
On coarse and fine approximate counting of t-cliques

Oded Goldreich
Department of Computer Science

Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

September 21, 2023

Abstract

For any fixed t, we present two fine-grained reductions of the problem of approximately
counting the number of t-cliques in a graph to the problem of detecting a t-clique in a graph.
One of our reductions is slightly better than the prior reduction of Dell, Lapinskas, and Meeks
(SODA20) and its improvement by Bhattacharya, Bishnu, Ghosh, and Mishra (STACS22).
More importantly, we provide alternative presentations of their reductions, which we believe to
be conceptually simpler.

The pivot of the foregoing works is the notion of coarse approximate counting; for example,
think of approximating the number of t-cliques in n-vertex graphs up-to a O(log n)O(t) factor.
While it is easy to reduce fine (i.e., 1 + ϵ factor) approximate counting of solutions to NP-
complete search problems to their coarse versions (ditto for natural problems in P such as
perfect matching), these simple reductions fail in the context of fine grained complexity. One
of the contributions of Dell et al. is providing a fine-grained reduction of standard (i.e., fine)
approximate counting of t-cliques to coarsely counting them. We survey this reduction, and
also provide an alternative one. The alternative (alas inferior) reduction composes a reduction
of uniform generation of t-cliques to coarsely-approximate counting them with the standard
reduction of (fine) approximate counting to uniform generation.

In addition, we survey the coarse approximate counter of t-cliques of Bhattacharya et al.,
and improve its performance by a small twist.

Given that I am not an expert on fine-grained complexity and that this memo is mostly of pedagog-
ical value, I allowed myself a non-conventional structure and contents. In particular, I do not start
with an introduction to the wider context and do not provide a scholarly review of prior works.
My impression is that the most relevant prior works are [4, 2, 5, 3], and that the interested reader
may find an adequate scholarly account there.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 158 (2023)



The nature of this memo. As hinted in the abstract, this memo is mainly a survey of some
technical ideas. Specifically, it provide an alternative presentation of results that appeared in [5, 3].
In particular:

� Algorithm 3.1, which reduces coarse approximate counting of t-cliques to detecting the exis-
tence of t-cliques, is due to [3].

� Theorem 5.2, which directly reduces fine approximate counting of t-cliques to coarse approx-
imate counting of t-cliques, is essentially due to [5].

� The reduction (presented in Section 2) of auxiliary problems regarding t-cliques that fit a given
prefix to problems regarding t-cliques (proper) is due to [5].

Our own technical contributions are confined to improving the performance of Algorithm 3.1 (see
Theorem 3.5) and to directly reducing uniform generation of t-cliques to coarse approximate count-
ing of t-cliques (see Theorem 4.3). The latter reduction is inferior to the indirect (and more complex)
reduction that is given in [5], which builds on Theorem 5.2.

Applicability to hyper-edges in t-uniform hyper-graphs. Our presentation refers to t-
cliques in graphs, but parts of it are quite generic and apply to any search problem (see, e.g.,
Theorems 4.3 and 5.2). We stress that the input graph is given explicitly to all algorithms and
reductions that we discuss. In contrast, the aforementioned results of [5, 3] refer to a model of
t-uniform hyper-graphs in which the input is represented by an “independence” (resp., “colored
independence”) oracle that answer queries of the type “does set S contain a hyper-edge?” (resp.,
“does the t-partition (S1, ..., St) of S contain a hyper-edges with a single vertex in reach part?”).1

With the exception of the standard reduction from the general case to the t-partite case, our entire
presentation applies to the context of t-uniform hyper-graphs. Hence, Theorems 4.3 and 5.2 are
applicable to general t-uniform hyper-graphs, but Theorem 3.5 is applicable to t-uniform t-partite
hyper-graphs only.

1The foregoing model, which was introduced and generalized in [1, 4, 5], is aimed to address the fact that an explicit
representation of the hyper-graph trivializes the problem of counting hyper-edges, whereas representing the n-vertex
hyper-graph by a “multi-edge oracle” (i.e., e :

(
[n]
t

)
→ {0, 1} such that e(v1, ..., vt) = 1 if and only if {v1, ..., vt} is a

hyper-edge) eliminates all non-trivial algorithms. Furthermore, the foregoing model is tailored for the presentation
of reductions from counting problems to decision problems, alas this model restricts these reductions to querying
sub-instances of the given instance (i.e., induced subgraphs of the input graph). We stress that, with the exception
of the standard reduction from the general case to the t-partite case, the reductions presented in this memo can be
stated within this (restricted) framework.



Contents

1 Overview 1
1.1 Obtaining a coarse approximate counter for t-cliques . . . . . . . . . . . . . . . . . . 1
1.2 Reducing fine approximation to a coarse approximation . . . . . . . . . . . . . . . . 2

1.2.1 The first reduction: going through uniform generation . . . . . . . . . . . . . 3
1.2.2 The second reduction: the direct route . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 4

3 Coarse approximation for t-cliques 5
3.1 The starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The actual procedure (for t-cliques) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Approximate counting versus uniform generation 13
4.1 The standard presentation adapted to t-cliques . . . . . . . . . . . . . . . . . . . . . 13
4.2 Using coarse approximate counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Directly reducing fine to coarse approximation of t-cliques 17

6 The story behind this memo 20



1 Overview

This memo is pivoted at the notion of a coarse approximate counting of solutions to NP-search
problems with a focus on fine-grained complexity and problems such as t-Clique. By coarse approx-
imation we means approximation up-to large, but non-trivial factors. Specifically, we shall consider
the problem of approximating the number of t-cliques in n-vertex graphs up-to a O(log n)O(t) fac-
tor. This stands in contrast to the standard notion of approximation, where on input a proximity
parameter ϵ > 0, one seeks approximation up-to a factor of 1+ ϵ. We call the latter approximation
fine.

In the standard context of complexity theory it is easy to reduce fine approximate counting to
coarse approximate counting. This is done by taking Cartesian products, while noting that the
number of solutions to a instance that consists of k copies of the original instance equals the kth

power of the number of solutions to the original instance. Hence, an F -factor approximation of the
number of solutions to the “duplicated” instance yields a F 1/k-factor approximation of the number
of solutions to the original instance. Needless to say, this reduction cannot be applied in the context
of t-Clique and similar fine-grained complexity problems.

In light of the above, it may be that it is easier to obtain coarse approximations for the number
of t-cliques than to obtain fine approximations to that number. This seems to be the case, at least
slightly and empirically, since Dell et al. [5] first designed a coarse approximation algorithm for
counting the number of t-cliques, and then used it to get a fine approximation (via a reduction)
that is somewhat slower. The issues at hand are thus the following:

1. Obtaining a coarse approximate counter for t-cliques.

2. Reducing fine approximation of counting t-cliques to a corresponding coarse approximation.

We address these two issues in the following two subsections.

Applicability to hyper-edges in t-uniform hyper-graphs. We stress that although our pre-
sentation proceeds in terms of t-cliques, it can be adapted to the framework of [1, 4, 5] that refers to
t-uniform hyper-graphs and to oracle calls that answer queries regarding induced substructures of
the input hyper-graph. Note, however, that the adaptation of one of our reductions (i.e., reducing
coarse approximate counting to detection) works for t-partite hyper-graphs only. The source of
the problem is that the standard reduction from the general case to the t-partite case cannot be
implemented in the foregoing framework.

1.1 Obtaining a coarse approximate counter for t-cliques

Coarse approximate counters of t-cliques in n-vertex graphs were presented in [5] and in [3]. We
provide a more conceptual presentation of the procedure that underlies the proof of [3, Thm. 1.3],
and improve upon it by introducing a twist. The main improvement is in the approximation factor;
specifically, reducing it from O(log2t−2 n) to O(logt−1 n). Using the reduction of [5], we obtain an
improvement on the complexity of approximately counting t-cliques; specifically,

Theorem 1.1 (reducing approximate counting t-cliques to detecting them): There exists an almost
linear-time procedure that, on input an n-vertex graph and slackness parameter ϵ > 0, approximates
the number of t-cliques in the graph up-to a factor of 1+ ϵ, by making O(1/ϵ2) · Õ(log n)2t+3 queries
to an oracle for deciding the existence of t-cliques in n-vertex graphs.

1



This improves over the query complexity of [3, Thm. 1.4], which is O(ϵ−2 · (log n)3t+5).
Our perspective on the problem of (coarsely) approximating the number of t-cliques is rooted

in the abstract idea that underlies the reduction of approximate counting NP-witnesses to deciding
their existence. Specifically, in order to verify that the number of t-cliques in a graph is at least m,
we apply a “random sieve” of density 1/m to the set of t-cliques and check whether the resulting
graph had a t-clique. The question at hand is how to implement a random sieve, given that hashing
(which is the method of choice in the context of NP) does not seem adequate in the current setting.
Nevertheless, an appealing and straightforward way of implementing a random sieve in the current
context consists of selecting each vertex with probability p = (1/m)1/t, and considering the induced
subgraph.

Unfortunately, this straightforward implantation does not work. While each specific t-clique
passes this random sieve with probability 1/m, these choices are not independent enough, and the
dependency leads to our failure. Focusing (w.l.o.g) on the case of t-partite graphs, we note that
it not necessarily the case that there are Ω(m1/t) vertices of the first part such that each of them
appears in Ω(m(t−1)/t) cliques. However, for some i ∈ [log2 n], there exists Ω(2

i) vertices in the first
part such that each of them appears in Ω(2−i ·m/ log n) cliques. This suggests trying all possible
choices of i1, ..., it ∈ [log2 n], and randomly sieving the vertices of part j, with probability 2−ij .

