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Abstract

A compression problem is defined with respect to an efficient encoding function f ; given a
string x, our task is to find the shortest y such that f(y) = x. The obvious brute-force algorithm
for solving this compression task on n-bit strings runs in time O(2ℓ · t(n)), where ℓ is the length
of the shortest description y and t(n) is the time complexity of f when it prints n-bit output.

We prove that every compression problem has a Boolean circuit family which finds short de-
scriptions more efficiently than brute force. In particular, our circuits have size 24ℓ/5 ·poly(t(n)),
which is significantly more efficient for all ℓ ≫ log(t(n)). Our construction builds on Fiat-Naor’s
data structure for function inversion [SICOMP 1999]: we show how to carefully modify their
data structure so that it can be nontrivially implemented using Boolean circuits, and we show
how to utilize hashing so that the circuit size is only exponential in the description length.

As a consequence, the Minimum Circuit Size Problem for generic fan-in two circuits of size
s(n) on truth tables of size 2n can be solved by circuits of size 2

4
5 ·w+o(w) · poly(2n), where

w = s(n) log2(s(n) + n). This improves over the brute-force approach of trying all possible
size-s(n) circuits for all s(n) ≥ n. Similarly, the task of computing a short description of a

string x when its Kt-complexity is at most ℓ, has circuits of size 2
4
5 ℓ · poly(t). We also give

nontrivial circuits for computing Kt complexity on average, and for solving NP relations with
“compressible” instance-witness pairs.
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1 Introduction

Are there NP problems that require brute-force search in order to be solved? This basic question is
one of the prime motivations behind P versus NP. It is a longstanding open question to determine if
(for example) there are any non-trivial algorithms for the CircuitSAT problem which run in 2n/nω(1)

time where n is the number of inputs. Such an algorithm, besides being interesting in its own right,
would also settle important open questions in complexity theory: for example, it would imply that
NEXP does not have polynomial-size circuits [Wil13]. As of now, there has been no progress on
beating brute force for CircuitSAT on circuits of size greater than 5n (but for small enough circuits,
some algorithms are known, e.g. [CK16; GKST16]).

In this paper, we show how to generically improve over brute force using non-uniformity. In
recent years, NP problems based on compression have been extensively studied, and are at the
core of a new topic in TCS called “meta-complexity.” Let us formally define what we mean by a
compression problem.

Definition 1.1 (Compression Problem). Let Eval : {0, 1}⋆ → {0, 1}⋆ be a polynomial-time com-
putable. The Eval compression problem is:

• Input: a string x ∈ {0, 1}n and a size parameter s

• Output: return a string y with |y| ≤ s such that Eval(y) = x,
or output ⊥ if no such y exists.

Two prominent examples of compression problems are the Minimum Circuit Size Problem
(MCSP) and time-bounded Kolmogorov complexity (MINKT). For MCSP, Eval takes the descrip-
tion of a circuit and outputs its truth table, where the length of the description directly correlates
with the number of gates in the circuit. For MINKT, we are given a string x, a time bound t, and an
integer k, and we wish to know if there is a program of length at most k that outputs x in at most
t steps. For any fixed time function t, the Eval function takes a program p as input and runs p for
t steps, and we wish to minimize the length of the program. These two compression problems have
many interesting connections to complexity theory [RR97], circuit complexity [OS18; CHOPRS22],
average-case complexity [Hir18; Hir21], cryptography [LP20; LP21; IL90; RS21; IRS22], and learn-
ing theory [CIKK16; HN21].

1.1 Our Results

The main result of this paper is the construction of a (non-uniform) circuit family which can solve
all generic compression problems significantly faster than the obvious brute-force enumeration of
all possible programs up to a given length.

Theorem 1.2. Let Eval denote a compression problem. There is a circuit family {Cn,s} such
that for all n, s ∈ N, Cn,s solves the compression problem for Eval on all strings of length n with

descriptions of length at most s, and the size of Cn,s is 2
4
5
·s ·poly(n, s). Furthermore, Cn,s(x) prints

a description of length at most s for the input x of length n, whenever such a description exists.

Theorem 1.2 has interesting consequences for meta-complexity problems.
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Smaller Circuits for MCSP. The first major consequence of Theorem 1.2 is a Boolean circuit
family for MCSP that decisively beats exhaustive search. It has been conjectured since the 1950s
that any algorithm solving MCSP must exhaustively search over all possible circuits (see Trakht-
enbrot [Tra84] for a fascinating history of these “perebor” conjectures). Our results refute this
conjecture when we are allowed non-uniform circuits as our algorithmic model.

In more detail, we consider circuits of fan-in two over any desired basis. Let Search-MCSP[s(n)]
be the search problem:

Given a truth table T of length 2n, determine if the function f : {0, 1}n → {0, 1}
represented by T has a circuit of at most s(n) gates, and if so, produce an encoding of
such a circuit.

The obvious algorithm for this search problem requires time 2O(s(n) log2 s(n)) · 2n · poly(s(n)):
enumerate over all 2O(s(n) log2 s(n)) circuits C of size s(n) with n inputs, and evaluate C on all 2n

possible inputs in 2n · poly(s(n)) time. The MCSP problem and its search version are believed to
be NP-hard, but their complexities remain (infamously) open (cf. [Hir22; Ila23] for some recent
developments).

Using tight and efficient circuit encodings, we obtain an improvement over the trivial enumer-
ation algorithm for all circuit sizes s(n) ≥ n.

Theorem 1.3. For all size functions s(n), Search-MCSP[s(n)] on truth tables of size 2n can be

solved by circuits of size 2
4
5
·w+o(w) · poly(2n), where w = s(n) log2(s(n) + n).

Thus for example, there is a Boolean circuit C of size only 2
4
5
n2 log(n)+o(n2 log(n)) ·poly(2n) which,

given any truth table of length 2n as input, C outputs the description of a circuit with n2 gates for
the truth table, whenever such a circuit exists.

Smaller Circuits for MINKT. Theorem 1.2 is very general, and applies in a wide range of
compression settings. As another example, we can apply Theorem 1.2 to show that for every fixed
time function t(n), there are nontrivial circuits computing the Kt(n)-complexity of n-bit strings.

Theorem 1.4. For every time function t : N → N with t(n) ≥ n, and parameters e, n ∈ N, there
is a circuit family that given any n-bit input x, outputs a program y of length at most e such that y
prints the string x in at most t(n) steps if such a y exists. The circuit family has size 2

4
5
e ·poly(t(n)).

This answers an open question of Ren and Santhanam [RS21], who, based on connections
between Kt and one-way functions, suggested that there may be a non-trivial circuit for solving Kt.

Smaller Circuits for Compressible Instances of NP Relations. Our main result can also
be applied to construct non-trivial circuits for compressible instances of NP relations. Formally, let
R ⊆ {0, 1}⋆ × {0, 1}⋆ be any polynomial-time computable relation. We wish to solve the following
task, where n, p ∈ N are parameters.

Compressible-R: Given a string x of length n, if there is a program of size p which
prints the pair (x, y) in poly(n) time such that (x, y) ∈ R, find a y′ such that (x, y′) ∈ R.

The obvious brute-force algorithm for Compressible-R runs in 2p · poly(n) time, by enumerating
over all programs of length p, running each program in poly(n) time, and testing their output in
poly(n) time.

Theorem 1.5. Compressible-R can be solved by circuits of size 2
4
5
·p · poly(n).
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Smaller Circuits for MKtP on Average. Levin’s Kt-complexity of a string x is defined as the
minimum, over all t ∈ N and a program d, of |d|+log t such that d prints x in time t. The Minimum
Kt Complexity Problem (MKtP) asks to compute Kt(x) on input x. By exhaustive search, MKtP
can be solved in time 2npoly(n). We show that there exists a non-trivial circuit that computes Kt(x)
on most instances drawn from any efficiently computable distribution. A distribution {Dn}n∈N is
said to be t(n)-time-computable [Lev86; BT06] if there exists a t(n)-time algorithm that, on input
n ∈ N and x ∈ {0, 1}n, computes the cumulative function of Dn on x. (That is, given a string
x, we can compute the probability that a random string from Dn is at most x, under the natural
ordering on n-bit strings, in t(n) time.)

Theorem 1.6. For all functions s(n) and t(n) ≥ n, there exists a family of circuits {Cn}n∈N of size

2
4
5
s(n) · poly(t(n)) such that for any t(n)-time-computable distribution D = {Dn}n∈N over {0, 1}n,

for all large n ∈ N, with probability at least 1 − 1
t(n) over a random input x drawn from Dn, on

input x, the circuit Cn outputs a program y and t ∈ N such that y prints the string x in t steps and
|y|+ log t ≤ s(n) if Kt(x) ≤ s(n).

1.2 Intuition

The starting point of our approach comes from cryptography, namely the problem of inverting a
function f : {0, 1}n → {0, 1}n using a minimal number of black-box calls to f . In particular, given
a y ∈ {0, 1}n, we wish to find an x such that f(x) = y. Following the pioneering work of [Hel80]
on data structures for inverting random functions, Fiat and Naor [FN99] presented data structures
with a rigorous time-space tradeoff. In particular, for f : {0, 1}n → {0, 1}n construed as an oracle,
Fiat and Naor show that one can construct a data structure with S bits of memory that can be
queried for function inversion in time T , where T · S3 = 23n · poly(n). Setting T = S = 23n/4, for
every fixed f we obtain a data structure storing 23n/4 · poly(n) bits such that, given any y in the
range of f , the data structure will output a pre-image of y in about 23n/4 steps.

