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Abstract
QBF proof systems are routinely adapted from propositional logic along with adjustments for the new
quantifications. Two main successful frameworks currently exist, the reduction [23] and expansion [7]
frameworks, inspired by QCDCL [32] and CEGAR solving [22] respectively. However, the reduction
framework, while immensely useful in line-based proof systems, is not refutationally complete for
static proof systems.
Nullstellensatz (NS,[6]) is a well known static propositional proof system, inspired by Hilbert’s
theorem [21] of the same name. It falls into the category of algebraic proof systems such as the
Polynomial Calculus (PC,[14]) or the Ideal Proof System (IPS,[19]). In this paper, we initiate the
study of the NS proof system for QBFs, using the existing expansion (∀Exp) framework and a new
“∀Strat” framework. We introduce four new static, QBF refutation systems: ∀Exp+NS, ∀Exp+NS ′,
∀Strat+NS and ∀Strat+NS ′, which use NS and a more powerful version of NS (NS′) with twin
variable encoding that allows it to simulate tree-like Resolution without an exponential blowup.
We explore relationships among the proposed systems and analyse their proof sizes for a few well-
known hard QBF-families. We find that ∀Exp+NS ′ and ∀Strat+NS ′ are incomparable. This result
is in line with the incomparability result between ∀Exp+Res and Q-Res [10].
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1 Introduction

Cook and Reckhow [1] defined a proof system to be a polynomial-time function on strings
whose range is exactly the language of the theorems in question. When this language is
the set of all unsatisfiable Boolean formulas, the corresponding proof systems are called
propositional proof systems. The inputs to the proof systems are the proofs themselves.
Depending on the proof system and language, the proof can be in a conventional format like
truth tables and DAGs (Directed acyclic graphs) or be unconventional and take the form of
say, a directed graph with cycles [5] or a system of polynomial coefficients [6]. Outside of
pathological cases, there are two types of proof systems: dynamic and static. The ‘dynamic
(refutational) proof systems consist of a set of sound rules and every valid proof in this system
derives a contradiction using these rules. Many dynamic systems exist in the literature like
Resolution [27] and Frege [16]. On the other hand in static proof systems, the proofs can be
seen as one large inference like truth tables. Many static systems exist in the literature like
the aforementioned Truth Table, Sum-of-squares (SOS) [18] and Nullstellensatz (NS) [6].

The NS proof system works with polynomial equations. In order to use it for refuting
unsatisfiable Boolean formulas, one has to encode clauses as polynomial equations. In the
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standard encoding positive literals ℓ are encoded as (1 − ℓ). With the standard encoding
(Definition 1), NS has been shown to be incomparable with (tree-like) Resolution [11]. A
dynamic version of NS has been introduced in the literature known as Polynomial Calculus
(PC) [14]. Owing to the standard encoding, PC cannot efficiently simulate Resolution [25,
Lemma 6.2.1]. This was overcome by a variant of Polynomial Calculus with Resolution
(PCR) [2] which uses twin variables encoding (Definition 4). In this paper, we observe that
adding twin variables encoding to NS (denoted by NS′) makes it powerful enough to simulate
tree-like Resolution (ResT , Lemma 6). Unable to find such results in the literature, we are
discussing the same explicitly as observations in Section 3.

Quantified Boolean Formulas (QBFs) are an extension to Boolean formulas by quantifying
every variable with a ∃ or ∀. Many dynamic propositional proof systems have been lifted
for QBFs like eFrege+∀red [8], Q-Res [24], QU-Res [30], and ∀Exp+Res [23]. In this paper,
we initiate the study of the basic propositional static system ‘Nullstellensatz’ for the QBF
domain. Static proof systems provide a new challenge for QBF proof theory and proof
complexity, and motivates us to find new quantifier techniques. We list out the major
contributions of this paper in the following subsection.

1.1 Our Contributions
1. Introducing a new ∀Strat framework for QBFs: In order to use propositional

proof systems for QBF solving, there exists mainly two frameworks: ∀Expansion [23]
and ∀Reduction [7]. The expansion-based framework uses the semantics of the universal
quantification and expands the clauses as needed with 0/1-assignments to universal
variables. Then propositional proof systems can be applied on the expanded existential
clauses. The reduction-based framework adds the ∀Red rule (Sec: 2) to the propositional
system to make it complete for QBFs [7]. Observe that the former method works for
both the dynamic and static propositional proof systems. However, the latter method
cannot be applicable for static systems.
In this paper, we introduce a new ‘∀Strat framework’ which works for both the dynamic
and static propositional systems. The idea behind the new framework is simple: For
any false QBF, the universal player has a winning strategy in the two player semantic
game. By forcing the universal player to play according to this strategy leads to a false
(unsatisfiable) propositional formula (Observation 9). Any propositional system P can
then refute the resulting formula.
The real challenge in implementing this idea is to carefully define the format of the
added strategy clauses so that it can be easily verifiable. For any such encoding E and a
propositional proof system P , we introduce a family of QBF proof systems ∀StratE+P
(Definition 10).

2. Introducing NS based proof systems for QBFs: NS [6] is a simple, static propos-
itional system. We use both the ∀Expansion and the new ∀Strat framework to study
this system for QBFs. In the expansion framework we introduce sound and complete
QBF-proof systems ∀Exp+NS and ∀Exp+NS ′ (Definition 8). These systems use the
axiom download step of ∀Exp+Res [23] and encode the downloaded clauses using standard
(Definition 1) and twin (Definition 4) encoding respectively. These encoded clauses are
then refuted by NS and NS′ (Section 3.1) systems respectively.
In the ∀Strat framework, we introduce QBF-proof systems ∀StratDL+NS and ∀StratDL+NS′

which use the base systems as NS and NS′ respectively. Here the encoding DL stands
for decision lists [26]. The idea is to represent the universal player’s winning strategy
as a decision list (Section 2) and encode it using the standard or twin encodings. We
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use Tseitin variables to represent each line of the decision list for ease in verification
(Definition 14).

3. Analyzing the strengths and limitations of proposed systems: Analogous to the
in-comparability result of ∀Exp+Res and Q-Res [10], we show that the systems ∀Exp+NS ′

and ∀StratDL+NS′ are incomparable (Theorem 22). We show this by providing an easy
refutation of QParityn (Definition 23) in ∀Exp+NS ′ (Lemma 26) which are hard for
∀StratDL+NS′ by our observation (Theorem 25). For the other direction, we give an easy
refutation of JMn (Definition 27) in the ∀StratDL+NS′ system (Theorem 30) which are
hard for ∀Exp+NS ′ by our observation (Proposition 29). We also make an observation
that eFrege+∀red [8] p-simulates ∀StratDL+NS′ and ∀StratDL+NS (Theorem 31).

Few other relations with existing proof systems are inherited from the propositional world.
We summarize our contributions in Figure 1.

∀Exp+NS ∀Strat+NS∀Exp+NS ′⊕
n: easy

JMn: hard

∀Strat+NS ′⊕
n: hard

JMn: easy

QU-Res

Q-Res ⊕
n: hard∀Exp+ResJMn: hard

∀Exp+Res T

eFrege+∀red

2

5 55

1

5

1

6 6

1

1

3 4

Edges:
A B : A p-simulates B

A B : A and B are incomparable

A B :
A cannot p-simulate B
open if B can simulate A?