The foregoing suggestion is implemented and analyzed in one way in [3], and we implement and
analyze it a bit differently. In any case, it is evident that this approach, which tries all sequences
(i1, ..., it) ∈ [logn]

t while benefiting only from one of them, comes with an overhead of O(log n)t in
its query complexity and O(log n)t−1 its approximation factor. We meet these intuitive bounds.
Specifically, we get

Theorem 1.2 (reducing coarse approximate counting t-cliques to detection): There exists an al-
most linear-time procedure that, on input an n-vertex graph, approximates the number of t-cliques
in the graph up-to a factor of O(log n)t−1 by making O(1/ϵ2) · Õ(log n)t queries to an oracle for
deciding the existence of t-cliques in n-vertex graphs.

This improves over [3, Thm. 1.3], which achieves an approximation factor of O(log2t−2 n) and makes
O(ϵ−2 · (log n)t+2) queries.

1.2 Reducing fine approximation to a coarse approximation

We present two different reductions of fine approximate counting of t-cliques to coarse approximate
counting of t-cliques. The first reduction goes through the problem of uniform generation of t-
cliques; it is simpler but yields a weaker time bound. The second reduction is a direct one and is
due to [5].

Both reductions refer to the prefixes of possible t-cliques (in an input n-vertex graph). Asso-
ciating the vertex set of the input graph with [n] ≡ {0, 1}log2 n, a prefix of (v1, ..., vt) ∈ [n]t has
the form (v1, ...., vt−t′ , α), where α is a string of length smaller than log2 n and t′ ∈ {0, 1, ..., t}.
As observed in [5], the set of t-cliques (in the original t-partite graph) that fit the latter prefix
corresponds to the set of t′-cliques in the t′-partite subgraph induced by the vertices that neighbor
all vi’s (for i ∈ [t− t′]) such that the first part of the t′-partite subgraph contains only vertices that
have prefix α. Hence, problems regarding this auxiliary problems (i.e., problems regarding t-cliques
that fit a given prefix) are reduced to corresponding problems regarding t′-cliques, which in turn
are easily reducible to corresponding problems regarding t-cliques.

2



1.2.1 The first reduction: going through uniform generation

This reduction is the main conceptual contribution of the current memo. Here we take to the ex-
treme the known fact that the standard reduction of uniform generation of solutions (for NP-search
problems) to approximately counting solutions is insensitive to the preciseness of the approximation.
This fact is typically observed with respect to fine approximate counters, and it holds provided that
the slackness parameter decreases at least linearly with the length of solutions; that is, when using
a (1+(1/5ℓ)-factor approximation, where ℓ denotes the length of solutions (see, e.g., [6, Sec. 6.2.4.1]
or the overview in Section 4.1).

We observe that using a coarse approximate counter still yields a meaningful (alas weak) notion
of uniform generation. Specifically, the uniform generation procedure will output a solution with
probability that is inversely related to the coarseness of the approximation. Even more specifically,
using an F -factor approximation of the number of ℓ-bit long solutions, for every m ∈ [ℓ], we can
obtain a procedure that makes m ·exp(ℓ/m) oracle calls (to the coarse approximator) and produces
output with probability F−(m+1). This procedure, generalizes the standard one, which uses m = ℓ,
by using m iterations and extending the current prefix by ℓ/m bits in each iteration. In the special
case of t-cliques in n-vertex graphs, it holds that ℓ = t · log2 n and F = O(log n)O(t), and using

m =
√
ℓ logF we get a uniform generator that makes M

def
= exp(Õ(

√
log n)) = no(1) calls to the

coarse approximator and produces output with probability 1/M .
The next observation is that it is easy to amplify the success probability of uniform generation

(i.e., the probability that it produced output) by repetitions. Hence, we get a standard uniform
generator by repeating the foregoing weak one for M times. Using the known reduction of (fine)
approximate counting to uniform generation, we obtained a fine approximate counter that makes
O(M2/ϵ2) = exp(Õ(

√
log n))/ϵ2 = no(1)/ϵ2 calls to the coarse approximator.

1.2.2 The second reduction: the direct route

This reduction is due to [5], although our presentation of it is somewhat different. The reduction
proceeds in iterations such that, in each iteration, we hold a (partial) list L of prefixes (of potential
t-cliques) of corresponding length. For each prefix in the list (i.e., each y′ ∈ L), we have a multiplier
(i.e., my′) such that the linear combination determined by these multipliers of the number of t-
cliques that correspond to the prefixes in L yields a fine approximation of the number of t-cliques
in the original graph. That is, if cy′ denotes the number of t-cliques that fit the prefix y′ and my′

is the corresponding multiplier, then
∑

y′∈Lmy′ · cy′/|L| is a fine approximation of the number of
t-cliques in the graph.

In the current iteration, for each one-bit extension y′σ of a prefix y′ in L, we obtain coarse
approximations for cy′σ. Denoting these approximations by c̃y′σ, we let ay′σ = my′ · c̃y′σ and
py′σ = ay′σ/a, where a =

∑
(y′,σ)∈L×{0,1} ay′σ. We then generate a random sample of |L| strings

by picking y′σ with probability py′σ and let my′σ
def
= my′/py′σ be the corresponding multiplier.

(The first iteration starts with |L| copies of the empty prefix, which are all associated with the
multiplier 1.)

The foregoing sample, which is generated in accordance with the “importance sampling” paradigm,
is analyzed by considering a random variable X that is assigned the value my′σ · cy′σ = (my′/py′σ) ·

3



cy′σ with probability py′σ. Then,

E[X] =
∑

(y′,σ)∈L×{0,1}

py′σ · (my′σ · cy′σ) =
∑

(y′,σ)∈L×{0,1}

my′ · cy′σ

regardless of the quality of the approximation. However, the variance of X does depend on this
quality; specifically, as shown in the proof of Theorem 5.2, if we use an F -factor approximation,
then V[X] ≤ (F − 1) · E[X]2. It follows that keeping a list of Õ(ℓ3 · F/ϵ2) prefixes, which are
not necessarily distinct, suffices to guaranteed that, in each of the ℓ = t log2 n iterations, with
probability at least 1− (0.1/ℓ), the resulting corresponding sum (i.e.,

∑
y′σ∈L′ my′σ · cy′σ) is within

a (1+(ϵ/ℓ))-factor of the initial one (i.e.,
∑

y′∈Lmy′ ·cy′). Hence, we reduced fine approximation of

the number of t-cliques to an F -factor approximation of that number by making Õ(F · ℓ4/ϵ2) oracle
calls. Theorem 1.1 follows by combining this reduction with the improved coarse approximator of
Theorem 1.2.

1.3 Organization

We start with a brief preliminary section (i.e., Section 2), which justifies the focus on t-partite
graphs and formally discusses the auxiliary search problem that refers to prefixes of solutions to an
original search problem.

In Section 3 we present a coarse approximation procedure for the number t-cliques. This
procedure follows the strategy of the proof of [3, Thm. 1.3], but our presentation is quite different
(and, in our opinion, more intuitive). Furthermore, a twist on our initial presentation allows to
prove the stronger Theorem 1.2 (see Theorem 3.5).

In Section 4 we present a weak uniform generation procedure of t-cliques that uses a coarse ap-
proximation for the number of t-cliques. This weak uniform generation procedure is then amplified
and used to obtain a fine approximation for the number of t-cliques (see Corollary 4.5 (1)), which is
inferior to [5, Thm. 1]. In Section 5, we follow the ideas of [5] and directly reduces fine approximate
counting of t-cliques to coarse approximate counting of t-cliques. This establishes Theorem 1.1,
which improves over [5, Thm. 1] and [3, Thm. 1.4].

2 Preliminaries

Throughout this memo, we neglect integrally issues, which can be easily resolved by padding.
All algorithms we present are actually reductions: In Section 3 the reductions are from coarse

approximate counting of t-cliques (in graphs) to deciding the existence of t-cliques (in graphs),
whereas in Sections 4 and 5 we present reductions among various notions of approximate counting
and uniform generation of ℓ-bit long solutions. Hence, while our focus is on problems concerning
t-cliques in n-vertex graphs, when the actual reductions are oblivious to these specifics (i.e., in
Sections 4 and 5), we we use a general formulation that only refers to the length of the solutions.

Reducing problems regarding t-cliques in general graphs to the t-partite case. The
following reduction is well known. Given a general n-vertex graph, we make t copies of each vertex
v ∈ [n], placing one copy in each of the t parts, and connecting vertices in the natural manner:
Specifically, for each i ̸= j and u ̸= v, if {u, v} is an edge in the original graph, then we connect
the ith copy of u with the jth copy of v; that is, given G = ([n], E), we let Vi = {⟨i, v⟩ : v ∈ [n]}

4



and Ei,j = {{⟨i, v⟩, ξj, w} :{v, w}∈E}, and produce the graph with vertex-set ∪i∈[t]Vi and edge-set
∪i ̸=j∈[t]Ei,j . In other words, for each i ̸= j, we place a double-cover of the original graph between

the ith part and the jth part. The key observation is that the number of t-cliques in the resulting
t-partite graph is t! times the number of t-cliques in the original graph.

