
An improved protocol for ExactlyN with more than 3 players

Lianna Hambardzumyan ∗ Toniann Pitassi † Suhail Sherif ‡ Morgan Shirley §

Adi Shraibman ¶

Abstract

The ExactlyN problem in the number-on-forehead (NOF) communication setting asks k
players, each of whom can see every input but their own, if the k input numbers add up to
N . Introduced by Chandra, Furst and Lipton in 1983, ExactlyN is important for its role in
understanding the strength of randomness in communication complexity with many players. It is
also tightly connected to the field of combinatorics: its k-party NOF communication complexity
is related to the size of the largest corner-free subset in [N]k−1.

In 2021, Linial and Shraibman gave more efficient protocols for ExactlyN for 3 players. As
an immediate consequence, this also gave a new construction of larger corner-free subsets in [N]2.
Later that year Green gave a further refinement to their argument. These results represent the
first improvements to the highest-order term for k = 3 since the famous work of Behrend in 1946.
In this paper we give a corresponding improvement to the highest-order term for all k > 3, the
first since Rankin in 1961. That is, we give a more efficient protocol for ExactlyN as well as
larger corner-free sets in higher dimensions.

Nearly all previous results in this line of research approached the problem from the combina-
torics perspective, implicitly resulting in non-constructive protocols for ExactlyN. Approaching
the problem from the communication complexity point of view and constructing explicit protocols
for ExactlyN was key to the improvements in the k = 3 setting. As a further contribution we
provide explicit protocols for ExactlyN for any number of players which serves as a base for
our improvement.

∗The Hebrew University of Jerusalem. lianna.hambardzumyan@mail.huji.ac.il. Research partially supported
by ISF grant 921/22.

†Columbia University. tonipitassi@gmail.com. Supported by NSF AF:Medium 2212136.
‡LASIGE, Faculdade de Ciências, Universidade de Lisboa. suhail.sherif@gmail.com. Funded by the European

Union (ERC, HOFGA, 101041696). Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council. Neither the European Union
nor the granting authority can be held responsible for them. Also supported by FCT through the LASIGE Research
Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020. Most of the work was done while the author was at Vector
Institute, Toronto.

§University of Toronto. shirley@cs.toronto.edu. Supported by an NSERC grant.
¶The Academic College of Tel Aviv-Yaffo. adish@mta.ac.il

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 138 (2023)

1 Introduction

In this paper we continue a recent line of work that seeks to apply ideas from communication
complexity to the field of additive combinatorics. Specifically, we study the following problems:

(i) k-AP Problem: What is the maximum size of a subset of [N] that contains no (nontrivial)
k-term arithmetic progression (k-AP for short) – a sequence x, x+ δ, x+ 2δ, . . . , x+ (k − 1)δ
for some δ ̸= 0?

(ii) Corners Problem: What is the maximum size of a subset of [N]k that contains no k-
dimensional corner – a set of k + 1 points of the form:

(x1, x2, . . . , xk), (x1 + δ, x2, . . . , xk), (x1, x2 + δ, . . . , xk), . . . , (x1, x2, . . . , xk + δ)

for some δ ̸= 0?

Our paper is inspired by a growing body of equivalences that have been discovered between
problems in additive combinatorics and communication complexity. We build on recent work that
exploits these equivalences to gain new perspectives on the two main problems above.

(i) The k-AP Problem is equivalent to the deterministic number-in-hand (NIH) k-player commu-
nication complexity of the following promise version of Equality: Each of the k players is
given an input xi ∈ [N] and they want to decide if their inputs are all equal under the promise
that they form a k-term arithmetic progression.

(ii) The Corners Problem is equivalent to the (k + 1)-player number-on-forehead (NOF) communi-
cation complexity of ExactlyN: There are k + 1 inputs, x1, . . . , xk+1 ∈ [N], where Player i
sees all inputs except for xi, and they want to decide whether or not the sum of their inputs is
equal to N .

The main contribution of this paper is a new protocol for the ExactlyN problem that is more
efficient than previously-known protocols when there are more than three players. This in turn gives
a new method for constructing corner-free subsets of [N]k which improves on previous constructions
for all k > 2.

1.1 Background

Computational complexity and additive/extremal combinatorics have enjoyed a rich interaction in
the last fifty years. On one side, extremal combinatorics has been critical for proving complexity
lower bounds. For example, the Sunflower Lemma underlies Razborov’s superpolynomial monotone
circuit lower bound [Raz85] as well as recent query-to-communication lifting theorems [LMM+22],
and Ramsey’s Theorem underlies many complexity lower bounds [Pud90]. On the other side, tools
from complexity theory have been used to resolve problems in additive/extremal combinatorics.
For example, the recent breakthrough on the Sunflower conjecture [ALWZ21] uses ideas behind
the Switching Lemma, and the resolution of the Kakeya conjecture [Dvi09] and the Cap-Set
Conjecture [CLP17; EG17] use the polynomial method from circuit complexity. Moreover, some
of the main achievements in theoretical computer science – advances in error correcting codes, the
PCP theorem, and pseudorandomness/extractors – have rich and deep connections with additive
combinatorics [Lov17].

In this paper we continue in this tradition by studying two fundamental problems that are
well-studied from both the lenses of additive combinatorics and communication complexity. We give
a brief discussion of their importance and motivations from these respective fields.

2

Additive combinatorics. A basic question in number theory and additive combinatorics is
understanding the existence of additive structure in the natural numbers, and understanding how
much of this structure is algebraic or combinatorial in nature. A remarkable early theorem from 1927
due to Van der Waerden states that for every r and k, there exists N such that any r-coloring of the
numbers in [N] contains a monochromatic k-term arithmetic progression. Later it was famously
shown that in fact any dense enough subset of the natural numbers contains an arbitrarily large
arithmetic progression. Subsequently, many generalizations and quantative versions have received a
lot of attention in Ramsey theory, with Szemeredi’s Theorem and the Multidimensional Szemeredi’s
Theorem proving that the density of k-AP free sets and corner-free sets must be sub-constant. This
has led to a lot of interest both in improving the density upper bounds and in finding large k-AP
and corner-free sets. We refer the reader to the excellent books by Tao and Vu [TV06] and by
Zhao [Zha23] for a comprehensive treatment.

Communication complexity. The additive combinatorics problems we study here, viewed
through the lens of communication complexity, are essentially questions about derandomization. The
k-AP problem, reformulated as a communication problem, is a restriction of the Equality function,
which in the NIH model is easy for randomized protocols but maximally hard for deterministic
protocols. The restricted version here asks how the deterministic complexity changes under the
assumption that the inputs have an additive structure.

ExactlyN (the Corner’s problem) has also been studied for the purpose of showing a separation
between randomized and deterministic NOF communication complexity. Although a strong non-
constructive separation is known even for k = nϵ many players [BDPW10], it was only recently that
the first constructive separation was shown [KLM23], and even then it has only been proven for
k = 3 players.

Even though a constructive separation is now known, ExactlyN continues to be of central
importance in this line of research. This is because ExactlyN is a “graph function”, and the strong
non-constructive separation mentioned above [BDPW10] is witnessed by most graph functions. The
separating function of [KLM23] is surprisingly not a graph function, and their lower bound technique
is not known to apply to ExactlyN. New techniques developed for lower bounding the complexity
of ExactlyN would then be promising to provide lower bounds when k > 3. This would be of much
interest since NOF lower bounds when k > log n would imply breakthrough ACC circuit lower
bounds [BT94; Yao90]. On the other hand, it is entirely possible that there are efficient protocols for
ExactlyN that are waiting to be discovered.

1.2 Previous bounds

The current state-of-the-art reveals a significant difference in our understanding of the k-AP problem
and the Corners problem.

The k-AP Problem. A construction by Behrend from 1946 yields a 3-AP-free subset of [N] of
size at least N · 2−2

√
2
√
logN+o(

√
logN) [Beh46].1 The recent breakthrough result of Kelley and Meka

[KM23] shows that the exponent is tight to within polynomial factors for k = 3.
Behrend’s result was extended to all k > 3 by Rankin [Ran61] who obtained the following subset

size lower bound:
N · 2−t2(t−1)/2·(logN)1/t+o((logN)1/t),

1All logarithms in this paper are base 2.

3

for t = ⌈log k⌉. Note that this matches Behrend’s result (and, indeed, is the same construction)
when k = 3. The best size upper bound for k = 4 is N · 1/(logN)Ω(1) [GT17] and for k > 4 is
N · 1/(log logN)η, where η = 2−2k+9 [Gow01].

The Corners Problem. Until fairly recently, the best corner-free set construction was via a direct
reduction to the k-AP Problem. Ajtai and Szemerédi first gave this reduction for k = 3 [AS74];
their proof easily generalizes to k > 3. The reduction is very clean and yields the same density
lower bounds for the (k − 1)-dimensional Corners Problem as for the k-AP Problem – if [N] has a
k-AP-free subset of size N · δ, then [N]k−1 has a corner-free subset of size Nk−1 · δ. In particular,
the estimates of Behrend and Rankin can be directly applied to the Corners Problem.

Unlike the k-AP problem, where for k = 3 relatively tight bounds are known, there is a large gap
between upper and lower bounds for the 2-dimensional Corners Problem. The best known upper
bound is N2 · 1/(log logN)c for some constant c by Shkredov [Shk06]. For k ≥ 3 the best upper
bound is just Nk · ω(1) [Gow07].

Recent works have improved the Ajtai-Szemerédi reduction, yielding better lower bounds for the
Corners Problem, by examining the problem through a communication complexity lens.

Communication complexity and improved bounds for the Corners Problem. In 1983,
Chandra, Furst, and Lipton defined the NOF model of communication and showed the equiva-
lence between the k-party NOF complexity of ExactlyN and the (k − 1)-dimensional Corners
Problem [CFL83].

Specifically, the minimal cost of protocols for these problems is (up to a constant factor) the
logarithm of the optimal solution for the closely-related coloring version of the additive combinatorics
problems in question:

(i) k-AP Problem (Coloring Version): What is the minimum number of colors to color [N]
such that each color class is free of k-APs?

(ii) Corners Problem (Coloring Version): What is the minimum number of colors to color
[N]k such that each color class is free of k-dimensional corners?

By a standard probabilistic tiling argument the coloring and subset size formulations of these
problems are roughly equivalent. A k-AP-free subset with size N/δ implies a k-AP-free coloring
with δ ·O(logN) colors, and a similar connection holds for the corners problem. Therefore, a lower
bound on the size of a k-AP-free subset (resp. corner-free subset) is the same as an upper bound on
the k-AP-free coloring number (resp. corner-free coloring number) and consequently on the NIH
complexity of Equality with a k-AP promise (resp. the NOF complexity of ExactlyN).

Figure 1 summarizes the relationships between the problems in additive combinatorics and
their communication complexity reformulations. For convenience, we include the proofs of these
equivalences in Appendix A.

The Chandra-Furst-Lipton equivalence, combined with the Ajtai-Szemerédi reduction to the
k-AP Problem, shows that the NOF communication complexity of ExactlyN for k = 3 is at most
2
√
2
√
logN + o(

√
logN) by Behrend’s construction, and for k > 3 is at most t2(t−1)/2(logN)1/t +

o
(
(logN)1/t

)
for t = ⌈log k⌉ by Rankin’s construction.

The protocols yielded by the above equivalence are non-explicit : we have an upper bound on
their complexity but the underlying algorithms are non-constructive. This lack of explicitness comes
from two places. First, the AP-free subsets of Behrend and Rankin are chosen using a generalized
pigeonhole argument. Second, converting the subset size lower bounds into coloring upper bounds

4

k-AP-free
set in [N]

k-AP-free
coloring of [N]

NIH Equality
with k-AP promise

Corner-free
set in [N]k−1

Corner-free
coloring of [N]k−1

NOF
ExactlyN

A.4 A.1

A.6

A.7 A.3

A.2

A.5

Figure 1: The figure shows how the additive combinatorics problems are related to each other
and to their communication complexity equivalents. For problems A and B, A → B denotes
c(B) = O(c(A)), where c(·) measures the problem’s complexity in our context.

requires a probabilistic tiling argument. The problem for us is that such non-explicit protocols are
difficult to analyze and therefore difficult to improve. Linial, Pitassi, and Shraibman remedied this
situation by giving an explicit protocol for ExactlyN when k = 3 [LPS19].

Recently, Linial and Shraibman gave the first protocol that improves the highest-order term
for the ExactlyN problem for k = 3 since Behrend’s original proof from 1946, yielding also an
improved subset size lower bound for the 2-dimensional Corners Problem. Specifically, the constant
of 2
√
2 ≈ 2.828 is improved to 2

√
log e ≈ 2.402 [LS21]. This protocol was found by closely examining

the explicit protocol of Linial, Pitassi, and Shraibman. Linial and Shraibman’s result was further
improved by Green, who lowered the constant to 2

√
2 log(4/3) ≈ 1.822 [Gre21].