Edges/ Nodes shown in bold are new results

Nodes:

A
Dynamic
Proof system

A
Static
Proof system

QBF-Families:⊕
n : QParityn [10, Theorem 14]

JMn : ϕn [23, Formula 2]

Figure 1 The proposed systems and their relative complexity with existing QBF-proof systems.
Edges labelled 1 follow from Lemma 6 and incomparability of NS with ResT . Edge 2 is from
Theorem 22. Edges 3, 4 appear because of QParityn and JMn respectively. Edges labelled 5 follow
from the incomparability between NS and Resolution. Edges labelled 6 are from Theorem 31.

2 Preliminaries

For a Boolean variable x, its literals can be x (positive literal) and x (negative literal). A
clause C is a disjunction of literals and a conjunctive normal form (CNF) formula F is a
conjunction of clauses. We denote the empty clause by ⊥. vars(C) is a set of all variables
in C and width(C) = |vars(C)|. If S is any set of variables, a complete assignment of S

will be an assignment which assigns all variables in S to either 1 or 0. Similarly, a partial
assignment is an assignment which assigns a subset of variables in S to either 1 or 0. For
some clause C and some partial assignment of variables α, C|α is defined as replacing all
occurrences of variables in C with the assignments from α (where defined) and simplifying it.
f(x) ⊨ y denotes that for every assignment satisfying f(x) should also satisfy y.
Horn formulas are a special case of CNF formulas where each clause is allowed to have at
most one positive literal. Given a Horn formula H, there exists a well-known linear time
algorithm to test the satisfiabilty of H [15].
Boolean circuit: [31] A Boolean Circuit Cn of n-inputs is a directed acyclic graph. It
has n-input nodes and a single output node of out-degree = 0. All other nodes (gates) are
labelled with ¬, ∧, ∨. Fan-in and Fan-out are the number of incoming edges and outgoing
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edges of a gate respectively. Depth of a circuit is the maximum length of a path from its
input node to the output node.

AC0 circuits are constant depth circuits of polynomial number of gates with unbounded
fan-in for gates.
Tseitin Transformation: [29] Any Boolean circuit can be converted into a CNF by
introducing a new variable for every gate and enforcing it to represent the correct value of the
gate. That is, using such variables ensures that the assignments evaluating the circuit to 1 are
the same which satisfy the CNF and vice-versa. The size of the CNF in this transformation
is polynomial in the size of the initial circuit.
Proof Systems: Given a language L ⊆ {0, 1}∗ and a string x ∈ L, a proof system f

for L is an inference system, which is capable of showing that x is indeed in L. A proof
system f for L is complete if and only if for every x ∈ L we have a corresponding f -proof for
x. A proof system f for L is sound if and only if the existence of an f -proof for x implies
that x ∈ L. By definition, a proof system must be sound and complete for the language
L. In addition, it must be polynomial time computable (verifiable). That is, given any
claimed proof π in f , it must be checkable whether it is a correct proof in the system in time
polynomial w.r.t the size of π, in which case, it is said to be a valid f -proof.

A proof system f efficiently simulates (p-simulates) another proof system g (i.e., f ≤p g)
if every g-proof of input x ∈ L can be translated into an f -proof for the same input in time
that is polynomial w.r.t size of the g-proof. Otherwise, we say that f does not simulate g

(f ̸≤p g). Proof systems f and g are said to be incomparable, if none of them can simulate
the other. They are said to be equivalent (f ≡p g), if both can simulate the other.

Proof systems can be broadly sorted into two basic types. In a static proof system
we require to present a refutation as a formula containing all the information about the
refutation, and the complexity is the size of this formula or its degree. A dynamic proof
system, defines a set of derivation rules and a refutation needs to be built from the given
formula using these rules, and the complexity can be size of all derived formulas or the
number of steps used.
Resolution: Resolution [27] is the most studied redundancy rule of the SAT world, we define
the same as: C∨x D∨x

C∨D , where C, D are clauses and x is the pivot variable. We denote
this step as ‘res(C ∨ x, D ∨ x)’ throughout the paper. It is a sound and complete, dynamic
propositional proof system. For a Resolution proof π, Gπ is the derivation graph with edges
directed from the hypothesis to the resolvent. If Gπ is a tree, we say π is a ResT proof.

Nullstellensatz Proof System: The Nullstellensatz proof system (NS) [6] is a static
propositional proof system which uses reasoning about polynomial equations to refute
Boolean formulas. It is based on the Hilbert’s Nullstellensatz [21] and as a proof system was
first introduced by Beame.et.al in [6].

▶ Definition 1 (Standard Encoding). To convert a CNF to a list of polynomials, we need to
convert every clause into a separate polynomial. For a clause C = (l1 ∨· · ·∨ lk ∨ lk+1 ∨· · ·∨ ln),
its polynomial equation is denoted by polystd(C) := (1 − l1) . . . (1 − lk)lk+1 . . . ln = 0. Notice
that the set of assignments that satisfy C and polystd(C) in both cases are exactly the same.

Given a CNF formula P = C1 ∧ · · · ∧ Cm over variables x1, . . . , xn. The corresponding
ordered-list of equations will be the polystd(P) := (f1 = 0, . . . , fm = 0) where fi = polystd(Ci)
for i ≤ m as explained above. To maintain the Boolean nature of solutions, equations
x2 − x = 0 are introduced for all variables of P . The final list of polynomial equations in the
standard form is F := (f1 = 0, . . . , fm = 0, fm+1 := x2

1 − x1 = 0, . . . , fm+n := x2
n − xn = 0),
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where the coefficients of the polynomials come from a fixed finite field F 1. The proof
system is defined as follows: A Nullstellensatz refutation of F is a ordered-list of polynomials
(g1, . . . , gm+n) from the polynomial ring F[x̄] such that the following holds:∑

i∈[m+n]
fi(x̄)gi(x̄) = 1

Complexity measures: The complexity measures of an NS refutation are degree and
size. Degree is defined as max

i∈[m+n]
(deg(fi) + deg(gi)). A monomial is a product of variables

and generally polynomials are represented as a sum of monomials. Hence, the size of an NS
refutation is the sum of number of monomials in all gis combined.

Polynomial Calculus: PC is a propositional proof system which is a dynamic version
of the NS system. This was first considered by Clegg.et.al in [14]. Given a CNF formula
P = C1 ∧ ... ∧ Cm over variables x1, ..., xn. The corresponding standard encoded system of
equations will be the F := {f1 = 0, ..., fm = 0} as in Definition 1.