The auxiliary problems regarding solutions that fit a prefix. We shall focus on problems
that are associated with binary relations of the type

R ⊆
⋃
n∈N

(
{0, 1}n × {0, 1}ℓ(n)

)
(1)

for some (time-constructible) function ℓ : N→ N. Letting R(x)
def
= {y : (x, y) ∈R} denote the set

of solutions to the instance x (w.r.t R) and SR
def
= {x : R(x) ̸= ∅}, the (candid) search problem

associated with R is to find y ∈ R(x) when given x ∈ SR. The corresponding counting problem

is to compute #R : {0, 1}∗ → (N ∪ {0}) defined as #R(x)
def
= |R(x)|, whereas uniform generation

essentially requires outputting a uniformly distributed solution (i.e., on input x ∈ SR, output a
uniformly distributed element of R(x)). The auxiliary problems regarding solutions that fit a prefix
are the corresponding problems that refer to the relation R′ defined as follows

R′ def= {(⟨x, y′⟩, y′′) : (x, y′y′′)∈R}. (2)

For example, the corresponding search problem is to find y′′ ∈ R′(x, y′) when given ⟨x, y′⟩ ∈ SR′ ;
that is, given an instance x and a prefix y′ of a solution to x (w.r.t R), find an extension of this
prefix to a solution (to x w.r.t R).

In the standard complexity setting (of polynomial-time solvability), in natural cases as well as
when R is an NP-complete search problem, it is easy to reduce the search problem of R′ to the search
problem of R′, whereas parsimonious reductions are used for reduction among the corresponding
counting (resp., uniform generation) problems. As observed in [5], such a reduction also exists
for the problems regarding t-cliques. Specifically, consider the auxiliary search problem in which
prefixes of t-cliques in an n-vertex graph have the form (v1, ...., vt−t′ , α), where v1, ..., vt−t′ ∈ [n]

and α ∈
⋃(log2 n)−1

i=0 {0, 1}i. Then, the set of t-cliques in the t-partite graph G = ([n], E) that fit the
latter prefix corresponds to the set of t′-cliques in the t′-partite subgraph of G that is induced by
the vertices that neighbor all vi’s (for i ∈ [t− t′]) such that the first part contains only vertices with
prefix α. That is, if (V1, ..., Vt) is the t-partition of G = ([n], E) and S denote the set of vertices
that negighbor v1, ..., vt−t′ (i.e., u ∈ S iff {u, vi} ∈ E for every i ∈ [t − t′]), then we consider the

subgraph induced by
(
{v∈Vt−t′+1 :∃β s.t. v = αβ} ∪

⋃
i∈[t−t′+2,t] Vi

)
∩ S.

3 Coarse approximation for t-cliques

In this section we present a reduction of approximate counting the number of t-cliques in a graph
to deciding whether a graph has t-cliques. In the context of NP-search problems such reductions
are randomized, and we aim for the same here.

5



3.1 The starting point

As stated in Section 1.1, our starting point is the abstract idea that underlies the reduction of
approximate counting NP-witnesses to deciding their existence. Specifically, in order to verify that
the number of t-cliques in a graph is at least m, we apply a “random sieve” of density 1/m to the
set of t-cliques and check whether the resulting graph had a t-clique. The question at hand is how
to implement a random sieve, given that hashing (which is the method of choice in the context of
NP) does not seem adequate in the current setting. Nevertheless, an appealing and straightforward
way of implementing a random sieve in the current context consists of selecting each vertex with
probability p = (1/m)1/t, and considering the induced subgraph.

Unfortunately, this does not work. While each specific t-clique passes this random sieve with
probability 1/m, these choices are not independent enough, and the dependency leads to our failure.
To see this fact, consider the case of t = 2 and an n-vertex bipartite graph with m = o(n2) edges
such that 2m/n vertices (on one side) are each connected to n/2 vertices (on the other side). Then,
when selecting each vertex with probability

√
1/m, we are likely to end-up selecting no vertex of

degree n/2, because (2m/n) · (1/m)1/2 = 2m1/2/n = o(1).
Nevertheless, a small twist on the foregoing suggestion does work. Consider, for simplicity, the

case of t = 2 and bipartite graphs. Then, for every i ∈ [log2m], we select at random each vertex
on one side of the graph with probability 2−i, while selecting each vertex on the other side with
probability 2i/m, where all these choices are independent of one another. As before, we consider
the induced subgraph, and the question is whether it contains any edge.

On the one hand, observe that if the number of edges in the bipartite graph is o(m/ log n), then,
for each value of i the expected number of edges in the induced subgraph is o(1/ log n). Hence, with

probability 1 − o(1), in all ℓ
def
= log2m attempts (i.e., all i ∈ [ℓ]) the resulting subgraph contains

no edges, which means that m is not accepted as a valid approximation (to the number of edges in
the graph).

On the other hand, if the n-vertex bipartite graph contains m′ = ω(m log n) edges, then there
exists an i ∈ [ℓ] such that the first side of the bipartite graph contains at least n′ = 10 · 2i vertices
of degree at least m′

n′ℓ = ω(m/2i). Hence, when using this i, we are likely to select a vertex of degree
ω(m/2i) along with at least one of its neighbors.

Indeed, the foregoing approximation (i.e., a factor of O(log2 n)) is very coarse, but this is all
that we promised in the overview. A minor issue is that we were handling bipartite graphs rather
than general graphs, but this is easy to fix (see Section 2). More importantly, the foregoing idea
generalize to any t ≥ 2.

3.2 The actual procedure (for t-cliques)

The generalization from t = 2 to any t ≥ 2 is straightforward. After guessing the number of t-cliques
up to a factor of 2, we guess densities (up to a factor of 2) in each of the t parts. Actually, we don’t
guess these parameters, but rather try all the possibilities. Furthermore, the number of t-cliques is
not guessed but rather set to equal the reciprocal of the product of the relevant densities.

Algorithm 3.1 (reducing approximate counting to decision, take 1): On input a t-partite graph

G = ([n], E), letting ℓ
def
= ⌊log2 n⌋, for every (i1, ..., it) ∈ {0, 1, ..., ℓ− 1}t, we perform the following

trial.

1. For each j ∈ [t], each vertex in part j is placed in the set Sj with probability 2−ij .

6



2. If the subgraph of G induced by ∪j∈[t]Sj contains a t-clique, then we declare
∏

j∈[t] 2
ij as a

candidate.

We output the largest declared candidate, and if no candidate has been declared then we output 0.

Indeed, we view Algorithm 3.1 as making oracle calls to a decision procedure for deciding the
existence of a t-clique in n-vertex graphs. Specifically, Algorithm 3.1 makes O(log n)t such calls ,
and all call refer to induced subgraphs of the input graph. It is labeled “take 1” because it is quite
wasteful, and can be easily improved. But let us analyze it first.

Claim 3.2 (upper-bounding the output of Algorithm 3.1): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability at least 5/6, Algorithm 3.1 outputs a non-negative
integer that does not exceed (6 · logt2 n) ·m.

Proof: Algorithm 3.1 outputs the value m′ > 0 only if for some integers i1, ...., it ∈ {0, 1, ..., ℓ− 1}
such that

∏
j∈[t] 2

ij = m′ the corresponding trial (in which (i1, ...., it) is used) declared m′ as a
candidate. Observing that (when using (i1, ...., it)) the expected number of t-cliques in the induced
subgraph equals m ·

∏
j∈[t] 2

−ij = m/m′, it follows that this event (i.e., this trial declaring a

candidate) occurs with probability at most m/m′. Noting that the total number of trials is ℓt and
applying the union bound, the claim follows.

Claim 3.3 (lower-bounding the output of Algorithm 3.1): Suppose that the number of t-cliques in
G = ([n], E) is m. Then, with probability at least 5/6, Algorithm 3.1 outputs an integer that is at
least ⌈m/O(log n)t−1⌉.

Proof: Assuming that m ≥ 1 and using a constant c ≥ 3, we start by proving the claim for
t = 2. In this case, there exists i1 ∈ {0, 1..., ℓ− 1} such that the first part of the graph G contains

at least n1
def
= c · 2i1 vertices that are each of degree at least m

2ℓ·n1
= m

2c·2i1 ·ℓ (because otherwise

the total number of edges is smaller than
∑ℓ−1

i=0 c · 2i ·
m

c·2i·ℓ).
2 Letting i2

def
= ⌊log2(m/2c2ℓ)⌋ − i1

(equiv., 2i1+i2 ≈ m/2c2ℓ), we consider the trial that corresponds to (i1, i2). We observe that, with
probability at least 1− exp(−c), some vertex of degree at least m

2c·2i1 ·ℓ = c · 2i2 is selected, and with
probability at least 1 − exp(−c), one of its neighbors is selected. Hence, with probability at least
(1− exp(−c))2 > 5/6, the value 2i1 · 2i2 ≥ m/4c2ℓ is declared a candidate.

Turning to the case of t > 2, we define the clique-degree of a vertex (in the first part) as the
number of t-cliques in which this vertex participates, and observe that there exists i1 ∈ {0, 1..., ℓ−1}
such that the first part of G contains at least n1

def
= c · 2i1 vertices that are each of clique-degree at

least m1
def
= m

2ℓ·n1
= m

2c·2i1 ·ℓ . Intuitively, with high probability, a vertex of clique-degree at least m1

is selected (i.e., placed in S1), and we consider the subgraph that is induced by its neighbors, and
apply the same reasoning to this induced subgraph, which is (t− 1)-partite.

Seeking a rigorous argument, we view the ℓt trials of Algorithm 3.1 as being arranged in a ℓ-ary
tree of depth t such that each internal node of level j ∈ {0, 1, ..., t − 1} corresponds to a choice of
(i1, ..., ij) ∈ {0, 1, ..., ℓ− 1}j . At such a node, we consider a recursive procedure that branches over
all possible values of ij+1 ∈ {0, 1, ..., ℓ − 1}, and, for each such value, proceeds as follows (when
given a t-partite graph and a parameter j ∈ {0, 1, ..., t− 1}):

2Specifically, we partition the vertices (of the first part) into buckets such that the jth bucket, denoted Bj , contains
all vertices of degree in [2j , 2j+1). Then, the number of edges is smaller than

∑ℓ−1
j=0 |Bj | · 2j+1, which implies that

|Bj | > m
ℓ·2j+1 for some j (equiv., |Bi| > c2i for some i = log2(m/2cℓ)− j).

