), since it is possible
that none of the pre-images of y hash to 0m2 under h, and therefore are not contained in Sy′,H,h.

To overcome the first obstacle, we show that there exists a distribution D′ such that any event that
occurs relative to D′ with probability p, occurs relative to f(Uκ) with probability at least p/2. Further, when
y ∼ D′, the distribution (y′ = H(y), H, h) has small relative error with respect to the uniform distribution
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(See Section 3.1, Claim 3.1 and Lemma 3.2). This guarantees that the adversary A((y′ = H(y), H, h))
succeeds with non-negligible probability when y is drawn from D′, and therefore must also succeed with
non-negligible probability when y is drawn from f(Uκ).

To overcome the second obstacle, we show that for every y with pre-image size satisfying the following
bounds: 2κ

2k+2 ≤ |f−1(y)| ≤ 2κ

2k
, the pre-images of y make up a poly-sized fraction of the set (H ◦ f)−1(H(y)).

Thus, by calibrating the setting of m2, we obtain that for every such y, a pre-image of y hashes to 0m2 under
h and is therefore contained in the set Sy′,H,h. Further, by our construction of D′, elements y with pre-image
sizes satisfying the above bounds must make up at least 1/poly-fraction of the weight of the distribution D′.
The above implies that if we first sample (y′, H, h) ∼ (H(D′), H, h) : H,h ∼ Uκ̃, run A(y

′, H, h), and if A
successfully returns Sy′,H,h (with non-negligible probability), then sample y ∼ D′ conditioned on (y′, H, h),
then a pre-image of the post-sampled y is contained in the returned set Sy′,H,h with non-negligible probability.
Since this simply changes the order of sampling, it means that our suggested reduction which first samples
y ∼ D′, H, h ∼ Uκ̃, runs A(y

′, H, h) → S, checks whether y ∈ f(S), and if yes, returns a pre-image x of y,
also succeeds with non-negligible probability.

We would now like to view (y′, H, h, u) ∼ {0, 1}m1+2κ̃+B·κ. as a random string that decodes to ⟨Sy′,H,h, u⟩
under the hardcore predicate. Recall that in order for this to be used to generate bits for the hidden bits proof
system, we must produce Open,Verify agorithms and argue their completeness and soundness properties, in
addition to the “indistinguishability” property argued above. As a first attempt, we can have the Prover
run an Open algorithm to prove a decoding is correct by producing all the preimages x ∈ Sy′,H,h, and it
can be checked in polynomial time by the Verifier running Verify that for all x ∈ Sy′,H,h, h(x) = 0m2 and
H ◦ f(x) = y′. Clearly, the suggested decoding satisfies the completeness property, which says that a string
that decodes to a bit b can be successfully opened to b. However, soundness, which says that a string that
decodes to a bit b cannot also be successfully opened to b′ ̸= b is problematic. Concretely, the Prover can
produce as its opening a set S which omits elements from the true pre-image set Sy′,H,h. Choosing which
elements to omit allows the prover to control the value of the decoded bit b′ = ⟨S, u⟩, and thus soundness is
not achieved.

To achieve soundness, we draw inspiration from the techniques of Akavia et al [1], which make use of
known statistics of a distribution to ensure the Prover’s honest behavior. Instead of defining the hardcore
predicate with respect to a single block (y′, H, h, u) as above, we define DecRand to take as input a sequence
of blocks (y′1, H1, h1, u1), . . . , (y

′
t′ , Ht′ , ht′ , ut′). The Open algorithm will now be required to provide openings

for each of the blocks in the sequence. Further, the Verifier running Verify will be given statistics about the
expected size of Sy′,H,h via the public parameters PP and it will check that the Prover’s reported sizes in the
opening deviate by at most a small amount from the expectation. This will ensure that the Prover can only
lie about a small number of the sizes of the pre-images of (y′1, H1, h1, u1), . . . , (y

′
t′ , Ht′ , ht′ , ut′), which means

it can lie only about a small fraction of the hardcore bits b′1, . . . , b
′
t′ . We then use the majority of b′1, . . . , b

′
t′

as the final decoded bit, and we prove that the majority of a series of hardcore bits is itself a hardcore bit.
Intuitively, because the majority function is “stable,” the Prover should not be able to flip a decoding from
0 to 1 by lying about only a small fraction of the hardcore bits b′1, . . . , b

′
t′ . Thus, our final DecRand algorithm

takes as input (y′1, H1, h1, u1), . . . , (y
′
t′ , Ht′ , ht′ , ut′), computes the hardcore bits b1 = ⟨Sy′1,H1,h1

, u1⟩, . . . , bt′ =
⟨Sy′

t′ ,Ht′ ,ht′
, ut′⟩ and outputs Maj(b1, . . . , bt′). This ensures that the Prover can only produce an opening that

flips the decoded bit corresponding to a sequence of blocks (y′1, H1, h1, u1), . . . , (y
′
t′ , Ht′ , ht′ , ut′) with small

1/poly probability. Setting 1/poly to be sufficiently smaller than the number of hidden bits needed for a
single NIZK proof in the hidden bits model, we have that the probability that the Prover can flip any of the
hidden bits in a single proof is at most 1/3, so we achieve soundness of 1/3 (which can then be boosted to
negl(κ) via parallel repetition).

A caveat is that the size of Sy′,H,h can actually be very high with low 1/poly, probability, thus skewing
the statistics and allowing an adversary to lie about too many openings. We therefore fix a threshold P such
that the size of Sy′,H,h is at most P with 1 − 1/poly probability (See Section 3.1, Corollary 3.3). Given a
sequence of blocks (y′1, H1, h1, u1), . . . , (y

′
t′ , Ht′ , ht′ , ut′) the Open algorithm proceeds in two stages: In the

first stage, the Prover running the Open algorithm specifies which blocks have pre-image size greater than
P (and provides at least P + 1 pre-images in this case). After this stage, t blocks remain. Those blocks
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are opened as above. The Verifier running Verify is given statistics via the public parameters PP on (1) the
fraction µ′ of blocks with pre-image size greater than P and (2) the expected pre-image size µ for blocks with
pre-image size at most P . Knowledge of these statistics allows us to guarantee (1) that t is a sufficiently large
fraction (1 − 1/poly) of t′, and (2) that MAJ(b′1, . . . , b

′
t) can deviate by adding or flipping a small number

of bits from the true decoding MAJ(b1, . . . , bt̂), where t̂ is the true number of blocks with per-image size at
most P . Thus, we obtain the same guarantee as above that the Prover can only flip a decoded bit from 0 to
1 or vice versa with small 1/poly probability.

Note that the runtime of the Prover is in poly(t′, κ) · T , where T is the time it takes to produce the set
Sy′,H,h for a single block (y,H, h, u). Moreover, producing Sy′,H,h takes at most time 2κ, since in the worst
case, one can loop over every possible x ∈ {0, 1}κ and check in polynomial time whether x ∈ Sy′,H,h, which
occurs if and only if H ◦ f(x) = y′ ∧ h(x) = 0m2 .

The drawback of the above protocol is that the Verifier requires non-uniform advice of µ′, µ. In fact, the
Verifier requires additional non-uniform advice about the distribution D′ and its distance from f(Uκ) in order
to know the setting of the parameters m1,m2. We next show that the Verifier can actually use the Prover to
provide these values, together with a proof. For purposes of this overview, we will just explain how the Verifier
obtains µ′, µ from the Prover. The other parameters are obtained in a similar way. (See Sections 6.1 and 6.2)
We use a protocol from prior work [14] called VerifyHist to learn µ′, µ. A (ϵ̃, t̃) histogram of a probability
distribution H ◦ f(UR) is a vector h of dimension t̃ such that for i ∈ [t̃], h[p] = Pry∼f(UR)[2

−(i+1)·ϵ̃ ≥
Prf(UR [y] < 2−i·ϵ̃]. VerifyHist allows a Prover to prove that a submitted (ϵ̃, t̃)-histogram h is 20/t̃ to the

true (ϵ̃, t̃)-histogram h∗ with respect to the 1st Wasserstein distance. Given h, µ′ can be computed as 1 −∑
i≥(− log(P )+κ+2κ̃−m2)/ϵ̃

h[i] · 2i·ϵ̃

2m1+2κ̃ while µ can be computed as µ =
∑
i>(− log(P )+κ+2κ̃−m2)/ϵ̃

h[i] · 2κ

2m1+m2
.

We prove that as long as h and h∗ have 1st Wasserstein distance of at most 20/t̃ (see Definition 2.15), then
the computed µ′, µ are 1/t′ and 1/t additive approximations of the correct statistics (µ′)∗, µ∗. Similar to
above, we note that the prover runtime in the VerifyHist protocol is in poly(t̃, κ) · T , where T is the time it
takes to produce the set Sy′,H,h.

At the end of this stage, we obtain oNIZK for NP in the URS model from hard-to-invert function with
prover complexity poly(κ) · 2κ. We then apply a transformation of [5] to obtain ZAPS for NP from hard-to-
invert function with prover complexity 2κ.

1.3 Open Questions

A number of questions remain in this space. For example, are hard-to-invert functions necessary for subex-
ponential prover ZAPs? Are hard-to-invert functions implied by the average-case hardness of TFNP?

While we know that OWFs are necessary and sufficient for (inefficient-prover) NIZK in the presence of
a structured public random string (CRS), it is not known if OWF suffice to construct NIZK in the presence
of a uniform random string (URS). The simplest assumption known to imply this object is OWP.

NIZKs in the URS model imply (inefficient prover) ZAPs, so in some sense, our present result is a
necessary step on the way to NIZK in the URS model from OWF. That said, the difficulty in extending our
result to NIZK is that it is not clear how to simulate the information sent by the prover in our protocol.
While it is easy to efficiently simulate a single preimage/image pair, our protocol (roughly) requires the
prover to send the verifier all preimages of a given image. It is not clear how to efficiently sample an image
with all its preimages (unless one has a OWP).