1.3 Main result

In this paper, we begin by giving an explicit protocol for ExactlyN with cost that matches the
construction of Rankin. Then we identify an optimization of this protocol which we exploit to give
the first improvement in the highest-order term for every constant k:

Theorem 1. The number-on-forehead communication complexity of ExactlyN with k players is at
most (

1− ck
t

)
t2(t−1)/2(logN)1/t + o((logN)1/t),

where t = ⌈log k⌉ and ck is a constant depending on k.

Corollary 2. The improved protocol from Theorem 1 yields a corner-free subset of [N]k−1 of size:

Nk−1 · 2−(1−
ck
t)t2

(t−1)/2(logN)1/t+o((logN)1/t)

for t = ⌈log k⌉.2

This is the first improvement in the higher-order term since Rankin’s 1961 construction. (Rankin’s
construction gives the above bound but where ck = 0 for all k.) Similar to the recent breakthrough
due to Linial and Shraibman [LS21] and Green [Gre21], our protocol achieves a constant factor
improvement, and for k = 3 we match Green’s bound.

2To get a corner-free set of [N]k−1 we need to consider the ExactlyN problem where the inputs of k player are
from [(k− 1)N] and add up to (k− 1)N (see Appendix A.3). This results in extra terms depending on k which can be
pushed to the lower order term.

5

Remark 3. In this paper, we are focused on improving the highest-order term in the bounds. However,
we would like to highlight the work that has been done on improving the lower-order term as well.
Elkin improved the lower-order term in Behrend’s construction [Elk11] (see also the note of Green
and Wolf [GW10]) and Elkin’s ideas were translated to Rankin’s construction by O’Bryant [OBr08].
Hunter [Hun22] used similar techniques to improve the lower-order term of Green’s construction. We
leave applying these ideas to our new construction as an open problem (see Section 5).

Outline of Paper. In Section 2, we give a history of the ExactlyN problem, including an outline
of previous results based on Behrend and Rankin, which we hope helps the reader gain an intuition
for the remainder of the paper. At the end of Section 2, we give an overview of our improved
upper bound. In Section 3 we give an explicit protocol for ExactlyN for all k, building heavily on
Rankin’s construction. In Section 4, we give our improved protocol, proving Theorem 1. We conclude
with some open problems in Section 5. Appendix A contains the proofs of the equivalences given in
Figure 1 and Appendix B explains how to calculate the value of the constant ck in Theorem 1.

2 Overview of protocols for NOF ExactlyN

The history of the ExactlyN problem begins with the paper of Chandra, Furst, and Lipton that
defines the NOF communication model [CFL83]. By establishing a connection to the Corners
Problem they obtained a non-constructive protocol for ExactlyN with cost O(

√
logN), beating

the cost of the trivial protocol. As mentioned in the introduction, an essential step in this protocol
is a reduction to a promise instance of the Equality function in the NIH model. The reduction is
outlined in detail in Appendix A.1 and is summarized below.

NOF ExactlyN to k-AP-free coloring. First, the players each perform a reduction that yields
the values X1, . . . , Xk where Xi is known only to Player i. These values are promised to be a
k-AP and are equal if and only if the original instance of ExactlyN evaluates to 1. Then Player
1 announces the color of X1 according to some agreed-upon k-AP-free coloring of [kN]: this is a
coloring where no monochromatic subset of [kN] has elements which form a non-trivial k-AP. Each
other player then sends a single bit for whether or not the color of Xi agrees with the color that
Player 1 sent. They all agree if and only if X1, . . . , Xk are all equal, as the k-AP promise implies
that the colors can not be the same unless X1, . . . , Xk are a trivial k-AP.

As discussed in the introduction the ExactlyN problem and the Corners problem in combina-
torics are equivalent. Thus the Chandra-Furst-Lipton reduction can be seen as a reduction from the
Corners problem to the problem of finding k-AP-free colorings (see Appendix A.5). This latter re-
duction was already known before Chandra-Furst-Lipton connected these concepts to communication
complexity (see [AS74] for the case of k = 3).

k-AP-free coloring to k-AP-free set. The reduction step of the protocol described above is
conceptually simple. The technical part is finding a k-AP-free coloring of of [N] where the number of
colors is minimized.3 This number can be estimated by the density version of the coloring problem:
find the largest k-AP-free subset of [N].

By a standard argument these problems are equivalent: a k-AP-free subset with size N/δ
implies a k-AP-free coloring with δ ·O(logN) colors (for details, see Appendix A.6) and therefore
gives a protocol with cost log δ +O(log logN). Every known subset construction requires δ to be

3The range of integers is [N], instead of [kN] as in the protocol; if we assume that k is a constant this will not
affect much.

6

superlogarithmic in N , in which case the O(log logN) term is negligible. Indeed, for k = 3 we know
that superlogarithmic δ is necessary [KM23].

In the rest of the paper we will switch freely between the coloring problems and their subset-size
versions.

2.1 ExactlyN with 3 players

By the Chandra-Furst-Lipton reduction outlined above, a construction of a 3-AP-free subset of [N]
will result in a protocol for 3-player ExactlyN. Here we summarize the construction of a 3-AP-free
subset due to Behrend [Beh46]. All of the best known constructions of k-AP-free sets are essentially
modifications of Behrend’s basic framework.

Following prior work of Salem and Spencer [SS42], Behrend represents numbers in [N] as vectors
in [q]d, where q and d are parameters to be chosen later subject to qd ≥ N . These vectors are the
base-q representations of numbers in [N]:

baseq,d(x) := (x0, . . . , xd−1) ∈ [q]d such that x =

d−1∑
i=0

qixi.

The idea behind Behrend’s construction is that no three vectors in [q]d that form a line can lie
on the same sphere. Suppose we had the following property: if three numbers x, y, z ∈ [N] form
a 3-AP, then their corresponding vectors baseq,d(x), baseq,d(y), baseq,d(z) are in a line. Then one
could choose the preimage of any sphere in [q]d to be the 3-AP-free set – no three distinct vectors
in this sphere could be in a line, and so no three distinct numbers in the preimage could form a
non-trivial 3-AP.

Unfortunately, a 3-AP in [N] does not always correspond to a line in [q]d. This is because
of the possibility of carries: as a simple example, 9, 12, and 15 are a 3-AP but the vectors
(0, 9), (1, 2), (1, 5) ∈ [10]2 are not in a line. The strategy that Behrend takes is to avoid carries by
limiting the ℓ∞ norm of the vectors. Under this restriction there can never be any carries and so the
desired property holds!

We now outline the complete argument. For ℓ ∈ [dq2], define Aℓ as the set of x ∈ [N] such that
each coordinate of baseq,d(x) has value less than q/2 and ∥baseq,d(x)∥22 = ℓ. Then Aℓ is 3-AP-free.
Furthermore,

∑
ℓ |Aℓ| = (q/2)d, so, by pigeonhole principle, for some value of ℓ we must have

|Aℓ| ≥ (q/2)d

dq2
. To optimize this expression we set d =

√
2 logN and q = N1/d. This gives us a

3-AP-free set of size at least N · 2−2
√
2
√
logN+o(

√
logN), which via the Chandra-Furst-Lipton reduction

results in an ExactlyN protocol of cost 2
√
2
√
logN + o(

√
logN).

Explicit and improved protocols. From Behrend’s construction, the Chandra-Furst-Lipton
reduction shows the existence of better-than-trivial protocols for ExactlyN. We would like to
give a more explicit protocol, as an analysis of the details of the protocol may lead to new insights
to construct better protocols (and corner-free sets). This motivaton led to the better 3-player
ExactlyN protocols of Linial, Pitassi, and Shraibman [LPS19], which was followed by Linial and
Shraibman [LS21] and Green [Gre21].4

The first explicit protocol of [LPS19] had the general idea to go through the Chandra-Furst-Lipton
reduction, yielding values X1, X2, X3; player 1 will communicate the (squared) length of baseq,d(X1),
and the other players should agree with this length if and only if X1 = X2 = X3. Of course, this

4Green’s improvement is not phrased as a communication protocol, but was developed after further analyzing the
Linial-Shraibman protocol.

7

runs up against the same carry problem as in Behrend’s construction, and here we do not have the
liberty of excluding some vectors, as we want this protocol to work for every possible input. Linial,
Pitassi, and Shraibman remedy this by having the players explicitly communicate information about
the carry. Importantly, their protocol relies on the fact that each input can be seen by two players.
The cost of the Linial-Pitassi-Shraibman protocol matches the cost of the non-constructive protocol
from Chandra-Furst-Lipton.

Linial and Shraibman [LS21] observed that with the knowledge of two of the inputs, certain
carries in the base-q sum of the inputs are more likely than others. In particular, the entropy of the
carry (conditioned on the information shared by certain players) is less than d. Linial and Shraibman
give a small-cost protocol that only works for the inputs that have the most likely carry. Then, they
show how to translate the inputs on which their protocol does not work to those that do. This
process uses communication equal to the entropy of the carry. The total cost of this ExactlyN
protocol is 2

√
log e
√
logN + o(

√
logN). Subsequent work of Green refined the argument of Linial

and Shraibman and yields a protocol with cost 2
√
2 log 4

3

√
logN + o(

√
logN) [Gre21].

2.2 ExactlyN with more than 3 players

Ideas from Behrend’s construction can be used to build a larger k-AP-free set for k > 3. Rankin was
the first to give such a construction [Ran61]; see also the independent rediscovery of this result by
Łaba and Lacey for a different presentation of the proof [ŁL01].

The key to Rankin’s construction is that the line on which the three vectors fall in the intuition
to Behrend’s construction can be replaced with a higher-degree object as long as the number of
vectors is sufficiently high. This motivates the definition of polynomial progressions.

Definition 4. A tuple of integers (x1, . . . , xk) ∈ Zk is a k-term degree-m polynomial progression
(denoted k-PPm) if there is a degree-m polynomial p such that ∀i ∈ [k], xi = p(i).

Definition 5. A tuple of vectors over the integers (v1, . . . , vk) ∈ (Zd)k is a k-term degree-m vector
polynomial progression (denoted k-vecPPm) if there are degree-m polynomials pj for each dimension
j ∈ [d] such that ∀i ∈ [k], vi = (p1(i), ..., pd(i)).

This definition can be rephrased to say that these are tuples of vectors where each dimension is a
k-PPm.

Note that a k-PP1 is just a k-AP and a k-vecPP1 is just a sequence of vectors equally spaced
on a line. Now we can update our intuition of Behrend’s construction to include higher-degree
progressions, and make an additional observation that will allow us to exploit this fact.

• Behrend relies on the fact that no three distinct vectors on a line in Rd can all be on a sphere.
This is the special case of a more general fact: no 2m+ 1 vectors that form a k-vecPPm are
all on a sphere.

• If a sequence of vectors form a k-vecPPm, their squared lengths form a k-PP2m.

We begin by using the first observation to find a k-PPm-free set where m is a power of two and
satisfies 2m+ 1 ≥ k. This is done in a similar fashion to Behrend’s construction: using a pigeonhole
argument, choose the preimage of a large set of vectors with the same length.

Now we can use this k-PPm-free set (call this set S) to find a larger k-PPm/2-free set. For each
s ∈ S, add all of the vectors of squared length s to our new set. The fact that this is k-PPm/2-free
follows from the second observation above: any k-PPm/2 here would correspond to a k-PPm in S.

8

We repeat this process, halving the degree at each step, until we have a set with no k-PP1, i.e. a
k-AP-free set.

In this outline we have omitted many details. In particular, just as in Behrend’s construction
vectors must be excluded from consideration based on their ℓ∞ norm to avoid carries. Indeed, this
exclusion is much stronger than in Behrend’s construction: at the step for degree m, the set of
allowed vectors has density exponentially small in m. Fortunately this deficiency is more than
compensated for by the fact that vectors of many lengths, instead of simply one length, are included
in the sets after the first step.

If we set the parameters correctly at every step, Rankin’s construction gives a k-AP-free set of
size at least N · 2−t2(t−1)/2(logN)1/t+o((logN)1/t) where t = ⌈log k⌉. For k = 3 and k = 4, this matches
Behrend’s construction, which is expected as the construction is exactly the same. For k ≥ 5, though,
there is an improvement in the exponent of the logN term. Consequently, the cost of the protocol
for ExactlyN from this construction is t2(t−1)/2(logN)1/t + o((logN)1/t) for t = ⌈log k⌉.

2.3 Our results

Our first result gives an explicit protocol for ExactlyN with any number of players which matches
the cost of the non-explicit protocol implied by Rankin. Our second result is an improved protocol
for ExactlyN for more than 3 players that takes advantage of information shared by the players to
improve the reduction to the NIH promise Equality problem.