Given the power and generality of function inversion, one might wonder if it can be used to
build a non-trivial “data structure” for solving an NP-complete problem like CircuitSAT faster than
2n time. A natural first attempt is to set f to take a circuit C and a string w as input, outputting
C if C(w) = 1 and ⊥ otherwise. Given a worst-case inverter for f , one could attempt to solve
CircuitSAT by attempting to invert f on C.

One major difficulty in carrying out such an approach is that the input length to the function
f is too large. If the circuit C has n inputs, the witness w and C both need at least n bits to
describe. (Note that, if the circuits or the witnesses could be described in say 0.9n bits, then we
could already trivially improve over 2n time by simply storing a 20.9n-size lookup table over the
circuits, or the witnesses.) Thus, f takes at least 2n input bits, and so the inversion circuit obtained
from Fiat-Naor has size at least 26n/4 ≫ 2n, which is worse than brute force.

In contrast, the witness in a compression problem already encodes the input, so the previous
paragraph is not an issue. Indeed, if we simply apply Fiat-Naor’s function inversion to the Eval
function of a compression problem, we immediately obtain a data structure that takes 23n/4 space
and can compress n-bit queries in 23n/4 time for an arbitrary compression problem.

However, there remain two issues in the generality of this simple approach, which we overcome.

1. The first is a technical algorithmic issue. The data structure of Fiat-Naor requires random
access to its storage, and the most obvious way of converting such a data structure to a circuit
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would blow up the size by an intolerable amount (cf. footnote 2 of [DTT10]). This issue is
what prevented Ren and Santhanam [RS21] from giving non-trivial circuits for MINKT via
their equivalence between one-way functions (with exponential security) and the hardness
of MINKT. (Note: this tight connection is not known for other compression problems, like
MCSP.) We show how to implement Fiat-Naor with standard Boolean circuits, at the cost of a
slightly larger circuit (the exponent in the circuit size becomes 4/5, rather than the exponent
of 3/4). This requires us to be very careful about certain parts of the inversion procedure;
we have to worry over details that Fiat and Naor did not worry about. As a result, we have
to adapt both the inversion procedure and the analysis of it, in order to achieve our circuit
size bound. Roughly speaking, by performing the necessary table lookups in large enough
query batches, and adjusting the sizes of lookup tables in the analysis, it is possible to design
nontrivial circuits that simulate the data structure by performing variations on sorting.

2. The second problem is more fundamental. Fiat-Naor only provides a 23n/4 time data structure
and algorithm for inversion, where n is the length of the input we wish to invert. Such a bound
is useless when our desired description length ℓ is less than 3n/4, in which case the 2ℓ cost
of brute-force enumeration is faster than Fiat-Naor! (For example, in the case of MCSP, we
would obtain a 20.75·2

n
-time data structure for solving MCSP on truth tables of length 2n.)

That is, naively applying Fiat-Naor only yields an improvement over exhaustive search in the
case where the complexity of the string is already very close to the maximum possible.

In order to beat the 2ℓ exhaustive search over descriptions of length ℓ, for every ℓ, we have
to take a different approach. Rather than inverting a function that maps n bits into n bits,
we need to invert an Eval function which maps e bits (the compressed length) into n bits
(the decompressed length). Furthermore, we want the cost of inverting our function to be
exponential only in e, and polynomial in n (and the circuit size of Eval).

We achieve this by (pairwise independent) hashing: we consider a new function which applies
Eval to an encoding of length e + O(1), and hashes its n-bit result to a string of length
e+O(1). Starting from this idea, we show that the problem of inverting a function f from e
bits to n bits can be generically reduced to the problem of inverting a function f ′ from e+ 1
bits to e+ 1 bits; then, we can apply our circuits for function inversion to the function f ′.

Our hashing reduction was inspired by the literature on hardness magnification [OS18; OPS19;
MMW19; CHMY21; CJW19; Hir20; CHOPRS22], a phenomenon in which a (seemingly) weak
circuit lower bound for a specific problem is shown to imply a breakthrough result in complexity
theory, such as P ̸= NP. For example, McKay, Murray, and Williams [MMW19] showed that if there
is any c ≥ 1 such that Search-MCSP[nc] does not have Õ(N)-size circuits for N = 2n, then NP ̸⊆
P/poly. Such a result is proved by the contrapositive: Assuming NP ⊆ P/poly, one builds a Õ(N)-
size circuit for Search-MCSP[nc], using the property that Search-MCSP[nc] is reducible to instances
of a PH problem of size Õ(nc) ≪ N . The primary difference between hardness magnification and
our results is that we use the unconditional construction of the non-uniform algorithm for function
inversion, instead of hypothetical upper bounds, such as NP ⊆ P/poly.

The theory of function inversion has recently seen a renewed interest; works on function inver-
sion in theoretical cryptography improve the known time-space tradeoffs in different computational
models and settings [DTT10; BL13; CHM20; DKKS21; GGPS23], and find other interesting con-
sequences of function inversion [CK19; GGHPV20]. In particular, [GGHPV20] show how to use
function inversion to refute a data structure conjecture on 3SUM in fine-grained complexity.
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2 Preliminaries

For a function f : {0, 1}n → {0, 1}n and a non-negative integer p, we let fp denote the composition
of f with itself p times. Our convention is that f0 is the identity function.

For our circuits solving Search-MCSP, we will utilize the fact that there are very efficient en-
codings of fan-in two circuits over any basis.

Lemma 2.1 (Efficient Encoding of Circuits [FM05]). There is a polynomial time algorithm Enc
such that the following holds. For every circuit C of size s on n-inputs, there is a string x of length
(1 + o(1))s log2(s + n) such that Enc(x) outputs a description of a circuit of size s computing the
same function as C.1

One of the primary bottlenecks in implementing Fiat-Naor’s function inversion in the Boolean
circuit model is that, in order to beat exhaustive search, their procedure apparently requires unit-
time random access to a lookup table (see footnote 2 of [DTT10] for a discussion on this point).
By adjusting various parameters in their data structure, we can simulate their lookup tables in an
efficient way by only querying tables on batches of queries. The formal theorem we need is the
following.

Theorem 2.2 (Batch Queries to a Lookup Table). Let m,n ≥ 1. There is a circuit C with 2mn
inputs and m outputs of size O(m · n · log2(mn)), such that given a list of m strings X1, . . . , Xm ∈
{0, 1}n, and a list of m queries X ′1, . . . , X

′
m ∈ {0, 1}n, C returns bits b1, . . . , bm where bi = 1 if and

only if X ′i ∈ {X1, . . . , Xm}.

Proof. Our circuit generalizes a result of W. J. Paul ([Pau76], Lemma 2) on efficiently evaluating
hard Boolean functions on multiple inputs. First we describe a multitape Turing machine for com-
puting the task which runs in O(m ·n · logm) time. Then, it follows from Pippenger-Fischer [PF79]
that there is a circuit family of size at most O(m · n · log2(mn)) for the task.

Suppose for simplicity that our Turing machine M is given the n-bit strings X1, . . . , Xm on one
tape, and the queries X ′1, . . . , X

′
m on another tape. (This can be achieved with a linear overhead.)

Our machineM removes any duplicates from the listX1, . . . , Xm, by sorting the list, sweeping across
the sorted order, and comparing adjacent strings, copying the distinct strings over to another tape.
This takes O(mn logm) time: O(m logm) comparisons where each comparison costs O(n) time.

Our machine M then maps each distinct Xi to the string Xi ◦ 0: Xi concatenated with a zero.
Similarly, each X ′i is mapped to X ′i ◦ 1 ◦ i. Next, M sorts the list of 2m items

{Xi ◦ 0, X ′i ◦ 1 ◦ i | i ∈ [m]}.

This takes O(mn logm) time, as in the previous paragraph.
Next, M sweeps across the sorted order of 2m elements, from left to right, processing the strings.

In particular, the sorted order consists of contiguous blocks of two possible kinds:

(1) X ◦ 0, X ◦ 1 ◦ i1, . . . , X ◦ 1 ◦ iℓ, for some ℓ ∈ {0, 1, . . . , n}, where each X is unique (as we have
removed duplicates).

(2) X ◦ 1 ◦ i1, . . . , X ◦ 1 ◦ iℓ, for some ℓ ∈ {1, . . . , n} (with no prefix of the form X ◦ 0).
1Although we do not need this property for our purposes, such an encoding x can be computed from any given C

in polynomial-time.
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We can ignore blocks of the form (2); since there is no X ◦0 prefix to the block, there is no matching
string in X1, . . . , Xm. For all blocks of the form (1), we write the O(logm)-bit indices i1, . . . , iℓ
on a separate tape: note that all ij are indices in the m-bit output vector that must be 1. This
step takes at most O(mn logm) time in total: for each block of ℓ items in the sorted order, it takes
O(ℓ · n) time to form the block by comparing strings (find where the block ends), and it takes
O(ℓn + ℓ logm) time to sweep through the block and write down the corresponding O(logm)-bit
index for each item in the block. (The sum of all block lengths is at most 2m.)