Recently, Ghosal et al. [10] showed how to construct (inefficient prover) NIZK in the Random Oracle
(RO) model. One might hope to adapt their techniques to constructing NIZK in the URS model, but their
proof critically relies simultaneously upon the pseudorandomness of the RO and density of the RO. This
suggests that constructing an entropy-preserving PRG would suffice, but unfortunately constructing such
objects from OWF remains beyond our current techniques.

2 Definitions and Preliminaries

Notation. For a set S, US denotes the uniform distribution over S. For a positive integer z, Uz denotes the
uniform distribution over bitstrings of length z. For n ∈ N we let (n) := {0, 1, . . . , n} and [n] := {1, 2, . . . , n}.
If D is a probability distribution, “x ∈ D” denotes that x is in the support of D.

5



Definition 2.1 (Hard-to-Invert Function (HIF)). A function f : {0, 1}κ → {0, 1}κ′
is hard-to-invert if

– There exists a nondeterministic polynomial time algorithm V such that V (x, y) = 1 if and only if f(x) =
y.
(Or equivalently, there exists a polynomial p(n) and a deterministic verifier V ′ such that there exists
πx,y ∈ {0, 1}p(|x|+|y|) where V ′(x, y, πx,y) = 1 if and only if f(x) = y.)

– For every non-uniform PPT algorithm A, there exists a negligible function ϵ(κ) s.t. ∀κ, we have
Pr[A(f(Uκ)) ∈ f−1(f(Uκ))] ∈ ϵ(κ).

We say a function f a non-uniform hard-to-invert function if item 1 above holds for non-uniform poly-
time V , and item 2 holds.

Remark 1. In our constructions, the prover will need to be able to evaluate f(x) on all inputs x in time
2κ, where f is a hard-to-invert function. Note that we may assume this WLOG given the above definition.
Specifically, for a given f , the prover can simply enumerate over all x ∈ {0, 1}κ, y ∈ {0, 1}κ′

and check
whether V (x, y) = 1 for each pair. If the verifier runs in nondeterministic time κ′′, then this takes time
2κ+κ

′+κ′′
. We can then create a new hard-to-invert function f ′ with input length κ′′′ = κ + κ′ + κ′′′ which

evaluates f on the first κ bits (and ignores the rest). In this case, the prover’s run time will be 2κ
′′′
–where

κ′′′ is the input length of f ′–as desired.

Definition 2.2 (One-Way Function (OWF)). A function f : {0, 1}κ → {0, 1}κ′
is one-way if f is computable

in polynomial time and it is hard-to-invert (Definition 2.1).
We say a f is non-uniform one-way if it is computable in non-uniform polynomial time and it is non-

uniform hard-to-invert.

The following three definitions follow the exposition in [2].

Definition 2.3 (ℓ-wise Independent Hashing). A collection of functions H = {H : {0, 1}κ′ → {0, 1}m1}
is called an ℓ-wise independent hash function if for every ℓ distinct strings x1, . . . , xℓ the random variables
H(x1), . . . ,H(xℓ) induced by a uniformly random choice of h ∼ H are uniformly distributed in ({0, 1}m1)ℓ.

Definition 2.4 (Statistical Distance with Relative-Error). We say that a distribution Z on {0, 1}m1 is

ϵ-close to uniform with relative error if for every event A ⊆ {0, 1}m1 , |Pr[Z ∈ A]− |A|
2m1
| ≤ ϵ · |A|

2m1
.

Definition 2.5 (Relative-Error Extractor). A function E : {0, 1}κ̃ × {0, 1}κ′ → {0, 1}m1 is a (k, ϵ)-relative
error extractor if for every source X with min-entropy H∞(X) ≥ k, with all but negligible probability over
r ∼ Uκ̃, E(r,X) is ϵ-close to uniform with relative error.

The following definition and theorem follow the exposition in [11].

Definition 2.6 (Proof Systems in the Hidden Bits Model). A pair of probabilistic machines, (P, V ), is called
a hidden-bits proof system for L if V is polynomial-time and the following two conditions hold

– Completeness: For every x ∈ L
Pr[V (x,RI , I, π) = 1] ≥ 2

3
,

where (I, π) := P (x,R), R is a random variable uniformly distributed in {0, 1}poly(|x|) and RI is the
sequence of bits at positions I ⊆ {1, 2, . . . , poly(|x|)}. That is, RI = ri1 · · · rin , where R = r1 · · · rn and
I = (i1, . . . , in).

– Soundness: For ever x /∈ L and every machine B,

Pr[V (x,RI , I, π) = 1] ≤ 1

3
,

where (I, π) := B(x,R), R is a random variable uniformly distributed in {0, 1}poly(|x|) and RI is the
sequence of bits at positions I ⊆ {1, 2, . . . , poly(|x|)}.
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– Zero Knowledge: There exists a probabilistic polynomial-time algorithm Sim such that the ensembles
{(x,RI , P (x,R))}x∈L and {Sim(x)}x∈L are statistically indistinguishable, where R is a random variable
uniformly distributed in {0, 1}poly(|x|) and RI is the sequence of bits at positions I ⊆ {1, 2, . . . , poly(|x|)},
and where (I, π) = P (x,R).

Theorem 2.7. There exists a (perfect) zero-knowledge Hidden Bits proof system for Graph Hamiltonicity
with perfect completeness. Furthermore, the prover may be implemented by a polynomial-time machine which
gets a Hamiltonian cycle as auxiliary input.

Definition 2.8 (Non-Interactive Proofs in the URS Model). A pair of algorithms (Prover,Verifier) is called
a non-interactive proof system in the URS model for a language L if the algorithm Verifier is deterministic
polynomial-time, there exists a polynomial p(·) and a negligible function µ(·) such that the following two
conditions hold:

– Completeness: For every x ∈ L

Pr[CRS← {0, 1}p(|x|);π ← Prover(x,URS) : Verifier(x,URS, π) = 1] ≥ 1− µ(|x|).

– Soundness: For every x /∈ L, every algorithm P ∗

Pr[URS← {0, 1}p(|x|);π′ ← P ∗(x,URS) : Verifier(x,URS, π′) = 1] ≤ µ(|x|).

Definition 2.9 (Non-Interactive Zero-Knowledge with Offline Simulation (oNIZK) in the URS Model).
Let (Prover,Verifier) be a non-interactive proof system in the URS model for the language L. We say that
(Prover,Verifier) is non-adaptively zero-knowledge with offline simulation in the URS model if there exists
a distribution DSim over polynomial-sized circuits Sim such that the following two distribution ensembles are
computationally indistinguishable by polynomial-sized circuits (when the distinguishing gap is a function of
|x|)

{(CRS, π) : CRS← {0, 1}p(|x|);π ← Prover(CRS, x)}x∈L

{(CRS′, π′)← Sim(x) : Sim← DSim}x∈L.

A useful property of oNIZK is the following: Let Dyes be a distribution over statements x ∈ L and
let Dno be a distribution over statements x ∈ L. If Dyes and Dno are computationally indistinguishable by
polynomial-sized circuits then the following two distribution ensembles are computationally indistinguishable
by polynomial-sized circuits (when the distinguishing gap is a function of |x|)

{(x, (CRS, π)← Sim(x)) : Sim← DSim, x← Dyes}
{(x′, (CRS′, π′)← Sim(x′)) : Sim← DSim, x

′ ← Dno}.

Definition 2.10 (AM Protocol). A proof system ⟨P, V ⟩ for a language L is called an AM Protocol if V is
a polynomial-time algorithm and the protocol consists of 2-messages and is public-coin. Specifically, the first
message is sent from V to P and consists of a sequence of random coins. The second message is sent from
P to V .

Definition 2.11 (ZAP). A ZAP is a 2-round (2-message) protocol for proving membership of x ∈ L, where
L is a language in NP. Let the first-round (verifier to prover) message be denoted ρ and the second-round
(prover to verifier) response be denoted π satisfying the following conditions:

– Public Coins: There is a polynomial p(·) such that the first round messages form a distribution on
strings of length p(|x|). The verifier’s decision whether to accept or reject is a polynomial time function
of x, ρ, and π only.

– Completeness: Given x, a witness w ∈ w(x), and a first-round ρ, the prover generates a proof π that
will be accepted by the verifier with overwhelming probability over the choices made by the prover and the
verifier.
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– Soundness: With overwhelming probability over the choice of ρ, there exists no x′ /∈ L and second round
message π such that the verifier accepts (x′, ρ, π).

– Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then ∀ρ, the distribution on π when the
prover has input (x,w) and the distribution on π when the prover has input (x,w′) are nonuniform
probabilistic polynomial time (in |x|) indistinguishable, even given both witnesses w,w′.

Theorem 2.12. Assume Π = (ProverNIZK ,VerifierNIZK) is a non-adaptive oNIZK proof system for lan-
guage L with prover complexity poly(κ) · 2κ in the URS model. Then there exists a ZAP for language L with
prover complexity poly(κ) · 2κ.

The following refinement of Babai and Moran [3] (additionally bounding the growth of prover complexity)
is due to the fact that their compiler amounts to parallel composition (on the part of the prover).

Theorem 2.13 (Public-Coin Round Reduction (Babai-Moran [3])). Let ⟨Prover,Verifier⟩ be a
constant-round, public-coin interactive proof system for a promise problem Π with prover complexity T (n),
then there exists 2 message public-coin AM proof system for Π with prover complexity poly(n)T (n).

We give the definitions of histograms and Wasserstein distance as given in [14] and [15]. The histogram of
a probability distribution f(UR) is a function h : [0, 1]→ [0, 1] such that h(p) = Pry∼f(UR)[Prf(UR [y] = p].
The following definition describes a discretized version of this concept.