7



� it selects each vertex in the j + 1st part with probability 2−ij+1 ;

� it constructs a subgraph of its own input graph by including in the j + 1st part only the
selected vertices (and including all vertices of the other parts);

� it invokes the procedure (recursively) on the resulting the subgraph;

� it returns with the value 2ij+1 · ν if the recursive call returned the value ν (see Footnote 3).

The procedure itself returns the highest value among the values returned by its ℓ branches. At the
leaves (i.e., j = t), the procedure returns the value 1 if its own input graph contains a t-clique,
and returns 0 otherwise.3 Note that invoking the foregoing recurvise procedure, on input G (with
j = 0), is equivalent to invoking Algorithm 3.1 on input G.

Given this perspective, we consider the branch of the root that corresponds to the foregoing
value of i1 (i.e., i1 such that there exists n1 = c · 2i1 vertices of clique-degree m1 = m

2ℓ·n1
). Then,

with probability at least 1 − exp(−c), some vertex of clique-degree at least m1 is selected. Fixing
this vertex and denoting it by v, we consider the (t− 1)-partite subgraph induced by v’s neighbors,
and consider the answer of the recursive procedure when applied to this subgraph (which has at
least m1 cliques of size t− 1). Noting that procedure’s answer is monotone with respect to adding
edges (i.e., in each execution (i.e., per each choice of randomness), its answer can only increase
when edges are added), we observe that the validity of (an adequate version of) the claim for t− 1
implies its validity for t. Specifically, we refer to the following induction claim.

Induction claim: Suppose that the number of t-cliques in the t-partite n-vertex graph G
is m ≥ 1. Then, for every c ≥ 3, on input G (and j = t), with probability at least 1− t ·
exp(−c), the recursive procedure answers with a value that exceeds m/((2c)t · logt−1

2 n).

Induction step: Let i1 be as above (i.e., at least c · 2i1 vertices in the first part of G have
clique-degree at least m

2c·2i1 ·ℓ). Recall that, with probability at least 1− exp(−c), when
extending the branch labeled i1, a vertex of clique-degree at least m1 = m/(2c · 2i1 · ℓ),
denoted v, is selected. In this case, we consider an execution of recursive procedure on
the (t−1)-partite subgraph of G that is induced by the neighbors of v, and note that this
subgraph has at least m1 cliques of size t−1. (As stated above, the recursive procedure
is actually invoked on a t-partite graph that includes all the vertices that were selected
in the first part, but the value of its answer may only decrease when considering the
t-partite graph that includes only v in the first part.)4 By the induction hypothesis (i.e.,
for t−1), with probability at least 1−(t−1)·exp(−c), this execution returns a value that
exceedsm1/((2c)

t−1·logt−2
2 n); hence, with probability least 1−(t−1)·exp(−c)−exp(−c),

the value returned by the current execution on G exceeds

2i1 · m1

(2c)t−1 · logt−2
2 n

= 2i1 · m/(2c · 2i1 · ℓ)
(2c)t−1 · logt−2

2 n

=
m

(2c)t · logt−1
2 n

which establishes the induction claim for t.
3Indeed, to streamline the analysis, we replaced the case of no declaration by the answer 0.
4Indeed, considering t-cliques in this t-partite graph is equivalent to considering (t−1)-cliques in the (t−1)-partite

subgraph induced by the neighbors of v.

8



Having established already the base case of the induction (i.e., t = 2), and using c = ln(6t) (in
order to guarantee that t · exp(−c) ≤ 1/6), our original claim follows.

Digest and beyond. Our algorithm is based on bucketing the vertices according to their “de-
grees” (be it the actual degrees (in case of t = 2) or the clique-degrees (for t ≥ 3)). This bucketing
is performed for each part of the t-partite graph, when the buckets in step j refers to a fixing of
j − 1 vertices (one per each of the previous parts), and applies only to vertices in the jth part that
neighbor all fixed vertices (see the proof of Claim 3.3). A corresponding random sieve is shown to
work for the heaviest sequence of t buckets (one per each part); that is, with probability at least
5/6, at least one of the t-cliques that have vertices in this sequence of buckets passes the sieve.

The main source of waste (w.r.t the approximation factor) is the fact that (in each part) we
only use the “heaviest” bucket rather than using all buckets. This translates to losing a logarithmic
factor in each of the t − 1 iterations of the analysis. In addition, we lose a factor of 2 by using
“coarse bucketing” (i.e., using 2 rather than 1+ ϵ as a base). Lastly, Claim 3.2 is based on Markov
Inequality, whereas a better estimate can be provided by repeating each trial several times and
using a Chernoff bound. Applying the last idea, we get the following algorithm.

Algorithm 3.4 (reducing approximate counting to decision, take 2): On input a t-partite graph

G = ([n], E), letting ℓ
def
= ⌊log2 n⌋ and r

def
= O(t log log n), for every (i1, ..., it) ∈ {0, 1, ..., ℓ − 1}t,

we repeat the trial made in Algorithm 3.1 for rt times, and combine the results using a slightly
complicated scheme. Specifically, for each i = (i1, ..., it) ∈ {0, 1, ..., ℓ−1}t and k = (k1, ..., kt) ∈ [r]t,
the (i, k)-trial proceeds as follows:

1. For each j ∈ [t], each vertex in the jth part of G is placed in the set S
(ij ,kj)
j with probability 2−ij .

Hence, all the (i, k)-trials that agree on (ij , kj) use the same sample of the vertices of part j,
whereas trials that differ on (ij , kj) use independent samples of the vertices of part j.

2. If the subgraph of G induced by ∪j∈[t]S
(ij ,kj)
j contains a t-clique, then we say that (i, k) supports

the value 1. Otherwise, we say that it supports the value 0.

Using a backward recursion, we define the values supported by various pairs of sequences as follows:

For j = t− 1, ..., 1, 0, we say that the pair ((i1, ..., ij), (k1, ..., kj)) supports the value ν if
there exists ij+1 ∈ {0, 1, ..., ℓ− 1} such that for at least r/2 of the choices of kj+1 ∈ [r]
it holds that ((i1, ..., ij , ij+1), (k1, ..., kj , kj+1)) supports the value ν/2ij+1.

We output the largest value that is supported by the empty pair (i.e., the pair of empty seqeuences
corresponding to j = 0).

Algorithm 3.4 makes slightly more calls to the decision procedure (for existence of t-cliques) than
Algorithm 3.1; that is, Algorithm 3.4 makes Õ(log n)t (rather than O(log n)t) such calls. In light
of the fact that the main source of waste (i.e., the use of heavy buckets only) dominates the effect
of the “coarse bucketing” (i.e., using 2 as a base), we left the latter aspect intact. Multiplying
the output of Algorithm 3.4 by O(log n)t−1, we obtain a “normalized version” that satisfies the
following statement.

9



Theorem 3.5 (the coarse approximation, a normalized form): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability 1 − o(1), the normalized Algorithm 3.4 outputs an
integer in the interval [m,O(log n)t−1 ·m].

Proof: We focus analyzing the non-normalized version of Algorithm 3.4, proving that, with
probability 1 − o(1), it outputs an integer in the interval [O(log n)−(t−1) ·m, 3t ·m]. Our analysis
of Algorithm 3.4 follows the basic strategy of the analysis of Algorithm 3.1, while focusing on the
actual adaptations. We start with an overview of the analysis, which relies heavily on the definition
of supporting a value that determines the output of Algorithm 3.4.

When upper-bounding the output of Algorithm 3.4 (akin Claim 3.2), we note that, for each
i1 ∈ {0, 1, ..., ℓ−1}, the number of t-cliques in G equals 2i1 times the expected number of t-cliques in
the subgraph of G induced by the set of vertices that passed the random sieve of density 2−i1 that is
applied to the first part of G (while including in the subgraph all vertices of the other parts). Thus,
when applying r random sieves of density 2−i1 , with probability at least 1− exp(−Ω(r)) = o(1/ℓt),
the average number of t-cliques in the r corresponding induced subgraphs is within a 1± 0.1 factor
of the expected number. Hence, in the typical case, in at most 1.1

3 ·r < r/2 of these r subgraphs, the
number of t-cliques exceeds the expectation by a factor of 3. Letting m denoting the number of t-
cliques in G, it follows that more than r/2 of these induced subgraphs have at most 3 ·m/2i1 cliques
(of size t). On the other hand, letting m′ denote the output of the algorithm, it follows that at least
r/2 subgraphs were supported by a claimed value of m′/2i1 (equiv., invoking Algorithm 3.4 on each
of these subgraphs yields an output of m′/2i1). Hence, at least one of the subgraphs satisfies both
conditions, and the argument proceeds by considering this subgraph and the choice of i2, and then
moves to i3 and so on up to it. It follows that m

′ =
∏

j∈[t] 2
ij may hold only if 3t ·m/

∏
j∈[t] 2

ij ≥ 1,

which implies m′ ≤ 3t ·m. Applying a union bound on all possible (i1, ..., it) ∈ {0, 1, ..., ℓ− 1}t, the
desired upper bound follows. For details, see Claim 3.5.1.