Sketch of explicit protocol (For full details, see Section 3.) The idea of this protocol is depicted
in Figure 2. As in the previous protocols, the players first locally perform the reduction to NIH
Equality problem with the promise that the new values X1, . . . Xk form a k-AP. Then each player
computes the base-q representation vector of their inputs and the problem reduces to checking
vector-Equality (Equality over vectors) with the promise that the input vectors form a k-vecPP1.
Next, they compute the squared length of these vectors and reduce to Equality with k-PP2 promise.
Although this promise is not as strong as the promise of being a k-AP, the reduction is helpful since
their new inputs are much smaller than their initial inputs. The players continue by converting
their new inputs into base-q representation vectors again, and then computing the lengths of those
vectors and so on. Thus, they keep reducing Equality with k-PPm promise to vector-Equality
with k-vecPPm promise and vector-Equality with k-vecPPm promise to Equality with k-PP2m

promise. When reducing the vector-Equality to Equality the degree of polynomial progression
in the promise doubles, but the input size decreases in each reduction. When reducing Equality to
vector-Equality the degree as well as the input size stays the same, and the input is now a vector
polynomial progression which allows us to continue with the reductions.

This process can repeat at most ⌈log k⌉ times, as when the degree m ≥ k− 1, the promise k-PPm

is trivially satisfied. At this point, the players are left to solve the Equality problem on their
current inputs. So one of the players communicates the final length, and all the other players verify
whether they have the same length.

To avoid carries during the process, every time the players reduce Equality to vector-Equality,
they need to make sure that all the obtained vectors are small. If they are not small, one of the
players computes and announces a translation which will make her vector small, referred to in this
paper as the shift. If other players need different shifts, then the vectors are not equal, and we can
terminate. Otherwise, all the players shift their vectors by the same amount before computing the
lengths of the vectors again.

9

Sketch of improved protocol. (For full details see Section 4.) Recall that the goal of the players
is to figure out whether

∑
i∈[k] xi = N . The protocols that arise from previous constructions of

corner-free sets involve computing the values baseq,d(xi), the base-q representations of the players’
inputs, thus creating a vector variant of the task in d-dimensional space. Unfortunately, just as in
the explicit protocol above, there is the possibility of carries. Therefore, it is not necessarily the case
that

∑
i∈[k] baseq,d(xi) is equal to baseq,d

(∑
i∈[k] xi

)
.

Previous protocols [LPS19; LS21] have leveraged the NOF setting to have the players reason
about the exact form of the carries. Specifically, these protocols have the players communicate
information about the carry string : the length-d string representing the carries performed in the
summation. We take the same approach.

Let us rephrase the objective as figuring out whether
∑

i∈[k−1] xi = N − xk. Player k can then
look at the base-q representations of the xis that they see and compute the carries required in the
summation on the left-hand side of the expression. They can then convey the carry string to the
other players. By adjusting the inputs accordingly, the players can end up with vectors v1 to vk−1

that actually do add up to the base-q representation of the left-hand side of the expression as desired.
With this strategy each entry of the carry string takes a value between 0 and k − 2, so d log(k − 1)
bits of communication are required.

We can use the information shared by the players to lower the cost of this even further: we have
not yet exploited the fact that each of the first k − 1 players know k − 2 of the inputs in the sum.
Indeed, in the view of any of the first k − 1 players there are only two values that each coordinate
of the carry string can take, and these values are consecutive. Therefore, if the kth player simply
communicates the parity of each coordinate of the carry string, each other player will have enough
information to reconstruct the full carry string. This improves the communication to d bits.

Note that using d bits to communicate the carry matches the cost of just directly reducing it to
an NIH problem and then switching to base-q representations in the NIH model as in the explicit
protocol above (see Figure 2); we need one final trick to find an advantage. Let us first consider the
case where k is even (so we are adding an odd number of vectors). In this situation it is more likely
for the parities of entries in the carry string to take value 0, where probability is over the uniform
distribution on the inputs. The idea is to use a protocol that assumes that the input is “nice”: one
where the parity-of-carry string takes the most likely value of 0 in every coordinate. If the input
is indeed nice, the players simply proceed as if the kth player had communicated the all-0 string.
Otherwise, we use communication to shift the inputs so that they fulfill the assumption.

The cost of this protocol is d(1−Ω(1)) bits. The reason this is more efficient is that a larger-than-
2−d fraction of inputs are nice, and hence (using a set-covering argument) fewer than 2d possible
shifts are required.

When k is odd (so we are adding an even number of vectors), the fraction of nice inputs is 2−d.
So the protocol as described above is more efficient only when k is even. This can be rectified by
considering the centered base-q representations, where instead of using the digits 0, . . . , q − 1 we use
the digits ⌈−(q − 1)/2⌉, . . . , ⌊q/2⌋. This representation results in a larger-than-2−d fraction of nice
inputs both when k is even and when k is odd.

3 Explicit NIH protocol for Rankin

In this section we give an explicit protocol for the number-in-hand Equality problem with the
promise that the inputs form a k-AP that matches the cost of the non-explicit protocol guaranteed
by Rankin’s construction. As mentioned in the previous section, the general strategy of our protocol
is to convert the k-AP to a higher-degree polynomial progression by converting the integers into

10

vectors, finding the squared length of those vectors (which leaves the parties again with integers),
and repeating the process. Converting integers to vectors requires some care, and sidestepping
potential problems in this step is the main technical contribution of this section.

Recall the definitions of k-PPm and k-vecPPm (Definitions 4 and 5). We define related com-
munication tasks below. We define the following communication tasks, which are versions of the
Equality problem with the promise that the inputs form either a k-PPm or k-vecPPm.

Definition 6. The communication task (k, [N])-PPcc
m is defined as follows.

• The input (x1, . . . , xk) ∈ [N]k is promised to be a k-PPm.

• The output is 1 if x1 = · · · = xk (referred to as a trivial k-PPm) and 0 otherwise.

Definition 7. The communication task (k, [q]d)-vecPPcc
m is defined as follows.

• The input (v1, . . . , vk) ∈ ([q]d)k is promised to be a k-vecPPm.

• The output is 1 if v1 = · · · = vk (referred to as a trivial k-vecPPm) and 0 otherwise.

We make the following observations about these tasks.

Observation 8. (k, [q]d)-vecPPcc
m is equivalent to ANDd ◦ (k, [q])-PPcc

m. That is, (v1, . . . , vk) is
a valid input for (k, [q]d)-vecPPcc

m if and only if for each i ∈ [d], (v1,i, . . . , vk,i) is a valid input to
(k, [q])-PPcc

m. Furthermore, the output on (v1, . . . , vk) is 1 if and only if the output of (k, [q])-PPcc
m

on each (v1,i, . . . , vk,i) is 1.

Observation 9. When the degree m is large enough, the promise in these tasks becomes trivially
fulfilled. When m ≥ k − 1, any (x1, . . . , xk) ∈ [N]k is a valid input to (k, [N])-PPcc

m. This is because
you can find a degree k − 1 polynomial p such that p(i) = xi for all i ∈ [k]. Hence for m ≥ k − 1,
(k, [N])-PPcc

m is equivalent to the Equality function. Similarly for m ≥ k − 1, (k, [q]d)-vecPPcc
m is

also equivalent to the Equality function.

In this section we show explicit protocols exhibiting the following upper bound for the communi-
cation tasks.

Theorem 10. Let m ≤ k − 1 and t = ⌈log(k/m)⌉. Then the number-in-hand communication
complexity of computing (k, [N])-PPcc

m is at most

t2(t−1)/2 t
√
mt−1 logN +O(tk2 log logN).

For m ≤ (k − 1)/2, the number-in-hand communication complexity of (k, [q]d)-vecPPcc
m is at most

(t− 1)2(t−2)/2 t−1
√

(2m)t−2 log(q2d) +O(tk2 log log(q2d)).

As a special case (setting m = 1) this yields the desired protocol for NIH Equality with k-AP
promise. See Figure 2 for an illustration. The figure also shows where our improvement for NOF
ExactlyN comes into play; this is described in detail in Section 4.

The proof of Theorem 10 is given in Section 3.3. It uses as subroutines two protocols that we
present and analyze below.

• Protocol 1 gives us a way to reduce the vector polynomial progression task (k, [q]d)-vecPPcc
m to

the integer polynomial progression task (k, [q2d])-PPcc
2m as long as k > 2m. Note that we have

made the problem harder by moving from degree m to degree 2m but we have also decreased
the input size from d log q bits per input to 2 log q + log d bits per input.

• Protocol 2 gives us a way to reduce the integer polynomial progression task (k, [N])-PPcc
m

to the vector polynomial progression task (k, [q]d)-vecPPcc
m. This protocol uses md bits of

communication and requires that q is a multiple of 2m, qd ≥ N and k ≥ m+ 2.

11

k-party NOF ExactlyN k-party NOF ExactlyN⃗

(= ANDd1 ◦ ExactlyN)

NIH k-PPcc
1 NIH k-vecPPcc

1

(= ANDd1 ◦ k-PPcc
1)

NIH k-PPcc
2 NIH k-vecPPcc

2

NIH k-PPcc
4 NIH k-vecPPcc

4

NIH k-PPcc
8

··
·

NIH k-vecPPcc
2⌊log(k−1)⌋−1

NIH k-PPcc
2⌊log(k−1)⌋

(Solve as Equality)

Protocol 2
Cost d1

Protocol 1

Protocol 2
Cost 2d2

Protocol 2
Cost 4d3

Protocol 1

Protocol 1

Protocol 1

Protocol 3
Cost d1(1− Ωk(1))

Figure 2: The list of reductions used in protocols for k-party NOF ExactlyN. Reductions that do
not mention a cost are 0-cost reductions.

12

Protocol 1 A reduction from (k, [q]d)-vecPPcc
m to (k, [q2d])-PPcc

2m

Input: v1, v2, . . . , vk ∈ [q]d distributed among k players in the NIH model
Promise: v1, v2, . . . , vk form a k-vecPPm with k > 2m
Output: x1, x2, . . . , xk ∈ [q2d]k distributed among the k players in the NIH model such that

x1, x2, . . . , xk form a k-PP2m, trivial if and only if (v1, . . . , vk) is trivial
1: For each i ∈ [k], Player i computes xi := ∥vi∥2.

Protocol 2 A reduction from (k, [N])-PPcc
m to (k, [q]d)-vecPPcc

m

Input: x1, x2, . . . , xk ∈ [N] distributed among k players in the NIH model
(Assume 2m|q, qd ≥ N)

Promise: x1, x2, . . . , xk form a k-PPm with k ≥ m+ 2
Output: v1, v2, . . . , vk ∈ ([q]d)k distributed among the k players in the NIH model such that

either
(a) v1, v2, . . . , vk form a k-vecPPm, trivial if and only if (x1, . . . , xk) is trivial, or
(b) x1, x2, . . . , xk was a non-trivial k-PPm and at least one of the players knows this.

1: For each i ∈ [k], Player i computes wi ← baseq,d(xi).
2: c← q/2m

3: For each i ∈ [k], Player i computes two vectors:

• si = (⌊wi,1/c⌋, . . . , ⌊wi,d/c⌋) and

• vi = (wi,1 (mod c), . . . , wi,d (mod c)).

4: Player 1 broadcasts s1.
5: For each i ∈ [k], Player i checks if si = s1. If they are not equal, player i notes that the input

was a non-trivial k-PPm.

3.1 Analysis of Protocol 1

The input (v1, . . . , vk) is promised to be a k-vecPPm. Let p1, . . . , pd be the degree-m polynomials
associated with them, in the sense that vi = (p1(i), . . . , pd(i)). Define the degree-2m polynomial
p′ :=

∑
j∈[d] p

2
j . Note that the xi computed in the protocol is merely p′(i). Hence (x1, . . . , xk) is

a k-PP2m. If the original k-vecPPm was trivial, then the computed k-PP2m is also trivial. On
the other hand if any pj is non-constant, then p′ is also non-constant (any monomial of maximal
degree among the pjs will get squared and hence not get cancelled in p′). Assuming k > 2m, the
non-constant polynomial p′ cannot take the same value on k different points and so the k-PP2m is
non-trivial.

The cost of this protocol is 0 since there is no communication during the protocol.

3.2 Analysis of Protocol 2

We start with a useful statement about polynomials. Define the function L as follows:

L(a0, . . . , am+1) =

m+1∑
i=0

(−1)i
(
m+ 1

i

)
ai.

Claim 11 (folklore). Let k ≥ m+ 2. The sequence (x1, . . . , xk) forms a k-PPm if and only if

L(x1, . . . , xm+2) = · · · = L(xk−m−1, . . . , xk) = 0.

13

Proof. This proof follows from properties of a “difference operator” ∆ defined on sequences of real
numbers. The output of this operator is also a sequence of real numbers containing the differences
of the consecutive elements of the input sequence. For instance if f is a sequence (a1, a2, a3, a4),
∆f = (a2−a1, a3−a2, a4−a3). In the following observations it will be useful to represent polynomials
of degree at most m as linear combinations of the basis polynomials

(
x
0

)
, . . . ,

(
x
m

)
.