Definition 2.14 ((ϵ̃, t̃)-histogram). Let f(UR) be a probability distribution where R ⊆ {0, 1}n and f :
{0, 1}n → {0, 1}n′

. Fix ϵ̃ > 0 and t̃ = ⌈nϵ̃ ⌉. For i ∈ [t̃] we define the i-th interval Ai and the i-th bucket Bi as

Ai := (2−(i+1)ϵ̃, 2−iϵ̃], Bi := y :
|f−1(y)|
|R|

∈ Ai.

We then let h := (h0, . . . , ht̃), where hi := Pry∼f(UR)[y ∈ Bi] =
∑
y∈Bi

[Prf(UR [y]]. The tuple h is called the

(ϵ̃, t̃)-histogram of f(UR).

Definition 2.15 (1st Wasserstein Distance over arrays). Given two distribution vectors x and y over [t̃] we
let ai =

∑
j∈(i) xj and bi =

∑
j∈(i) yj. We let

−→
W1(x,y) :=

1

t̃

∑
i∈(t̃):ai>bi

(ai − bi),
←−
W1(x,y) :=

1

t̃

∑
i∈(t̃):bi>ai

(bi − ai),

and W1(x,y) :=
−→
W1(x,y) +

←−
W1(x,y). W1(x,y) is called the 1st Wasserstein distance between x and y.

−→
W1(x,y) and

←−
W1(x,y) are called the right and left Wasserstein distance, respectively

Claim 2.16. Let h, h∗ be two distribution vectors over t̃ = n/ϵ̃ and let ∆ ∈ [⌊1/ϵ̃⌋]. Let γ, γ′ ∈ {0, . . . , n−1}
and γ′ > γ. Assume h, h∗ have Wasserstein distance at most d.

1. If
∑
i≤γ/ϵ̃ h[i] ≤ α then

∑
i≤γ/ϵ̃−∆ h

∗[i] ≤ α+ d · t̃/∆.

Equivalently, if
∑
i≤γ/ϵ̃−∆ h[i] ≥ α then

∑
i≤γ/ϵ̃ h

∗[i] ≥ α− d · t̃/∆.

2. If
∑
γ/ϵ̃−∆≤i≤γ′/ϵ̃+∆ h[i] ≤ α then

∑
γ/ϵ̃≤i≤γ′/ϵ̃ h

∗[i] ≤ α+ d · t̃/∆.

Equivalently, if
∑
γ/ϵ̃≤i≤γ′/ϵ̃ h[i] ≥ α then

∑
γ/ϵ̃−∆≤i≤γ′/ϵ̃+∆ h

∗[i] ≥ α− d · t̃/∆.

Proof. Assume that h, h∗ have Wasserstein distance at most d. For i ∈ [t̃], let ai =
∑
j∈[i] h[j] and bi =∑

j∈[i] h
∗[j].

For item (1): Assume towards contradiction that
∑
i≤γ/ϵ̃ h[i] ≤ α but

∑
i≤γ/ϵ̃−∆ h

∗[i] > α+d · t̃/∆. Then

for i ∈ {γ/ϵ̃−∆, . . . , γ/ϵ̃}, ai > α+ d · t̃/∆ and bi ≤ α. Thus, the contribution to the Wasserstein distance
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on this interval is at least

1

t̃

∑
i∈{γ/ϵ̃−∆,...,γ/ϵ̃}

ai − bi >
1

t̃

∑
i∈{γ/ϵ̃−∆,...,γ/ϵ̃}

d · t̃/∆

>
1

t̃
·∆ · d · t̃/∆

> d,

which is a contradiction to the assumption on the Wasserstein distance of h and h∗.

For item (2): Assume towards contradiction that B :=
∑
γ/ϵ̃−∆≤i≤γ′/ϵ̃+∆ h[i] ≤ α but B∗ :=∑

γ/ϵ̃≤i≤γ′/ϵ̃ h
∗[i] > α+ d · t̃/∆.

Let A :=
∑
i<γ/ϵ̃−∆ h[i], A

∗ :=
∑
i<γ/ϵ̃ h

∗[i]. C := 1 − A − B =
∑
i>γ′/ϵ̃+∆ h[i], C

∗ := 1 − A∗ − B∗ =∑
i>γ′/ϵ̃ h

∗[i]. Note that the assumption above implies that (A − A∗) + (C − C∗) > d · t̃/∆. However, by

(1), (A − A∗) ≤ d · t̃/∆. and (C − C∗) = (A∗ + B∗) − (A + B) =
∑
i≤γ′/ϵ̃ h

∗[i] −
∑
i≤γ′/ϵ̃+∆ h[i] ≤ d · t̃/∆.

So the assumption implies that both (A − A∗) and (C − C∗) must be positive. This means that for i ∈
{γ/ϵ̃ − ∆ − 1, . . . , γ/ϵ̃ − 1} ai − bi ≥ (A − A∗) and for i ∈ {γ′/ϵ̃, . . . , γ′/ϵ̃ + ∆} bi − ai ≥ (C − C∗).
Thus, the total contribution to the Wasserstein distance over the intervals {γ/ϵ̃ −∆ − 1, . . . , γ/ϵ̃ − 1} and
{γ′/ϵ̃, . . . , γ′/ϵ̃+∆} is at least ((A−A∗)+(C−C∗)) ·∆/t̃. Thus, d ≥ ((A−A∗)+(C−C∗)) ·∆/t̃. On the other
hand, we have that ((A−A∗) + (C − C∗)) > d · t̃/∆. This implies d > d, which leads to contradiction.

Lemma 2.17 (VerifyHist Protocol, [14]). For a fixed distribution f(UR) where R ⊆ {0, 1}n and f : {0, 1}n →
{0, 1}n′

, let h∗ denote its (ϵ̃, t̃)-histogram, where t̃ = ⌈nϵ̃ ⌉. We define the promise problem ΠVerifyHist as

ΠVerifyHist
Y := {(f, S, ϵ̃, h) : h = h∗}

ΠVerifyHist
N := {(f, S, ϵ̃, h) : W1(h, h∗) > 20/t̃}.

There exists a constant-round public-coin interactive proof for ΠVerifyHist with completeness 1 − 2−n and
soundness 2−n, where the verifier runs in time poly((T1 + T2)/ϵ̃), where T1 is the time, given (x, y) to verify
that x ∈ R and y = f(x), and T2 is the time needed to sample from UR.

2.1 Statistical Lemma

We will be using the following extension of a Lemma from Akavia et al. [1]:

Lemma 2.18. Let Ŝ ⊆ [t′] be a set of size t̂ ≤ t. For i ∈ Ŝ, let ni ∈ (M) be random variables of expectation
µ ± 1

t . Let S ⊆ [t′] be a set of size t such that Ŝ ⊆ S. For i ∈ S, let si ∈ (M) be integers. Further, si ≤ ni
for all i ∈ Ŝ. Then, ∀δ > 0 w.p. at least 1 − δ, it holds that: Avgi∈Ŝ [ni] ∈ [µ − 2M

t
√
δ
− 1

t , µ + 2M
t
√
δ
+ 1

t ]. If

Avgi∈Ŝ [ni] ≤ µ + 2M
t
√
δ
+ 1

t and Avg[si] ≥ µ − 2M
t
√
δ
− 1

t , then the size of the set |{i ∈ Ŝ : si ̸= ni}| is at most
4M√
δ
+ 2 + (t− t̂) ·M (where Avg[si] :=

1
t

∑
i∈S si).

Proof. The first part of the Lemma follows immediately from Chebyshev’s inequality and the fact that the
variance of the ni variables is at most M2.

The second part of the Lemma is similar to Lemma 8 in [1], except for the additional sets Ŝ, S. We show
that if Avgi∈Ŝ [ni] ≤ µ+ 2M

t
√
δ
+ 1

t and Avg[si] ≥ µ− 2M
t
√
δ
− 1

t , then si ̸= ni for at most 4M√
δ
+ 2 + (t− t̂) ·M

number of indeces i ∈ Ŝ.
Assume towards contradiction that si ̸= ni for more than 4M√

δ
+ 2 + (t − t̂) ·M number of the indeces

i ∈ Ŝ. Since si is integer and si ≤ ni, this means that si ≤ ni − 1 for all such i. Further, assume that
Avg[si] ≥ µ− 2M

t
√
δ
− 2

t . Then
∑
i∈S si < (t− t̂) ·M +

∑
i∈Ŝ ni−

4M√
δ
− 2− (t− t̂) ·M . Further, by assumption
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∑
i∈Ŝ ni ≤ (µ+ 1

t̂
) · t̂+ 2M√

δ
. This means that

∑
i∈S

si < (t− t̂) ·M +
∑
i∈Ŝ

ni −
4M√
δ
− 2− (t− t̂) ·M

≤ (t− t̂) ·M + (µ+
1

t̂
) · t̂+ 2M√

δ
− 4M√

δ
− 2− (t− t̂) ·M

≤ µ · t̂− 2M√
δ
− 1

Since t̂ ≤ t, his implies that Avg[si] < µ− 2M
t
√
δ
− 1

t , which is a contradiction.

3 Set Size Bounds and a Hard Problem

We first prove size bounds on the sets (H ◦ f)−1(y′), where f is a hard-to-invert function and H is an ℓ-wise
independent hash, (H ◦ f)−1(y′) ∩ h−1(0m2), where h is an ℓ-wise independent hash function, as well as a
few other variants in Section 3.1. We then use these size bounds to prove the hardness of a particular search
problem with respect to a uniformly random string in Section 3.2. We further consider a hardcore predicate
with respect to a uniformly random string based on this search problem in Section 3.2.