Finally, the machine M processes the list of O(logm)-bit indices to get the m-bit output. In
particular, M sorts the O(m)-length list, removing duplicates. On a separate tape, M sweeps along
m cells to print 0 or 1 for each bit i of the output, based on whether i is in the sorted list of indices.
This final step takes O(m logm) time.

We will also need a slight generalization of batch lookup, in which secondary information in the
list can also be returned:

Theorem 2.3 (Batch Queries to Lookup Tables With Side Information). Let m,n,K ≥ 1. There
is a circuit C with O(mn) inputs and m outputs of size O(m ·n · log2(mn)+K ·n), such that given a
list of m pairs (X1, Y1) . . . , (Xm, Ym) ∈ {0, 1}n×{0, 1}n, a list of m queries (p1, X

′
1), . . . , (pm, X ′m) ∈

[2n]×{0, 1}n, and an integer upper bound K ∈ [2n], C returns a set of t ≤ K triples {(pj , X ′pj , Ypj )}
such that X ′pj ∈ {X1, . . . , Xm} for all j and pj is minimal, whenever such t triples exist.

Proof (Sketch). We modify the Turing machine in the previous proof to sort the pairs (X1, Y1) . . . ,
(Xm, Ym) according to the keys X1, . . . , Xm, and to sort the list (p1, X

′
1), . . . , (pm, X ′m) according

to the primary keys X ′1, . . . , X
′
m and secondary keys p1, . . . , pm. (First we sort according to the

X ′i’s, then we break ties by sorting according to the pj ’s.) We merge the two sorted lists, as in the
previous proof. When M sweeps across the merged sorted order, if a query pair (pj , X

′
j) matches a

list pair (X ′j , Yj), then M prints the entire triple (pj , X
′
j , Yj) to an extra tape, ignoring later triples

of the form (p′, X ′j , Yj) in the same block (recall that M is required to only print triples such that
pj is minimal). The machine M halts whenever K triples have been output, or the entire sorted
list has been processed, whichever comes first.

Some of the functions in Fiat-Naor’s function inversion (namely, the k-wise independent hash
functions) can be described by univariate polynomials. Fiat-Naor speeds up their evaluation in
an amortized sense, by appealing to FFT. We will use the fact that FFT can also be efficiently
simulated in the arithmetic circuit model:

Theorem 2.4 (Multipoint Evaluation of Polynomials, [Fid72], see also [GG13]). Let F be a field
of characteristic two, and let P ∈ F[x] have degree d. There is an F2-arithmetic circuit CP with d
inputs and d outputs of size d · poly(log d) that, given x1, . . . , xd ∈ F, outputs P (x1), . . . , P (xd).

3 More Efficient Circuits for Compression Problems

We now turn to our constructions of smaller circuits for compression problems. To start, we show
how circuits of size about cn for inverting functions from {0, 1}n to {0, 1}n can be used to obtain
circuits of size about ce · poly(n) for inverting functions from {0, 1}e to {0, 1}n, where e ≪ n. (The
latter case is the more relevant setting for compression problems, where e is the length of a short
description and n is the length of the input.)
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3.1 Obtaining Fixed-Parameter Tractable Circuits for General Compression

Suppose we are given a circuit for a function Eval : {0, 1}e → {0, 1}n where n ≫ e, so that Eval
can be viewed as a “decompression” procedure mapping e-bit strings into longer n-bit strings.
Given x of length n, the obvious brute-force strategy for finding a description y of length e such
that Eval(y) = x requires about 2e · s time, where s is the evaluation time for Eval. Our goal in
Theorem 1.2 is to construct 24e/5 · poly(s)-size circuits, strictly improving on the obvious bound in
the exponent.

First, we observe that one cannot directly achieve such a bound by using circuits for Fiat-Naor
function inversion. Fiat-Naor is designed to invert functions from (say) {0, 1}n to {0, 1}n, where
the domain and co-domain must be the same size, and the circuit size bound we can hope to achieve
will have the form 2δn · poly(n) for some δ ∈ (0, 1). When e ≪ n (the interesting case of Eval!),
this size bound is already much worse than the obvious brute-force cost of 2e. We need to choose
a different function to invert, one that maps e + O(1) bits to e + O(1) bits, in order to achieve a
size bound of the form 2δe · poly(n) for some δ ∈ (0, 1).

Given the function Eval mapping e bits to n bits, we will use pairwise-independent hashing to
show how to reduce the inversion problem for Eval to the inversion problem for a related function
f : {0, 1}e+1 → {0, 1}e+1, so that given circuits of size S(n) for function inversion, we can produce
circuits of size S(e+ 1) · poly(s) for inverting Eval.

Theorem 3.1. Let s(n) ≥ n. Suppose that for functions g : {0, 1}n → {0, 1}n with size-s circuits,
there are circuits for inverting g which have size S(n) · poly(s). Then for every e ≤ n, there are
circuits for inverting any function Eval : {0, 1}e → {0, 1}n of size S(e+1) · poly(s), where s(n) ≥ n
is the circuit size of Eval.

Proof. Let H = {hi : {0, 1}n → {0, 1}e+1} be a family of pairwise-independent hash functions. In
the following, we will just require the standard fact that there are hash families H such that every
hi ∈ H has a poly(n)-size circuit (see for example [AB09], p.152–153).

Claim 3.2. Suppose x ∈ {0, 1}n has description length e under Eval. Drawing a uniform random
h ∈ H, the probability that x is the unique string with description length e in the preimage h−1(h(x))
is at least 1/2.

Proof. Let S be the set of all n-bit strings x such that Eval(y) = x for some y which is e bits
long. Fix a string x ∈ S, and note that |S| ≤ 2e. We want to lower bound the probability that a
randomly chosen h ∼ H “isolates” x from all other strings in S. The analysis is similar to proofs
of the Valiant-Vazirani Lemma [VV86; AB09], but with a different union bound: instead of fixing
a target hash value (e.g., 0e+1) and union-bounding over all possible x ∈ S, we fix the x ∈ S and
union-bound over possible a ∈ {0, 1}e+1.

Fix a particular a ∈ {0, 1}e+1. We have:

Pr
h∼H

[h(x) = a ∧ (∀y ∈ S − {x})h(y) ̸= a] =
1

2e+1
· Pr[(∀y ∈ S − {x})h(y) ̸= a | h(x) = a]

=
1

2e+1
· (1− Pr[(∃y ∈ S − {x})h(y) = a | h(x) = a])

≥ 1

2e+1
·
(
1− 2e − 1

2e+1

)
>

1

2e+2
.
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Now, for each choice of a ∈ {0, 1}e+1, the 2e+1 events

[h(x) = a ∧ (∀y ∈ S − {x})h(y) ̸= a]

are all disjoint. Therefore the probability there is some string a ∈ {0, 1}e+1 such that h(x) = a and
all other strings in S − {x} do not hash to a is at least 1/2.

Using the claim, we can search for strings of description length e using function inversion. Let
Eval′ : {0, 1}e+1 → {0, 1}n be the procedure that ignores its last bit and evaluates Eval : {0, 1}e →
{0, 1}n on the remainder.

Compression From Function Inversion

Draw a random h ∈ H.
Define the function f : {0, 1}e+1 → {0, 1}e+1 by f(z) := h(Eval′(z)).
Given an input x to compress:

Try to invert f on the (e+ 1)-bit string h(x).
If inversion finds z = yb ∈ {0, 1}e+1 with |y| = e, |b| = 1 such that Eval(y) = x, return y.
Return Fail.

Clearly, if x does not have a description of length e, then the above procedure always fails.
Suppose x has a description of length e. For any z = yb such that f(z) = h(x), we have

h(x) = f(z) = h(Eval′(z)) = h(Eval(y)).

By the claim, with probability at least 1/2, x is the only string with a description of length e in
the preimage of h−1(h(x)). Therefore with probability at least 1/2, there is a preimage z = yb of
f(x) and y is a length-e description of x.

We now analyze the efficiency of the procedure. Assume that for functions g : {0, 1}n → {0, 1}n
with size-s circuits, there are circuits for inverting g which have size S(n) · poly(s). Then the above
procedure can be implemented with circuits of size S(e + 1) · poly(s), where s ≥ n upper bounds
the circuit size of Eval. (Recall every h ∈ H has a polynomial-size circuit.)

The above describes a distribution of circuits for inverting Eval (based on the choice of the
hash function h). A deterministic circuit can be constructed in a standard way, by simply taking
O(e) ≤ O(n) random circuits from the distribution, and applying the union bound over all O(2e)
strings of description length at most e. This introduces another multiplicative factor of at most
O(n) to the size.

3.2 Warm-Up: Efficient Circuits for Inverting Cyclic Permutations

Next, we turn to constructing more efficient circuits for inverting functions from {0, 1}n to {0, 1}n.
As a warm-up, we start with circuits for inverting cyclic permutations, following the major insight
of Hellman [Hel80]. (Such circuits can be easily generalized to all permutations, using the fact that
every permutation is a union of disjoint cycles.) Let π : {0, 1}n → {0, 1}n be a permutation. For
i ∈ {0, . . . , 2n−1}, let yi = πi(0n). π being cyclic means the list y0, . . . y2n−1 contains no duplicates.