When lower-bounding the output of Algorithm 3.4 (akin Claim 3.3), we consider the index
i1 ∈ {0, 1, ..., ℓ− 1} that corresponds to the heaviest bucket (w.r.t clique-degrees); that is, a bucket
that is “responsible” for at least a 1/2ℓ fraction of the number of t-cliques in G (i.e., at least
2i1 of the vertices have clique-degree at least 2−i1 · n/2ℓ). In this case, with probability at least
1−(1−2−i1)2

ii > 0.6, the number of t-cliques in the subgraph of G induced by the set of vertices that
passed the random sieve of density 2−i1 that is applied to the first part of G is at least 2−i1 ·m/2ℓ,
where m denotes the number of t-cliques in G. Thus, when applying r random sieves of density
2−i1 (to the first part of G, while including all vertices of the other parts), with probability at least
1− exp(−Ω(r)) = o(1/ℓt), at least r/2 of these subgraphs contain at least m

2ℓ·2i1 cliques (of size t).

If each of the r/2 corresponding pairs supports a value of m′/2i1 , then the algorithm outputs the
value m′, which means that we lose a factor of at most 2ℓ in this reduction (which is effected by the
choice of i1). We then consider the r/2 corresponding subgraphs and proceed as above (i.e., first
to corresponding choices of i2, and then to i3, ..., it). Intuitively, at the end of each such iterative
process it holds that m∏

j∈[t](2ℓ·2
ij )
≥ 1, and this contributes to an eventual support for the value∏

j∈[t] 2
ij = m′, which implies that m′ ≥ m/(2ℓ)t. Actually, the last iteration (i.e., j = t) is handled

differently (i.e., trivially), and so we get m′ ≥ m/(2ℓ)t−1. For details, see Claim 3.5.2.

Claim 3.5.1 (upper-bounding the output of Algorithm 3.4): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability 1− o(1), Algorithm 3.4 outputs a non-negative integer
that does not exceed 3t ·m.

10



Proof: The claim is proved by backward induction on the index j ∈ {0, 1, ..., t}. Letting Sh =

(S
(i,k)
h )i∈{0,1,...,ℓ−1},k∈[r], the induction claim is that, for fixed S1, ...., Sj , in an execution of Algo-

rithm 3.4, with probability 1− o(1) over the choice of Sj+1, ..., St, if some pair of j-long sequences,
denoted ((i1, ..., ij), (k1, ..., kj)), supports the value m′

j, then the corresponding induced subgraph

(i.e., the subgraph induced by S
(i1,k1)
1 , ..., S

(ij ,kj)
j and all vertices of the other parts) contains at

least 3−(t−j) ·m′
j cliques (of size t). Equivalently, m′

j is upper-bounded by 3t−j times the number
of t-cliques in this subgraph.

The base case (i.e., j = t) is trivial, since pairs of ℓ-long sequences support only binary values
(which are always correct), whereas the case of j = 0 implies the main claim. In the induction
step, we assume that the claim holds for j + 1 ∈ [t], and prove that it holds for j. The induction
step mimics the proof of Claim 3.2: Fixing any ((i1, ..., ij), (k1, ..., kj)) ∈ {0, 1, ..., ℓ − 1}j × [r]j ,
we observe that this pair supports the value m′

j > 0 only if, for some ij+1 ∈ {0, 1, ..., ℓ − 1}, the
value m′

j/2
ij+1 is supported by at least r/2 of the r pairs of the form ((i1, ..., ij , ij+1), (k1, ..., kj , .)).

Letting (V1, ..., Vt) denote the t-partition of the vertices of G, the key observation is that, for every
k ∈ [r], the expected nunber of t-cliques in the subgraph of G induced by

Rk
def
=

⋃
h∈[j]

S
(ih,kh)
h ∪ S

(ij+1,k)
j+1 ∪

⋃
h∈{j+2,...,t}

Vh

equals mj/2
ij+1 , where mj denotes the nunber of t-cliques in the subgraph of G induced by⋃

h∈[j] S
(ih,kh)
h ∪

⋃
h∈{j+1,...,t} Vh and the expectation is over the choice of S

(ij+1,k)
j+1 .

While the proof of Claim 3.2 applies the Markov Inequality at this point, here we use the fact

that the foregoing experiment (i.e., the random choice of S
(ij+1,k)
j+1 ) is repeated r times (i.e., for

each k ∈ [r]), and the fact that we only need r/2 of these experiments to yield values that do
not exceed the expectation by much. Specifically, we first observe that, with probability at least
1 − exp(−Ω(r)) = o(1/ℓ2t), the average (over k ∈ [r]) number of t-cliques in the subgraphs of G
induced by Rk’s is smaller than 1.1 ·mj/2

ij+1 . It follows that, in this (highly typical) case, there
are less than r/2 indices k ∈ [r] such that the number of t-cliques in the subgraph of G induced by
Rk exceeds 1.1

1/2 ·
mj

2ij+1
, which means that for more that r/2 indices k ∈ [r] the number of t-cliques

is at most
2.2·mj

2ij+1
<

3·mj

2ij+1
. Hence, there exists a kj+1 ∈ [r] such that the value

m′
j

2ij+1
is supported

by ((i1, ..., ij , ij+1), (k1, ..., kj , kj+1)) and the number of t-cliques in the subgraph of G induced by

Rkj+1
is smaller than

3·mj

2ij+1
. Using the induction hypothesis (for j + 1), it follows that

m′
j

2ij+1
≤ 3t−(j+1) · 3 ·mj

2ij+1

which in turn implies that m′
j ≤ 3t−j ·mj .

Recalling that the foregoing holds, for each ((i1, ..., ij , ij+1), (k1, ..., kj)), with probability o(1/ℓt),
and using a union bound on all possible pairs in {0, 1, ..., ℓ+1}j+1×[r]j , this establishes the induction
step, and the entire claim follows. □

Claim 3.5.2 (lower-bounding the output of Algorithm 3.4): Suppose that the number of t-cliques
in G = ([n], E) is m. Then, with probability 1 − o(1), Algorithm 3.4 outputs an integer that is at
least ⌈m/(2ℓ)t−1⌉.

11



Proof: When lower-bounding the output of Algorithm 3.4 (akin Claim 3.3), we analyze the general
case of t ≥ 2 directly. We shall prove that, with probability 1− o(1), a value of at least m/(2ℓ)t−1

is supported by the empty pair (i.e, the pair corresponding to j = 0), where m is the number of
t-cliques in G.

As in the case of Claim 3.3, the proof is by induction on t, while noting that the claim is trivial
for t = 1. Recall that, since G has m ≥ 1 cliques (of size t), there exists i1 ∈ {0, 1, ..., ℓ − 1} such
that the first part of G has at least n1

def
= 3·2i1 vertices of clique-degree at least m1

def
= m

2ℓ·n1
= m

2·2i1 ·ℓ .

Hence, with probability at least 1 − (1 − 2−i1)2
ii > 0.6, for each k1 ∈ [r], the set S

(i1,k1)
1 contains

some vertex of clique-degree at least m1, denoted v(k1). In this case we say that k1 is i1-good.
With probability at least 1 − exp(−Ω(r)), at least r/2 of the indices k1 ∈ [r] are i1-good. For
each of these good k1 ∈ [r], we consider the subgraph of G induced by the neighbors of v(k1), and
note that this (t− 1)-partite subgraph contains at least m1 cliques (of size t− 1). When properly
defining the induction claim (see below), it follows that, with high probability, each of the residual
r/2 executions supports a value that is at least m1/(2 log2 n)

t−2, which establishes the induction
claim. Details follow.

Our induction claim is that if the number of t-cliques in the t-partite n-vertex graph G is m ≥ 1,
then, on input G, with probability at least 1 − rt · exp(−Ω(r)), Algorithm 3.4 outputs a value that
is at least m/(2ℓ)t−1. The induction step is proved by viewing Algorithm 3.4 as branching on all
(i1, k1) ∈ {0, 1, ..., ℓ−1}× [r] and invoking itself recursively with a corresponding induced subgraph
(i.e., the (t− 1)-partite subgraph of G that is induced by the neighbors of v(k1)). We actually care
only about the branches associated with (i1, k1) such that the first part of G has at least 3 · 2i1
vertices of clique-degree at least m1 =

m
2ℓ·2i1 and k1 is i1-good.

Note that if the number of i1-good k’s is at least r/2 and each of the corresponding recursive
invocation (of the algorithm on the corresponding (t−1)-partite induced subgraphs) outputs a value

of at least m′
1

def
= m1/(2ℓ)

t−2, then the algorithm itself outputs a value that is at least 2i1 ·m′
1 =

m/(2ℓ)t−1. By the induction hypothese (for t− 1), with probability at least 1− rt−1 · exp(−Ω(r)),
each of these invovations return a value of at least m′

1. Recalling that, with probability at least 1−
exp(−Ω(r)), the first event holds (i.e., the number of i1-good k’s is at least r/2), this establishes the
induction claim (for t), since failure occurs with probability at most (1+(r/2)) ·(rt−1 ·exp(−Ω(r))).
The main claim follows by observing that rt = o(exp(Ω(r))). □

Combining Claims 3.5.1 and 3.5.2 (and recalling the normalization), and the theorem follows.

Digest. The fact that Algorithm 3.4 uses rt trials per each sequence (i1, ..., it) ∈ {0, 1, ..., ℓ− 1}t
allows to improve the upper bound on its output (see Claim 3.5.1 vs Claim 3.2), while having little
effect on the lower bound (see Claim 3.5.2 vs Claim 3.3).5 The proof of Claim 3.5.2 proceeds from
shorter sequences to longer ones (i.e., from (i1, ..., ij) to (i1, ...., ij , ij+1)). This is to be expected
because here each subgraph, which is defined based on prior choices that include i1, ..., ij , has its
own favorable choice of the next ij+1. In contrast, in the proof of Claim 3.5.1, we have to analyze all
possible choices of (i1, ..., it) ∈ {0, 1, ..., ℓ− 1}t, and it feels more natural to proceed by a backward
induction (i.e., from (i1, ..., ij , ij+1) to (i1, ...., ij)).