3.1 Set Size Bounds

We begin by defining the following distribution which will be helpful for proving the statistical guarantees
on the pre-image sizes, as well as proving the hardness of the search problem in Section 3.2.

Claim 3.1. Let f : {0, 1}κ → {0, 1}κ′
. There exists a distribution D′ that is 3κ/p-statistically close to f(Uκ)

and an integer k such that:

1. D′ has min-entropy k.
2. At least 1/p of the weight of D′ is on elements y such that PrD′ [y] ≥ 1

2k+2 . Let S be the set of elements
y in the support of D′ such that k ≤ − log(PrD′ [y]) ≤ k + 2

3. The support of D′ (which we also denote by D′) is a subset of the support of f(Uκ).

4. For all y ∈ D′, PrD′ [y] = |f−1(y)|
|D′| .

Proof. We consider repeating the following procedure until items (1) and (2) above are satisfied:

1. Initialize D′ := f(Uκ).
2. While less than 1/p of the weight of D′ is on elements y such that PrD′ [y] ≥ 1

2k+2 , where k is the
min-entropy of D′:
(a) Remove all elements in D′ such that PrD′ [y] ≥ 1

2k+2 .
(b) Re-normalize the distribution D′.
(c) Update D′ to be this new distribution.

Note that the above loop can repeat at most κ times since 1
2k+2 · 1

1−1/p ≤
1

2k+1 when 1/p ≤ 1/2. Thus,

the min-entropy of D′ must go up by at least 1 in each iteration, and D′ can have min-entropy of at most κ
at any point in the procedure, since the support of D′ ⊆ {0, 1}κ is an invariant.

Clearly, (1) and (2) hold when the loop terminates.
We next analyze the statistical distance. First note that Prf(Uκ)[{0, 1}κ\D′] is at most 1−(1−1/p)κ ≤ κ/p.
Further, for every y ∈ D′,

1 ≤ PrD′ [y]

Prf(Uκ)[y]
≤ 1

(1− 1/p)κ
≤ 1− 2κ

p
,

when κ/p ≤ 1/2. Thus, the total statistical distance is at most 3κ
p .

(3) and (4) also clearly hold by construction.
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Remark 2. Note that when f is a hard-to-invert function, D′ from Claim 3.1 must have min-entropy k ∈
ω(log(κ)), since otherwise 1/p of the weight of the distribution is on elements y in the image of f that occur
with 2−O(log(κ)) = 1/poly(κ) probability. Such y can be inverted by sampling random x and checking whether
f(x) = y.

In the following, let D′ be any distribution of min-entropy at least k − 1, which has statistical distance
at most 4κ/p from f(Uκ), for which 1/(2p) of the weight is on elements y such that PrD′ [y] ≥ 1

2k+3 , and
satisfies the remaining properties of Theorem 3.1.

Lemma 3.2. Let H : {0, 1}κ′ → {0, 1}m1 be an ℓ-wise independent hash with m1 = k − log(p) − log(1/ϵ),
where ϵ = ϵ(κ) = 1/poly(κ). Then the following hold:

1. With all but negligible probability over choice of H ∼ H1, for all y
′ ∈ {0, 1}m1 , |(H ◦f)−1(y′)∩f−1(D′)| ∈

[ 2κ

2m1−1 ,
2κ

2m1+1 ] = [ 2
κ

2k
p
2ϵ ,

2κ

2k
2p
ϵ ].

2. With all but 6κ/p probability over choice of H ∼ H1, y
′ ∼ Um1

|(H ◦ f)−1(y′)| ∈ [ 2κ

2m1+2 ,
2κ

2m1−2 ] =

[ 2
κ

2k
· p4ϵ ,

2κ

2k
· 4pϵ ].

3. With all but negligible probability over choice of H ∼ H1, for all y′ ∈ {0, 1}m1 , |H−1(y′) ∩ S| ∈
[ 2k−1

p′2m1
, 2k+1

p′2m1
] = [ p

2ϵp′ ,
2p
ϵp′ ].

4. With all but negligible probability over choice of H ∼ H1, for all y
′ ∈ {0, 1}m1 , |(H ◦f)−1(y′)∩f−1(S)| ∈

[ 2κ

2k+2 · p
2ϵp′ ,

2κ

2k
· 2p
ϵp′ ].

Proof. Item (1) follows from the fact that ℓ-wise independent hash functions H are relative error extractors
(see Def. 2.5), see [17], proof of Proposition A.1, and the fact that D′ has min-entropy k, while H has output
length m1 = k − log(p)− log(1/ϵ). Item (2) follows from the fact that f(Uκ) and D′ are statistically 4κ/p-
close. Item (3) follows from Chernoff bounds with ℓ-wise independent random variables, such as Theorem 5
in [4]. Item (4) follows from Chernoff bounds with ℓ-wise independent random variables, such as Theorem 5
in [4] (as above), and from the definition of S, which is the set of elements y in the support of D′ such that
k ≤ − log(PrD′ [y]) ≤ k + 2.

Corollary 3.3. Let H : {0, 1}κ′ → {0, 1}m1 be an ℓ-wise independent hash with m1 = k− log(p)− log(1/ϵ),
where ϵ = ϵ(κ) = 1/poly(κ). Let h : {0, 1}κ → {0, 1}m2 be an ℓ-wise independent hash, where m2 = κ − k.
Then the following hold:

1. With all but negligible probability over choice of H ∼ H1, h ∼ H2, for all y′ ∈ {0, 1}m1 , |(H ◦ f)−1(y′) ∩
f−1(D′) ∩ h−1(0m2)| ∈ [ p4ϵ ,

4p
ϵ ].

2. With all but 4κ/p probability over choice of H ∼ H1, h ∼ H2, y
′ ∼ Um1

|(H ◦ f)−1(y′) ∩ h−1(0m2)| ∈
[ p8ϵ ,

8p
ϵ ]. Let P := 8p

ϵ .
3. With all but negligible probability over choice of H ∼ H1, h ∼ H2, for all y′ ∈ {0, 1}m1 , |(H ◦ f)−1(y′) ∩

f−1(S) ∩ h−1(0m2)| ∈ [ p
8ϵp′ ,

2p
ϵp′ ].

Proof. Each of Items (1), (2), (3) above follows from Items (1), (2), (3) of Lemma 3.2, respectively, and
Chernoff bounds with ℓ-wise independent random variables (e.g. Theorem 5 in [4]).

Remark 3 (Parameters). Parameters k, P are defined above. m1,m2 are determined by k and the setting
of parameters p, ϵ. Let µ′ ≤ 4κ/p be the probability over choice of H ∼ H1, h ∼ H2, y

′ ∼ Um1
that

|(H ◦ f)−1(y′) ∩ h−1(0m2)| > P . Let µ be the expected size of |(H ◦ f)−1(y′) ∩ h−1(0m2)| conditioned on
|(H ◦ f)−1(y′) ∩ h−1(0m2)| ≤ P , where the expectation is taken over choice of H ∼ H1, h ∼ H2, y

′ ∼ Um1 .

Given a set Q ⊆ {0, 1}κ. Let Truncatez(Q) denote the set that, for every y such that f−1(y) ∩ Q ≠ ∅,
contains the lexicographically first z elements of f−1(y) ∩Q.

Claim 3.4. With all but negligible probability over H,h, y′,

|TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2))| ≤ B = P/2 + (P + 1) · κ · 8
ϵ
.
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Proof. Note that

|TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2))| ≤ |(H ◦ f)−1(y′) ∩ h−1(0m2)) ∩ f−1(D′)|
+ |TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2)) ∩ f−1(Im(f) \ D′)|.

By Property (1) of Corollary 3.3, |(H ◦ f)−1(y′) ∩ h−1(0m2)) ∩ f−1(D′)| ≤ P/2 with all but negligible
probability. Further,

|TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2)) ∩ f−1(Im(f) \ D′)| ≤ (P + 1)|H−1(y′) ∩ (Im(f) \ D′)|.

Note that by the definition of D′, the loop can repeat at most κ times, and each time at most 2k+2/p elements
are removed. Thus, |(Im(f) \ D′)| ≤ κ · 2k+2/p. Thus, by the properties of the ℓ-wise independent hash H,
with all but negligible probability over choice of H, for all y′,

|H−1(y′) ∩ (Im(f) \ D′)| ≤ 2 · κ · 2
k+2

p · 2m1
= κ · 8

ϵ
.

The above implies that with all but negligible probability over H,h, y′, the size of TruncateP+1((H ◦
f)−1(y′) ∩ h−1(0m2)) is polynomial in κ.

Claim 3.5. Let y∗ be an arbitrary value such that y∗ ∈ H−1(y′)∩S. Then with all but negligible probability
over choice of H, Pry∼D′|H(D′)=y′ [y = y∗] ≥ 2κ

2k+2 · 2
m1

2·2κ = ϵ
8p .

Proof. By the fact that the ℓ-wise independent hash H is a relative error extractor, with all but negligible
probability over choice of H, for all y′ ∈ {0, 1}m1 , Pry∼D′ [H(y) = y′] ≤ 2

2m1
.

Further, since y∗ ∈ S, we have that PrD′ [y∗] ≥ 1
2k+2

Thus, we have that

Pr
y∼D′|H(D′)=y′

[y = y∗] =
PrD′ [y∗]

Pry∼D′ [H(y) = y′]

≥ 2m1

8 · 2k

=
ϵ

8p
.

3.2 The Hard Problem relative to the Uniform Distribution

Lemma 3.6. Let f : {0, 1}κ → {0, 1}κ′
be a hard-to-invert function and let H : {0, 1}κ′ → {0, 1}m1 ∼

H, h : {0, 1}κ → {0, 1}m2 ∼ H2 be ℓ-wise indpendent hash functions defined as above. For all non-uniform
ppt adversaries A

Pr
H∼H,h∼H2,y′∼Um1

[A(y′, H, h) = TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2))] ∈ negl(κ).