Then the following is a simple procedure for inverting π. Let k be a parameter we set later.
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Inverting Cyclic Permutations

Preprocessing: In a lookup table, store (j, yj) for all multiples j of k.

Procedure: Given y ∈ {0, 1}n to invert,

• For p ∈ {0, . . . , k − 1}:

1. Using the lookup table, check if πp(y) = yj for some j that is a multiple of k

2. If so, output πk−p−1(yj−k)

The correctness of this algorithm follows from the fact that πk−p−1(yj−k) = π−p−1(yj) = π−1(y).
The algorithm uses space about 2n

k and takes time about k (assuming, for simplicity, we can

compute π for free), so setting k = 2n/2 yields an inversion procedure running in time and space
2n/2 on a (non-uniform) random access Turing Machine.

Can we implement this as a circuit? The main difference between the circuit model and the
random access model is that accessing a bit from S-bits of storage in a circuit requires size roughly
S (compared to cost O(logS) in the Turing Machine setting). Thus, the naive bound on the size
of a circuit inverting cyclic permutations is roughly k · 2n

k ≈ 2n which gives no savings.
Luckily, this issue can be fixed by “batching” queries to memory. In particular, using Theo-

rem 2.2, one can answer 2n/2 (non-adaptive) queries to a lookup table of size 2n/2 with a circuit of
size roughly 2n/2.

Now observe the lookup queries in the inversion algorithm for cyclic permutations can be made
non-adaptive: first calculate πp(y) for all p ∈ {0, . . . k − 1} and then query the lookup table on all
of them at once. Using these ideas, one can indeed invert π with a circuit of size about 2n/2.

3.3 Implementing Fiat-Naor with Efficient Circuits

We now consider the general case of arbitrary function inversion for functions with small circuits,
with the goal of proving Theorem 1.2. We begin by recalling the inversion algorithm of Fiat-Naor.
The algorithm is parameterized by the following values.

Parameters.

• ℓ (the number of functions gi we use)

• m (the number of checkpoints, i.e., the cardinality of the lookup table Ti for all i)

• t (the length of our walks)

• |A| (the length of our lookup table of high degree points)

• k (the k-wise independence of our hash functions)

• Notation: (shorthand for values induced by a choice of parameters)

– N ′ = 2n −maxS⊆{0,1}n:|S|=|A| |f−1(S)| (the “effective” domain after choosing A)

– J = (n+ log t) 2
n

N ′ (the number of times we can “resample” from a gi function)
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The algorithm has a randomized preprocessing step, where one builds several lookup tables.
This is the only part of the algorithm that is randomized (in particular, the randomness is used to
select k-wise independent functions).

(Randomized) Preprocessing for Inverting f : {0, 1}n → {0, 1}n

1. Create the lookup table

A = {(x, f(x)) : x is the lexicographically first preimage of f(x) ∈ S}

where S is the set of sizea |A| that maximizesb |f−1(S)|.
We say y is in A if (x, y) ∈ A for some x.

2. Sample ℓ many k-wise independent functions g1, . . . , gℓ : {0, 1}n × [J ] → {0, 1}n.

3. Notation: For each i ∈ [ℓ],

• Let g⋆i (x) =

{
gi(x, j), for the least j ∈ [J ] satisfying f(gi(x, j)) ̸∈ A

⊥, if no such j exists.

• Let hi(x) = g⋆i (f(x)) (define f(⊥) = ⊥ and g⋆i (⊥) = ⊥).

4. For each i ∈ [ℓ] and j ∈ [m], pick xi,j ∈ {0, 1}n uniformly at random. Compute the value
hti(xi,j). If h

t
i(xi,j) ̸= ⊥, then store the value (xi,j , h

t
i(xi,j)) in a table Ti.

aRecall that |A| is an integer parameter we will set, so this definition is not circular.
bIf there is a tie, pick the lexicographically first S.

Finally, we state the inversion algorithm.

Inversion Algorithm for f : {0, 1}n → {0, 1}n

Procedure Invert: Given y ∈ {0, 1}n,

1. If y ∈ A, then output a memorized preimage of y.

2. For all i ∈ [ℓ], set ui = g⋆i (y).

3. For all i ∈ [ℓ] and p ∈ {0, . . . , t− 1}, compute hpi (ui).

4. For all i ∈ [ℓ] and p ∈ {0, . . . , t − 1}, check if hpi (ui) is in Ti (i.e., h
p
i (ui) = hti(xi,j) for

some j). Let F be the set given by

F = {(i, j, p) : p is the least value satisfying hpi (ui) = hti(xi,j)}.

If |F | ≥ 10ℓ, then output fail and stop.

5. For all (i, j, p) ∈ F , if f(ht−p−1i (xi,j)) = y, then output ht−p−1i (xi,j).

We note that there are several differences between the inversion procedure presented here, and
the one presented in Fiat-Naor [FN99]:
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1. Fiat-Naor construct A by sampling |A| uniform random x ∈ {0, 1}n and putting (x, f(x)) in
A. This has the advantage of giving an efficient method for constructing A. We instead pick
the “best possible” A and work with its corresponding N ′, as it simplifies the analysis.

2. Fiat-Naor use a different upper bound on j in the definition of g⋆i . We use the upper bound
J = (n+ log t) 2

n

N ′ to simplify the analysis and the circuit description.

3. Fiat-Naor add all the (i, j, p) for which the check passes to F (not just the triple with the
least p). By only adding p with the “least value” property to F , as well as putting an upper
bound on |F |, we simplify the running time analysis (and circuit description).

We show that the Invert procedure described above can be implemented by a circuit family
that has a decent size bound in terms of the various parameters.

Theorem 3.3 (Circuit Upper Bound for Fiat-Naor). Let k ≤ ℓ ≤ 2n, and suppose f has a circuit
family of size s(n). The procedure Invert on f can be implemented by a (randomized) circuit of
size

t · |A| · poly(n) + t · ℓ · J · poly(s) + ℓ · (t+m) · poly(n).

We prove Theorem 3.3 in Section 3.4.
Fiat-Naor [FN99] show that this procedure succeeds at inverting any given value with constant

probability. Because our procedure is slightly different from the one in Fiat-Naor and for the sake
of completeness, we sketch the proof of this in Section 3.5.

Theorem 3.4 (Fiat-Naor [FN99]). Let f : {0, 1}n → {0, 1}n be a function. Assume

• min{t,m} ≥ 87

• k ≥ 2t(n+ log t) 2
n

N ′

• tℓm ≥ N ′

• |A| ≥ 4t2
n

N m

• m ≤ 2n

Then for every y in the range of f , the probability (over the randomness in the preprocessing step)
that Invert inverts f at y is Ω(1).

Combining Theorem 3.3 and 3.4, we obtain a circuit construction that worst-case inverts f and
beats exhaustive search.

Theorem 3.5. Let f : {0, 1}n → {0, 1}n be a function with a circuit of size s(n) ≥ n. There is a
circuit of size at most 24n/5 · poly(s(n)) that worst-case inverts f .

Proof. (We assume all parameters are integers, and omit floors and ceilings for readability.) Set
the parameter |A| = 4 · 23n/5. This induces a set A and a value N ′ := 2n − |f−1(A)|. We divide
into two cases depending on the size of N ′.

Case 1: N ′ ≤ 24n/5. In this case, there is a circuit of size 24n/5 · poly(n) that implements table
lookup on A in size 23n/5 · poly(n), and directly stores inverses for all of the the remaining domain
of size at most N ′ ≤ 24n/5. In this case, these two table lookups cover all possible inputs to f .
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Case 2: N ′ > 24n/5. Set ℓ := 23n/5, m := 2n/5, t := N ′

24n/5 ≤ 2n/5 (since 24n/5 < N ′ ≤ 2n, t can

be rounded to a positive integer), and k := 8tn · 2n

N ′ . Then

|A| = 4 · 23n/5 ≥ 4
N ′

22n/5
= 4 ·

(
N ′

24n/5

)2

· 2
n

N ′
· 2n/5 = 4t2

2n

N ′
m,

and

t · J =
N ′

24n/5
· (n+ log t)

2n

N ′
≤ 2n2n/5.

Observe that this setting of the parameters satisfies all the constraints in the hypotheses of
Theorem 3.3 and Theorem 3.4 when n is sufficiently large. Applying the bound of Theorem 3.3,
there is a circuit for Invert of size at most

t · |A| · poly(n) + ℓ · tJ · poly(s(n)) + ℓ · (t+m) · poly(n)
≤ 2n/5(4 · 23n/5) · poly(n) + 23n/5 · (2n2n/5) · poly(s(n)) + 23n/5 · (2n/5 + 2n/5) · poly(n)
≤ 24n/5 · poly(s(n))

For any fixed y, this circuit will invert f on y with constant probability (over the randomness in the
preprocessing step). Repeating this construction independently for poly(n) times and combining
the resulting circuits yields a worst-case circuit for inverting f of size at most 24n/5 ·poly(s(n)).

3.4 Circuit Upper Bound: Proving Theorem 3.3

We now prove Theorem 3.3.

Proof of Theorem 3.3. The high-level idea is to carefully amortize the lookup table calls and func-
tion evaluations, so that they can all be done in batches. In this way, we can avoid the requirement
of a random-access model, and can use circuits instead.