• Since
(
x+1
d

)
−

(
x
d

)
=

(
x

d−1

)
, if p is a degree-m polynomial then p(x + 1) − p(x) would be a

degree-(m− 1) polynomial. (If m = 0, it would be the zero polynomial.) Hence if we have a
sequence f = (p(1), p(2), . . . , p(k)) for some degree-m polynomial p, the sequence ∆f would
be of the form (q(1), q(2), . . . , q(k − 1)) for some degree-(m− 1) polynomial q.

• Conversely, “inverting ∆” increases the degree by 1: if a sequence (q(0), q(1), . . . , q(k − 1)) is
obtained by applying ∆ to a sequence f , then f must be of the form a, a+ q(0), a+ q(0) +
q(1), . . . , a+

∑k−1
i=0 q(i) for some real a. We know that

(
0
d

)
+
(
1
d

)
+ · · ·+

(
x
d

)
=

(
x+1
d+1

)
. Hence if

q is a polynomial of degree m then
∑x

i=0 q(x) = p(x) for some polynomial p of degree m+ 1.
So the sequence f must be of the form (p(0), p(1), . . . , p(k)) for some polynomial p of degree
m+ 1.

• Lastly, we analyze the iterated operator ∆m+1. If f is a sequence (a1, a2, ...) with ∆m+1f =
(b1, b2, ...), then by induction bi =

∑m+1
j=0 (−1)j

(
m+1
j

)
ai+j . Hence the statement

L(x1, . . . , xm+2) = · · · = L(xk−m−1, . . . , xk) = 0

merely states that ∆m+1 applied to the sequence (x1, . . . , xk) results in the all-zero sequence
of length k −m− 1.

Now we can complete the proof. Suppose (x1, . . . , xk) forms a k-PPm, which means that xi = p(i)
for some polynomial p of degree m. Then applying ∆m+1 to the sequence would give the values of
the zero polynomial. Hence L(x1, . . . , xm+2) = · · · = L(xk−m−1, . . . , xk) = 0.

For the converse, the sequence (0, 0, . . . , 0) of length k−m− 1 is a sequence of values of the zero
polynomial. Since this sequence is derived from applying ∆m+1 to the sequence (x1, . . . , xk), we
know that the sequence (x1, . . . , xk) must be (p(1), p(2), . . . , p(k)) for some polynomial p of degree
at most m.

From Observation 8 it immediately follows that vectors (v1, . . . , vk) form a k-vecPPm if and only
if L(v1, . . . , vm+2) = · · · = L(vk−m−1, . . . , vk) = 0⃗.

Now we can analyze the correctness of Protocol 2. Recall that parameters q and d are set
such that qd ≥ N and q is a multiple of 2m. Let S be the set of numbers in [N] whose base-q
representations only have entries less than q/2m.

Claim 12. Let (x1, . . . , xk) be a k-PPm with each xi ∈ S. Then their base-q representations
(v1, . . . , vk) form a k-vecPPm, trivial if and only if the k-PPm was trivial.

Proof. Define the vector w as w := L(v1, . . . , vm+2). The sum of the positive coefficients in the map
L is

∑
i∈[m+1], i even

(
m+1
i

)
= 2m, so each entry in w is less than q/2m · 2m = q. Similarly we can see

that each entry is larger than −q. Rearranging the summations in the definition of w, we obtain∑
j∈[d]

wjq
j−1 =

∑
j∈[d]

L(v1,j , . . . , vm+2,j)q
j−1

= L

∑
j∈[d]

v1,jq
j−1, . . . ,

∑
j∈[d]

vm+2,jq
j−1

= L(x1, . . . , xm+2) = 0.

14

The first non-zero entry of w, say wi, must be a multiple of q, otherwise
∑

wjq
j−1 mod qi ̸= 0.

Since each entry of w is larger than −q and smaller than q, w must be equal to 0⃗. The same
argument works to show that L(v2, . . . , vm+3) = · · · = L(vk−m−1, . . . , vk) = 0⃗. So we can conclude
that (v1, . . . , vk) form a k-vecPPm. Since the operation of taking the base-n representation is a
bijection, x1 = · · · = xk if and only if v1 = · · · = vk.

Clearly if in line 5 a player notes that si ̸= s1, that player’s input is different from the input of
Player 1, and so the k-PPm held by the players must have been non-trivial. We now prove that if no
player has si ̸= s1, then the vectors they compute at the end form a k-vecPPm. Note that the vi
computed in line 3 can equivalently be written as vi := wi − csi. Since we are now analyzing the
case when the locally-computed sis are all equal, the vector vi can be written as vi = wi− cs1. Since
it lies in {0, 1, . . . , c− 1}d, it is the base-q representation of an integer T (vi) :=

∑
j vi,jq

j−1.
Since T : (a1, . . . , ad) 7→

∑
j ajq

j−1 is a linear transform, T (vi) = T (wi) − T (cs1). We know
T (wi) = xi, so T (vi) = xi−T (cs1). Hence T (v1), . . . , T (vk) are just x1, . . . , xk shifted by the integer
T (cs1). Hence T (v1), . . . , T (vk) also form a k-PPm. Since every entry of their base-q representation
is at most c− 1 < q/2m, we can use Claim 12 to conclude that v1, . . . , vm are a k-vecPPm, trivial if
and only if the xis were. This proves the correctness of the protocol.

The cost of this protocol is md since the only communication that occurs is in Line 4 where
Player 1 broadcasts an element of {0, . . . , 2m − 1}d.

3.3 Combining Protocols 1 and 2

Our protocol for (k, [N])-PPcc
m uses Protocols 1 and 2 to repeatedly reduce the problem until it

becomes an instance of the form (k, [N ′])-PPcc
m′ with m′ ≥ k/2. At this point they can no longer

reduce the input size through these reductions, and so they solve this problem as an Equality
problem: Player 1 reveals their input and all the other players communicate 0 if their input differs
or if at any point in the reductions via Protocol 2 they noted that the input was a non-trivial
k-PP (see line 5). They communicate 1 otherwise. The output of the protocol is 1 if all the players
communicate 1. The correctness of this protocol is easy to verify. The cost of the protocol depends
on the parameters chosen during the reductions, and we analyze this in the proof.

Proof of Theorem 10. We prove the claim by induction on t = ⌈log(k/m)⌉.
The base case is when t = 1, corresponding to k/2 ≤ m ≤ k− 1. Since (k, [N])-PPcc

m is a promise
version of Equality on logN bits it can be solved by player 1 broadcasting their input and the
other players using 1 bit each to convey whether their inputs match that of player 1. This protocol
requires logN + k bits and works for all m.

For the inductive step, let ⌈log(k/m)⌉ = i+ 1. Since i+ 1 is at least 2, we have k > 2m. This
means we can use Protocol 2 to reduce it to (k, [q]d)-vecPPcc

m and then Protocol 1 to reduce that
to (k, [q2d])-PPcc

2m. Since ⌈log(k/2m)⌉ = i, by our induction hypothesis we already have an upper
bound on the communication complexity of (k, [q2d])-PPcc

2m.
Going via this reduction we get a protocol of cost

md+ i2(i−1)/2 i

√
(2m)i−1 log q2d+O(ik2 log log q2d),

assuming qd ≥ N and q is a multiple of 2m (this condition is required for us to run Protocol 2 with
cost md). We can easily find the minimum of a closely related quantity that captures the essence of
the minimization task.

15

Claim 13.

min
q′,d′∈R+,q′d′=N

md′ + i2(i−1)/2 i

√
(2m)i−1 log q′2 = (i+ 1)2i/2 i+1

√
mi logN,

achieved when md′ = 2(i−1)/2 i
√

(2m)i−12 log q′ = 2i/2 i+1
√

mi logN

Proof. Since d′(i
√
log q′)i = logN , we have

(md′)

(
2(i−1)/2 i

√
(2m)i−12 log q′

)i

= 2i(i+1)/2mi logN.

This is the product of i+1 terms: one term is md′ and the other i terms are 2(i−1)/2 i
√
(2m)i−12 log q′.

The quantity we want to minimize is exactly the sum of these terms. This sum is minimized when
each of the terms are the same, and hence equal to the i+ 1th root of the product.

In our actual minimization problem we want to ensure that q is a multiple of 2m and d is a
natural number, and we also are minimizing a larger quantity. In the rest of the proof we show that
accounting for these only adds to the lower order term. Let q′, d′ be the optimal values in Claim 13.
We can always find a q ∈ [q′, q′ + 2m) and d ∈ [d′, d′ + 1) that satisfy our conditions. Plugging these
in to our original minimization task, we get an upper bound of

m(d′ + 1) + i2(i−1)/2 i

√
(2m)i−1 log((q′ + 2m)2(d′ + 1)) +O(ik2 log log q2(d′ + 1)).

Using i
√
a+ b ≤ i

√
a+ i
√
b and log(a+ b) ≤ log a+ log b for a, b ≥ 2, this is in turn upper bounded

by

md′ + i2(i−1)/2 i

√
(2m)i−1 log q′2

+m+ i2(i−1)/2 i

√
(2m)i−1(i

√
2 log 2m + i

√
log d) +O(ik2 log log q2d).

We know the first two terms add up to (i + 1)2i/2 i+1
√
mi logN . We analyze the other terms

using the fact that 2i+1 ≤ k/m.

• i2(i−1)/2 i
√

(2m)i−1 log d: Since we choose a value of d that is at most k i+1
√
logN + 1, this term

is at most log logN + 1 when i = 1 and o(k2 log logN) otherwise.

• i2(i−1)/2 i
√

(2m)i−12 log 2m: This is just i2(i−1)/22m, which is at most k.

• ik2 log log q2d: This is at most ik2 log logN since q2d≪ q′d
′
= N .

• m is at most k.

Hence our final bound is

(i+ 1)2i/2 i+1
√

mi logN +O((i+ 1)k2 log logN).

4 Improved NOF protocol for ExactlyN

In this section we will show how to use information shared by the players to improve the reduction
to the NIH promise Equality problem.

Recall that the goal of the players is to figure out whether
∑

i∈[k−1] xi = N −xk. We will use the
high-level ideas described in Section 2.3. We now formally define the centered base-q representation
and carry-related notions, and then present the protocol.

16

4.1 Centered base-q representations, carry strings and carry vectors

For simplicity, assume q is odd. For an integer x ∈ {−(qd− 1)/2, . . . , (qd− 1)/2}, the centered base-q
representation of x is a vector base±q,d(x) defined as the unique v ∈ {−(q− 1)/2, . . . , (q− 1)/2}d such
that x =

∑
j∈[d] vjq

j−1.
When adding together numbers x1 through xt which have centered base-q representations v1

through vt, we can get the centered base-q representation of the sum by adding v1 through vt but
then modifying the result to take care of the carries. This is captured by the following process. (We
require here that t < q, and this will be the case whenever we use this.)

• Let w =
∑

i∈[t] vi.

• Define a carry string s ∈ Zd as follows

– s1 is the unique integer such that w1 ∈ {s1q − (q − 1)/2, . . . , s1q + (q − 1)/2}.
– For j ∈ {2, . . . , d}, sj is the unique integer such that wj+sj−1 ∈ {sjq−(q−1)/2, . . . , sjq+
(q − 1)/2}.

• Define a carry vector vs ∈ Zd+1 as
∑

j∈[d] sj(ej+1 − qej).

• Then w + vs = base±q,d+1

(∑
i∈[t] xi

)
. (Here w is viewed as a (d+ 1)-dimensional vector with

wd+1 = 0.)

The following claim will be useful for communicating the carry to players in the NOF model.

Claim 14. Let v1, . . . , vt ∈ {−(q− 1)/2, . . . , (q− 1)/2}d and s be the carry string of
∑

i∈[t] vi. Given
only {sj (mod 2)}j∈[d] and v2, . . . , vt, one can reconstruct s entirely.

Proof. We prove this by induction. The base case is that we can reconstruct s1, and the inductive step
shows that given sj−1 and the information provided to us we can reconstruct sj . Let vx =

∑
i∈{2,...,t} vi.

We can compute vx with the information provided. Although we do not know v1, we know that each
entry of v1 lies in {−(q − 1)/2, . . . , (q − 1)/2}.

For the base case, let α be the unique integer such that vx,1 ∈ {αq− (q−1)/2, . . . , αq+(q−1)/2}.
If vx,1 = αq, then with the addition of v1,1 it will still remain in this interval and so s1 = α. If
vx,1 < αq, then with the addition of v1,1 it will either remain in the same interval or move to the
interval corresponding to α− 1. So s1 ∈ {α− 1, α}. Similarly if vx,1 > αq, we know s1 ∈ {α, α+ 1}.
In any of these cases finding out s1 (mod 2) will specify s1 exactly.