Proof. Assume towards contradiction that

Pr
H∼H,h∼H2,y′∼Um1

[A(y′, H, h) = TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2))] = ρ(κ),

where ρ(κ) is non-negligible.
We first note that item (1) of Lemma 3.2 implies that

Pr
H∼H,h∼H2,
y′∼H(D′)

[A(y′, H, h) = TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2))] ≥ ρ(κ)

2
− negl(κ). (1)

12



By item (3) of Corollary 3.3, with all but negligible probability over choice of H ∼ H1, h ∼ H2, for all

y′ ∈ {0, 1}m1 , |(H ◦ f)−1(y′) ∩ f−1(S) ∩ h−1(0m2)| ∈ [ p2

8ϵ2p′ ,
8p2

ϵ2p′ ].
This implies that

Pr
H∼H,h∼H2,
y′∼H(D′)

[A(y′, H, h) = Truncate 8p
ϵ
((H ◦ f)−1(y′) ∩ h−1(0m2))

∧ Truncate 8p
ϵ
((H ◦ f)−1(y′) ∩ h−1(0m2)) ∩ f−1(S) ̸= ∅] ≥ ρ(κ)

2
− negl(κ). (2)

Let x∗ be the lexicographically first element contained in Truncate 8p
ϵ
((H ◦f)−1(y′)∩h−1(0m2))∩f−1(S),

if the intersection is non-empty. Otherwise, x∗ is equal to ⊥. Let y∗ = f(x∗), if x∗ ̸= ⊥ and let y∗ = ⊥
otherwise. Note that y∗ ∈ H−1(y′) ∩ S, when x∗ ̸= ⊥.

The above along with Claim 3.5 imply that

Pr
H∼H,h∼H2,

y′∼H(D′),y∼D′|H(D′)=y′

[A(y′, H, h) = Truncate 8p
ϵ
((H◦f)−1(y′)∩h−1(0m2))∧x∗ ̸= ⊥∧ y = y∗] ≥ (

ρ(κ)

2
−negl(κ))· ϵ

p
.

(3)
The above implies a hard-to-invert function adversary as follows: A′ receives a y ∼ f(Uκ). A

′ guesses
that y is in the support of D′ (correct with probability at least 1 − κ/p). In this case, y is distributed as a
draw from D′. A′ chooses H,h, computes y′ = H(y), and runs A(y′, H, h). A outputs a set S ′ of polynomial
size, which is equal to TruncateP+1((H ◦ f)−1(y′) ∩ h−1(0m2)) with probability at least ρ(κ)/2− negl(κ). A′

checks if y ∈ f(S ′). By (3), this occurs with probability at least (ρ(κ)2 − negl(κ)) · ϵp . If yes, then one of the

elements of S ′ is a pre-image of y. A′ finds this element and outputs it.
The overall success probability of A′ is

(1− κ/p) · (ρ(κ)
2
− negl(κ)) · ϵ

p
,

which is non-negligible.

For a function ψ(·) : N→ R, let Sψ(κ) be the set of z ∈ [P ] such that PrH∼H,h∼H2,y′∼Um1
[|(H ◦f)−1(y′)∩

h−1(0m2)| = z] ≥ ψ(κ).
Corollary 3.7. Let f : {0, 1}κ → {0, 1}κ′

be a hard-to-invert function and let H : {0, 1}κ′ → {0, 1}m1 ∼
H, h : {0, 1}κ → {0, 1}m2 ∼ H2 be ℓ-wise independent hash functions defined as above. For functions ψ(·),
ψ′(·), every z ∈ Sψ(κ) and for all ppt adversaries A, if

Pr
H∼H,h∼H2,y′∼Um1

[A(y′, H, h) = (H ◦ f)−1(y′) ∩ h−1(0m2) | |(H ◦ f)−1(y′) ∩ h−1(0m2)| = z] ≥ ψ′(κ),

then ψ · ψ′(κ) is negligible.

Given this, the following is an immediate corollary of the Goldreich Levin Algorithm [11]. This result
is typically presented as a hardcore predicate for a one-way function, but the core algorithm can also be
viewed as an efficient local list decoder for the Walsh-Hadamard Code. Because this list-decoder will output a
polynomial-size list containing the correct input with non-negligible probability, simply guessing the correct
item in the list will successfully output the correct input with non-negligible probability overall.

Corollary 3.8. Let f : {0, 1}κ → {0, 1}κ′
be a hard-to-invert function and let H : {0, 1}κ′ → {0, 1}m1 ∼

H, h : {0, 1}κ → {0, 1}m2 ∼ H2 be ℓ-wise indpendent hash functions defined as above. For every ψ(·), ψ̂(·),
every z ∈ Sψ(κ), and for all ppt adversaries A, if

Pr
H∼H,h∼H2,y′∼Um1

,u∼Uκ·P
[A(y′, H, h) = ⟨(H◦f)−1(y′)∩h−1(0m2), u⟩ | |(H◦f)−1(y′)∩h−1(0m2)| = z] ≥ 1

2
+ψ̂(κ),

then ψ ·ψ̂(κ) is negligible, whereby ⟨(H ◦f)−1(y′)∩h−1(0m2), u⟩ we denote the inner product of a lexicographic
ordering of the set (H ◦ f)−1(y′) ∩ h−1(0m2) and u.
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4 Verifiable Hard Core of a Random String

We introduce a new primitive we call a verifiable hard core of a random string (VHCR). This can be thought
of as a statistically binding commitment scheme for random values where most strings are valid commitments.
While random strings must correspond to valid commitments, we conversely do not require that commitments
to a particular value can be produced efficiently. Opening a random commitment obviously should not be
efficient, but we simply require that it can be done not too inefficiently. Verifying an opening is still required
to be in polynomial time.

Definition 4.1 (Verifiable Hard Core of a Random String). Let δ(·) ∈ 1/Poly. A tuple of algo-
rithms (Gen,Open,Verify), allow δ(κ)-confidence verification of a hardcore predicate DecRand with efficiency
poly(1/δ(κ)) · 2κ if there exist polynomials m(·),m′(·),m′′(·) such that (Gen,Open,Verify) and DecRand have
the following syntax:

– Gen : 1κ → {0, 1}m′′(κ) is a deterministic algorithm that, for each security parameter κ, outputs public
parameters PP.

– Open : {0, 1}m′′(κ)×{0, 1}m(κ) → {0, 1}m′(κ) takes as input the public parameters PP and x, and outputs
π, and runs in time poly(1/δ(κ)) · 2κ.

– Verify : {0, 1}m′′(κ) × {0, 1}m(κ) × {0, 1}m′(κ) → {0, 1,⊥} takes as input PP, x, π and outputs 0, 1 or ⊥,
and runs in polynomial time in security parameter κ.

– DecRand : {0, 1}m′′(κ) × {0, 1}m(κ) → {0, 1} ∪ {?} is a partial predicate that takes as input the public
parameters PP and input x and outputs 0, 1 or ?.

The following security properties are required for (Gen,Open,Verify) and DecRand:

Completeness. Completeness has two parts:

– Most strings are “openable” to a bit. We say a string x ∈ {0, 1}m is openable if DecRand(PP, x) ∈
{0, 1}. Otherwise, the string is said to be unopenable. A random string is openable with probability
at least 1− δ,

Pr
x∼Um

[DecRand(PP, x) ∈ {0, 1}] ≥ 1− δ.

– “Openable” strings can be efficiently opened. For any openable x ∈ {0, 1}m(n),
Verify(PP, x,Open(PP, x)) = DecRand(PP, x). If x is unopenable then Verify(PP, x,Open(PP, x)) =
⊥.

Soundness. The predicate is statistically binding:

Pr
x∼Um

[∃π0, π1 : Verify(PP, x, π0) = 0 ∧ Verify(PP, x, π1) = 1] ≤ δ

Unbiased. Openable strings are unbiased:

Pr
x∼Um

[DecRand(PP, x) = 1|DecRand(PP, x) ∈ {0, 1}] = 1/2

Indistinguishability. Openable strings are computationally hiding; For PP = Gen(1κ), it is infeasible to
distinguish between encodings of 0 and 1:

(PP,U|DecRand(PP,U) = 0) ≈ (PP,U|DecRand(PP,U) = 1)

4.1 Our Construction of VHCR from HIF

In this section we prove the following theorem.

Theorem 4.2. If hard-to-invert functions exist, then for any δ(·) ∈ 1/poly there exists a partial predicate
DecRand and a tuple of algorithms (Gen,Open,Verify), that allow δ(κ)-confidence verification of DecRand
with efficiency poly(1/δ(κ)) · 2κ.
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We begin by defining Gen,DecRand,Open,Verify in Figure 4.1, and then proving the completeness, sound-
ness, unbiased, and indistinguishability properties. Throughout this section we assume existence of a hard-
to-invert function f : {0, 1}κ → {0, 1}κ′

with a deterministic verifier Vf (that takes in x, y and τ , where τ is
polynomial in |x|+ |y|, such that f(x) = y ⇐⇒ ∃τ, Vf (x, y, τ) = 1.

Figure 4.1: VHCR Construction

Gen(1κ) By Claim 3.1, f(Uκ) is at most 3κ/p-far from a distribution D′ with min-entropy k. k is
used to set the parameters m1,m2. The threshold size P and statistics µ, µ′ are defined as in
Remark 3. Gen outputs PP = (m1,m2, P, µ, µ

′).
DecRand(PP, x): Given a uniform random string x, we parse x as t′ strings of the form

(y′1, H1, h1, u1), . . . (y
′
t′ , Ht′ , ht′ , ut′), where for i ∈ [t′], Hi : {0, 1}κ

′ → {0, 1}m1 and hi : {0, 1}κ →
{0, 1}m2 are interpreted as the descriptions of ℓ-wise independent hash function, and ui is a
random string of length P · κ.
– For all i ∈ [t′], define S(y′i,Hi,hi) := (Hi ◦ f)−1(y′) ∩ h−1

i (0m2).
– For all i ∈ [t′], n′i := 0 if |S(y′i,Hi,hi)| > P and n′i := 0 otherwise.