Each numbered step of Invert will correspond to some number of layers of our circuit. We will
store the look-up tables A and T1, . . . , Tℓ directly in the circuit, which takes poly(n) · (|A|+ ℓ ·m)
bits. These bits will be propagated to later layers of the circuit as they are needed (skipping layers
when they are not needed). That way, we can always refer to the tables as needed throughout the
computation of Invert.

Let us go through the steps of Invert one by one, and verify that they can be implemented
with circuits of the desired size.

1. Here, we only have to check whether y is in the lookup table A, for some |A| ≤ 2n. Applying
Theorem 2.2, this can be done with a circuit of size O(|A| · log2(|A|)) ≤ |A| · poly(n).

2. Here, we have to evaluate g⋆i on y, for all i ∈ [ℓ]. To implement g⋆i , we will evaluate gi(y, j)
on all relevant j ∈ [J ], and find the smallest j among these such that f(gi(y, j)) is not in A.
Each gi is from a k-wise independent family, which Fiat-Naor implement as a degree-(k − 1)
polynomial (in the variable z, say) over the finite field FN2 where N is a power of two, and
where the zj coefficient of the polynomial is equal to aj ·i+bj . In this way, all gi can be defined
using the same polynomials. In particular, defining P (z) =

∑
j aj · zj and Q(z) =

∑
j bj · zj ,

we have gi(z) = i · P (z) +Q(z).

We have therefore reduced our evaluation problem to the following tasks:
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(2a) Given two degree-(k − 1) polynomials P (z) and Q(z), we evaluate them on (y, j) for all
j ∈ [J ].

(2b) For all i ∈ [ℓ], we evaluate gi(q) = i · P (q) +Q(q) for all the J points q obtained in (a),
and evaluate f on each gi(q).

(2c) Perform a batch lookup in table A on all ℓ · J points f(gi(q)) obtained in (b).

(2d) Determine for each i ∈ [ℓ] the minimum j ∈ J such that f(gi(q)) /∈ A.

Applying Theorem 2.4, step (2a) can be done with arithmetic circuits of size

(k + J) · poly(log(k + J)) ≤ (k + J) · poly(n)

over the field; converting these circuits to Boolean circuits makes the size poly(n) · (k + J) ·
poly(log(k + J)). Step (2b) takes O(ℓ · J) arithmetic operations over the field followed by
O(ℓ · J) evaluations of a size-s circuit for f , translating to a circuit of size ℓ · J · poly(s).
In Step (2c), we have a lookup table of |A| points, and our batch is of size ℓ · J ; applying
Theorem 2.2, the lookups can be done in size

O(n · (|A|+ ℓ · J) · log2(n · (|A|+ ℓ · J))) ≤ (|A|+ ℓ · J) · poly(n).

This produces ℓJ bits indicating which point is in the table or not. Finally, step (2d) just
requires computing the first bit which is 1 among ℓ bit-vectors of length J , which can be done
in size O(ℓJ). At the end of Step 2, the values ui = g⋆i (y) for all i ∈ [ℓ] are stored in the
circuit.

Under our hypothesis that k ≤ ℓ, the total size of Step 2 is at most

ℓ · J · poly(s) + (|A|+ ℓ · J) · poly(n).

3. In Step 3, we have to evaluate the function hi on each ui, for all i ∈ [ℓ]. Then we have
to compose hi(ui) with itself for t times, storing the answer hpi (ui) for all i ∈ [ℓ] and p ∈
{0, . . . , t− 1} for the next step.

Recall that hi(ui) = g⋆i (f(ui)). As in Step 2, we can perform this evaluation in a batch way:
we evaluate z1 = f(u1), . . . , zℓ = f(uℓ) using a ℓ · s(n) size circuit, then evaluate g⋆i on each
ui. This translates to evaluating

gi(u1, j) . . . , gi(uℓ, j)

for all j ∈ [J ] and i ∈ [ℓ]. As in Step 2, this amounts to J calls to multipoint evaluation
of a degree-(k − 1) polynomial g on ℓ points, which can be done in size (k + J) · poly(n),
followed by ℓJ evaluations of f in size ℓJ · poly(s), followed by lookups into the table A in
size (|A| + ℓ · J) · poly(n). Indeed, the same argument shows that for any ℓ points z1, . . . , zℓ
of our choice, we can evaluate hi(zi) for all i ∈ [ℓ] using circuits of size

|A| · poly(n) + ℓ · J · poly(s).

Therefore we can compute the entire set of ℓ · t points P = {hpi (ui) | i ∈ [ℓ], p ∈ {0, . . . , t−1}},
using circuits of size

t · |A| · poly(n) + t · ℓ · J · poly(s).
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4. In Step 4, we first check for all hpi (ui) computed in the previous step whether or not hpi (ui) ∈
Ti. Then we build the table F of triples (i, j, p), rejecting if F gets too large. That is, for
all i ∈ [ℓ], we have to check whether the t strings {hpi (ui) | p ∈ {0, . . . , t− 1}} appear in Ti.
Furthermore, when such strings appear in Ti, we need to return a string xi,j associated with
the string in table Ti, as well as the least value p such that hpi (ui) = hti(xi,j). Abstractly, we
need to solve the following task for ℓ query sets

Qi = {(p, hpi (ui)) | p ∈ {0, . . . , t− 1}},

for all i ∈ [ℓ], paired with ℓ lists

Li =
{
(hti(xi,j), xi,j)

∣∣ (xi,j , hti(xi,j)) ∈ Ti

}
,

and N = n:

Given queriesQi = {(p1, X ′1), . . . , (pt, X ′t)} ⊆ [2N ]×{0, 1}N , a list Li = {(X1, Y1), . . . ,
(Xm, Ym)} ⊆ {0, 1}N × {0, 1}N , and integer K, return up to K triples (pj , X

′
pj , Yj)

such that X ′pj ∈ {X1, . . . , Xm} and pj is minimal, if such triples exist.

In particular, we want to return up to 10ℓ triples over all ℓ batch queries (Qi, Li). This can
be done by applying our circuits for batch queries with side information (Theorem 2.3) for ℓ
times, maintaining a counter of the number of triples returned so far; this counter is passed
from one batch query to the next, and the procedure is stopped early if the counter reaches 10ℓ.
Implementing the batch lookups on all pairs Qi, Li requires size at most ℓ · (t+m) · poly(n).
In the end, our batch-lookup circuit returns O(K · n) bits encoding the relevant strings
xi,j ∈ {0, 1}n along with their value p ∈ {0, . . . , t − 1}. If the batch-lookup circuit returns
10ℓ triples, the entire circuit rejects (as per step 4). Otherwise, the output of the circuit is
treated as a representation of the set F .

5. Finally, in step 5, |F | < 10ℓ, and we have to iterate through each (i, j, p) ∈ F in the lookup
table results, and compute f(ht−p−1i (xi,j)). We already have each of the relevant strings
xi,j available from the output of our circuit in step 4, as well as the corresponding values
p ∈ {0, . . . , t− 1}. In Step 3, we showed that for any ℓ points z1, . . . , zℓ of our choice, we can
evaluate hi(zi) for all i ∈ [ℓ] using a circuit of size

|A| · poly(n) + ℓ · J · poly(s).

Analogously, for any c ≤ 10ℓ points, we can evaluate hi on all of them using a circuit of
asymptotically the same size. We can then compute hpi on the inputs xi,j for all p ∈ {0, . . . , t−
1}, in size

t · |A| · poly(n) + t · ℓ · J · poly(s).

Overall, the circuit size is dominated by Steps 3, 4, and 5; that is, the total size is at most

t · |A| · poly(n) + t · ℓ · J · poly(s) + ℓ · (t+m) · poly(n).
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3.5 Analysis: Proving Theorem 3.4

In this subsection, we review the analysis of Fiat-Naor [FN99]. Fix any function f : {0, 1}n →
{0, 1}n. Fix any y in the range of f .

Recall, we originally defined A as follows: S is a fixed-cardinality set chosen to maximize f−1(S),
and A = {(x, f(x)) : x is the lexicographically first preimage of f(x) ∈ S}. To increase readability,
we abuse notation and instead set A = S for this specific subsection. First, we note that any string
not in A has “few” preimages.

Claim 3.6. If z ̸∈ A, then |f−1(z)| ≤ 2n

|A| .

Proof. By the definition of A, we know |f−1(z′)| ≥ |f−1(z)| for all z′ ∈ A. Thus,

2n ≥ |f−1(A)| ≥ |A| · |f−1(z)|,

so |f−1(z)| ≤ 2n

|A| .

Next, we bound the probability that the outputs of f collide when run on uniformly random x
that are not preimages of A.

Claim 3.7.

Pr
x,x′←{0,1}n\f−1(A)

[f(x) = f(x′)] ≤ 2n

|A|N ′
.

Proof. Recall, N ′ := |{0, 1}n \ f−1(A)|. Claim 3.6 says that if z ̸∈ A, then |f−1(z)| ≤ 2n

|A| . Thus,
for all z ̸∈ A, we have that

Pr
x←{0,1}n\f−1(A)

[f(x) = z] ≤ 2n

|A|N ′

and the claim follows.