5Actually, we get a minor improvement also on the lower bound: The hidden constant in Claim 3.3 is O(log t),
whereas the explicit constant in Claim 3.5.2 is 2.

12



4 Approximate counting versus uniform generation

In Section 4.1 we briefly review the standard reductions between approximate counting solutions
(to NP-search problems) and uniform generation of such solutions, while adapting both reductions
to the current context of problems concerning t-cliques in (t-partite) graphs.6 In Section 4.2 we
show that the known reduction of uniform generation to approximate counting is meaningful also
when the approximation is coarse. Actually, we generalize the known reduction in order to obtain
a meaningful result for the context of t-cliques.

4.1 The standard presentation adapted to t-cliques

Following [8], we show that approximate counting of t-cliques in t-partite n-vertex graphs and
uniform generation of t-cliques in such graphs are reducible to one another (in a fine-grained
complexity sense). Both reductions proceed by considering the (depth t · log2 n) binary tree of all
possible t-cliques such that the internal nodes corresponds to prefixes of possible t-cliques (see [6,
Sec. 6.2.4.1]). In particular, the root corresponds to an empty prefix, whereas each leaf corresponds
to the full description of a possible t-clique (i.e., a sequence of t vertices). Each reduction uses its
oracle in order to determine its next move along a path that leads from the root to some vertex.
The reduction proceeds in iterations such that in the ith iteration it extends the current (i− 1)-bit
long prefix by one bit.

In the case of uniform generation, the current prefix is extended at random with probability
that is proportional to the approximate number of t-cliques that fit each of the possible one-
bit extensions. That is, the current prefix γ is extended by the bit σ with probability that is
proportional to the approximate number of t-cliques that are described by strings with prefix γσ.
(See more details in Section 4.2.) In the case of approximate, we use a sample of uniformly generated
t-cliques that fit the current prefix in order to approximate the fraction of t-cliques that agree with
each possible one-bit extension, and proceed with the seemingly more frequent extension. (At
the end, the approximate count will be set to equal the reciprocal of the the product of these
frequencies.)

The issue at hand is reducing the tasks that refer to fixed prefixes of potential t-cliques to tasks
regarding t′-cliques for some t′ ∈ [t]. This issue was addressed by [5], see Sections 1.2 and 2. Thus,
in direct analogy to [6, Thm. 6.31], we get the following

Theorem 4.1 (approximate counting t-cliques versus uniform generation of t-cliques):

1. From approximate counting to uniform generation: Almost uniform generation of t-cliques in
a t-partite n-vertex graph is reducible in almost linear-time to approximating the number of
t-cliques in such graphs up to a factor of 1± (1/5t log2 n), where almost uniform generation
allows for a negligible deviation (i.e., the deviation is smaller than 1/poly(n)).

2. From uniform generation to approximate counting: Approximate counting of t-cliques in a t-
partite n-vertex graph is reducible in almost linear-time to uniformly generating t-cliques in
such graphs. The deviation of the approximation, which is negligible, is O(t log n) times larger
than the deviation of the uniform generation.

In both cases, the reduction makes poly(t log n) oracle calls.

6Recall that the case of general graphs can be easily reduced to the case of t-partite graphs.

13



Needless to say, the result also holds for general graphs (i.e., graphs that are not necessarily t-
partite).

Digest. Using the terminology of Section 2, we mention that, in both cases, a problem regarding
a relation R (such that |y| = ℓ(|x|) for every (x, y) ∈ R) is reduced to a problem regarding the
corresponding auxiliary relation R′, and in this case t log2 n is replaced by ℓ(|x|). In the case of
t-cliques, a reduction of R′ to R is used in order to remove R′ from the theorem’s statement.

4.2 Using coarse approximate counters

In this section we show that the reduction of uniform generation to approximate counting is mean-
ingful also when the approximation is coarse. The following text reproduces part of [6, Sec. 6.2.4.1],
while making the relevant adaptions. We first generalize the definition of uniform generation (as
in [6, Def. 6.30]), allowing for an arbitrary lower bound on the success probability (rather that
setting it to 1/2).

Definition 4.2 (uniform generation, quantified success probability): Let R ⊆ {0, 1}∗ × {0, 1}∗ be

a search problem, R(x)
def
= {y : (x, y)∈R} and SR = {x : |R(x)| ≥ 1}. For η, ϵ : N → [0, 1], we say

that a randomized process (1− η)-solves the (1− ϵ)-approximate uniform generation problem of R if,
on input x ∈ SR, the process, denoted Π, outputs either an element of R(x) or a special symbol,
denoted ⊥, such that Pr[Π(x)∈R(x)] ≥ 1− η(|x|) and∑

y∈R(x)

∣∣∣∣Pr [Π(x)=y
∣∣∣Π(x)∈R(x)

]
− 1

|R(x)|

∣∣∣∣ ≤ ϵ(|x|).

That is, η upper-bounds the failure probability of Π (i.e., the probability that it outputs ⊥), whereas
ϵ upper-bounds the deviation of Π(x) from uniform distribution on R(x), when conditioning on
Π(x) ∈ R(x) (equiv., on Π(x) ̸= ⊥).

� If ϵ is negligible (i.e., vanishes faster than the reciprocal of any positive polynomial), then we
say that the process (1− η)-solves the uniform generation problem of R.

� In addition, if η is also negligible, then we say that the process solves the uniform generation
problem of R.

The following result generalizes the essence of the first direction of [6, Thm. 6.31]. This generaliza-
tion, which explicitly supports coarse approximations, introduces an additional parameter (i.e., m)
that governs the trade-off between the query complexity of the procedure (i.e., q) and its success
probability (i.e., F−(m+1)). We shall capitalize on this trade-off in Corollary 4.4.

Theorem 4.3 (from coarse approximate counting to weak uniform generation): Let R be as in

Definition 4.2, R′ def
= {(⟨x, y′⟩, y′′) : (x, y′y′′) ∈ R} and R′(x, y′)

def
= {y′′ : (x, y′y′′) ∈ R}. Suppose

that for a time-constructible and at least logarithmic7 function ℓ : N → N it holds that |y| ≤ ℓ(|x|)
for every (x, y)∈R. For F : N → R such that F (n) ≥ 1 for every n, suppose that A approximates

7This condition is made for sake of simplicity. If ℓ(n) = o(logn), then we need to add a logn factor to q.

14



the number of solutions wrt R′ in the sense that for every x and y′, with probability at least 2/3, it
holds that

|R′(x, y′)| ≤ A(x, y′) ≤ F (|x|) · |R′(x, y′)|. (3)

Then, for any time-constructible m : N → N, given oracle access to A, one can F−(m+1)-solve the
uniform generation problem of R by making q = Õ(m · 2ℓ/m) oracle calls to A and running in time
q(|x|) · (|x|+ ℓ(|x|)) on input x.

(The statement of the first direction of [6, Thm. 6.31] essentially postulated that F = 5ℓ+1
5ℓ−1 ≤

1 + (1/2ℓ) and m = ℓ; indeed, in that case F−(m+1) > 1/2.)8

Proof: Throughout the proof, we assume for simplicity (and in fact without loss of generality) that
R(x) ̸= ∅ and R(x) ⊆ {0, 1}ℓ(|x|) for every x. Generalizing the overview provided in Section 4.1, we
view a generic y ∈ R(x) as partitioned to ℓ′(|x|) blocks, each of length ℓ′ = ℓ(|x|)/m(|x|). On input
x, we shall generate a uniformly distributed y ∈ R(x) by iteratively generating at random its ℓ′-bit
blocks, one after the other.

Let us first describe the reduction assuming that we have oracle access to #R′ (rather than
to A that only approximates #R′). We proceed in iterations, entering the ith iteration with an
(i− 1) · ℓ′-bit long string y′ such that R′(x, y′) is not empty. For each z ∈ {0, 1}ℓ′ , with probability
|R′(x, y′z)|/|R′(x, y′)| we set the ith block to equal z. Hence, after m(|x|) iterations, we obtain
a uniformly distributed element of R(x). Recalling that we only have oracle access to a (coarse)
approximation of #R′, a careful implementation of the foregoing strategy is in place.

Firstly, by adequate error reduction, we may assume that Eq. (3) fails with probability o(µ/q),
where µ is a negligible function. In the rest of the analysis we ignore the probability that the
estimate of #R′(x, y′) provided by the randomized oracle A (on query (x, y′)) violates Eq. (3). (We
note that these rare events are the only source of the possible deviation of the output distribution
from the uniform distribution on R(x).)9 Next, let us assume for a moment that A is deterministic
and that for every x and y′ ∈ ({0, 1}ℓ′)∗ it holds that∑

z∈{0,1}ℓ′
A(x, y′z) ≤ A(x, y′). (4)

We also assume that the approximation is actually perfect at the “trivial level” (where it corresponds
to whether or not (x, y) is in R); that is, for every y ∈ {0, 1}ℓ(|x|), it holds that

A(x, y) = 1 if (x, y) ∈ R and A(x, y) = 0 otherwise. (5)

Relying on these assumptions, we modify the ith iteration of the foregoing procedure such that,
when entering with the (i − 1) · ℓ′-bit long prefix y′, we set the ith block to z ∈ {0, 1}ℓ′ with
probability A(x, y′z)/A(x, y′) and halt (with output ⊥) with the residual probability (i.e., 1 −∑

z A(x, y′z)/A(x, y′)). Indeed, Eq. (4) guarantees that the latter instruction is sound, since the 2ℓ
′

8Furthermore, Theorem 4.3 provides more explicit complexity bounds. On the other hand, in some technical
aspects, the first direction of [6, Thm. 6.31] is more general; however, the actual proof starts by reducing the more
general formulation to the foregoing formulation.