– Let Ŝ of size t̂ be the set of indeces i such that n′i = 1

– For all j ∈ Ŝ, let nj := |S(y′j ,Hj ,hj)|.
– If Avgi∈[t′][n

′
i] ∈ [µ′ − 2

t′
√
δ̃
− 1

t′ , µ
′ + 2

t′
√
δ
+ 1

t′ and Avgj∈Ŝ [nj ] ∈ [µ − 2P
t
√
δ
− 1

t , µ −
2P
t
√
δ
− 1

t ]

then x is openable. Otherwise x is unopenable and DecRand(PP, x) outputs ?.
– If x is openable let bj := ⟨S(y′i,Hi,hi), uj⟩, where the above denotes taking the dot product

of uj with the vector obtained from a lexicographic ordering of S(y′i,Hi,hi). DecRand(PP, x)
outputs Maj([bj ]j∈Ŝ).

Open(PP, x): We parse x as t′ strings of the form (y′1, H1, h1, u1), . . . (y
′
t′ , Ht′ , ht′ , ut′). If x is unopen-

able, the opening consists of ⊥. Otherwise, the opening consists of the following:
– [n′i]i∈[t′], [ni]i∈Ŝ , defined as above.

– At least P +1 elements of the set S(y′i,Hi,hi) for each i such that n′i = 0, and for all j ∈ Ŝ, all
elements of the set S(y′j ,Hj ,hj) of size nj . For each such element x ∈ S(y′i,Hi,hi) sent, additionally

include y, τ such that f(x) = y and V (x, y, τ) = 1
Verify(PP, x, π): – Parse π to learn [s′i]i∈[t′]. Let S

′ be the set of i such that s′i = 1.
– Parses π to learn [si]i∈S′ .
– Use the values µ′, µ contained in PP to check that Avg[s′i] ≥ µ′ − 2

t′
√
δ
− 1

t′ and Avg[si] ≥
µ− 2P

t
√
δ
− 1

t .

– Use the value of P contained in PP to check that π contains lists of size at least P + 1
elements of the set S(y′i,Hi,hi) for each i such that s′i = 0. π contains the nj elements of the
set S(y′j ,Hj ,hj) for each j ∈ S′.

4.2 Completeness and Soundness of the Construction

Lemma 4.3. (Gen,DecRand,Open,Verify) as defined in Figure 4.1 has the following completeness property:

– Completeness: The probability that a uniformly random string x is openable is at least 1− 2δ̃ ≥ 1− δ.

The claim follows immediately from Lemma 2.18 and by setting δ̃ ≤ δ/2.
Towards proving soundness, we begin with the following claim:

Claim 4.4. If x is openable then For any π such that Verify(PP, x, π) ∈ {0, 1}, we have that |{i ∈ [t′] : s′i ̸=
n′i}| ≤ 4√

δ̃
+ 2 AND |{i ∈ Ŝ : si ̸= ni}| ≤ 8P√

δ̃
+ 2P + 2

Proof. We apply Lemma 2.18 twice. The first time, we have n′1, . . . , n
′
t′ ∈ {0, 1} indicating whether a block

has more than P number of pre-images or at most P number of pre-images. In this case, we apply the lemma
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with sets Ŝ = S = [t′] and M = 1. Since we assume x is openable, applying Lemma 2.18, this means that
s′i ̸= n′i for at most 4√

δ̃
+ 2 of the indeces i ∈ [t′].

Next, we will apply Lemma 2.18 with the sets Ŝ, S′ ⊆ [t′] and M = P . Recall that Ŝ is the set of indeces
i such that n′i = 1 (with size t̂) and that S′ is the set of indeces i such that s′i = 1 (with size t). Further,
note that by the above (t− t̂) ≤ 4√

δ̃
+ 2. Since we assume x is openable, applying Lemma 2.18, this means

that |{i ∈ Ŝ : si ̸= ni}| is at most 4P√
δ̃
+ 2 + (t− t̂) · P ≤ 8P√

δ̃
+ 2P + 2

Lemma 4.5. (Gen,DecRand,Open,Verify) as defined in Figure 4.1 has the following soundness property:

– Soundness: The probability over random choice of x that there exist a π, π′ such that Verify(PP, x, π) = 0

and Verify(PP, x, π′) = 1 is at most 2δ̃ + (20P + 10)/(
√
δ̃ ·
√
t̂) ≤ δ.

Proof. The probability is upperbounded by the probability that either x is unopenable or the probability
that x is openable and there exists π such that Verify(PP, x, π) = 1−DecRand(PP, x). Since the probability
x is unopenable is at most 2δ̃, it suffices to bound the probability that x is openable and there exists π such

that Verify(PP, x, π) = 1− DecRand(PP, x). by (20P + 10)/(
√
δ̃ ·
√
t).

Let Ŝ of size t̂ be the set of indeces i for which n′i = 1. Let [bi]i∈Ŝ be the corresponding hardcore bits.

Let S of size t be the set of indeces i for which s′i = 1. Let [b̃i]i∈S′ be the corresponding hardcore bits. We
want to show that with high probability Maj([bi]i∈Ŝ) = Maj([b̃i]i∈S′).

First, assume that Maj([bi]i∈Ŝ) = 0 and that Maj([b̃i]i∈S′) = 1. This implies that
∑
i∈Ŝ bi ≤ t̂/2 and that∑

i∈S′ b̃i ≥ t/2.
Further, when x is openable, the following holds:

t̂/2 ≤ t/2

≤
∑
i∈S′

b̃i

=
∑
i∈Ŝ

b̃i +
∑

i∈S′\Ŝ

b̃i

≤
∑
i∈Ŝ

bi +
8P√
δ̃
+ 2P + 2 +

4√
δ̃
+ 2

=
∑
i∈Ŝ

bi + (8P + 4)/
√
δ̃ + 2P + 4

≤
∑
i∈Ŝ

bi + (10P + 5)/
√
δ̃,

where the third inequality holds due to Claim 4.4.

This implies that
∑
i∈Ŝ bi ≥ t̂/2− (10P + 5)/

√
δ̃.

Symmetrically, to flip from a 1 to a 0, we require that
∑
i∈Ŝ bi ≤ t̂/2 + (10P + 5)/

√
δ̃.

Thus, a block can only flip from majority 0 to majority 1 (or vice-versa) if the number of hardcore bits in

the set S of size t̂ originally had between t̂/2− (10P +5)/
√
δ̃ and t̂/2+ (10P +5)/

√
δ̃ number of 1’s. Using

the fact that
(
t̂
t̂/2

)
≤ 2t̂√

π·t̂/2
≤ 2t̂√

t̂
, this occurs with at most (20P + 10)/(

√
δ̃ ·
√
t̂) probability. Further, by

Corollary 3.3 item (2) and Chernoff bounds, we have that with all but negligible probability t̂ ≥ (1−6κ/p)t′.

We therefore set parameters δ̃, t′ such that 2δ̃ + (20P + 10)/(
√
δ̃ ·

√
(1− 6κ/p)t′) ≤ δ.
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4.3 Unbiased Property

Recall that for openable x, the encoded bit is the majority of bj . Thus to show the construction is unbiased
it suffices to show each bj is unbiased. Recall that each bj is computed from the inner product of uniformly
random uj and the ordered encoding of the set S(y′i,Hi,hi) (mod 2). This is unbiased so long as the ordered
encoding S(y′i,Hi,hi) is not all 0. To achieve this we simply assume encoding always appends a 1.

4.4 Indistinguishability Property

We next state the indistinguishability property of the decoding.

Lemma 4.6. Let (Gen,DecRand,Open,Verify) be as defined in Figure 4.1. Consider the following distribu-
tions

D0 := (PP = Gen(1κ), x ∼ Ut′(m1+2κ̃+P ·κ) | DecRand(PP, x) = 0),

D0 := (PP = Gen(1κ), x ∼ Ut′(m1+2κ̃+P ·κ) | DecRand(PP, x) = 1),

Then D0 and D1 are computationally indistinguishable.

Proof. We show that an adversary contradicting the computational indistinguishability of D0 and D1 can
be used to construct an adversary contradicting Corollary 3.8.

Note that each of D0 and D1 is a distribution over strings x, conditioned on x being openable. Each
distribution can be viewed as a convex combination over distributions D0,t̂, D1,t̂ where each distribution

corresponds to a choice of t̂ (the number of positions in [t′] that have pre-image size at most P ) that is
consistent with x being openable, and then sampling the t̂ blocks consistently with x being openable to
either 0 or 1.

Note that there must exist some particular t̂ such that the distributions D0,t̂ and D1,t̂ are distinguishable.

Further, for m ∈ [⌊t̂/2⌋], let D(Dt̂,m) be the distribution in which m of the t̂ blocks whose pre-image size

is at most P have hardcore bit of 1. For m′ ∈ {⌊t̂/2⌋+1, . . . , t̂}, let D(Dt̂,m′) be the distribution in which m′

of the t̂ blocks whose pre-image size is at most P have hardcore bit of 1. Then there must exist two values
m ∈ [⌊t̂/2⌋],m′ ∈ {⌊t̂/2⌋ + 1, . . . , t̂} such that |Pr[D(Dt̂,m) = 1] − Pr[D(Dt̂,m′) = 1]| ≥ χ(κ), where χ(·) is
non-negligible.