Next we show that, with good probability, the walk from xi,j to hti(xi,j) is good (the walk does
not cycle or fail).

Claim 3.8 ([FN99, Claim 4.1]). Assume k ≥ 2t(n + log t) 2
n

N ′ and |A| ≥ 4t2
n

N m and m ≤ 2n. Fix
any i ∈ [ℓ] and j ∈ [m]. With probability at least 1− 4

m , the values hi(xi,j), . . . , h
t
i(xi,j) are pairwise

distinct and all not equal to ⊥.

Proof (Sketch). Recall that evaluating hi on t different inputs requires that we evaluate gi for at
most t(n+ log t) 2

n

N ′ times. Since gi is k-wise independent and by assumption

k ≥ 2t (n+ log t)
2n

N ′
,

we can treat gi as if it were a uniformly random function in the analysis that follows.
By the definition of g⋆i and a union bound, the probability that any of hi(xi,j), . . . , h

t
i(xi,j) are

⊥ is at most

t ·
(
1− N ′

2n

)J

= t ·
(
1− N ′

2n

)(n+log t) 2
n

N′

≤ te−n−log t ≤ 2−n.

Now we condition on the event that none of the values are ⊥. Then since hi = g⋆i ◦ f and
since g⋆i either outputs ⊥ or a value in the set {0, 1}n \ f−1(A) (via essentially rejection sampling),
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observe that the relevant outputs of g⋆i are uniformly random elements of the set {0, 1}n \ f−1(A).
Moreover, recall by definition N ′ = |{0, 1}n \ f−1(A)|.

One can then show that the probability that there is a duplicate value in the list xi,j , hi(xi,j), . . . , h
t
i(xi,j)

is at most

t2
2n

|A|N ′
+ t2

1

N ′
.

To see this, note that if there is a duplicate in the list, then either

• there is a q ∈ [t− 1] such that the list f(xi,j), f ◦ hi(xi,j), . . . , f ◦ hqi (xi,j) contains a duplicate
but the values xi,j , hi(xi,j), . . . , h

q
i (xi,j) are pairwise distinct, or

• there is a q ∈ [t−1] such that the list xi,j , g
⋆
i ◦f(xi,j), . . . , g⋆i ◦f ◦h

q
i (xi,j) contains a duplicate

but the values f(xi,j), f ◦ hi(xi,j), . . . , f ◦ hqi (xi,j) are pairwise distinct

The probability of the first item can be upper bounded by t2 2n

|A|N ′ using a union bound, Claim 3.7,

and the fact that the relevant outputs of g⋆i (and hence hi) on distinct inputs are uniformly random
elements of the set {0, 1}n \ f−1(A). The probability of the second item comes a union bound and
from the fact that the relevant outputs of g⋆i on distinct inputs are uniformly random elements of
the set {0, 1}n \ f−1(A), which is a set of size N ′.

Then we have that

t2
2n

|A|N ′
+ t2

1

N ′
≤ 2t2

2n

N ′
1

|A|
≤ 2

m

where the first inequality comes from the trivial upper bound |A| ≤ 2n, and the second inequality
comes from the assumed lower bound on |A|.

Combining the two probability upper bounds and using that m ≤ 2n, we get 2−n + 2
m ≤ 4

m , as
desired.

For any i ∈ [ℓ] and j ∈ [m], let Ei,j be the event that both of the following occur:

• the values hi(xi,j), h
2
i (xi,j), . . . , h

t
i(xi,j) are pairwise distinct and all not equal to ⊥, and

• y = f(hpi (xi,j)) for some p ∈ [t− 1].

Let py denote the probability that Ei,j occurs (observe this probability does not depend on i and
j). We prove a lower bound on py.

Claim 3.9 ([FN99, Claim 4.2]). Assume k ≥ 2t(n+ log t) 2
n

N ′ and |A| ≥ 4t2
n

N m and y ̸∈ A. Fix any
i ∈ [ℓ] and j ∈ [m]. Then

py ≥
(
1− 4

m

)
· t− 1

N ′

Proof (Sketch). We build on the analysis from the proof of Claim 3.8. Condition on the event that
the values hi(xi,j), h

2
i (xi,j), . . . , h

t
i(xi,j) are all distinct and not equal to ⊥. By Claim 3.8, this occurs

with probability at least (1− 4
m). Conditioned on this event, observe that we can treat the values

hi(xi,j), . . . , h
t−1
i (xi,j) as being chosen independently and uniformly without replacement from the

set {0, 1}n \ f−1(A). Hence, we hit a pre-image of y with probability at least t−1
N ′ .
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Claim 3.10 ([FN99, Claim 4.3]). Assume k ≥ 2t(n + log t) 2
n

N ′ and |A| ≥ 4t2
n

N m. Fix any i and
j ̸= j′. The probability that Ei,j and Ei,j′ both occur is at most

py ·
1

m

Proof (Sketch). We compute the probability that Ei,j′ occurs given that Ei,j occurs. Assume Ei,j

occurs and let Wj be the random variable given by

Wj = {hp(xi,j) : p ∈ {0, . . . t}}.

Let Wj′ be the random variable given by

Wj′ = {hp(xi,j′) : p ∈ {0, . . . t}}.

For Ei,j′ to occur, it must be that there is a w ∈ Wj and a w′ ∈ Wj′ such that f(w) = f(w′).
Since k ≥ 2t(n+log t) 2

n

N ′ and gi is k-wise independent, we can view gi as a random function except
on the points that gi was previously evaluated (i.e., points in f(Wj)). Similarly, we can treat the
outputs of g⋆i as being uniformly random values in {0, 1}n\f−1(A) (except on those points that were
previously evaluated). Thus, applying Claim 3.7 and a union bound, we get that the probability
that f(w) = f(w′) for some w ∈ Wj and w′ ∈ Wj′ is at most

(t+ 1)2 · 2n

|A|N ′
= 4t2 · 2n

|A|N ′
≤ 1

m
.

For i ∈ [ℓ] and j ∈ [m], we let E′i,j be the event that Ei,j occurs and that the values ui,

hi(ui), . . . , h
t−1
i (ui) are pairwise distinct. (Recall, ui := g⋆i (y).)

Claim 3.11. Assume k ≥ 2t(n+log t) 2
n

N ′ and |A| ≥ 4t2
n

N m and m ≤ 2n. E′i,j occurs with probability

at least py(1− 16
m ).

Proof (Sketch). Event Ei,j occurs with probability py. We lower bound the probability that the val-
ues ui, hi(ui), . . . , h

t−1
i (ui) are pairwise distinct, conditioned on Ei,j occurring. Note that the event

Ei,j occurring reveals the values of g⋆i only on inputs where g⋆i outputs distinct values (otherwise
the pairwise distinct property of Ei,j would not occur). This only increases the probability that
ui, hi(ui), . . . , h

t−1
i (ui) are pairwise distinct (note that k is large enough (by assumption k ≥ 2tJ)

that all the relevant evaluations of gi on new inputs are independent). As a result we can reuse
the analysis in Claim 3.8, except union bounding over (2t)2 = 4t2 pairs instead of t2 pairs. This
lower bounds the conditional probability by (1 − 16

m ) (the 16
m comes from multiplying the 4

m value
in Claim 3.8 by the extra factor of four in the union bound).

For i ∈ [ℓ], let Vi denote the event that there is a j ∈ [m] such that E′i,j occurs.

Lemma 3.12 ([FN99, Lemma 4.2]). Assume k ≥ 2t(n + log t) 2
n

N ′ and |A| ≥ 4t2
n

N m and m ≤ 2n

and y ̸∈ A. Fix any i ∈ [ℓ]. Vi occurs with probability at least

m

(
1− 36

m

)
· t− 1

2N ′

.
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Proof (Sketch). By inclusion-exclusion, the probability that at least one E′i,j occurs is at least∑
j∈[m]

Pr[E′i,j ]−
∑

j ̸=j′∈[m]

Pr[E′i,j ∧ E′i,j′ ] ≥
∑
j∈[m]

Pr[E′i,j ]−
∑

j ̸=j′∈[m]

Pr[Ei,j ∧ Ei,j′ ]

≥ mpy

(
1− 16

m

)
− m2

2
py

1

m
= mpy

(
1

2
− 16

m

)
≥ m

(
1− 32

m

)(
1− 4

m

)
· t− 1

2N ′
.

where the first line comes from the definition of E′i,j (if E′i,j occurs, then Ei,j occurs), the second
line comes from Claim 3.10 and Claim 3.11, and the last line comes from Claim 3.9.

Lemma 3.13 ([FN99, Lemma 4.3]). Assume k ≥ 2t(n + log t) 2
n

N ′ and |A| ≥ 4t2
n

N m and m ≤ 2n

and y ̸∈ A and ℓ · m · t ≥ N ′ and min{m, t} ≥ 87. Then with probability at least 1/4 there is an
i ∈ [ℓ] such that Vi occurs.

Proof. The Vi are independent random variables, so the probability that none of them occur is at
most(

1−m

(
1− 36

m

)
t− 1

2N ′

)ℓ

≤ exp

(
−ℓm

(
1− 36

m

)
t− 1

2N ′

)
≤ exp

(
−1

2

(
1− 36

m

)(
1− 1

t

))
≤ 3

4

by the lower bound assumption on m and t.