The inductive step is similar. Assume we know sj−1. By definition sj is defined by which interval
vx,j + v1,j + sj−1 lies in. We know the value of vx,j + sj−1 and so again sj depends on where the
addition of v1,j can move it. With the same reasoning as before, finding out sj (mod 2) will specify
sj exactly.

4.2 A reduction to a vector variant

Protocol 3 is a reduction from ExactlyN to a vector variant that we term ExactlyN⃗ . In this
protocol, players have as inputs (in the NOF model) x1, . . . , xk. Player k then broadcasts a shift
so that all the players can compute new inputs a1 to ak (still in the NOF model) such that∑

i∈[k] xi = N ⇐⇒
∑

i∈[k−1] ai = ak. These new inputs are also designed to have the property
that if you take the base-q representations of these inputs (called w1, . . . , wk in the protocol), and
you look at the carry string obtained by adding w1 through wk−1, all of its entries are even. From

17

Claim 14, this will allow all of the players to know the exact carry string ws and for them to shift
the vector wk by it in order to ensure that

∑
i∈[k] xi = N ⇐⇒

∑
i∈[k−1]wi = wk − ws.

This vector variant of ExactlyN is then used to create a protocol for ExactlyN in Section 4.3

Protocol 3 A reduction from NOF ExactlyN to NOF ExactlyN⃗
Input: x1, x2, . . . , xk ∈ [N] are distributed among the k players in the NOF model

qd ≥ N
Output: v1, v2, . . . , vk ∈ {−kq, . . . , kq}d+1 are distributed among the k players in the NOF

model, with
∑

i∈[k] vi = 0⃗ if and only if
∑

i∈[k] xi = N .
1: Player k broadcasts a δ ∈ Zk−1 such that

(a) for each i ∈ [k − 1], xi + δi ∈ {−(qd − 1)/2, . . . , (qd − 1)/2}, and

(b) the assertion in Line 5 holds.

2: For i ∈ [k − 1], ai ← xi + δi, ak ← N − xk +
∑

i∈[k−1] δi.
3: For i ∈ [k − 1], let wi ← base±q,d(ai) and let wk ← base±q,d+1(ak).
4: Player k computes s ∈ {−kq, . . . , kq}d, the carry string of

∑
i∈[k−1]wi.

5: Assert: For each j ∈ [d], sj (mod 2) = 0.
6: For each i ∈ [k], Player i computes s and the carry vector ws.
7: For each i ∈ [k − 1], vi := wi and vk := −wk + ws.

4.2.1 Correctness of the reduction

Let us first note that Line 1 is always achievable. That is, that there is always a δ that player k
can compute such that the assertion in Line 5 holds. One such δ is (−x1, . . . ,−xk−1), which player
k can compute. With this δ, each ai is 0 for i ∈ [k − 1]. The corresponding wis would also be 0
vectors and the carry string of

∑
i∈[k−1]wi would also be a string of 0s. This carry string satisfies

the assertion that for each j ∈ [d], sj (mod 2) = 0.
Now we prove the correctness of the protocol assuming only that the assertion in Line 5 holds.

• We start by showing that (v1, . . . , vk) are indeed known to the players in the NOF model. The
vector wi depends only on xi and δi, which are known to all players except player i. Since the
assertion in Line 5 holds, every player knows that each entry of s is even. Along with the fact
that every player misses at most one of the summands in

∑
i∈[k−1]wi, from Claim 14 we see

that every player does in fact know the string s. The carry vector ws is a function of s, and
hence they know ws as well. The vector vi depends only on wi and ws, so all the players other
than player i can compute vi.

• We finish by showing that
∑

i∈[k] vi = 0⃗ if and only if
∑

i∈[k] xi = N .∑
i∈[k]

xi = N ⇐⇒
∑

i∈[k−1]

ai = ak (definition of ai’s)

⇐⇒
∑

i∈[k−1]

wi + ws = wk (definition of wi’s and the carry vector)

⇐⇒
∑
i∈[k]

vi = 0⃗. (definition of vi’s)

18

It is easy to see that for each i ∈ [k− 1] vi ∈ {−(q− 1)/2, . . . , (q− 1)/2}d, (which we will be viewing
as a d+ 1-dimensional vector with vi,d+1 = 0). Since vk has a carry vector added to it, with the
carries being as large as (k − 1)q, vk ∈ {−kq, . . . , kq}d+1.

4.2.2 Cost of the reduction

The communication in the protocol is entirely in Line 1. The cost of this line depends on the size of
the smallest set ∆ ⊂ Zk−1 such that for any x1, . . . , xk−1 ∈ [N] there exists δ ∈ ∆ which satisfies
the requirements in Line 1. The communication cost is then merely ⌈log |∆|⌉ since Player k only
needs to send the index of an element of ∆.

The size of ∆ is related to the size of the set

S := {(a1, . . . , ak−1) ∈ {−(qd − 1)/2, . . . , (qd − 1)/2}k−1 |

the carry string of
∑

i∈[k−1]

base±q,d(ai) has only even entries}.

∆ is the smallest set of shifts of S that covers [N]k−1. We can show the following bounds on |∆|.

Nk−1/|S| ≤ |∆| ≤ ((2qd)k−1/|S|) · k logN.

The lower bound on |∆| is straightforward. For the upper bound we use the probabilistic method.
Choose shifts δ(1), . . . , δ(t) uniformly at random from {−N − (qd− 1)/2, . . . , (qd− 1)/2}k−1. For any
x = (x1, . . . , xk−1), there are exactly |S| different shifts that would land x in S. Hence the probability
that a uniformly random shift is good for x is |S|/(qd +N)k−1 ≥ |S|/(2qd)k−1. The probability that
none of the t shifts are good for x is at most (1− |S|/(2qd)k−1)t. Setting t = ((2qd)k−1/|S|) · k logN ,
this probability is at most e−k logN ≤ 1/Nk. Hence by a union bound over all Nk−1 possible values
of x, there is a positive probability that (and hence there exists a set of t shifts such that) each x
has a shift that is good for it.

The cost of the protocol is hence at most k − 1 + log(qd(k−1)/|S|) + log k + log logN + 1.
So how large is S? Note that the integers from −(qd − 1)/2 to (qd − 1)/2 have centered base-q

representations ranging over all vectors in {−(q − 1)/2, . . . , (q − 1)/2}d. Hence

|S|
qd(k−1)

= Pr
x1,...,xk−1∈{−(qd−1)/2,...,(qd−1)/2}

[(x1, . . . , xk−1) ∈ S]

= Pr
v1,...,vk−1∈{−(q−1)/2,...,(q−1)/2}d

[the carry string of
∑

i∈[k−1]

vi has only even entries].

We now use the following claim which we prove in Appendix B.

Claim 15. Let r1, . . . , rk−1 be real numbers uniformly sampled from [−1/2, 1/2).

Pr
r1,...,rk−1

 ∑
i∈[k−1]

ri (mod 2) ∈ [−1/2, 1/2)

 =
1

2
+

Ek−1

2(k − 1)!
,

where En is the nth Euler zigzag number.5

5See Appendix B or entry A000111 in The On-Line Encyclopedia of Integer Sequences (starts at E0) for more
details.

19

https://oeis.org/A000111

Observe that the above quantity represents the limiting behaviour, as q →∞, of a specific entry
of the carry string being even. The rest of the proof will show that the probability that a specific
entry (say, the ith entry) of the carry string is even is within an additive 3k/2q of the probability in
Claim 15, regardless of what we fix the entries of v1 to vk−1 to be outside of their ith entries.

• The probability that s1 is even is the probability that k − 1 random numbers a1, . . . , ak−1

chosen from {−(q − 1)/2, . . . , (q − 1)/2} add up to give an even carry. Note that the carry is
even if and only if the sum modulo 2q lies in {−(q− 1)/2, . . . , (q− 1)/2}. We approximate this
by a probability arising from the following real-valued experiment. Take k − 1 real numbers
r1, . . . , rk−1 from the interval [−1/2, 1/2). Find the probability that their sum modulo 2 lies
in [−1/2, 1/2). The two processes are related as follows.

Let the set B = {−(q − 1)/2, . . . , (3q − 1)/2} represent the set of integers modulo 2q. Divide
[−1/2, 3/2) into 2q intervals of size 1/2q each. Let i1, . . . , ik−1 be the index of the intervals that
r1, . . . , rk−1 lie in. Each i is a uniformly random number from 1 to q, and so aj is distributed
as the ijth element of B. Let is be the interval that the sum

∑
j rj (mod 2) lies in. Then∑

j aj modulo 2q lies within the is through is+k−2th elements of B.

So either we have
∑

j rj (mod 1) ∈ [1/2 − k/2q, 1/2), or else it must be the case that∑
j rj (mod 2) ∈ [−1/2, 1/2) ⇐⇒

∑
j aj (mod 2q) ∈ {−(q − 1)/2, . . . , (q − 1)/2}. Hence the

difference in probabilities of the experiments is at most Pr[
∑

j rj (mod 1) ∈ [1/2− k/2q, 1/2)].
This is k/2q, since the addition of a uniformly random number between [0, 1] to any random
variable makes its distribution modulo 1 the uniform distribution.

• For other coordinates of the carry string another complication arises. Since the sum in a
coordinate is the sum of k − 1 random numbers plus the carry from the previous coordinate,
that adds another change in the experiment. However, the carry from the previous coordinate
is always within {−k + 1, . . . , k − 1} so it adds an uncertainty of ±k/2q to the sum in the
real-valued experiment. Hence we can use the same real-valued experiment, except this time we
bound the difference in probabilities as Pr[

∑
j rj (mod 1) ∈ [1/2− k/q, 1/2 + k/2q)] = 3k/2q.

Hence the probability that all entries of the carry string are even is at least (1/2 +Ek−1/2(k −
1)!− 3k/2q)d. The cost of the protocol is at most

d log

(
1

1/2 + Ek−1/2(k − 1)!− 3k/2q

)
+ k + log k + log logN.

Since k/q ≪ 1 and d
dt log

(
1

1/2+t

)
= − 2

ln 2 > −3 at t = 0, this quantity is at most

d log

(
1

1/2 + Ek−1/2(k − 1)!

)
+ d · 9k

2q
+O(k + log logN),

with 9dk/2q being o(1) if d ≤ logN/ log logN . In our usage we will have d ≤
√
logN .

To simplify this expression, define

ck ≜ 1− log

(
1

1/2 + Ek−1/2(k − 1)!

)
. (1)

As k grows, ck → 2
ln 2

(
2
π

)k. Protocol 3 uses (1− ck)d+O(k + log logN) bits of communication.

20

4.3 Putting everything together

Our protocol starts by running Protocol 3 with parameters q, d such that qd ≥ N . The players end
up with vectors v1, . . . , vk, each in {−kq, . . . , kq}d+1, (in the NOF setting) and they want to know
whether

∑
i∈[k] vi = 0⃗. Note that this sum is equal to 0⃗ if and only if for each j ∈ [d+1],

∑
i∈[k] vi,j = 0.

Each of these is an instance of ExactlyN with the inputs coming from {−kq, . . . , kq}.
At this point, they can make a cost-0 reduction to (k, {−k3q, . . . , k3q}d+1)-vecPPcc

1 in the NIH set-
ting. This is because each instance of ExactlyN has a cost-0 reduction to (k, {−k3q, . . . , k3q})-PPcc

1

(as described in Appendix A.1) and because (k, {−k3q, . . . , k3q}d+1)-vecPPcc
1 is equivalent to

ANDd+1 ◦ (k, {−k3q, . . . , k3q})-PPcc
1 (see Observation 8). One should note here that the reduction

in Appendix A.1 works even when the input is allowed to include negative numbers. This is also true
of Protocol 1, which is the first step in the NIH protocol for (k, [q]d)-vecPPcc

1 and which outputs a
nonnegative k-PP2.

We can now use the NIH protocol for (k, {−k3q, . . . , k3q}d+1)-vecPPcc
1 (Theorem 10) to complete

the protocol. Let t = ⌈log k⌉. The cost of the NIH protocol is (t−1)2(t−2)/2 t−1
√
2t−2 log(k6q2(d+ 1))+

O(tk2 log log(k6q2(d+ 1))).
The total cost of the protocol is then

(1−ck)d+k+log k+log logN+(t−1)2(t−2)/2 t−1
√
2t−2 log(k6q2(d+ 1))+O(tk2 log log(k6q2(d+1))).

As done in the proof of Theorem 10 we can optimize the values of d and q and end up with a
complexity of

t2(t−1)/2 t
√

(1− ck) logN +O(tk2 log logN)

≤
(
1− ck

t

)
t2(t−1)/2 t

√
logN +O(tk2 log logN).

5 Open problems

In this paper we give the first explicit protocol for ExactlyN that matches the performance of
Rankin’s construction. We then use the details of this explicit protocol to find an improvement that
relies on knowledge shared by the parties.