([28]) A PC refutation of a system of equations F over a fixed field F is a sequence of
polynomials g1, ..., gr where gr = 1 (as we would derive the contradiction 1 = 0) and the rest
of the gis are derived using one of the following rules:

x2
j − xj

p q

αp + βq
(α, β ∈ F)

p

rp
(r is a monomial)

Polynomial calculus with Resolution: PCR [2] is an extension of PC with just a change
in the encoding of polynomials. That is, given a CNF formula P = C1 ∧ · · · ∧ Cm over
variables x1, ..., xn. The corresponding standard encoded system of equations will be the
F := {f1 = 0, . . . , fm = 0, 1 − x1 − x′

1 = 0, . . . , 1 − xn − x′
n = 0} as in Definition 4. A PCR

refutation of F over a fixed field F is a sequence of polynomials g1, ..., gr where gr = 1 and
the rest of the gis are derived using the rules of the PC system.

Quantified Boolean Formulas (QBFs): QBFs are an extension of the propositional
Boolean formulas where each variable is quantified with one of {∃, ∀}, with their general
semantic meaning of existential and universal quantifier respectively. In this paper, we
assume that QBFs are in closed prenex form with a CNF boolean formula called the matrix
i.e., we consider the form Q1X1 . . . QkXk. ϕ(X1 ∪ · · · ∪ Xk), where Xi are pairwise disjoint
sets of variables; Qi ∈ {∃, ∀} and Qi ≠ Qi+1, and the matrix ϕ is in CNF form. We denote
QBFs as F := Π.ϕ in this paper, where Π is the quantifier prefix. For a variable x if Π(x) = ∃
(resp. Π(x) = ∀), we call x an existential (resp. universal) variable. If a variable x is in the
set Xi, any y ∈ Xj where j < i (j > i), we say that y occurs to the left (right) of x in the
quantifier prefix and write y≤Πx (y ≥Π x). The set of variables to the left of a universal
variable u will be denoted by LΠ(u) in this paper.

QBFs as a game: QBFs are often seen as a game between the universal and the
existential player i.e. in the ith step the player Qi assigns Boolean values to the variables Xi.
At the end, the existential (resp. universal) player wins if substituting this total assignment
of variables in ϕ evaluates to 1 (resp. 0). For a QBF Π.ϕ, a strategy of universal player is
a decision function that returns the assignment to all universal variables of Π, where the

1 In proof complexity, the following problem is of interest: Consider a set of polynomials F over some
finite field. Determine if F have a common root. This is an important NP-complete problem [6].
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decision for each u depends only on the variables in LΠ(u). The winning strategy for the
universal player is a strategy which for every possible assignment of existential variables,
gives an assignment to all universal variables such that it falsifies the QBF. A QBF is false if
and only if there exists a winning strategy for the universal player [4].
Decision Lists (DL): DLs [26] are a particular representation of functions (or strategies)
computing the value of a single variable (say y), given the values of input variables (say
x1, . . . , xn). It is a sequential list of clauses of the form (

∧
m⊂[n],j∈m

xj/xj → y/y) and the last

clause being (TRUE → y/y). This sequence is evaluated as an ‘if, else-if, else’ sequence of any
programming language. That is, beginning from the first clause, the first time LHS of any
clause is satisfied by the given input values, y gets assigned the value of the corresponding
RHS. The length of a DL is defined as the number of such clauses in it.

Next, we define a few QBF proof systems that we require in this paper.
Q-Res: Q-Res [24] is an extension of the Resolution proof system for QBFs. It allows the
resolution rule defined in Section 2 with the pivot variable being existential. For dealing with
the universal variables, it defines a ‘universal reduction’ (∀Red) rule which allows dropping
of a universal variable u from a clause C, provided no existential variable x ∈ C appears to
the right of u.
QU-Res: QU-Res [30] is the Q-Res system which allows resolution step to be defined on
universal pivot variables as well.
∀Exp+Res: ∀Exp+Res [23] is an expansion based QBF proof system. It works by downloading
axiom clauses while retaining only existential literals from input clauses. Each existential
literal in a clause is annotated with an assignment to all universal variables in the left of it in
the quantifier prefix. It also allows a resolution step (defined in Section 2) on these variables
but only when the annotations of the pivot variable are the same in both clauses.
eFrege+∀red: Frege systems are fundamental proof systems of propositional logic. Lines
in a Frege proof are formulas inferred from the previous lines via few sound rules and a
set of axioms, closed under substitution. The rules are not important as all Frege systems
are p-equivalent, so w.l.o.g, we can assume that ‘modus ponens’ is the only rule in a Frege
system. The modus ponens is defined as: if A → B and A are present in the hypothesis
then B can be logically implied by the hypothesis. For a detailed definition and explanation
refer [25].

Extended Frege (eFrege) [1] is an extension of Frege systems which allows introduction of
new variables. This rule allows lines of the form v ↔ f(S) where v is a new variable and f

can be any formula on the set of variables S, where v /∈ S. It is equivalent to Circuit Frege
which operates as Frege does but with circuits in place of formulas.

For QBFs, eFrege is modified to be eFrege+∀red (Extended Frege + ∀ reduction) [8] which
is circuit Frege combined with a reduction rule for universal variables. The reduction rule
allows a universal variable to take a line, which represents a circuit, where the rightmost
variable appearing in the circuit is a universal variable and assign that universal variable to
either 0 or to 1.

3 Understanding propositional NS with the twin variables encoding

In Section 3.1, we define the Nullstellensatz proof system with twin variables (NS′) and analyse
it. Before this, as an antecedent we give an observation (Proposition 3) in propositional
world regarding the NS proof system. NS is known to be incomparable to Resolution [11].
One direction of this is shown by propositional modulo 2 principle formulas which needs
exponential-sized Resolution proofs [20] but has degree-1 NS proofs [11]. In the other
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direction, a family of Horn-formulas known as the ‘Induction principle’ (Definition 7) needs
Ω(log(n)) degree NS-refutations but have linear-size Resolution proofs [11] (which are also
tree-like). Therefore, NS and ResT systems are also incomparable.

In [25], the author describes an inefficient but novel method for Polynomial Calculus(PC)
to simulate the Resolution proof system. We use the same idea below to show a quadratic-size
NS-simulation of O(log(n))-depth ResT proofs of the Horn Formulas (Proposition 3).

▶ Lemma 2. Given any Horn-clauses P and Q, derivation of the resolvent res(P, Q) can be
simulated as an NS proof using at most 2 monomials in each corresponding gi for P and Q.

Proof. Let C1 := (l ∨ x1 ∨ · · · ∨ xk) and C2 := (y ∨ l ∨ z1 ∨ · · · ∨ zk′) be two Horn clauses.
Clearly, we have res(C1, C2) := (y ∨ x1 ∨ · · · ∨ xk ∨ z1 ∨ · · · ∨ zk′). Assume that polystd(C1) :=
(1 − l)x1 · · · xk = 0 and polystd(C2) := (1 − y)lz1 · · · zk′ = 0 have already been derived in NS.
We simulate this resolution step and derive polystd(res(C1, C2)) as follows:

Multiply each of these equations with the literals of the other which are not present in the
former clause and adding the products. That is, polystd(C1) ∗ (1 − y)z1 · · · zk′ + polystd(C2) ∗

x1 · · · xk :=
(

(1 − y)x1 · · · xkz1 · · · zk′ = 0
)

:= polystd(res(C1, C2)). The corresponding gis

are shown in bold. Note that the promise of at most 2 monomials in the gis here, comes from
the restriction of Horn-clauses to have at most one positive literal (in this case, y ∈ C2). ◀

The method in Lemma 2 extends to further resolutions. Consider the following sequence.
C1 C2

C4 = res(C1, C2) C3

C5 = res(C4, C3)

Let P = 0, Q = 0 and R = 0 be polynomial equations corresponding to input clauses
C1, C2, C3 and S = 0, T = 0 be polynomial equations corresponding to the derived clauses
C4, C5. Hence, P ∗ g1 + Q ∗ g2 = S and S ∗ g3 + R ∗ g4 = T from Lemma 2. Now, rearranging
in-terms of input polynomials implies: P ∗ g1g3 + Q ∗ g2g3 + R ∗ g4 = T = polystd(C5). This
observation leads to the following proposition.