Finally, we will need to bound |F | when we run Invert on y. For this we will need the following
claim.

Claim 3.14. Assume k ≥ 2t(n+log t) 2
n

N ′ and |A| ≥ 4t2
n

N m. Fix i ∈ [ℓ] and j ∈ [m]. The probability
that for some p ∈ {0, . . . , t− 1} we have hpi (ui) = hti(xi,j) ̸= ⊥ is at most 1

m .

Proof (Sketch). The analysis is similar to the proof of Claim 3.10. Set

W = {hpi (xi,j) : p ∈ {0, . . . t}}.

Let W ′ be the random variable given by

W ′ = {hpi (ui) : p ∈ {0, . . . t− 1}}.

If hp(ui) = ht(xi,j) ̸= ⊥ for some p ∈ {0, . . . , t − 1}, then it must be that there is w ∈ W
and w′ ∈ W ′ such that f(w) = f(w′) ̸= ⊥. Since k is sufficiently large, we can treat the relevant
outputs of g⋆i as being uniformly random samples from {0, 1}n \ f−1(A) except on the inputs used
to compute hti(xi,j).

Then, using Claim 3.7 and a union bound, one can show that the probability that there is a
p ∈ {0, . . . , t− 1} such that f(hp(xi,j)) ∈ Wi is at most

t(t+ 1) · 2n

|A|N ′
≤ 1

m
.
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Combining Claim 3.14 with Markov’s inequality then gives the following upper bound on |F |.

Lemma 3.15. Assume k ≥ 2t(n + log t) 2
n

N ′ and |A| ≥ 4t2
n

N m. With probability at least 9/10, we
have that

|F | ≤ 10ℓ

where F is the set obtained when running Invert on y.

Proof. Recall,

F = {(i, j, p) : p is the least value satisfying hpi (ui) = hti(xi,j)}.

Claim 3.14 says that for every fixed i ∈ [ℓ] and j ∈ [m], the probability that there exists a p
such that (i, j, p) ∈ F is at most 1

m . Hence the expected size of F is at most

ℓ ·m · 1

m
= ℓ.

Thus, Markov’s inequality implies that |F | ≤ 10ℓ with probability at least 9/10.

We now prove Theorem 3.4.

Proof of Theorem 3.4. Fix any y in the range of f . If y has at least 2n

|A| preimages, then y ∈ A by

Claim 3.6, so y will be inverted in step 1. Otherwise, by Lemma 3.13, with probability at least 1/4
there exists an i ∈ [ℓ], j ∈ [m], and p ∈ [t− 1] such that all of the following occur:

S.1 hti(xi,j) ̸= ⊥

S.2 the values ui, hi(ui), . . . , h
t−1
i (ui) are pairwise distinct, and

S.3 y = f(hpi (xi,j)).

Recall that, by definition, ui = g⋆i (y). Thus, from S.3, we have that ui = g⋆i (y) = hp+1
i (xi,j), so

ht−p−1i (ui) = hti(xi,j).

Note that t− p− 1 ∈ {0, . . . , t− 2}. Then S.2 implies that hp
′

i (ui) ̸= hti(xi,j) for all p
′ ∈ {0, . . . , t−

1} \ {t − p − 1}. Thus, we get that (i, j, t − p − 1) ∈ F . Using Lemma 3.15, we can union bound
over the event that |F | > 10ℓ, which occurs with probability at most 1/10. Hence with probability
1/4− 1/10 > 0, Invert succeeds at inverting y.

3.6 Proving Theorem 1.2

We conclude this section with the proof of Theorem 1.2.

Reminder of Theorem 1.2. Let Eval denote a compression problem. There is a circuit family
{Cn,s} such that for all n, s ∈ N, Cn,s solves the compression problem for Eval on all strings of length

n with descriptions of length at most s, and the size of Cn,s is 2
4
5
·s ·poly(n, s). Furthermore, Cn,s(x)

prints a description of length at most s for the input x of length n, whenever such a description
exists.
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Proof of Theorem 1.2. Let s, n ∈ N and let Eval be polynomial-time computable, so that when
restricted to inputs of length s and outputs of length n, Eval has a circuit En,s of poly(n, s).
Observe that for an n-bit input y, the problem of finding an x of length s such that Eval(x) = y is
equivalent to solving the compression problem.

By Theorem 3.1, we can reduce the problem of inverting En,s : {0, 1}s → {0, 1}n to the problem
of inverting another function g : {0, 1}n → {0, 1}n with poly(n)-size circuits, in such a way that
circuits of S(n) · poly(n) size for inverting g imply circuits of S(s + 1) · poly(n) size for inverting
En,s. Theorem 3.5 proves that there is a circuit that inverts g on all inputs, having size at most
24n/5 · poly(n). Setting S(n) = 24n/5, we obtain circuits of size 24s/5 · poly(n) for inverting En,s.

4 Consequences

We now turn to proving non-trivial circuit size bounds for MCSP, MINKT, and “compressible” NP
relations, as mentioned in the Introduction.

4.1 Smaller Circuits for Finding Circuits (MCSP)

Reminder of Theorem 1.3. For all size functions s(n), Search-MCSP[s(n)] on truth tables of

length 2n has circuits of size 2
4
5
·w+o(w) · poly(2n), where w = s(n) log2(s(n) + n).

Proof. The idea is to define an appropriate evaluation function, and appeal to Theorem 1.2. In
the case of MCSP, we want an Eval function that takes the encoding of a circuit as input, and
outputs the circuit’s truth table. However, in order to decisively beat the exhaustive search over
2O(s(n) log(s(n)) possible circuits, we need an essentially optimal encoding of circuits.

Let s(n) ∈ [2n] be our circuit size parameter (which we abbreviate as just s). Lemma 2.1 tells
us there is a polynomial-time algorithm Enc such that, for every circuit C of size s and n inputs,
there is some x of length ℓs := (1 + o(1))s log2(s+ n) such that Enc(x) outputs the description of
a circuit C ′ of size s computing the same function as C. (Moreover, ℓs can be computed efficiently
given s, although we do not need this property to construct a non-uniform circuit.) Let TT(C) be
the function that takes the description of a circuit C with n inputs, and outputs its 2n-bit truth
table.

Define the evaluation function Eval to simply be Eval(x) := TT(Enc(x)). Applying Theorem 1.2,
there are circuits inverting the slice function Evalℓs,2n : {0, 1}ℓs → {0, 1}2n (Eval restricted to ℓs
inputs and 2n outputs) that have size

24ℓs/5 · poly(ℓs, 2n) ≤ 2
4
5
·s(n) log2(s(n)+n)+o(s(n) log2(s(n)+n)) · poly(2n).

Given a truth table T of length 2n, our final circuit inverts Evalℓs,2n on T . If inversion results in an
x such that Evalℓs,2n(x) = T , then our circuit outputs Enc(x) (an encoding of a circuit with truth
table T ), otherwise it outputs ⊥ (failure). This completes the proof.

4.2 Circuits for MINKT

Similarly, we can give nontrivial circuits for computing the Kt complexity of strings.

Reminder of Theorem 1.4. For every time function t : N → N with t(n) ≥ n, and parameters
e, n ∈ N, there is a circuit family that given any n-bit input x, outputs a program y of length at
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most e such that y prints the string x in at most t(n) steps if such a y exists. The circuit family

has size 2
4
5
e · poly(t(n)).

Proof. Fix e, n ∈ N, and set t := t(n). Our Eval function simply takes an input d, treats d as a
program, and runs d for t steps, outputting whatever string that d printed along the way. This
Eval function, restricted to e-bit inputs and n-bit outputs, can be implemented by a circuit of size
poly(t). Let Ee,n be such a circuit.

Using the argument of Theorem 3.1, the problem of inverting Ee,n : {0, 1}e → {0, 1}n can
be reduced to the problem of inverting another function g : {0, 1}n → {0, 1}n with poly(t, n)-size
circuits, such that circuits of S(n) ·poly(t, n) size for inverting g imply circuits of S(e+1) ·poly(t, n)
size for inverting Ee,n. Theorem 3.5 proves that there is a circuit that inverts g on all inputs,
having size at most 24n/5 · poly(t, n). For S(n) = 24n/5, we obtain circuits of size 24e/5 · poly(t(n))
for inverting En,s.

4.3 Circuits For Solving NP Relations on Compressible Instances

Here, we show how to solve the search problem for general NP relations faster when the entire
instance-witness pair can be represented by a short program. In particular, our circuits are more
efficient than enumerating over all short programs.

Let us recall the setup from the Introduction. Let R ⊆ {0, 1}⋆×{0, 1}⋆ be any polynomial-time
computable relation. For n, p ∈ N, we define the task:

Compressible-R: Given a string x of length n, if there is a program of size p which
prints the pair (x, y) in poly(n) time such that (x, y) ∈ R, find a y′ such that (x, y′) ∈ R.

Enumerating all programs and checking them requires 2p · poly(n) time; we show this “program-
enumeration bottleneck” (as coined by [Tre10]) can be circumvented using function inversion.

Reminder of Theorem 1.5. Compressible-R can be solved by circuits of size 2
4
5
·p · poly(n).

Proof. Let M be a machine deciding the polynomial-time relation R. WLOG, let k ∈ N be some
universal constant k such that ℓ(n) = knk is the length of witnesses for inputs of length n, i.e.,
(x, y) ∈ R implies that |y| = k|x|k.