However, this improvement itself relies on an existential argument: there is a probabilistic
argument in Section 4.2.2. Therefore our final improved protocol has a non-constructive part.

Open Problem 1. Give a completely explicit protocol that matches the performance of the NOF
protocol from Theorem 1.

The constructions of Behrend and Rankin use a pigeonhole argument over spheres in some vector
space. As mentioned in Remark 3, there is a line of work that improves the lower-order terms of
these constructions [Elk11; GW10; OBr08; Hun22]. The general strategy is to replace the spheres
with thin annuli. We have not attempted to use annuli in our construction, but it seems to us that
this might lead to an improvement in lower order terms in our case too.

Open Problem 2. Improve the lower-order terms of our corner-free set construction by replacing
spheres with annuli.

Beyond this, any further improvements in upper or lower bounds for any of the problems discussed
in this paper would be important advances on their own terms. We wish to highlight a few directions
here that are of particular interest to us.

21

Our protocol exploits the shared information between the players in the NOF setting. As the
number of parties increases the amount of shared information also increases. One might think that
this would lead to a corresponding increase in the magnitude of the improvement in the NOF setting
over the protocol described in Section 3, which makes no use of the shared information. However,
this is not what we see: the factor of (1− ck/t) from Theorem 1 actually grows as k increases.

Open Problem 3. Give a corner-free set construction whose advantage over Rankin’s construction
improves as k grows.

The structure of Rankin’s protocol seems to necessitate a lack of smoothness in the parameters of
the construction. Namely, the best-known k-AP-free set construction when k is not of the form 2t+1
(for an integer t) is to round down to the nearest such value and proceed with the corresponding
construction. Is it possible to obtain a bound that depends on log k instead of ⌈log k⌉? This would be
exciting as it would require a different argument than the degree-doubling method used by Rankin.

Open Problem 4. Give a k-AP-free set construction that improves for each increase of the value k.

Finally, an important open problem is to improve the large gap between the upper and lower
bounds on the size of corner-free sets, where progress has been stuck for more than 15 years. We feel
that it may be possible to substantially improve the NOF communication complexity of ExactlyN,
by further exploiting the shared information in the NOF model. On the other hand, if substantial
improvements are not possible for ExactlyN, strong lower bounds for ExactlyN would give
a breakthrough separation of deterministic from randomized NOF protocols for an explicit and
well-studied function. As mentioned in the introduction, the recent breakthrough result of Kelley and
Meka proved an upper bound for 3-AP-free sets [KM23], nearly matching Behrend’s construction.

However, corners appear to be a much more complicated combinatorial object, and upper bounds
on corner-free sets have historically lagged behind those for 3-AP-free sets. Thus narrowing this gap
is an important problem in additive combinatorics as well.

Open Problem 5. Narrow the gap between the best known upper and lower bounds on the NOF
complexity of ExactlyN.

A Relations between combinatorial and communication problems

In this appendix we use the following shorthand notation.

• rk(N) is the maximum size of a subset of [N] that does not contain a k-AP.

• ck(N) is the minimum number of colors needed to color [N] such that no k-AP is monochromatic.

• r∠k (N) is the maximum size of a subset of [N]k that does not contain a k-dimensional corner.

• c∠k (N) is the minimum number of colors needed to color [N]k such that no k-dimensional
corner is monochromatic.

A.1 Reduction of ExactlyN to NIH Equality with AP promise

Let x1, . . . , xk be the inputs for ExactlyN with k players. Each player, based on the other players’
inputs, can calculate the value that their input must take in order for x1 + . . .+ xk = N to be true;
namely

x′i = N −
∑
j∈[k]
j ̸=i

xj .

22

Each of these guesses differs from the actual input by the same amount: ∆ := x′i−xi = T −
∑

j∈[k] xj ,
for all i. Next each player attempts to compute the value X =

∑
j∈[k] jxj by replacing their input

value (which they do not know) with the guess input calculated above. Thus Player i guesses the
following value for X:

Xi = ix′i +
∑
j∈[k]
j ̸=i

jxj .

Observe that for all i we have Xi = X − i∆ and therefore the values Xi form a k-AP.
The k-AP (X1, . . . , Xk) is trivial (i.e. all of the elements of the sequence are equal) if and only if

∆ = 0, which occurs if and only if
∑

i∈[k] xi = N . In this case, ExactlyN(x1, . . . , xk) = 1.

A.2 Equivalence between NIH Equality with AP promise and AP-free coloring
number

We include the equivalence for only k = 3 to avoid tedious notation in the proof, but the proof can
easily be generalized for more than 3 players.

Lemma 16. The number-in-hand communication complexity of Equality(x, y, z) with the promise
that x, y, z is a 3-AP is Θ(log c3(N)).

Proof. Given a coloring of [N] with c3(N) colors such that no 3-AP is monochromatic, here is a
communication protocol using 2 + log c3(N) bits: the first player writes the color of her number on
the board, and the other two write one bit determining whether the color of their numbers is equal
to it or not.

Given an NIH communication protocol Π for Equality(x1, x2, x3), we define the following
coloring: given w ∈ [N] its color is the transcript (i.e., what is written on the board) of Π on
the input (w,w,w). We claim that this coloring avoids monochromatic 3-APs. Assume (seeking a
contradiction) that this is not true, and let x + y = 2z be three distinct numbers that share the
same color. Since the color of a number w is the transcript of Π on (w,w,w) it follows that the
transcripts of Π on (x, x, x), (y, y, y) and (z, z, z) are all equal. But since each player decides what
to communicate based on the prior communication and their own input, this same transcript would
be generated on the input (x, y, z). But since the transcript is the same the protocol would output
the same answer on the inputs (x, x, x) and (x, y, z) contradicting the protocol’s correctness.

A.3 Equivalence between NOF ExactlyN and corner-free coloring number

Theorem 17 ([CFL83], [RY20]). Let c be the NOF communication complexity of the ExactlyN
problem with k players. The following holds:

log c∠k−1

(
N

k − 1

)
≤ c ≤ log c∠k−1(N) + k − 1.

23

Proof. For the upper bound, consider the set of points

S = {(x1, . . . , xk−1),

(N −
∑
j ̸=1

xj , . . . , xk−1)

. . . ,

(x1, . . . xi−1, N −
∑
j ̸=i

xj , xi+1, . . . , xk−1),

. . . ,

(x1, . . . , N −
∑

j ̸=k−1

xj)}.

S is a (k − 1)-dimensional corner in [N]k−1; namely,

S = {(x1, . . . , xk−1), (x1 + d, . . . , xk−1), . . . , (x1, . . . , xk−1 + d)}

for d = N−(x1+ . . .+xk). Now assume [N]k−1 is colored by c∠k−1(N) colors avoiding monochromatic
corners. Thus, the points in S receive the same color if and only if the corner is trivial, i.e. d = 0,
which in this case implies x1 . . . + xk = N – exactly what the protocol needs to check. So the
protocol checks whether all the points received the same color: the player that has xk on its forehead
announces the color of (x1, . . . , xk−1) with log c∠k−1(N) bits. The other k − 1 players send a bit each
indicating whether the unique point that they can compute has the same color.

For the lower bound, assume there is a protocol solving ExactlyN with c bits. We show a
coloring of

C :=

[
N

k − 1

]
× . . .×

[
N

k − 1

]
︸ ︷︷ ︸

k−1

that avoids monochromatic corners. Color (x1, . . . , xk−1) ∈ C by the transcript of the protocol
on input (x1, . . . , xk−1, N − (x1 + . . . + xk−1)). The number of colors is at most 2c. Seeking a
contradiction, assume the set

(x1, . . . , xk−1),

(x1 + d, . . . , xk−1),

...
(x1, . . . , xk−1 + d)

forms a monochromatic corner for some d > 0. This means all of the following inputs result in the
same transcript.

P = {(x1, . . . , xk−1, N − (x1 + . . .+ xk−1)),

(x1 + d, . . . , N − (x1 + d+ . . .+ xk−1)),

...
(x1, . . . , xk−1 + d,N − (x1 + d+ . . .+ xk−1))}.

However, this implies the input p = (x1, . . . , xk−1, N − (x1 + d+ . . .+xk−1)) also results in the same
transcript (every player has an input from P that it cannot distinguish from p, and hence at no

24

point in the protocol does the transcript for p deviate from the transcript for the points in P). This
is a contradiction to the correctness of the protocol as for all of the points in P , their coordinates
sum up to N , but the coordinates of p sum up to N − d.

A.4 AP-free set induces a corner-free set

Claim 18 ([AS74],[Zha23]). r∠k−1(k
2N) ≥ Nk−2 · rk(N).

Proof. Let A ⊂ [N] be a k-AP-free set that has size rk(N). Define the set

Q :=
{
(x1, . . . , xk−1) ∈ [k2N]k−1 : x1 + 2x2 + . . .+ (k − 1)xk−1 ∈ A+ (k2 − 1)N

}
.

Q is corner-free. Indeed, assume Q contains the corner

(x1, . . . , xk−1), (x1 + d, . . . , xk−1), . . . , (x1, . . . , xk−1 + d)

for some d > 0. Then, the sequence s, s+ d, . . . , s+ (k − 1)d with

s = x1 + 2x2 + . . .+ (k − 1)xk−1 − (k2 − 1)N

is a k-AP in [N].
For each a ∈ A there are at least Nk−2 elements in [k2N]k−1 that satisfy x1 + 2x2 + . . .+ (k −

1)xk−1 = a+ (k2 − 1)N : choose any x2, . . . , xk−1 ∈ [N] and there exists x1 ∈ [k2N] that makes the
equation true. Thus, |Q| ≥ Nk−2|A|. Combining this with r∠k−1(k

2N) ≥ |Q| concludes the proof.

A.5 AP-free coloring implies a corner-free coloring

Claim 19 ([CFL83]). c∠k−1

(
N
k2

)
≤ ck(N).

Proof. Color [N] with ck(N) colors avoiding k-term APs. Define a map q :
[
N
k2

]k−1 → [N] as follows:

q(x1, x2, . . . , xk−1) = x1 + 2x2 + . . .+ (k − 1)xk−1.

Then color each (x1, x2, . . . , xk−1) by the color of q(x1, x2, . . . , xk−1). This coloring avoids monochro-
matic corners in

[
N
k2

]k−1. Indeed, if S is a monochromatic corner in
[
N
k2

]k−1, then the set
{q(s) : s ∈ S} is a monochromatic k-term arithmetic progression in [N] (similar to the proof
of Claim 18).

A.6 AP-free coloring number is equivalent to largest AP-free set size

Theorem 20 ([CFL83]). N
rk(N) ≤ ck(N) ≤ O

(
N lgN
rk(N)

)
.

Proof. The lower bound is by pigeonhole principle: if [N] is colored with ck(N) colors avoiding
monochromatic k-term arithmetic progressions, then there must be a color class that has size at
least N

ck(N) .
For the upper bound, let A ⊂ [N] be the set forming a k-term AP with size rk(N). The claim

below shows that we can find at most O
(
N lgN
|A|

)
translates of A that cover [N], thus also avoid

k-term APs.

Claim 21. For a set A ⊂ [N], there are t1, . . . , tℓ ∈ [−N,N] such that ∪ℓi=1(ti + A) = [N] and
ℓ ≤ O

(
N lgN
|A|

)
.

25

Proof. Choose t1, . . . , tℓ uniformly randomly from the range [−N,N]. Fix x ∈ [N]. The probability
that x is not covered by some ti +A is at most 1− |ti+A|

2N = 1− |A|
2N . Hence the probability of some

point being not covered by all of the translates is

p ≤ N ·
(
1− |A|

2N

)ℓ

.

Then, p < 1, if ℓ > 2N lgN
|A| . Thus, by the probabilistic method, there exists a choice of t1, . . . , tℓ that

for some ℓ = O
(
N lgN
|A|

)
, the corresponding translates of A cover [N].

A.7 Corner-free coloring number is equivalent to the largest corner-free set size

Theorem 22. Nk

r∠k (N)
≤ c∠k (N) ≤ O

(
Nk lgN
r∠k (N)

)
.

Proof. The proof is analogous to the proof of Theorem 20 as Claim 21 can be extended to work for
[N]k and k-corners.

B Proof of Claim 15

In this section i is used to represent the imaginary unit. The Euler zigzag numbers count the number
of alternating permutations of a given length. The kth Euler zigzag number is denoted Ek.

Let r1, . . . , rk be real numbers uniformly sampled from [−1/2, 1/2). Let Ek be the event∑
j∈[k]

rj (mod 2) ∈ [−1/2, 1/2).

Recall that our goal is to prove the following:

Claim 15 (Restated). Pr[Ek] = 1
2 + Ek

2k! .

The proof follows in a mostly straightforward way from known results about the Euler zigzag
numbers and related quantities. The methods used in the case where k is odd are standard in the
literature. When k is even some of the steps in the proof may be novel, albeit not too difficult to
extrapolate from the odd case. For completeness we give the details of the proof for both cases.