9Note that the (negligible) effect of these rare events may not be easy to correct. For starters, we do not necessarily
get an indication when these rare events occur. Furthermore, these rare events may occur with different probability
in the different invocations of algorithm A (i.e., on different queries).

15



main probabilities sum-up to at most 1. Hence, in each iteration we make 2ℓ
′
oracle calls, where

these calls are required in order to compute
∑

z A(x, y′z).
If we completed the last (i.e., m(|x|)th) iteration, then we output the ℓ(|x|)-bit long string that

was generated. Thus, as long as Eq. (4) holds (but regardless of other aspects of the quality of
the approximation), every y = z1 · · · zm(|x|) ∈ R(x), where the zi’s are in {0, 1}ℓ′ , is output with
probability

A(x, z1)

A(x, λ)
· A(x, z1z2)

A(x, z1)
· · · · ·

A(x, z1z2 · · · zm(|x|)−1zm(|x|))

A(x, z1z2 · · · zm(|x|)−1))
(6)

which equals 1/A(x, λ), where the equality relies on Eq. (5). Thus, the procedure outputs each
element of R(x) with equal probability, and never outputs a non-⊥ value that is outside R(x). It
follows that the quality of approximation only effects the probability that the procedure outputs
a non-⊥ value, which in turn equals |R(x)|/A(x, λ). The key point is that, as long as Eq. (4) and
Eq. (5) hold, the specific approximate values obtained by the procedure are immaterial – with the
exception of A(x, λ), all these values “cancel out”.

We now turn to enforcing Eq. (4) and Eq. (5). In most settings, one can enforce Eq. (5) by
performing the straightforward check (of whether or not (x, y) ∈ R) rather than invoking A(x, y).
However, since we made no hypothesis regarding the complexity of recognizing R, we take the
alternative of modifying A such that A(x, y) ∈ {0, 1} whenever |y| = ℓ(|x|); specifically, we reset
A(x, y) = 1 if A(x, y) > 1 (and observe that A(x, y) ∈ (0, 1) is impossible).10 As for Eq. (4), we

enforce it artificially by using A′(x, y′)
def
= F (|x|)m(|x|)−i ·A(x, y′), for every y′ ∈ ({0, 1}ℓ′)i, instead

of A(x, y′). Recalling Eq. (3), we have for every y′ ∈ ({0, 1}ℓ′)i and z ∈ ({0, 1}ℓ′ ,

A′(x, y′) ≥ F (|x|)m(|x|)−i · |R′(x, y′)|
A′(x, y′z) ≤ F (|x|)m(|x|)−(i+1) · F (|x|) · |R′(x, y′z)|

and the claim (that Eq. (4) holds) follows (because R′(x, y′) =
⋃

z∈{0,1}ℓ′ R
′(x, y′z)). Note that the

foregoing modification only effects the probability of outputting a non-⊥ value; this good event
now occurs with probability |R′(x, λ)|/A′(x, λ), which is lower-bounded by F (|x|)−(m(|x|)+1).

Finally, we refer to our assumption that A is deterministic. This assumption was only used in
order to identify the value of A(x, y′) obtained and used in the ((|y′|/ℓ′) − 1)st iteration with the
value of A(x, y′) obtained and used in the (|y′|/m)th iteration. The same effect can be achieved by
just re-using the former value (in the (|y′|/m)th iteration) rather than re-invoking A in order to
obtain it. The theorem follows.

Combining Theorem 4.3 with a starightforward amplification of the success probability of uniform
generation, while using a suitable setting of m, we get the following

Corollary 4.4 (from coarse approximation to uniform generation): Let R,R′, F and A be as in
Theorem 4.3. Then, given oracle access to A, one can solve the uniform generation problem of R
by making q = exp(O(

√
ℓ · logF )) oracle calls to A and running in time q(|x|) · (|x| + ℓ(|x|)) on

input x.

10Note that Eq. (3) implies that A(x, y′) = 0 whenever R′(x, y′) = ∅, whereas A(x, y′) ≥ 1 whenever R′(x, y′) ̸= ∅.
Hence, for |y| = ℓ(|x|), we may reset A(x, y) = 1 whenever A(x, y) > 1, while noting that this modification cannot
cause violation of Eq. (3).

16



Note that for F = poly(ℓ), we get q = exp(Õ(
√
ℓ)). Specifically, in case of t-cliques in n-vertex

graphs, we have ℓ(n) = t · log2 n and F (n) = O(log n)O(t), which yields q(n) = exp(Õ(
√
log n)) =

no(1). This is inferior to the result of [5, Thm. 2], but the proof is conceptually simpler.

Proof: Setting m =
√
ℓ/ logF , we merely invoke the weak uniform generator provided by The-

orem 4.3 for a sufficient number of times and output the first non-⊥ value provided. Specifically,
on input x, we invoke this F−(m+1)-solver for Θ(log |x|)2 · F (|x|)m(|x|)+1 times. Hence, we fail to
produce output with probability at most exp(−Ω(log |x|)2)≪ 1/poly(|x|). The number of queries
made by the resulting reduction, on input x, is(

O(ℓ(|x|)2) · F (|x|)m(|x|)+1
)
· Õ

(
m(|x|) · 2ℓ(|x|)/m(|x|)

)
= poly(ℓ(|x|)) · F (|x|)

√
ℓ(|x|)/ logF (|x|) · 2

√
ℓ(|x|)·logF (|x|)

= exp(O(
√
ℓ(|x|) · logF (|x|))).

The claim follows.

Combining Corollary 4.4 with Theorem 3.5 (and Theorem 4.1), we get

Corollary 4.5 (approximate counting and uniform generation of t-cliques):

1. Given oracle access to a decision procedure for t-cliques in n-vertex graphs, one can solve the
corresponding uniform generation problem in almost linear-time by making q(n) = exp(Õ(

√
log n))

queries.

2. Given oracle access to a decision procedure for t-cliques, one can approximate the number
of t-cliques in an n-vertex graph up-to a factor of 1 ± ϵ within complexities that are only
O((log q(n))/ϵ2) times larger than those in Item 1.

Again, this is inferior to the results of [5], but the proof is conceptually simpler.

5 Directly reducing fine to coarse approximation of t-cliques

In this section we follow [5], who showed how to use coarse approximate counters towards obtaining
fine approximate counters. The key observation is that we can obtain a fine approximation of
N =

∑
j∈J Nj by using coarse approximations of each Nj along with fine approximations of few

individual Nj’s. Specifically, the number of fine approximations that we use is proportional to the
approximation factor of the coarse approximator. We detail this idea next.

Suppose that, for some F and every j ∈ J , we get an approximation Ñj such that Ñj ∈
[Nj , F · Nj ]. Then, letting Ñ =

∑
j∈J Ñj , we set pj

def
= Ñj/Ñ and select i with probability pj .

The key observation is that the value Nj/pj (which corresponds to a random selection of j) is
an unbiased estimator of N and its variance is bounded in terms of F . This follows from the
next generic (“importance sampling”) claim, which is stated next. Hence, if we obtain a fine
approximation of few random Nj ’s, then we get a fine approximation of N .

Claim 5.1 (importance sampling, a generic claim): For positive vj’s and v =
∑

j∈J vj, let X be
a random variable that equals vj/pj with probability pj > 0 (such that

∑
j∈J pj = 1), and suppose

that pj ≥ vj
Fv . Then, E[X] = v and V[X] ≤ (F − 1) · v2.

17



For the foregoing application, we shall indeed use pj = Ñj/Ñ and rely on the guarantee Ñj ≥ Nj

and Ñ ≤ F ·N . In this case pj ≥ Nj

F ·N , and using a 1± 0.5ϵ factor approximation of an individual
Nj yields a estimator of N that has expectaion (1± 0.5ϵ) ·N and variance approximately F ·N2.
Hence, taking the average of O(F/ϵ2) samples of X yields a value that is within 1± ϵ factor of N .

Proof: Note that E[X] =
∑

j∈J pj · (vj/pj) = v, whereas

E[X2] =
∑
j∈J

pj · (vj/pj)2

=
∑
j∈J

v2j
pj

≤
∑
j∈J

v2j
vj/Fv

=
∑
j∈J

Fv · vj

which equals F · v2. Hence, V[X] = E[X2]− E[X]2 ≤ F · v2 − v2.

The following result will be proved by using an iterative process as outlined in Section 1.2.2.
Specifically, each of the samples (and corresponding values) generated at the current iteration
depends on all samples and values generated in the previous iteration. We shall use Claim 5.1 to
relate the average value associated with the samples produced in current iteration to the average
value associated with the samples produced in previous iteration.

Theorem 5.2 (from coarse approximate counting to fine approximate counting): Let R, ℓ,R′, F
and A be as in Theorem 4.3; loosely speaking, ℓ denotes the length of solutions w.r.t R, and A
approximates the number of solutions w.r.t R′ up to a factor of T (see Eq. (3)). Then, given oracle
access to A, one can approximate the number of solutions wrt R up-to a factor of 1± ϵ by making
q = Õ(ϵ−2 · F · ℓ4) oracle calls to A and running in time q(|x|) · (|x|+ ℓ(|x|)) on input x.

Proof: Following the outline provided in Section 1.2.2, we proceed in ℓ iterations. For each i ∈ [ℓ],
we enter the ith iteration with a list of k = O(Fℓ3/ϵ2) (not necessarily distinct) (i − 1)-bit long
strings coupled with corresponding “multipliers” (used in the final result), and leave it with random
samples of one-bit extensions of these strings (coupled with corresponding multiplier).