By a standard hybrid argument, there must exist some i ∈ {m, . . . ,m′ − 1} such that |Pr[D(Dt̂,i) =
1] − Pr[D(Dt̂,i+1) = 1]| ≥ χ′(κ), where χ′(·) is non-negligible. Note that the distribution over sizes of
pre-images n1, . . . , nt̂ for x drawn from D(Dt̂,i) and x drawn from D(Dt̂,i+1) are identical.

Thus, there must exist a particular vector of pre-image sizes [nj ]j∈[t̂], where each nj ∈ Sχ′′(κ)

(where χ′′(·) = χ′(κ)

2P t̂
is non-negligible), and a position j∗ ∈ [t̂] for which |Pr[D(Dt̂,i,j∗,[nj ]j∈t̂

) = 1] −
Pr[D(Dt̂,i+1,j∗,[nj ]j∈[t̂]

) = 1]| ≥ χ′(κ)/2. Here D(Dt̂,i,j∗,[nj ]j∈t̂
) is the same as the distribution D(Dt̂,i), except

the pre-image sizes are fixed to [nj ]j∈t̂ and the hardcore of the j∗-th block is fixed to 0; D(Dt̂,i+1,j∗,[nj ]j∈t̂
)

is the same as the distribution D(Dt̂,i+1), except the pre-image sizes are fixed to [nj ]j∈t̂ and the hardcore of
the j∗-th block is fixed to 1.

We now build our reduction by considering a distribution over circuits which hardwire PP, t− t̂ samples
that have pre-image size greater than P , t̂− 1 samples with preimage sizes [nj ]j∈[t̂]\j∗ , where i samples have

hardcore bit 0 and t̂− i− 1 samples have hardcore bit 1, and the values of j∗, nj∗ . The reduction will receive
as input a block with nj∗ number of pre-images and hardcore bit of either 0 or 1 with probability 1/2. The
reduction will place the input block in position j∗ and to obtain x and forwards PP, x to the adversary. The
reduction outputs whatever the adversary does. Note that this distribution over circuits succeeds in guessing

the hardcore bit with probability at least 1/2 + χ′(κ). Since χ′(·) is non-negligible, so is χ′ · χ′′(·) = (χ′(κ))2

2P t̂
.

This implies that there exists a particular circuit in the support of this distribution which breaks the hardcore
bit guarantee given in Corollary 3.8, thus leading to contradiction.
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5 Our oNIZK construction with non-uniform Verifier

In this section, we prove the following theorem:

Theorem 5.1. Assume hard-to-invert exists. For sufficiently large κ, and for all polynomials ψ(·), there
exists an oNIZK proof system in the URS model with non-uniform verifiers and prover complexity poly(κ) ·2κ
for the language HamPathψ(κ), which is Hamiltonian path for input instances of length ψ(κ).

5.1 Description of Protocol

Our protocol makes use of an underlying hidden bits proof system (Phb, Vhb) for the NP-complete language L
of Hamiltonian cycle (See Definition 2.6 and Theorem 2.7). We assume the (Phb, Vhb) proof system requires
n(κ) hidden bits (i.e. the length of random variable R in Definition2.6 is n = n(κ)) to prove statements st
of length ℓ(κ) are contained in the language L.

Using Theorem 4.2, we have that for δ(·) = n(·)
8 there exists a partial predicate DecRand and a tuple

of algorithms (Gen,Open,Verify), that allow δ(κ) = 1
8n(κ) -confidence verification of DecRand with efficiency

poly(1/δ(κ)) · 2κ. We present our protocol in Figure 5.1 and then argue its completeness, soundness, and
offline zero knowledge properties.

Figure 5.1: oNIZK Protocol

Setup: the uniform random string ρ = ρ1, . . . , ρn′ is divided into n′ sections, where each section has
length n blocks. Thus ρi,j refers to the j-th block of the i-th section. PP ← Gen(1κ) is run and
the Verifier receives PP as non-uniform advice.

Prover: The prover receives URS ρ, statement st ∈ L, and witness w as input. For i ∈ [n′], the
prover does the following:
– Parse ρi as n blocks ρi,1, . . . , ρi,n. ρi,j . Set b

i
j := Verify(PP, ρi,j ,Open(PP, ρi,j)).

– If ∀j ∈ [n], bij ̸= ⊥, run the hidden bits prover Phb on the sequence R := bi1, . . . , b
i
n, input

statement st and witness w. Phb outputs proof πi and set Ii of opened bits.
– If ∀j ∈ [n], bij ̸= ⊥, add i to the list Lgood and output the following for the i-th subproof:
• The set Ii,
• For j ∈ Ii, the pair (bij , π

op
i,j = Open(PP, ρi,j))

• The proof πi.
– Output the list Lgood

Verifier: The verifier receives URS ρ, statement st, and proof π as input, as well as the non-uniform
advice PP. For each i ∈ Lgood the Verifier does the following:
– Check that for all j ∈ Ii, Verify(PP, ρi,j , πop

i,j) = bij . We assume that these are provided to the
verifier as non-uniform advice.

– Run the hidden bits verifier Vhb to verify the proof πi relative to statement st, the set Ii and
hidden bits RIi := [bij ]j∈Ii .

– If all checks pass output 1. Otherwise output 0.
If at least n′/2 number of 1’s were outputted in the previous stage then ACCEPT. Otherwise
REJECT.

Completeness. Fix a statement st ∈ L. The probability over choice of random string ρ that the proof is
accepting is the probability that at least half of the substrings ρi, i ∈ [n′] have accepting proofs. Since the
underlying hidden bits proof has perfect completeness, this is the same as the probability that for at least
half of i ∈ [n′] all of ρi,1, . . . , ρi,n satisfy completeness. For every i ∈ [n′], we have by Lemma 4.3, that the
probability that all of ρi,1, . . . , ρi,n satisfy completeness is at least 1 − n · 1

4n ≥ 3/4. Since the sections of ρ
are independent, we can use Hoeffding bounds to lower bound the probability of half the proofs accepting

by: 1− e−n′
16 .

Soundness. Fix a statement x /∈ L. The probability over choice of random string ρ that there exists an
accepting proof is the probability that at least half of the substrings ρi, i ∈ [n′] have accepting proofs. For
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each i ∈ [n′], the probability that ρi has an accepting proof is upperbounded by the probability that one of
the following events occurs:

– There exists a valid proof of x ∈ L in the hidden bits model with respect to bits R = bi1, . . . , b
i
n.

– For some j ∈ [n], ρi,j is unopenable.
– For some j ∈ [n], there exist πop

i,j , π
′op
i,j such that Verify(PP, ρi,j , π

op
i,j) = 0 and Verify(PP, ρi,j , π

′op
i,j) = 1.

The first event occurs with at most negligible probability by the soundness of the underlying hidden bits
proof. The second event occurs with probability at most n · 1

8n ≤ 1/8 by Lemma 4.3 and the third event
occurs with probability at most n · 1

8n ≤ 1/8 by Lemma 4.5. Since the sections of ρ are independent, we can

use Hoeffding bounds to upper bound the probability of half the proofs accepting by: e−
n′
16 .

Offline Zero Knowledge (oZK) The simulator Sim is a poly-time algorithm with non-uniform advice which is
sampled from the following distribution: Let α ≤ δ(κ) be the probability that x ∼ Uκ′+2κ̃+P ·κ is unopenable.
For i ∈ [n′], j ∈ [n], the non-uniform advice consists of one of the following:

– With probability α, it consists of a single block ρi,j that is unopenable (i.e. ρ0i,j ∼ Um1+2κ̃+P ·κ |
DecRand(PP, Um1+2κ̃+P ·κ) =?)

– With probability 1 − α it consists of two blocks ρ0i,j , ρ
1
i,j sampled as follows: ρ0i,j ∼ Um1+2κ̃+P ·κ |

DecRand(PP, Um1+2κ̃+P ·κ) = 0, and ρ1i,j ∼ Um1+2κ̃+P ·κ | DecRand(PP, Um1+2κ̃+P ·κ) = 1, along with

their corresponding honest openings Open(PP, ρ0i,j), Open(PP, ρ
1
i,j).

Let Lunopenable be the set of pairs (i, j) such that ρi,j is unopenable. Let Lgood be the set of i ∈ [n′] such that
∀j ∈ [n], (i, j) /∈ Lunopenable.

In the online phase, the simulator is given the statement st and runs the hidden bits simulator n′ times
on input st to obtain proofs π1, . . . , πn′ , sets of opened bits I1, . . . , In′ , and openings [bij ]j∈[Ii],i∈[n′]. The
simulator outputs:

– A URS whose (i, j)-th block is equal to one of the following:
• ρi,j if (i, j) ∈ Lunopenable.

• ρb
i
j

i,j if i ∈ Lgood and j ∈ Ii.
• ρ0i,j otherwise.

– A proof that consists of the following:
• πi for i ∈ Lgood

• πop
i,j = Open(PP, ρ

bij
i,j) for i ∈ Lgood, j ∈ Ii (note Open(PP, ρ

bij
i,j) is provided as non-uniform advice to

the simulator)
• The list Lgood.

Indistinguishability of real and simulated views follows immediately from a standard hybrid argument
and Lemma 4.6.

6 Getting rid of non-uniform advice

In this section, we prove the following theorem:

Theorem 6.1. Assume hard-to-invert exists. For sufficiently large κ, and for all polynomials ψ(·), there
exists an oNIZK proof system in the URS model with uniform verifiers and prover complexity 2κ for the
language HamPathψ(κ), which is Hamiltonian path for input instances of length ψ(κ).

6.1 AM protocol for Smooth Min-Entropy

We first present an AM protocol for proving that the 1/p̃-smooth min-entropy of a distribution f(Uκ), where
f is efficiently evaluatable, is at least k.