Tangent numbers, secant numbers, and Euler zigzag numbers. The tangent numbers are
the coefficients in the Maclaurin series of the tangent function. Only odd tangent numbers have
nonzero value. Similarly, the secant numbers are the coefficients in the Maclaurin series of the secant
function, and are only nonzero for even indices.

tan θ =
∑
k≥1

θ2k−1

(2k − 1)!
T2k−1 and sec θ =

∑
k≥0

θ2k

(2k)!
S2k.

The Euler zigzag numbers are the coefficients in the Maclaurin series of tan θ + sec θ:

Ek =

{
Tk k is odd
Sk k is even

.

26

Trigonometric identities. We remind the reader of the following equations:

tan θ = −ie
iθ − e−iθ

eiθ + e−iθ
and sec θ =

2

eiθ + e−iθ
.

Eulerian numbers. The Eulerian number
〈
k
ℓ

〉
is the number of permutations of length k with

ℓ descents: that is, the number of permutations σ : [k] → [k] with exactly ℓ indices z where
σ(z) > σ(z + 1). The Eulerian polynomial is defined as Ak(t) =

∑k−1
ℓ=0

〈
k
ℓ

〉
tℓ. The corresponding

exponential generating function is A(t, u) =
∑

k≥0Ak(t)
uk

k! . The identity

A(t, u) =
t− 1

t− eu(t−1)
(2)

was proved by Euler [Eul87] (a translated version is available at [Eul19]). See the textbook of
Peterson [Pet15] for a trove of information about the Eulerian numbers and the variant defined
below, including historical notes about Euler’s derivation.

It is well-known that the alternating sum of Eulerian numbers
∑k

ℓ=0(−1)ℓ
〈
k
ℓ

〉
= Ak(−1) is the

kth tangent number (perhaps negated). The following proof of this fact follows the structure of a
survey of Foata [Foa10].

∑
k≥1

ik−1Ak(−1)
θk

k!
=

1

i

∑
k≥0

Ak(−1)
(iθ)k

k!
−A0(−1)

 = −i (A(−1, iθ)− 1)

From here we apply Equation (2).

∑
k≥1

ik−1Ak(−1)
θk

k!
= −i

(
(−1)− 1

−1− e−2iθ
− 1

)
= −i

(
2

eiθe−iθ + e−iθe−iθ
− 1

)

= −i
(

2eiθ

eiθ + e−iθ
− eiθ + e−iθ

eiθ + e−iθ

)
= −i

(
eiθ − e−iθ

eiθ + e−iθ

)
= tan θ =

∑
n≥1

θ2k−1

(2k − 1)!
T2k−1

Solving for Ak(−1) in terms of the tangent numbers gives us

A2k(−1) = 0 and A2k−1(−1) = i−(2k−2)T2k−1 = (−1)k−1T2k−1

and therefore if k is odd we have
Ak(−1) = (−1)⌊k/2⌋Ek. (3)

Eulerian numbers of type Bk. A signed permutation ω(σ, s) is a permutation σ : [k] → [k]
and a sign function s : [k]→ {−1, 1} such that w(z) = σ(z)s(z). The Eulerian number of type Bk〈
Bk
ℓ

〉
is the number of signed permutations of length k with ℓ descents. Here we consider the signed

permutation to have a leading zero, so if ω(1) < 0 we consider the index 0 to have a descent.
Similarly to the standard Eulerian numbers, we associate a polynomial and an exponential

generating function:

Bk(t) =

k∑
ℓ=0

〈
Bk

ℓ

〉
tℓ and B(t, u) =

∑
k≥0

Bk(t)
uk

k!
.

27

Because the definition of descents in a signed permutation allows for a descent at index 0, the
maximum number of descents is k. This is in contrast with the definition for permutations, where
the maximum number of descents is k − 1. This is why the range of the summation in Bk(t) is
different from the range in Ak(t).

Brenti [Bre94] shows the following analogue of Equation (2):

B(t, u) =
(t− 1)eu(t−1)

t− e2u(t−1)
.

The alternating sum of Eulerian numbers of type Bk are related to the secant numbers, which
can be shown in a similar manner to above.

∑
k≥0

Bk(−1)
(iθ)k

k!
= B(−1, iθ) = ((−1)− 1)eiθ((−1)−1)

(−1)− e2iθ((−1)−1)
=

2e−2iθ

e−2iθe2iθ + e−2iθe−2iθ
=

2

e2iθ + e−2iθ

= sec(2θ) =
∑
k≥0

(2θ)2k

(2k)!
S2k

This yields
B2k(−1) = (−1)k22kS2k and B2k+1(−1) = 0

and therefore if k is even we have

Bk(−1) = (−1)⌊k/2⌋Ek. (4)

Formulas for Eulerian numbers. A simple formula involving a summation is well-known for the
standard Eulerian numbers. We could not find a similar formula for the Eulerian numbers of type
Bk. In the following we derive the former and show how to modify the proof to generate the latter.

The following identity is attributed to Euler [Eul68]; see [Foa10; Pet15] for more details.

Lemma 23. Ak(t)
(1−t)k+1 =

∑
m≥0(m+ 1)ktm.

Using the binomial expansion for (1− t)k+1, we get:

Ak(t) =
∑
m≥0

(
(1− t)k+1(m+ 1)k

)
tm =

∑
m≥0

(m+ 1)ktm
k+1∑
j=0

(−t)j
(
k + 1

j

)

=
∑
m≥0

(m+ 1)k
k+1∑
j=0

(−1)j
(
k + 1

j

)
tj+m.

Let ℓ = j + m. Now the summation over m ≥ 0 is a summation over ℓ − j ≥ 0 and we can
rearrange to obtain:

Ak(t) =
∑
ℓ≥0

ℓ∑
j=0

(−1)j
(
k + 1

j

)
(ℓ− j + 1)ktℓ.

Using the definition Ak(t) =
∑k−1

ℓ=0

〈
k
ℓ

〉
tℓ we get〈

k

ℓ

〉
=

ℓ∑
j=0

(−1)j
(
k + 1

j

)
(ℓ− j + 1)k. (5)

A similar identity exists for the Eulerian numbers of type Bk (see [Pet15]).

28

Lemma 24. Bk(t)
(1−t)k+1 =

∑
m≥0(2m+ 1)ktm.

As the steps are exactly the same as above, we omit the details and skip to the conclusion:〈
Bk

ℓ

〉
=

ℓ∑
j=0

(−1)j
(
k + 1

j

)
(2ℓ− 2j + 1)k = 2k

ℓ∑
j=0

(−1)j
(
k + 1

j

)(
ℓ− j +

1

2

)n

. (6)

The Irwin-Hall distribution. The Irwin-Hall distribution (with parameter k) is the distribution
of sums of k real numbers uniformly sampled from [0, 1]. The cumulative distribution function of
the Irwin-Hall distribution is

Fk(x) =
1

k!

⌊x⌋∑
j=0

(−1)j
(
k

j

)
(x− j)k

for x ∈ [0, k]. Tanny [Tan73] was the first to notice a connection between the Eulerian numbers and
the Irwin-Hall distribution: the Eulerian numbers capture the density of the Irwin-Hall distribution
on a unit interval where the endpoints of the interval are whole numbers. It is simple to give a
generalized form of this connection – without the restriction on the endpoints of the interval – that
will also allow us to characterize the Eulerian numbers of type Bn.

Lemma 25. For any x ∈ [1, k],

k! (Fk(x)− Fk(x− 1)) =

⌊x⌋∑
j=0

(−1)j
(
k + 1

j

)
(x− j)k.

Proof. We use the identity
(
k
j

)
+
(

k
j−1

)
=

(
k+1
j

)
:

k! (Fk(x)− Fk(x− 1)) =

⌊x⌋∑
j=0

(−1)j
(
k

j

)
(x− j)k −

⌊x−1⌋∑
j=0

(−1)j
(
k

j

)
(x− j − 1)k

=

⌊x⌋∑
j=0

(−1)j
(
k

j

)
(x− j)k −

⌊x⌋∑
j=1

(−1)j−1

(
k

j − 1

)
(x− j)k

= xk +

 ⌊x⌋∑
j=1

(x− j)k
(
(−1)j

(
k

j

)
+ (−1)j

(
k

j − 1

))
= xk +

 ⌊x⌋∑
j=1

(x− j)k(−1)j
(
k + 1

j

) =

⌊x⌋∑
j=0

(−1)j
(
k + 1

j

)
(x− j)k.

The following characterizations of Eulerian numbers follow directly from Equation (5), Equa-
tion (6), and Lemma 25. Corollary 26 and its consequences were studied by Tanny [Tan73].

Corollary 26.
〈
k
ℓ

〉
= k! (Fn(ℓ+ 1)− Fn(ℓ)).

Corollary 27.
〈
Bk
ℓ

〉
= 2kk!

(
Fk(ℓ+

1
2)− Fk(ℓ− 1

2)
)
.

29

Completing the proof. Recall that Ek is the event∑
j∈[k]

rj (mod 2) ∈ [−1/2, 1/2).

It is natural to write its probability in terms of the Irwin-Hall distribution by adding 1/2 to the
random variables rj . We are now interested in random variables r′1, . . . , r′k that are uniformly sampled
from [0, 1) and the event we are interested in is∑

j∈[k]

r′j (mod 2) ∈
[
k − 1

2
,
k + 1

2

)
(mod 2).

There are four cases:

(i) If k (mod 4) = 3, we want the probability that the sum modulo 2 lies in [1, 2):

Pr[Ek] = Fk(k − 1)− Fk(k − 2) + . . .+ Fk(2)− Fk(1).

Using Equation (3) and Corollary 26 this alternating sum can be rewritten as

Pr[Ek] =
1

2
Fk(k)−

1

2

k−1∑
j=0

[
(−1)j (Fk(j + 1)− Fk(j))

]
− 1

2
Fk(0) =

1

2
− 1

2

k−1∑
j=0

[
(−1)j 1

k!

〈
k

j

〉]
=

1

2
− Ak(−1)

2k!
=

1

2
− (−1)⌊k/2⌋ Ek

2k!
, (7)

which is equal to 1
2 + Ek

2k! .

(ii) If k (mod 4) = 1, we want the probability that the sum modulo 2 lies in [0, 1):

Pr[Ek] = Fk(k)− Fk(k − 1) + Fk(k − 2)− . . .− Fk(2) + Fk(1).

Note that Fk(k) = 1 and the value subtracted from Fk(k) is equal to the alternating sum
considered in case (i). Using Equation (7) we find that this is equal to 1−

(
1
2 − (−1)⌊k/2⌋ Ek

2k!

)
=

1
2 + Ek

2k! .

(iii) If k (mod 4) = 2, we want the probability that the sum modulo 2 lies in [1/2, 3/2):

Pr[Ek] = Fk(k − 1/2)− Fk(k − 3/2) + . . .+ Fk(3/2)− Fk(1/2).

We perform a similar calculation to case (i) with Equation (4) and Corollary 27. Here we
make use of the fact that the Irwin-Hall distribution is symmetrical: Fk(k − j) = 1− Fk(j).
Additionally, we use the fact that

〈
Bk
0

〉
=

〈
Bk
k

〉
= 1.

Pr[Ek] =
1

2
Fk(k − 1/2)− 1

2

k−1∑
j=1

[
(−1)j (Fk(j + 1/2)− Fk(j − 1/2))

]
− 1

2
Fk(1/2)

=
1

2
Fk(k)−

1

2

k−1∑
j=1

[
(−1)j 1

2kk!

〈
Bk

j

〉]
− 1

2
Fk(1/2)−

1

2
Fk(1/2)

=
1

2
− 1

2

k−1∑
j=1

[
(−1)j 1

2kk!

〈
Bk

j

〉]
− 1

2

1

2kk!

〈
Bk

0

〉
− 1

2

1

2kk!

〈
Bk

k

〉

=
1

2
− 1

2

k∑
j=0

[
(−1)j 1

2kk!

〈
Bk

j

〉]
=

1

2
− Bk(−1)

2k+1k!
=

1

2
− (−1)k/2 Ek

2k!
, (8)

which is equal to 1
2 + Ek

2k! .

30

(iv) If k (mod 4) = 0, we want the probability that the sum modulo 2 lies in [−1/2, 1/2):

Pr[Ek] = Fk(k)− Fk(k − 1/2) + Fk(k − 3/2) + . . .− Fk(3/2) + Fk(1/2).

The same argument from case (ii) applies: subtracting the value found in Equation (8) from
Fk(k) = 1 gives us the probability 1

2 + Ek
2k! .

References

[ALWZ21] Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. “Improved bounds for
the sunflower lemma”. Annals of Mathematics 194.3 (Nov. 2021), pp. 795–815. issn:
0003-486X, 1939-8980. doi: 10.4007/annals.2021.194.3.5.