▶ Proposition 3. Any Horn-formula of O(n) clauses, with a tree-like Resolution proof of
depth d has an NS proof of size O(n2d).

▶ Proof Sketch. Let F be a Horn-formula with O(n) clauses and π := F ResT
⊥ with depth

d. That is, when drawn as an inference tree Gπ, every input clause can have at most d

subsequent resolutions till the ⊥ node. From Lemma 2, every resolution step can be simulated
by at most 2 monomials as gis. In-case of any such gis for the subsequent resolutions, they
need to be multiplied to the corresponding ancestral input clauses of the hypothesis. In this
way, in the worst case we will have O(2d) monomials for some input clause. Therefore the
size of the NS-proof will be at most O(n2d). The proof idea is depicted in the Gπ graph below.

⊥

AxiomsFi

g1

g2

g3

d

n

Figure 2 Proposition 3 proof illustration. Given a Horn formula F and its ResT proof π, this
figure shows the graph Gπ. Here, g1, g2, g3 are the gis for the intermediate clauses according to
Lemma 2. The accumulated gi for the input clause Fi is g1g2g3. In the worst case, any Fi can have
gi equal to g1g2 · · · gd and each of these have a maximum of 2 monomials, leading to the O(2d).
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The above method can work in the general case of simulating any Resolution proof in NS
(without the guarantee of linear sized monomials) as follows: wherever any internal node
is used in 2 or more resolutions, the corresponding gi for the node will be the addition of
gis from all its resolutions. This sum of gis will then propagate to get multiplied to all the
ancestral Fis of the node. This blowup in the number of monomials will be because of the
loss of the tree-like structure.

Another reason for the blowup in number of monomials is the unbounded number of
positive literals in each clause, which can lead to exponential-size blowup in gis. Due to the
same problem, PC non-efficiently simulates Resolution. To overcome this issue, a simple
change in encoding called adding ‘twin variables’ lead to the proof system PCR (polynomial
calculus with resolution). This system used a different notation to represent positive literals
i.e. (x) was written as x′ = 0 instead of (1 − x) = 0 and a new input clause x + x′ = 1 was
added for all variables to the system of equations.

3.1 NS′: Nullstellensatz with a twin variables encoding
▶ Definition 4 (Twin variables Encoding [2]). To convert a CNF P into a list of polynomial
equations, we need to convert every clause into a separate polynomial equation. For every
clause C = (l1 ∨· · ·∨ lk ∨ lk+1 ∨· · ·∨ ln), its polynomial equation is denoted by polytwin(C) :=
l′
1 . . . l′

klk+1 . . . ln = 0. Along with introduction of 1 − x − x′ = 0 for all variables x ∈ P.
Notice that the set of assignments that satisfy C and polytwin(C) in both cases are exactly
the same as by the nature of encoding we are writing (1 − x) as x′, so the additional clauses
are true clauses.

To maintain the Boolean nature of solutions, equations x2 − x = 0 are introduced for
all variables of P. Given a CNF formula P = C1 ∧ · · · ∧ Cm over variables x1, . . . , xn. The
corresponding ordered-list of equations is F := {f1 = 0, . . . , fm = 0, fm+1 := 1 − x1 − x′

1 =
0, . . . , fm+n := 1 − xn − x′

n = 0, fm+n+1 := x2
1 − x1 = 0, . . . , fm+2n := x2

n − xn = 0} where
the coefficients of the polynomials come from a fixed finite field F. The proof system NS′ is
defined below:

An NS′ refutation of F is a ordered-list of polynomials (g1, . . . , gm+2n) from the polynomial
ring F[x̄] such that the following holds:

∑
i∈[m+2n]

fi(x̄)gi(x̄) = 1

Complexity measures: The complexity measures of an NS′ refutation are degree and
size (same as in NS). Degree is defined as max

i∈[m+2n]
(deg(fi) + deg(gi)). The size of an NS′

refutation is the sum of number of monomials in all gi and hj .
The soundness of NS′ can be seen from the following lemma.

▶ Lemma 5. PCR simulates NS′.

Proof. PCR is a version of the Polynomial Calculus with the twin variable encoding. The
simulation of NS′ by PCR is as straightforward as the simulation of NS by PC [25, p.145].
PCR allows the multiplication of a polynomial equation with a variable or with scalars in
the field [2], and the addition of two polynomial equations. Hence the polynomial coefficients
are built up using the rules of PCR and the total sum gives a contradiction.

Precisely, the simulation happens as follows:
For every fi, gi, we use the monomial multiplication rule on fi with monomials from gi.
The number of such steps = number of gi monomials.
Add all the above resultants with the addition rule. The number of such steps = number
of monomials in gis −1.
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Therefore, the length of the PCR proof obtained by simulating an NS′ proof = 2(number
of monomials in gis) of the NS′ proof. ◀

We next show the completeness of NS′ by simulating ResT in Lemma 6.

▶ Lemma 6. NS′ p-simulates tree-like Resolution (ResT ).

Proof. Consider the following resolution step:

(l ∨ w ∨ x) (l ∨ y ∨ z)
(w ∨ x ∨ y ∨ z)

NS′ can simulate this as:
(

l′w′x
)

∗ y′z +
(

ly′z
)

∗ w′x +
(

1 − l − l′
)

∗ w′xy′z :=
(

w′xy′z
)

.
Let F be any unsatisfiable propositional formula of n variables and m clauses, with a

ResT proof π where every variable is a pivot in at most k resolutions.
As NS′ can simulate a resolution step with 3 polynomials, π can now be viewed as

a DAG-like Resolution proof where every step has 3 hypotheses, the third one being the
newly added polynomial (1 − l − l′) of the pivot variable l. The resulting Gπ is no longer a
tree-like proof, but only the newly added polynomials (1 − l − l′) are used in more than 1
resolutions. Therefore when running the algorithm in Proposition 3, gi for the rest of the
input polynomials are a single monomial each. To extend the algorithm in Proposition 3
to the general case, if a node is used in 2 or more resolutions, the corresponding gi for the
node will be the addition of gi from all its resolutions. Hence as the polynomials (1 − l − l′)
are used in at most k resolutions, the corresponding gis would have at most k monomials.
Therefore the size of the resulting NS′ proof is O(m + n ∗ k). ◀

We end this section, by showing an easy NS′ refutation of the Induction principle.