– The Prover provides a (ϵ̃, t̃) histogram h for f(Uκ), as well as statistics 1/p̃ ≤ 3κ/p, k. The parties run
the public coin, 2-message AM protocol VerifyHist to verify that the provided histogram has Wasserstein
distance at most 20

t̃
from the true histogram h∗. If VerifyHist rejects, the Verifier rejects.
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– The Verifier checks that
∑
i≤k/ϵ̃ h[i] ≤ 1/p̃ and that

∑
k/ϵ̃≤i≤(k+2)/ϵ̃ h[i] ≥ 1/p. If both checks pass, the

verifier accepts. Otherwise it rejects.

The following can be verified by inspection of the VerifyHist protocol.

Claim 6.2. The prover complexity of the above protocol is at most poly(t̃, κ)·Tp,1, where Tp,1 is the maximum

time (over all y ∈ 2κ
′
) it takes to output the set f−1(y).

Claim 6.3. We have the following completeness and soundness for the above protocol:

– Completeness: If the Prover is honest and f(Uκ) is 3κ/p-far from a distribution with min-entropy k
and has at least 1/p weight on elements with pre-image sizes between 2κ

2k+2 ,
2κ

2k
, then the Verifier accepts

with probability 1− 2−κ.
– Soundness: For any cheating prover, if the Verifier does not reject, then with probability 1−2−κ, f(Uκ)

is at most 1/p + 1/∆-far from a distribution with min-entropy k − ϵ̃ · ∆ and has at least 1/p − 1/∆
weight on elements with pre-image sizes between 2κ

2k+2+ϵ̃·∆ ,
2κ

2k−ϵ̃·∆ . Setting ∆ > 2p and ϵ̃ sufficiently large
(but still 1/poly), we obtain that with all but negligible probability f(Uκ) is at most 4κ/p-far from a
distribution with min-entropy k − 1 and has at least 1/(2p) weight on elements with pre-image sizes
between 2κ

2k+3 ,
2κ

2k−1 .

The above claim follows immediately from Claim 2.16.

6.2 AM protocol for learning µ, µ′

Now that the values of m1,m2 have been determined, we will have a preamble phase to estimate µ, µ′ which
proceeds as follows: Let κ̃ be the number of random bits needed to specify hashes H,h.

– LetR be the set of (x,H, h) ∈ {0, 1}κ+2κ̃ such that h(x) = 0m2 . Note that this set is efficiently samplable.
– The Prover provides a (ϵ̃, t̃) histogram h for the distribution f̃(UR), where f̃(x,H, h) = (H ◦ f(x), H, h),

and where t̃ = κ+2κ̃
ϵ̃ . The parties run the public coin, 2-message AM protocol VerifyHist to verify that

the provided histogram has Wasserstein distance at most 20
t̃

from the true histogram h∗. If VerifyHist
rejects, the Verifier rejects.

– The Verifier does the following:

• For j ∈ (P + 1), let k(j) = ⌊− log(j)+κ+2κ̃−m2

ϵ̃ ⌋. The Verifier checks that h[i] = 0 for all i ∈ [k(P +
1)] \ {k(j)}j∈(P+1). If not, the Verifier rejects.

• Computes µ′ =
∑
i≥(− log(P )+κ+2κ̃−m2)/ϵ̃

h[i] · 2i·ϵ̃

2m1+2κ̃ and µ =
∑
i>(− log(P )+κ+2κ̃−m2)/ϵ̃

h[i] · 2κ

2m1+m2
.

The Verifier outputs µ′ = (1− µ′), µ.

The following can be verified by inspection of the VerifyHist protocol.

Claim 6.4. The prover complexity of the above protocol is at most poly(t̃, κ)·Tp,2, where Tp,2 is the maximum

time (over all (y′, H, h) ∈ 2m1+2κ̃) it takes to output the set f̃−1((y′, H, h)) ∩ S.

Claim 6.5. Let (mu′)∗ := Pr(y′,H,h)∼Um1+2κ̃
[|f̃−1(y′, H, h) ∩ S| > P ] and let µ∗ :=

E(y′,H,h)∼Um1+2κ̃||f̃−1(y′,H,h)∩S|≤P [|f̃−1(y′, H, h) ∩ S|]. We have the following completeness and soundness

for the above protocol:

– Completeness: If the Prover is honest, then the Verifier outputs reject with probability at most 2−κ−2κ̃.
If the Verifier does not reject then:
• µ′ outputted by the Verifier is within 2±ϵ̃ · (µ′)∗ ⊆ [(µ′)∗− 1

t′ , (µ
′)∗ + 1

t′ ], by our choice of sufficiently
small ϵ̃.

• µ outputted by the Verifier is within 2±2ϵ̃ ·µ∗ ⊆ [µ∗− 1
t , µ

∗+ 1
t ], by our choice of sufficiently small ϵ̃.

– Soundness: For any cheating prover, if the Verifier does not reject then with probability 1− 2−κ−2κ̃:

• µ′ outputted by the Verifier is within (µ′)∗ ± 20·P ·2κ+2κ̃−m2

∆·2m1+2κ̃ + 1
2t′ ⊆ [(µ′)∗ − 1

t′ , µ̂
′ + (µ′)∗], by our

choice of sufficiently small (1/poly) ϵ̃ and sufficiently large ∆.
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• µ outputted by the Verifier is within µ∗± 20
∆ + 1

2t ⊆ [µ̂− 1
t , µ̂+

1
t ], by our choice of sufficiently small

(1/poly) ϵ̃ and sufficiently large ∆.

Proof of Claim 6.5. We first bound |(µ′)∗ − µ′|. Assume h, h∗ have Wasserstein distance at most 20
t̃
. Recall

that for j ∈ (P + 1), k(j) = ⌊− log(j)+κ+2κ̃−m2

ϵ̃ ⌋. Recall further that if the Verifier does not reject then

h[i] = 0 for all i ∈ [k(P + 1)] \ {k(j)}j∈(P+1). Thus, µ
′ =

∑
j∈(P ) h[k(j)] ·

2k(j)·ϵ̃

2m1+2κ̃ Additionally, h∗[i] = 0 for

all i ∈ [k(P + 1)] \ {k(j)}j∈(P+1). Let µ̃
′ =

∑
j∈(P ) h

∗[k(j)] · 2k(j)·ϵ̃

2m1+2κ̃ .

We claim that for j ∈ (P ) |h∗[k(j)]−h[k(j)]| ≤ 20
∆ . This follows from the fact that for j ∈ (P ) h∗[k(j)] =∑

i∈[(k(j+1)+k(j))/2,(k(j)+k(j−1))/2] h
∗[i], h[k(j)] =

∑
i∈[(k(j+1)+k(j))/2,(k(j)+k(j−1))/2] h[i] and from Claim 2.16,

with ϵ̃ set sufficiently small so that ∆ ≤ minj(k(j)− k(j + 1))/2 ≥ 1
2P (ln(2))ϵ̃ .

We have via Cauchy-Schwartz that

|µ̃′ − µ′| =

∣∣∣∣∣∣
P∑
j=0

(h∗[k(j)]− h[k(j)]) · 2i(j)·ϵ̃

2m1+2κ̃

∣∣∣∣∣∣
≤

√√√√ P∑
j=0

(h∗[k(j)]− h[k(j)])2 ·

√√√√ P∑
j=0

(
2k(j)·ϵ̃

2m1+2κ̃

)2

≤ 20 · P · 2κ+2κ̃−m2

∆ · 2m1+2κ̃
.

Finally, µ̃′ deviates from the correct expectation (µ′)∗ by at most a multiplicative factor of 2±ϵ̃. We set
ϵ̃ sufficiently small such that µ̃′ · 2±ϵ̃ ⊆ µ̃′ ± 1

2t′ .

Thus, |(µ′)∗ − µ′| = |(µ′)∗ − µ′| ≤ 20·P ·2κ+2κ̃−m2

∆·2m1+2κ̃ + 1
2t′ .

We next bound |µ∗ − µ|. Similarly to above, we have that µ =
∑
i≥k(P ) h[i]. Let µ̃ =

∑
i≥k(P ) h

∗[k(j)].

We claim that for j ∈ (P ) |µ̃−µ]| ≤ 20
∆ . This follows from the fact that µ̃ =

∑
i≥k(P )−(k(P )−k(P+1))/2] h

∗[i],

µ =
∑
i≥k(P )−(k(P )−k(P+1))/2] h[i] and from Claim 2.16, with ϵ̃ set sufficiently small so that ∆ ≤ (k(P ) −

k(P + 1))/2 ≥ 1
2P (ln(2))ϵ̃ .

Finally, µ̃ deviates from the correct expectation µ∗ by at most a multiplicative factor of 2±ϵ̃. We set ϵ̃
sufficiently small such that µ̃ · 2±ϵ̃ ⊆ µ̃± 1

2t .
Thus, |µ∗ − µ| ≤ 20

∆ + 1
2t .

6.3 Using the AM protocols to obtain a uniform verifier oNIZK in the URS model

We apply Theorem 2.13 to the protocols given in Sections 6.1 and 6.2 to reduce the constant round, public-
coin protocols down to 2 message, public-coin protocols. Note that this also accounts for the fact that the
Prover sees the Verifier’s first message before committing to a histogram h. This transformation increases
the Prover’s complexity by at most a poly(κ) factor. Thus, we obtain 2-message AM protocols for obtaining
the statistics k, µ′, µ with a polynomial-time Verifier and poly(κ) · 2κ-time Prover.

Given these protocols, we now use the same construction as the one presented in Section 5, except we
add a preamble phase in which the two AM protocols from above are executed. Specifically, we pre-pend two
uniformly random strings ρ′1, ρ

′
2 to the URS and these two strings will be used as the verifier’s first message

in each of the two AM protocols, respectively. The Prover will use the remainder of the uniform random
string (URS) to complete the proof as before.
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