[AS74] Miklós Ajtai and Endre Szemerédi. “Sets of lattice points that form no squares”. Studia
Scientiarum Mathematicarum Hungarica 9 (1974), pp. 9–11.

[BDPW10] Paul Beame, Matei David, Toniann Pitassi, and Philipp Woelfel. “Separating determin-
istic from randomized multiparty communication complexity”. Theory of Computing
6.9 (Nov. 2010), pp. 201–225. doi: 10.4086/toc.2010.v006a009.

[Beh46] Felix A. Behrend. “On sets of integers which contain no three terms in arithmetical
progression”. Proceedings of the National Academy of Sciences of the United States of
America 32.12 (Dec. 1946), pp. 331–332. issn: 0027-8424. doi: 10.1073/pnas.32.12.
331.

[Bre94] Francesco Brenti. “q-Eulerian polynomials arising from Coxeter groups”. European
Journal of Combinatorics 15.5 (Sept. 1994), pp. 417–441. issn: 0195-6698. doi: 10.
1006/eujc.1994.1046.

[BT94] Richard Beigel and Jun Tarui. “On ACC”. computational complexity 4.4 (Dec. 1994),
pp. 350–366. issn: 1420-8954. doi: 10.1007/BF01263423.

[CFL83] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. “Multi-party protocols”.
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing. STOC
’83. New York, NY, USA: Association for Computing Machinery, Dec. 1983, pp. 94–99.
isbn: 978-0-89791-099-6. doi: 10.1145/800061.808737.

[CLP17] Ernie Croot, Vsevolod F. Lev, and Péter Pál Pach. “Progression-free sets in Zn
4 are

exponentially small”. Annals of Mathematics 185.1 (2017), pp. 331–337. issn: 0003-486X.
doi: 10.4007/annals.2017.185.1.7. JSTOR: 24906442.

[Dvi09] Zeev Dvir. “On the size of Kakeya sets in finite fields”. Journal of the American
Mathematical Society 22.4 (2009), pp. 1093–1097. issn: 0894-0347, 1088-6834. doi:
10.1090/S0894-0347-08-00607-3.

[EG17] Jordan S. Ellenberg and Dion Gijswijt. “On large subsets of Fn
q with no three-term

arithmetic progression”. Annals of Mathematics 185.1 (2017), pp. 339–343. issn: 0003-
486X. doi: 10.4007/annals.2017.185.1.8. JSTOR: 24906443.

[Elk11] Michael Elkin. “An improved construction of progression-free sets”. Israel Journal of
Mathematics 184.1 (July 2011), p. 93. issn: 1565-8511. doi: 10.1007/s11856-011-
0061-1.

[Eul19] Leonhard Euler. Institutiones calculi differentialis cum eius usu in analysi finitorum
ac doctrina serierum. Trans. by Alexander Aycock. May 2019. doi: 10.48550/arXiv.
1905.10438. arXiv: 1905.10438 [math].

31

https://doi.org/10.4007/annals.2021.194.3.5
https://doi.org/10.4086/toc.2010.v006a009
https://doi.org/10.1073/pnas.32.12.331
https://doi.org/10.1073/pnas.32.12.331
https://doi.org/10.1006/eujc.1994.1046
https://doi.org/10.1006/eujc.1994.1046
https://doi.org/10.1007/BF01263423
https://doi.org/10.1145/800061.808737
https://doi.org/10.4007/annals.2017.185.1.7
http://www.jstor.org/stable/24906442
https://doi.org/10.1090/S0894-0347-08-00607-3
https://doi.org/10.4007/annals.2017.185.1.8
http://www.jstor.org/stable/24906443
https://doi.org/10.1007/s11856-011-0061-1
https://doi.org/10.1007/s11856-011-0061-1
https://doi.org/10.48550/arXiv.1905.10438
https://doi.org/10.48550/arXiv.1905.10438
https://arxiv.org/abs/1905.10438

[Eul68] Leonhard Euler. “Remarques sur un beau rapport entre les séries des puissances tant
directes que réciproques”. Mémoires de l’académie des sciences de Berlin (Jan. 1768),
pp. 83–106.

[Eul87] Leonhard Euler. Institutiones Calculi Differentialis Cum Eius Usu in Analysi Finitorum
Ac Doctrina Serierum. Ticini: in typographeo Petri Galeatii, 1787.

[Foa10] Dominique Foata. “Eulerian polynomials: from Euler’s time to the present”. The Legacy
of Alladi Ramakrishnan in the Mathematical Sciences. Ed. by Krishnaswami Alladi,
John R. Klauder, and Calyampudi R. Rao. New York, NY: Springer New York, 2010,
pp. 253–273. isbn: 978-1-4419-6263-8. doi: 10.1007/978-1-4419-6263-8_15.

[Gow01] W. Timothy Gowers. “A new proof of Szemerédi’s theorem”. Geometric & Functional
Analysis GAFA 11.3 (Aug. 2001), pp. 465–588. issn: 1420-8970. doi: 10.1007/s00039-
001-0332-9.

[Gow07] W. Timothy Gowers. “Hypergraph regularity and the multidimensional Szemerédi
theorem”. Annals of Mathematics 166.3 (2007), pp. 897–946. issn: 0003-486X. doi:
10.4007/annals.2007.166.897. JSTOR: 20160083.

[Gre21] Ben Green. “Lower bounds for corner-free sets”. New Zealand Journal of Mathematics
51 (July 2021), pp. 1–2. issn: 1179-4984. doi: 10.53733/86.

[GT17] Ben Green and Terence Tao. “New bounds for Szemerédi’s theorem, III: a polylogarith-
mic bound for r4(N)”. Mathematika 63.3 (2017), pp. 944–1040. issn: 2041-7942. doi:
10.1112/S0025579317000316.

[GW10] Ben Green and Julia Wolf. “A note on Elkin’s improvement of Behrend’s construction”.
Additive Number Theory: Festschrift In Honor of the Sixtieth Birthday of Melvyn
B. Nathanson. Ed. by David Chudnovsky and Gregory Chudnovsky. New York, NY:
Springer, 2010, pp. 141–144. isbn: 978-0-387-68361-4. doi: 10.1007/978-0-387-
68361-4_9.

[Hun22] Zach Hunter. Corner-free sets via the torus. Oct. 2022. doi: 10.48550/arXiv.2209.
10012. arXiv: 2209.10012 [math].

[KLM23] Zander Kelley, Shachar Lovett, and Raghu Meka. Explicit separations between ran-
domized and deterministic number-on-forehead communication. Aug. 2023. Electronic
Colloquium on Computational Complexity: TR23-124.

[KM23] Zander Kelley and Raghu Meka. Strong bounds for 3-progressions. Feb. 2023. doi:
10.48550/arXiv.2302.05537. arXiv: 2302.05537 [math].

[ŁL01] Izabella Łaba and Michael T. Lacey. On sets of integers not containing long arithmetic
progressions. Aug. 2001. doi: 10.48550/arXiv.math/0108155. arXiv: math/0108155.

[LMM+22] Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. “Lifting
with sunflowers”. 13th Innovations in Theoretical Computer Science Conference, ITCS
2022, January 31 - February 3, 2022, Berkeley, CA, USA. Ed. by Mark Braverman.
Vol. 215. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 104:1–104:24.
doi: 10.4230/LIPIcs.ITCS.2022.104.

[Lov17] Shachar Lovett. “Additive combinatorics and its applications in theoretical computer
science”. Theory Comput. 8 (2017), pp. 1–55. doi: 10.4086/toc.gs.2017.008.

32

https://doi.org/10.1007/978-1-4419-6263-8_15
https://doi.org/10.1007/s00039-001-0332-9
https://doi.org/10.1007/s00039-001-0332-9
https://doi.org/10.4007/annals.2007.166.897
http://www.jstor.org/stable/20160083
https://doi.org/10.53733/86
https://doi.org/10.1112/S0025579317000316
https://doi.org/10.1007/978-0-387-68361-4_9
https://doi.org/10.1007/978-0-387-68361-4_9
https://doi.org/10.48550/arXiv.2209.10012
https://doi.org/10.48550/arXiv.2209.10012
https://arxiv.org/abs/2209.10012
https://eccc.weizmann.ac.il/report/2023/124/
https://doi.org/10.48550/arXiv.2302.05537
https://arxiv.org/abs/2302.05537
https://doi.org/10.48550/arXiv.math/0108155
https://arxiv.org/abs/math/0108155
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.4086/toc.gs.2017.008

[LPS19] Nati Linial, Toniann Pitassi, and Adi Shraibman. “On the communication complexity
of high-dimensional permutations”. 10th Innovations in Theoretical Computer Science
Conference (ITCS 2019). Ed. by Avrim Blum. Vol. 124. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, 54:1–54:20. isbn: 978-3-95977-095-8. doi: 10.4230/LIPIcs.
ITCS.2019.54.

[LS21] Nati Linial and Adi Shraibman. “An improved protocol for the Exactly-N problem”. 36th
Computational Complexity Conference (CCC 2021). Ed. by Valentine Kabanets. Vol. 200.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 2:1–2:8. isbn: 978-3-95977-193-1.
doi: 10.4230/LIPIcs.CCC.2021.2.

[OBr08] Kevin O’Bryant. “Sets of integers that do not contain long arithmetic progressions”.
The Electronic Journal of Combinatorics 18 (Nov. 2008). doi: 10.37236/546.

[Pet15] Kyle Petersen. Eulerian Numbers. Oct. 2015. isbn: 978-1-4939-3090-6. doi: 10.1007/
978-1-4939-3091-3.

[Pud90] Pavel Pudlák. “Boolean complexity and Ramsey theorems”. Mathematics of Ramsey
Theory. Ed. by Jaroslav Nešetřil and Vojtěch Rödl. Algorithms and Combinatorics.
Berlin, Heidelberg: Springer, 1990, pp. 246–252. isbn: 978-3-642-72905-8. doi: 10.1007/
978-3-642-72905-8_17.

[Ran61] Robert A. Rankin. “Sets of integers containing not more than a given number of terms
in arithmetical progression”. Proceedings of the Royal Society of Edinburgh Section
A: Mathematical and Physical Sciences 65.4 (1961), pp. 332–344. issn: 2053-5902,
0080-4541. doi: 10.1017/S0080454100017726.

[Raz85] Alexander A. Razborov. “Lower bounds on the monotone complexity of some boolean
functions”. Dokl. Akad. Nauk SSSR 281 (4 1985), pp. 354–357.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: And Applications. Cam-
bridge: Cambridge University Press, 2020. isbn: 978-1-108-49798-5. doi: 10.1017/
9781108671644.

[Shk06] Ilya D. Shkredov. “On a generalization of Szemeredi’s theorem”. Proceedings of the
London Mathematical Society 93.3 (Nov. 2006), pp. 723–760. issn: 1460-244X, 0024-6115.
doi: 10.1017/S0024611506015991.

[SS42] Raphaël Salem and Donald C. Spencer. “On sets of integers which contain no three
terms in arithmetical progression”. Proceedings of the National Academy of Sciences
of the United States of America 28.12 (1942), pp. 561–563. issn: 0027-8424. JSTOR:
87810.

[Tan73] Stephen M. Tanny. “A probabilistic interpretation of Eulerian numbers”. Duke Math-
ematical Journal 40.4 (Dec. 1973), pp. 717–722. issn: 0012-7094, 1547-7398. doi:
10.1215/S0012-7094-73-04065-9.

[TV06] Terence Tao and Van H. Vu. Additive combinatorics. Vol. 105. Cambridge University
Press, 2006.

[Yao90] Andrew Chi-Chih Yao. “On ACC and threshold circuits”. 31st Annual Symposium on
Foundations of Computer Science. IEEE, Oct. 1990, pp. 619–627. doi: 10.1109/FSCS.
1990.89583.

33

https://doi.org/10.4230/LIPIcs.ITCS.2019.54
https://doi.org/10.4230/LIPIcs.ITCS.2019.54
https://doi.org/10.4230/LIPIcs.CCC.2021.2
https://doi.org/10.37236/546
https://doi.org/10.1007/978-1-4939-3091-3
https://doi.org/10.1007/978-1-4939-3091-3
https://doi.org/10.1007/978-3-642-72905-8_17
https://doi.org/10.1007/978-3-642-72905-8_17
https://doi.org/10.1017/S0080454100017726
https://doi.org/10.1017/9781108671644
https://doi.org/10.1017/9781108671644
https://doi.org/10.1017/S0024611506015991
http://www.jstor.org/stable/87810
https://doi.org/10.1215/S0012-7094-73-04065-9
https://doi.org/10.1109/FSCS.1990.89583
https://doi.org/10.1109/FSCS.1990.89583

[Zha23] Yufei Zhao. Graph Theory and Additive Combinatorics: Exploring Structure and Ran-
domness. Cambridge University Press, 2023.

34
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