▶ Definition 7 (Induction principle formula (n)). ϕ = (x1) ∧
∧

i∈[n−1]
(xi ∨ xi+1) ∧ (xn)

NS′ refutation of the Induction principle formulas: Below is the NS′ refutation (fis
are shown inside parenthesis and gis are shown in bold):

(x′
1) ∗ x′

2x′
3 · · · x′

n + (1 − x1 − x′
1) ∗ x′

2x′
3 · · · x′

n + (x1x′
2) ∗ x′

3x′
4 · · · x′

n + (1 − x2 − x′
2) ∗

x′
3x′

4 · · · x′
n + · · · + (xn−1x′

n) ∗ 1 + (1 − xn − x′
n) ∗ 1 + (xn) ∗ 1 = 1.

Here every gi is a single monomial, hence the size of the above NS′ proof is 2n + 1 and
the degree is n.

Observe that Proposition 3 gives an O(n2n−1) sized NS refutation for the Induction
principle formulas, as the depth of the corresponding ResT proof is n − 1.

4 Expansion based NS systems for QBFs

The ∀Exp+Res [23] system works by downloading a subset of clauses from the complete
Boolean expansion of the universal variables of the QBF and proving the subset to be
propositionally false by resolution. In a similar approach, we introduce ∀Exp+NS (∀Exp+NS ′)
proof system which uses NS (NS′) instead of Resolution. The formal definition of these
systems is given in the Definition 8.

▶ Definition 8 (∀Exp+NS, ∀Exp+NS ′). Let Φ = Π.ϕ be a false QBF with existential
variables X and universal variables U . A ∀Exp+NS (∀Exp+NS ′) refutation of Φ consists of
the following steps:
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a. Axiom Downloads. For a clause C ∈ ϕ and an assignment τ to variables in U , the
ithaxiom clause A can be downloaded as follows:

C ∈ ϕ

Ai := {l[τ ] | l ∈ C , var(l) ∈ X} ∪ {τ(u) | u ∈ C , var(u) ∈ U}

Sufficient axiom clauses are downloaded (say n) such that the resulting formula ϕ′ :=
A1 ∧ · · · ∧ An is an UnSAT Boolean formula.

b. Encoding. Consider the list F := (f1, . . . , fn, fn+1 := r1, . . . , fn+m := rm) to be the
standard encoding from Definition 1 (twin encoding from Definition 4) of CNF ϕ′ in
case of ∀Exp+NS (∀Exp+NS ′) system where the r1, . . . , rm are the Boolean constraints
(Boolean constraints and twin constraints) of variables in ϕ′.

c. Applying Nullstellensatz. Find gis for the set F which satisfy the condition that
Σi∈[n+m]figi = 1.

The final refutation of Φ will be the ordered list (f1, . . . , fn+m, g1, . . . , gn+m), written in
standard encoding in case of ∀Exp+NS and twin encoding in case of ∀Exp+NS ′. Note that
these are static proof systems.

The ∀Exp+NS and ∀Exp+NS ′ systems are sound and complete QBF-proof systems.
Completeness: Given any false QBF, a total Boolean expansion (exponential axiom

downloads) will definitely be a false propositional formula. This in turn will have an NS-proof
(NS′-proof) owing to the completeness of NS (NS′) system.

Soundness: Any QBF is equivalent to
∧

(exponential axiom downloads). If any subset
of them have an NS-proof (or NS′-proof), it means that

∧
(subset of axioms) is a false

propositional formula. In turn making the QBF definitely false.
Complexity measures: Degree of an ∀Exp+NS or ∀Exp+NS ′ proof is defined as

max
i∈[m+n]

(deg(fi)+deg(gi)). The size of an ∀Exp+NS or ∀Exp+NS ′ proof is the sum of number

of monomials in all fi and gi combined.
For a simple example of ∀Exp+NS and ∀Exp+NS ′ proofs, let us consider the QBF:

Φ := ∃e1, ∀u1, u2∃e2 . (e1 ∨ u1 ∨ u2 ∨ e2) ∧ (e1 ∨ u1 ∨ u2 ∨ e2) ∧ (e2).
This is a false formula as the universal player has the winning strategy to always set
u1 = u2 = e1. The ∀Exp+NS and ∀Exp+NS ′ refutations of this formula are given below.
The following axioms are downloaded in both cases: A1 := (e1 ∨ eu1→0,u2→0

2 ), A2 :=
(e1 ∨ eu1→1,u2→1

2 ), A3 := (e2
u1→0,u2→0), A4 := (e2

u1→1,u2→1). For simplicity let us rename
the variable eu1→p,u2→q

2 to be denoted as e2,p,q.

∀Exp+NS example proof: The standard encoding of these clauses gives the following fi:
f1 := (1 − e1)(1 − e2,0,0), f2 := e1(1 − e2,1,1), f3 := e2,0,0, f4 := e2,1,1. A possible list of
gi for these can be (1, 1, (1 − e1), e1).
The following is easily checkable:(

(1 − e1)(1 − e2,0,0)
)

∗ 1 +
(

e1(1 − e2,1,1)
)

∗ 1 +
(

e2,0,0

)
∗ (1 − e1) +

(
e2,1,1

)
∗ e1 = 1.

Therefore the complete ∀Exp+NS proof presented in this case would be (f1, . . . , f4, g1, . . . , g4)
i.e. ((1 − e1)(1 − e2,0,0), e1(1 − e2,1,1), (e2,0,0), (e2,1,1), 1, 1, (1 − e1), e1).

Degree of this refutation is 2 and size is 13.

∀Exp+NS ′ example proof: The twin encoding of the above clauses gives the following fis:
f1 := e′

1e′
2,0,0, f2 := e1e′

2,1,1, f3 := e2,0,0, f4 := e2,1,1, f5 := r1 := 1 − e1 − e′
1, f6 :=

r2 := 1 − e2,0,0 − e′
2,0,0, f7 := r3 := 1 − e2,1,1 − e′

2,1,1. A possible list of gis for these can be
(e′

2,1,1, e′
2,0,0, e′

2,1,1, 1, e′
2,0,0e′

2,1,1, e′
2,1,1, 1).
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The following is easily checkable:(
e′

1e′
2,0,0

)
∗ e′

2,1,1 +
(

e1e′
2,1,1

)
∗ e′

2,0,0 +
(

e2,0,0

)
∗ e′

2,1,1 +
(

e2,1,1

)
∗ 1 +

(
1 − e1 − e′

1

)
∗

e′
2,0,0e′

2,1,1 +
(

1 − e2,0,0 − e′
2,0,0

)
∗ e′

2,1,1 +
(

1 − e2,1,1 − e′
2,1,1

)
∗ 1 = 1.

Therefore the complete ∀Exp+NS ′ proof presented in this case would be (f1, . . . g1, . . . )
i.e. (e′

1e′
2,0,0, e1e′

2,1,1, e2,0,0, e2,1,1, 1 − e1 − e′
1, 1 − e2,0,0 − e′

2,0,0, 1 − e2,1,1 − e′
2,1,1, e′

2,1,1,

e′
2,0,0, e′

2,1,1, 1, e′
2,0,0e′

2,1,1, e′
2,1,1, 1).