The foregoing strings are prefixes of possible solutions for the given input x, and the multipliers
are supposed to represent the ratio between the total number of solutions to x and the number of
solutions that fit the various prefixes. Specifically, the sequence of pairs given to the ith iteration
is denoted ((y(i−1,1),m(i−1,1)), ..., (y(i−1,k),m(i−1,k))) and we shall show that for every i ∈ [ℓ+ 1], it
holds that

1

k
·
∑
j∈[k]

m(i−1,j) ·Ny(i−1,j) ≈ Nλ (7)

where λ denotes the empty string and Ny′ denotes the number of solutions that fit the prefix y′. In
particular, y(0,j) = λ and m(0,j) = 1 for every j ∈ [k]; hence, Eq. (7) holds trivially for i = 1. Each
iteration generates a new list of pairs, which is given to the next iteration, whereas the last (i.e.,

18



ℓth) iteration produces a sequence that is used to produce the output. Specifically, since all y(ℓ,j)’s
are valid solutions, the final output is

∑
j∈[k]m

(ℓ,j)/k.
Needless to say, the crucial issue is the way in which the next list of pairs is generated. In each

iteration, we generate each of the pairs in the same manner, independently of the generation of the
other pairs. Specifically, on input x, for each i ∈ ℓ], in the ith iteration we are given the sequence
pf pairs ((y(i−1,1),m(i−1,1)), ..., (y(i−1,k),m(i−1,k))), and generate each of the new pairs as follows:

1. For each j ∈ [k] and each σ ∈ {0, 1}, we use the approximate counter A to obtain an
estimate, denoted Ñy(i−1,j)σ, of the number of solutions that fit the prefix y(i−1,j)σ; that is,

Ñy(i−1,j)σ ← A(x, y(i−1,j)σ).

The same values Ñy(i−1,j)σ may be used to generate all k pairs of the current iteration. In
fact, it is simpler to analyze the process this way.

Actually, since we need all ℓ ·2k approximations to be correct, we reduce the error probability
of A by invoking it O(log(ℓ · k)) times and take the median value.

2. For each j ∈ [k] and each σ ∈ {0, 1}, we let aj,σ ← m(i−1,j) · Ñy(i−1,j)σ and pj,σ ← aj,σ/a,
where a =

∑
j′,σ′ aj′,σ′ .

3. We select (j, σ) ∈ [k]×{0, 1} with probability pj,σ, and generate the pair (y(i−1,j)σ,m(i−1,j)/pj,σ).

To evaluate the features of this generation process, we let X(i) denote the corresponding value of the

generated pair (i.e., its contribution to Eq. (7)); that is, X(i) = m(i−1,j)

pj,σ
·Ny(i−1,j)σ with probability

pj,σ. We first observe that

pj,σ =
aj,σ∑

j′,σ′ aj′,σ′

=
m(i−1,j) · Ñy(i−1,j)σ∑

j,σ′ m(i−1,j′) · Ñy(i−1,j′)σ′

≥
m(i−1,j) ·Ny(i−1,j)σ∑

j,σ′ m(i−1,j′) · F ·Ny(i−1,j′)σ′

where the inequality uses Ñy(i−1,j)σ ≥ Ny(i−1,j)σ and Ñy(i−1,j′)σ′ ≤ F · Ny(i−1,j′)σ′ . Using vj′,σ′ =

m(i−1,j′) · Ny(i−1,j′)σ′ and v =
∑

j′,σ′ vj′,σ′ , we have pj,σ ≥ vj,σ
F ·v . Applying Claim 5.1, it follows

that E[X(i)] = v and V[X(i)] ≤ (F − 1) · E[X(i)]2. Letting X
(i)
j denote the contribution of the jth

pair (generated in ith iteration) to Eq. (7), using Ny(i−1,j) = Ny(i−1,j)0 + Ny(i−1,j)1 (which implies

vj′,0 + vj′,1 = m(i−1,j′) ·Ny(i−1,j′)), and applying Chebyshev’s Inequality, we get

Pr

1

k
·
∑
j∈[k]

X
(i)
j /∈

(1± (ϵ/ℓ)) · 1
k
·
∑
j∈[k]

m(i−1,j) ·Ny(i−1,j)


= Pr

∣∣∣∣∣∣1k ·
∑
j∈[k]

X
(i)
j − E[X(i)]

∣∣∣∣∣∣ > (ϵ/ℓ) · E[X(i)]



19



≤ V[X(i)]

(ϵ · E[X(i)]/ℓ)2 · k

≤ F − 1

(ϵ/ℓ)2 · k

which is upper-bounded by 0.1
ℓ by our choice of k. Hence, for each i ∈ [ℓ + 1], with probability

1− (i−1)·0.1
ℓ , it holds that

1

k
·
∑
j∈[k]

m(i−1,j) ·Ny(i−1,j) =

(
1± e)

ℓ

)i−1

·Nλ (8)

which establishes Eq. (7) in concrete terms. Hence, with probability at least 0.9, the output (i.e.,∑
j∈[k]m

(ℓ,j)/k) is an 1 ± ϵ factor approximation of the number of t-cliques in the input graph.
Observing that, in each of the ℓ iterations, we make 2k oracle calls (to the error-reduced version of
A), the theorem follows.

Digest. In a sense, the proof of Theorem 5.2 applies the reductions of fine approximate counting
to uniform generation and of uniform generation to coarse approximate counting at the level of
each iteration. In contrast, in Section 4, these two reductions were applied at the level of the
problem itself (see Theorem 4.3 as well as Section 4.1). Note the analogy between Claim 5.1 and
the argument used within the proof of Theorem 4.3.

6 The story behind this memo

As noted in [7], I started thinking about these computational problems while being unaware of the
prior work. The starting point of my thoughts was the reduction of approximate-counting solutions
for NP-search problems to decision problems in NP and the tight relationship between approximate-
counting and uniform generation of solutions for NP-search problems. These well-known results
of [9, 10] and [8], respectively, are among my favorites (see [6, Sec. 6.2]). My goal was to obtain fine-
grained complexity analogues of these results for the corresponding problems regarding t-cliques.
Below I reproduce my original train of thoughts.

As mentioned in the main text, in the context of NP, the standard reduction of approximate
counting to decision is based on hashing and on the fact that fitting a specific image under a hash
function can be encoded into the NP-complete problem. The first observation is that replacing the
hashing by a (careful) random selection of vertices yields a coarse approximation of the number of
t-cliques (when using an oracle for deciding the existence of t-cliques).

Recalling that the standard reduction of uniform generation to approximate counting is insen-
sitive to the quality of the approximation (provided it is fine and above some level), I observed
that any coarse approximate counter of t-cliques yields a weak procedure for uniform generation
of t-cliques, which can then be amplified, and in turn yield a fine approximate counter of t-cliques.
Here, as well as in the opposite direction, problems regarding t-cliques that fit a given prefix are
reduced to problems regarding t-cliques (proper). Fortunately, the latter auxiliary problems can be
reduced to the orignal ones.

Originally, I was hoping to improve the coarse approximate counter of t-cliques into a fine one.
As noted in the main text, the acute source of coarseness is that the analysis of Algorithm 3.1 only

20



capitalizes on the best choice of a sequence of indices (i1, ..., it) (which corresponds to the “heaviest
bucket”). I failed in my attempts to benefit from all the sequences of indices.

At this point, I became aware of previous works on the subject (specifically, the sequence [1,
4, 2, 5, 3]); in particular, I found out that Dell et al. [5] discovered a direct and superior method
of reducing fine approximate counting of t-cliques to coarse approximate counting of t-cliques, and
that the coarse approximate counter that I “discovered” was discovered before by Bhattacharya
et al. [3]. So I decided to turn my working draft into a survey.

I believe that the fact that my starting points and conceptual frameworks are somewhat different
than those of the authors of [5, 3] is responsible for the differences in the presentation style as well
as for some quantitative improvements.

Acknowledgments

I am grateful to Amir Abboud for helpful discussions and comments.

References

[1] Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rashtchian,
and Makrand Sinha. Edge Estimation with Independent Set Oracles. In 9th ITCS, pages 38:1–
38:21, 2018.

[2] Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Hyperedge Estimation
using Polylogarithmic Subset Queries. CoRR abs/1908.04196, 2019.

[3] Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Faster Counting and
Sampling Algorithms Using Colorful Decision Oracle. In 39th STACS, pages 10:1–10:16, 2022.

[4] Holger Dell and John Lapinskas. Fine-Grained Reductions from Approximate Counting to
Decision. In 50th STOC, pages 281–288, 2018. ACM Trans. Comput. Theory, Vol. 13 (2),
pages 8:1–8:24, 2021.

[5] Holger Dell, John Lapinskas, and Kitty Meeks. Approximately Counting and Sampling Small
Witnesses Using a Colourful Decision Oracle. In 31st SODA, pages 2201–2211, 2020. SIAM
J. Comput., Vol. 51 (4), pages 849–899, 2022.

[6] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[7] Oded Goldreich. On approximately counting t-cliques. Unpublished manuscript, 2023. Avail-
able from https://www.wisdom.weizmann.ac.il/∼oded/MC/cnt-cliq.pdf

[8] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random Generation of Combinatorial
Structures from a Uniform Distribution. TCS, Vol. 43, pages 169–188, 1986.

[9] Michael Sipser. A Complexity Theoretic Approach to Randomness. In 15th STOC, pages
330–335, 1983.

[10] Larry J. Stockmeyer. The Complexity of Approximate Counting. In 15th STOC, pages 118–
126, 1983.

21

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