Fix p, n ∈ N. Define the function Evalp,n : {0, 1}p → {0, 1}n+1 which takes in a string z of
length p as input and treats z as a program, running z for poly(n) steps to obtain a string z′,
interpreted as a pair. If M(z′) accepts, and the first string x in the pair is n bits long, then the
(n+ 1)-bit string 0x is output, otherwise Evalp,n outputs 1n+1.

It is easy to see that Evalp,n can be implemented with poly(n)-size circuits. Our circuit for
Compressible-R on n-bit strings takes in an x ∈ {0, 1}n, and tries to invert Evalp,n on the (n+1)-
bit input 0x. This inversion task can be accomplished with 24p/5-size circuits, by Theorem 1.2, and
the task exactly corresponds to finding a program z of length p which outputs (x, y) ∈ R in poly(n)
steps. This completes the proof.

4.4 Computing Levin’s Kt-Complexity on Average

Finally, in this section we construct a nontrivial circuit that computes MKtP on average. The idea
is that a string x drawn from an efficiently computable distribution has small computational depth
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cdt(x) with high probability, in which case we may assume that the time bound in Kt(x) is small. A
similar idea was implicitly used in [RS21; LP21] to characterize the existence of a one-way function
by the average-case hardness of MKtP with respect to the uniform distribution. Here, we generalize
the idea to any efficiently computable distribution.

We recall the notion of computational depth [AFMV06] and its properties. Recall that Kt(x) is
defined to be the minimum length of a program d such that d prints x in t steps. The computational
depth of a string measures the difference between time-bounded Kolmogorov complexity and plain
Kolmogorov complexity. For a time bound t ∈ N, the computational depth cdt(x) of a string x is
defined as

cdt(x) := Kt(x)−K(x).

Observe that cdt(x) is never negative. First we show that, with high probability, cdt(x) is small on
random x drawn from an efficiently computable distribution.

Lemma 4.1. For every function t(n) ≥ n and for every t(n)-time-computable distribution D =
{Dn}n∈N over {0, 1}n, it holds that

Pr
x∼Dn

[
cdt

′(n)(x) ≤ ℓ
]
≥ 1− nO(1) · 2−ℓ

for all n, ℓ ∈ N and for t′(n) = poly(t(n)).

Proof. Let Dn(x) denote the probability that x is sampled according to the distribution Dn. By
the coding theorem for computable distributions, for some t′(n) = poly(t(n)), we have

Kt′(n)(x) ≤ − logDn(x) +O(log n)

for every x ∈ {0, 1}n in the support of Dn and n ∈ N (see, e.g., [AFMV06, Theorem 3.5]). Thus,

E
x∼Dn

[
2cd

t′(n)(x)
]
≤ E

x∼Dn

[
2−K(x)

Dn(x)
· nO(1)

]
=

∑
x∈{0,1}n

2−K(x) · nO(1) ≤ nO(1),

where the last inequality holds due to Kraft’s inequality and its relation with plain Kolmogorov
complexity [LV19]. Therefore we have

Pr
x∼Dn

[
cdt

′(n)(x) ≥ ℓ
]
= Pr

x∼Dn

[
2cd

t′(n)(x) ≥ 2ℓ
]
≤ nO(1) · 2−ℓ,

by Markov’s inequality. The lemma follows.

Next, we introduce a variant of Kt-complexity in which we impose a time upper bound.

Definition 4.2. For a string x ∈ {0, 1}∗ and a time bound T ∈ N, define

Kt≤T (x) := min{|d|+ log t | U outputs x on input d in time t ≤ T},

where U is an efficient universal Turing machine.

Lemma 4.3. If cdT (x) ≤ ℓ, then Kt(x) = Kt≤2
ℓT (x).
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Proof. It suffices to prove that Kt(x) ≥ Kt≤2
ℓT (x). Let d and t ∈ N be a program and a time

bound, respectively, such that Kt(x) = |d|+ log t and U outputs x on input d in time t. Our goal
is to prove t ≤ 2ℓT .

Since U(d) = x, we have |d| ≥ K(x) ≥ KT (x) − ℓ, and thus Kt(x) ≥ KT (x) − ℓ + log t. By
the definition of Kt(x), we also have Kt(x) ≤ KT (x) + log T . Combining these two inequalities, we
obtain KT (x)− ℓ+ log t ≤ Kt(x) ≤ KT (x) + log T, which implies that t ≤ 2ℓT .

We are ready to prove Theorem 1.6.

Reminder of Theorem 1.6. For all functions s(n) and t(n) ≥ n, there exists a family of circuits

{Cn}n∈N of size 2
4
5
s(n) ·poly(t(n)) such that for any t(n)-time-computable distribution D = {Dn}n∈N

over {0, 1}n, for all large n ∈ N, with probability at least 1 − 1
t(n) over a random input x drawn

from Dn, on input x, the circuit Cn outputs a program y and t ∈ N such that y prints the string x
in t steps and |y|+ log t ≤ s(n) if Kt(x) ≤ s(n).

Proof of Theorem 1.6. We construct a family of circuits {Cn}n∈N that computes a pair (y, t) that

witnesses Kt≤t
′(n)(x) ≤ s(n) for some t′(n) = poly(t(n)) to be chosen. The circuit Cn can be

constructed by using the circuit of Theorem 1.4 because

Kt≤t
′(n)(x) = min

{
Kt(x) + log t

∣∣ t ≤ t′(n)
}
.

Thus, the size of Cn is at most 2
4
5
s(n) · poly(t(n)).

It remains to claim that Cn solves the search version of MKtP on average with probability
1− 1/t(n). Let Dn be a t(n)-time-computable distribution. Then, by Lemma 4.1, for large enough
t1(n) = poly(t(n)) we have cdt1(n)(x) ≤ log t1(n) with probability at least 1−1/t(n) over x ∼ Dn. By

Lemma 4.3, for any x with cdt1(n)(x) ≤ log t1(n), we have Kt≤t1(n)
2
(x) = Kt(x). Letting t′(n) :=

t1(n)
2 = poly(t(n)), we obtain that Cn computes a witness for Kt(x) ≤ s(n) with probability

1− 1/t(n) over x ∼ Dn.

5 Conclusion

In this paper, we have shown how function inversion can be applied to make a dent in longstanding
open problems in computational complexity, such as the circuit complexity of MCSP. In particular,
the old “perebor conjecture” (see [Tra84]) that brute-force is required for compression problems,
is refuted when we are allowed non-uniform circuits as our algorithmic model. Our work raises a
variety of new questions.

• The first obvious open question is whether there are smaller circuits than 24e/5 · poly(n) for
finding compressed descriptions of length e. There seems to be a barrier to finding circuits
significantly smaller than 2e/2 ·poly(n): if they existed, we could solve NP problems such that
the witness is of length equal to the input, with circuits that are smaller than 2n ·poly(n) (see
Section 1.2). In the black-box setting, there are Ω(2n/2) lower bounds on function inversion
via data structures: for example, De, Trevisan, and Tulsiani [DTT10] show a time-space
tradeoff lower bound of T · S ≥ Ω(ε2n) for inverting a function on at least an ε-fraction of
inputs with a space-S data structure that makes T function queries, generalizing earlier work
of Yao [Yao90].
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• Is there a randomized algorithm for finding descriptions of length ℓ for strings of length n,
that runs in time 2αℓ · poly(n) for some α < 1? We do not achieve this, because our lookup
tables can take a long time to construct. If we could find a randomized algorithm, then by
results of Chen and Tell [CT20], there would also be a deterministic algorithm running in
time 2βℓ · poly(n) for some β < 1, assuming reasonable complexity hypotheses. In such a
case, we would have a more “decisive” refutation of the old conjecture that MCSP and other
compression problems require exhaustive search.

• We have shown how time-bounded Kolmogorov complexity can be determined faster than
trying all programs up to a given size. There are other time-bounded versions of Kolmogorov
complexity which appear even harder to compute, such as MKtP. We showed that MKtP can
be solved on average with nontrivial circuits (Theorem 1.6); roughly speaking, this is because
in the average case, the complexity of MKtP behaves similarly to NP [RS21; LP21]. MKtP is
known to be complete for EXP (exponential time) under various reduction types [ABKMR06].
Could there be non-trivial circuits for MKtP in the worst case, as well? This question seems
to be gently poking at the well-known hypothesis in derandomization that TIME[2n] requires
exponential-size circuits [IW97].

• We know that UP∩ coUP ̸= P iff there exists a bijective worst-case one-way function [HT03].
Given the results of this paper, are there nontrivial circuits for problems in UP ∩ coUP?

• Pairwise-independent hashing was crucial in order to achieve a circuit size bound for com-
pression that is exponential only in the encoding length, which is a “small” parameter relative
to the input. Could a similar hashing method be more broadly useful in developing new pa-
rameterized algorithms (or circuits)? Certainly hashing methods are already widely applied
in parameterized algorithms (probably the most famous one is color coding [AYZ95]) but our
trick seems somewhat different.

Acknowledgments. We thank Yuval Ishai, Moni Naor, Hanlin Ren, and Rahul Santhanam for
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for the Theory of Computing.
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