The degree of this refutation is 3 and size is 20.

5 Strategy based QBF-proof systems

Instead of expansion to handle the universal variables, one can force the universal player
to play according to its winning strategy. This can be done by adding strategy clauses to
the QBF. We should be careful that the addition of such clauses should not change the
satisfiability of the QBF. To be precise, adding strategy-clauses to the matrix of a true QBF,
should not give a false propositional formula. However adding arbitrary clauses to a CNF
can potentially falsify the CNF. This is formally stated in the following observation.

▶ Observation 9. Consider a QBF Π · ϕ that we aim to add strategy clauses to. Take the
CNF S that consists of all strategy clauses and all clauses for relevant extension variables. We
consider α and β as assignments on the existential variables (excluding extension variables).

For every α, S|α is propositionally satisfiable.
For every α, β, if there is an existential variable x such that α and β differ on x then
S|α ⊨ u implies S|β ⊨ u, when x is right of u in the prefix.

If S satisfies the above conditions, then the following always holds: If Π · ϕ is true, then ϕ ∧ S

is satisfiable.

Proof. Starting with a true QBF Π · ϕ, the existential player has a winning strategy (say
S∃). S from the above definition is a partial strategy for the universal player, this can be
extended to a full strategy S′ (not a winning strategy). Note that ϕ ∧ S′ is indeed satisfiable:
construct the satisfying assignment according to S∃ for the existential variables and S′ for the
universal variables, this should satisfy ϕ by definition of the winning strategy. In the above
definition any existential assignment α extended with the appropriate universal assignments
should satisfy S′|α. Therefore this assignment will satisfy ϕ ∧ S′ as well.

◀

Using Observation 9, we now define a ∀Strat framework which would be useful for lifting
both static and dynamic propositional proof systems to QBFs.

▶ Definition 10 (∀Strat Framework). Given a false QBF Π.ϕ and a winning ∀ strategy sj for
each universal variable uj , we can confirm the strategy is indeed winning with a propositional
refutation system P and an encoding of ϕ ∧ (uj ↔ sj). Therefore we can define a family of
QBF refutation systems ∀StratE+P, for a specified strategy encoding E (where the properties
in Observation 9 are polynomial time checkable) and a propositional refutation system P ,
that confirms the winning strategy with a proof P .

∀StratCirc: For each universal variable u we have an extension variable su (possibly
defined using more extension variables, all of which must only depend on variables left of
u) such that (ū, su) and (s̄u, u) are added as clauses.
∀StratDL: We introduce extension variables tj

i = C for clauses only. The strategy of
uj ↔ sj is represented by a series of clauses of the form tj

i ∨ t̄j
i−1 ∨ · · · ∨ t̄j

1 ∨ liti(uj).
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Where liti(uj) is either uj or ūj and all tj
i are defined only using variables left of uj.

tj
imax

= ⊥. A verifier algorithm for this is given as Appendix: Algorithm 3.

▶ Observation 11. ∀StratCirc+eFrege ≡p eFrege+∀red.

Proof. (≤p) Given a ∀StratCirc+eFrege proof of Π.ϕ we extract an eFrege refutation of
ϕ ∧

∧n
i=1(ui ↔ si) ∧

∧n
i=1 Defsu

, where Defsu
contains extension clauses that define su (and

other intermediate extension variables). eFrege is simulated by Circuit Frege, so we can
replace the extension variables with circuits for a proof of ¬(ϕ ∧

∧n
i=1(ui ↔ σi)).

We can continue this as an eFrege+∀red refutation. Downloading all ϕ axioms we get∨n
i=1(ui ↮ σi). The rightmost universal variable un is now no longer blocked by any

existential variables. Using the reduction rule (see [8]) we can reduce un in both 0 and 1,
and since σn is a Boolean function that must be true or false we get

∨n−1
i=1 (ui ↮ σi). This

can be repeated until arriving at the empty disjunction.
(≥p) Given an eFrege+∀red proof, we put it into normal form (see [8]) with the first half

being a proof of ¬(ϕ ∧
∧n

i=1(ui ↔ σi)) in circuit Frege, we then use the simulation of circuit
Frege by eFrege to get an eFrege refutation of ϕ ∧

∧n
i=1(ui ↔ si) ∧ Defsu . ◀

▶ Observation 12. ∀StratDL+Resolution ≥p QU-Resolution.

Proof. We derive the decision list by the strategy extraction method (see [8])
We will show by induction that we can with a short ∀StratDL+Resolution obtain.

a For each universal reduction line C∨u
C prove C ∨ ū is derived before C can be derived.

b For each line D in the QU-Res proof we derive D.

Base Case(s): a) the first DL clause of the decision list for u is tu
1 ∨ lit(u) and tu

1 can
be resolved with its long clause. b) all axioms are available in ∀StratDL+Resolution.

Inductive Step: a) We start with the DL clause tu
j ∨ t̄u

j−1 . . . t̄u
1 ∨ lit(u) and remove

each negative t literal. Singleton tu
i , for i < j can be derived from taking the clause it is

equivalent to, which is derived as part of a previous reduction step, and resolving it with all
short clauses for tu

i , eventually deriving the unit clause tu
i . Then we can derive tu

j ∨ lit(u)
b) We mimic resolution steps exactly, for universal reduction steps we resolve C ∨ u with
C ∨ lit(u), here lit(u) will be ¬u by construction.

◀

In the main part of the paper, because we want to work as close as possible to QCDCL
(Quantified conflict-driven clause learning) systems where strategy extraction can be output
as a decision list we will use ∀Strat to denote ∀StratDL and drop the subscript.

5.1 Strategy based NS system for QBFs: ∀Strat+NS
In this section, we define NS based system for QBFs using the ∀StratDL framework defined
in Definition 10. Since, NS works on polynomial equations, we need to encode QBFs as a list
of Q-polynomial equations. We use standard encoding (Definition 1) for the same.
Converting a QBF into standard Q-polynomial equations Given a QBF Π.ϕ, for
every clause Ci ∈ ϕ, we have an Q-polynomial as
Fi := Π. polystd(Ci) = 0. For instance, see the following example.

▶ Example 13. False QBF Π.ϕ := ∃e1 ∀u ∃e2 . (e1 ∨u)∧(e1 ∨e2)∧(u∨e2)∧(e1 ∨e2)∧(u∨e2)
Then the standard Q-polynomial F consists of the following:

F1 := ∃e1 ∀u ∃e2 . e1.u = 0 ; F2 := ∃e1 ∀u ∃e2 . (1 − e1).(1 − e2) = 0 ;
F3 := ∃e1 ∀u ∃e2 . (1 − u).e2 = 0 ; F4 := ∃e1 ∀u ∃e2 . e1.e2 = 0 ;
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F5 := ∃e1 ∀u ∃e2 . u.(1 − e2) = 0 ;
In addition, there are the following Boolean axioms:

F6 := ∃e1 ∀u ∃e2 . e2
1 − e1 = 0 ; F7 := ∃e1 ∀u ∃e2 . u2 − u = 0 ;

F8 := ∃e1 ∀u ∃e2 . e2
2 − e2 = 0 ;

Given a set of Q-polynomials {Fis} (all with the same quantifier prefix), their truth value is
evaluated as a 2-player game similar to QBFs. That is, the set of Q-polynomials are false if
the universal player (when playing in the quantification sequence) can always falsify at least
one Fi. Observe that when converting a QBF Π.ϕ to {Fis}, the satisfiability is preserved as
"Π.ϕ is false if and only if the universal player always falsifies at least one equation from Fis."
In the above Example 13, the universal player setting u = e1 will win the game.
Now, we are ready to define the proposed static ∀Strat+NS proof system.

▶ Definition 14 (∀Strat+NS proof system). Let P := Π.(F1 = 0, F2 = 0, . . . , Fn = 0) be a list
of standard Q-polynomials. A ∀Strat+NS refutation of P is a combination of 3 ordered-lists
of polynomials: (g1, . . . , gn) , (polystd(S1), . . . , polystd(Sm)) , (h1, . . . hm)
such that the following is satisfied:∑

i∈[n]

Figi +
∑

i∈[m]

polystd(Si)hi = 1 (1)

where polystd(Si) are the standard representations (Definition 1) of CNF versions of the
following types of clauses:
a Decision list of length ℓ of strategy-clauses for all universal variables uj ∈ Π, where the

ith clause has the format as (tuj

i ∧ t
uj

i−1 ∧ · · · ∧ t
uj

1 ) → uj/uj and the last clause has the
format as (tuj

ℓ−1 ∧ t
uj

ℓ−2 ∧ · · · ∧ t
uj

1 ) → uj/uj Here the tu
i variables are new Tseitin variables

(defined below) used to represent each decision line for verifiability of proof. Note that no
other new variables are allowed in the proof.

b Definition clauses of the new Tseitin variables in-terms of existential variables from
LΠ(uj). That is every t

uj

i is introduced by the clause (tuj

i ↔ (l1 ∧ l2 ∧ . . . )) where
var(l1), var(l2), ... ∈ LΠ(uj).

Note that each polystd(Si) also contain Boolean axioms: x2 − x = 0 for the new Tseitin
variables.

Complexity measures:
Degree is defined as max((max

i∈[n]
(deg(Fi) + deg(gi))), (max

i∈[m]
(deg(polystd(Si)) + deg(hi)))).

The size being the number of all monomials in gis, polystd(Si) and his combined.

For instance, below we give the ∀Strat+NS proof of Q-polynomials from Example 13.

▶ Example 15. Consider the Q-polynomials F from Example 13 to be the input list F .
Below is the winning strategy for u as a decision list of length 2:

if(e1) → u

else → u

The new Tseitin variable tu
1 is defined as: (t1 ↔ e1). That is, S1 = (t1 ∨ e1), S2 = (t1 ∨ e1).

Note that since there is only one universal variable u, we drop the superscript u from tu
1 for

simplicity.
The decision list clauses are accordingly: S3 := (t1 → u), S4 := (t1 → u)
The standard encoding of these polynomials is as follows:

polystd(S1) := (1 − t1).(1 − e1) = 0 ; polystd(S2) := t1.e1 = 0 ;
polystd(S3) := (1 − t1).(1 − u) = 0 ; polystd(S4) := t1.u = 0 ;
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A possible list of gis for these can be (2 − 2t1, 1, 1, −1, −1, 0, 0, 0, u, 1, e1, 1). The following
is easily checkable:(

e1u
)

∗(2 − 2t1) +
(

(1−e1)(1−e2)
)

∗1 +
(

(1−u)e2

)
∗1 +

(
e1e2

)
∗−1 +

(
u(1−e2)

)
∗−1

+
(

e2
1 − e1

)
∗ 0 +

(
u2 − u

)
∗ 0 +

(
e2

2 − e2

)
∗ 0 +

(
(1 − t1)(1 − e1)

)
∗ u +

(
t1e1

)
∗ 1

+
(

(1 − t1)(1 − u)
)

∗ e1 +
(

t1u
)

∗ 1 = 1.

Therefore the complete ∀Strat+NS proof presented in this case would be (gis), (polystd(Si)s), (his)
i.e.

(
2 − 2t1, 1, 1, −1, −1, 0, 0, 0

)
,

(
(1 − t1)(1 − e1), t1e1, (1 − t1)(1 − u), t1u

)
,

(
u, 1, e1, 1

)
.

Degree of this refutation is 3 and size is 20.

The ∀Strat+NS system is a sound and complete QBF proof system.

▶ Theorem 16 (Soundness). Let π = (g1, . . . , gn), (polystd(S1), . . . , polystd(Sm)), (h1, . . . , hm)
be a ∀Strat+NS refutation of a list of Q-polynomials Π.{Fi = 0}n

i=1. Then, the set
Π.{Fi = 0}n

i=1 is false.

Proof. Given a valid ∀Strat+NS refutation π = (g1, . . . , gn), (polystd(S1), . . . , polystd(Sm)),
(h1, . . . , hm). It implies that S1, . . . , Sm are derived from decision lists computing assignments
for universal variables in Π. These additional clauses are either definition clauses for new
Tseitin variables or decision list clauses using these variables.

The definition clauses are CNF versions of the clauses (ti ↔ DNF(x̄)), these extra clauses
are all satisfiable clauses (i.e. evaluate to true). Also, the decision clauses are careful not to
introduce any contradictions. That is, there is no assignment α to LΠ(u) which can satisfy
more than one decision clause. This is because every new clause has the negation of LHS of
all previous clauses in it. Hence, if there exists a π which is satisfying Equation 1 for these
Fis ∪ poly(Sj)s, it implies that poly(Sj)s are the winning strategy of the universal player and
therefore implies that the input Q-polynomials Π.{Fi = 0}n are indeed false owing to the
soundness of the Nullstellensatz system. ◀

▶ Theorem 17 (Completeness). For every false set of Q-polynomials Π.{Fi}s, there exists at
least one ∀Strat+NS refutation.

Proof. The evaluation of a set of Q-polynomials is done as a 2-player game. Implying that a
false set of Q-polynomials should definitely have a winning strategy for the universal player.
Every Boolean function can be represented as a decision function [3]. Therefore adding
this winning strategy as decision and definition clauses as defined in Definition 14 (i.e. Fis
∪ poly(Sj)s) will make a set of false polynomial equations owing to Observation 9. Now
drawing on the completeness of the Nullstellensatz proof system for a set of polynomial
equations, there exists a set of gi and hi that satisfies Equation 1. ◀

A proof system by definition should be sound, complete and polynomial time verifiable [1].
In order to show that ∀Strat+NS is easily verifiable, one must show that the winning strategy
encoded as decision list is easily verifiable. We introduced the Tseitin variables in the
encoding, solely for this purpose. For the detailed verification algorithm, see Appendix:
Algorithm 1. As an example, next let us see how the proof from Example 15 can be verified
as a correct ∀Strat+NS proof.

▶ Example 18. Consider the Q-polynomials F and the final ∀Strat+NS proof presented in
Example 15 as input. We follow the following steps in-order to validate the same and reject
it if any of the following checks fail.

1. First, we check that Equation 1 is satisfied.
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2. We then convert the polystd(Si)s into clauses (ignoring any Boolean axioms present) as
follows:

if any literal is present in all monomials, it is a negative literal in the clause.
Remove the common literals found above from all monomials in the polynomial.
all single degree monomials with coefficient of ‘-1’ are positive literals of the clause.
lastly, check if the standard encoding of accumulated positive and negative literals
gives back the original polystd(Si).

For illustration of the above Step 2, see Example 32 in the Appendix.
3. We perform the following Steps 3-7 for all universal variables in the prefix Π. Recall

that u is the only universal variable in this example. We find the shortest width clause
containing var(u). If this is a singleton clause, that would be some trivial (0/1) strategy
for u. To handle such a case see [Algorithm 3, lines 9-11]. This is not the case for this
example. Check if the shortest width clause containing u contains a positive literal t. In
this example, it is found as (t1 ∨ u), mark it as checked. Intuitively, every such clause is
a new line in the potential decision list.

4. Next, we find the longest width clause containing t1 (the Tseitin variable found in Step
3) and not containing var(u). If not found reject. In this example, it is (t1 ∨ e1), check
if e1 is in LΠ(u) and mark the clause as checked.

5. For every extra literal l in the above clause (e1 in this example) we check that a clause
with l and positive t1 is present. In this example, it is (t1 ∨ e1) mark it as checked.
Intuitively, clauses from Step 4,5 are the definition clauses corresponding to every Tseitin
variable.

6. We then find the next smallest width clause with var(u) and check if there is an unhandled
positive ti literal. If yes, we repeat Steps 4,5,6 again.

7. We do not have any more ti variables in this example, so the next smallest clause
containing var(u) is (t1 ∨ u). Check whether all ti variables in this clause are handled
and then mark it as checked. Intuitively, this is the last line of the potential decision list.

8. Finally, if all clauses in polystd(Si) are marked as checked, then accept otherwise reject.
In this example, all 4 clauses are marked. Therefore we have a valid ∀Strat+NS proof.

5.2 Strategy based NS′ system for QBFs: ∀Strat+NS ′

In this section, we define an NS′ based system for QBFs using the ∀StratDL framework
defined in Definition 10. Since, NS′ works on polynomial equations, we need to encode QBFs
as a list of Q-polynomial equations. We use the twin encoding (Definition 4) for the same.
Converting a QBF into twin Q-polynomial equations Given a QBF Π.ϕ, for every
clause Ci ∈ ϕ, we have an Q-polynomial as Fi := Π′. polytwin(Ci) = 0. Here the quantified
prefix Π is changed to Π′ to include the twin variables. Twin variables are always quantified
existentially to the right of the original variables. Recall that in the twin encoding, we also
include polynomials (1 − x − x′) for every variable x in the input polynomials. For instance,
the same QBF from Example 13 can be encoded as twin Q-polynomials as shown below.

▶ Example 19. False QBF Π.ϕ := ∃e1 ∀u ∃e2 . (e1 ∨u)∧(e1 ∨e2)∧(u∨e2)∧(e1 ∨e2)∧(u∨e2)
Then the twin Q-polynomial Fis are the following:

F1 := ∃e1 ∀u ∃e2 . e1.u = 0 ; F2 := ∃e1 ∀u ∃e2 . e′
1.e′

2 = 0 ;
F3 := ∃e1 ∀u ∃e2 . u′.e2 = 0 ; F4 := ∃e1 ∀u ∃e2 . e1.e2 = 0 ;
F5 := ∃e1 ∀u ∃e2 . u.e′

2 = 0 ;
Twin axioms are as follows:

F6 := ∃e1 ∀u ∃e2 . 1 − e1 − e′
1 = 0 ; F7 := ∃e1 ∀u ∃e2 . 1 − u − u′ = 0 ;
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F8 := ∃e1 ∀u ∃e2 . 1 − e2 − e′
2 = 0 ;

In addition, there are the following Boolean axioms:
F9 := ∃e1 ∀u ∃e2 . e2

1 − e1 = 0 ; F10 := ∃e1 ∀u ∃e2 . u2 − u = 0 ;
F11 := ∃e1 ∀u ∃e2 . e2

2 − e2 = 0 ;

The truth value of a set of twin Q-polynomials are evaluated exactly as for standard
polynomials described in Section 5.1. However, here the satisfiability is kept intact by making
the twin variable of the universal player always be existential and to play after the universal
player does. This way, the newly added polynomials F6, . . . , F8 always evaluate to true and
do not interfere in the satisfiability of the input QBF.
Now, we are ready to define the proposed static ∀Strat+NS ′ proof system.

▶ Definition 20 (∀Strat+NS ′ proof system). Let P := Π.(F1 = 0, F2 = 0, . . . , Fn = 0) be a
list of twin Q-polynomials. A ∀Strat+NS ′ refutation of P is a combination of 3 ordered-lists
of polynomials: (g1, . . . , gn) , (polytwin(S1), . . . , polytwin(Sm)) , (h1, . . . hm)
such that the following is satisfied:∑

i∈[n]

Figi +
∑

i∈[m]

polytwin(Si)hi = 1 (2)

where polytwin(Si)s are the twin representations (Definition 4) of CNF versions of the
strategy-clauses as defined in Definition 14 and the twin axioms of the new Tseitin variables.

Complexity measures are the same as defined for ∀Strat+NS in Section 5.1.
Soundness and Completeness: Since, the changes in the twin encoding i.e. addition of
new clauses and variables does not change the satisfiability of the input QBF. The soundness
and completeness of the ∀Strat+NS ′ system follows analogously from Theorem 16 and
Theorem 17 of ∀Strat+NS.
For instance, below we give the ∀Strat+NS ′ proof of Q-polynomials from Example 19.

▶ Example 21. Consider the Q-polynomials from Example 19 to be the input list F .
Below is the winning strategy for u as a decision list of length 2:

if(e1) → u

else → u

The new Tseitin variable is defined as: (t1
u ↔ e1). That is, S1 = (t1 ∨e1), S2 = (t1 ∨e1), S3 =

(1 − t1 − t′
1).

Hence the decision list clauses are accordingly: S4 := (t1 → u), S5 := (t1 → u)
The twin encoding of these polynomials is as follows:

polytwin(S′
1) := t′

1.e′
1 = 0 ; polytwin(S′

2) := t1.e1 = 0 ;
polytwin(S′

3) := 1 − t1 − t′
1 = 0 ; polytwin(S′

4) := t′
1.u′ = 0 ;

polytwin(S′
5) := t1.u = 0 ;

A possible list of gi and hi polynomials for these can be (0, t1, t1, t′
1, t′

1, (e′
2t1 + e2t′

1), (e′
2t′

1 +
e2t1), (t′

1 + t1), 0, 0, 0, e2, e′
2, 1, e′

2, e2). The following is easily checkable:(
e1u

)
∗0 +

(
e′

1e′
2

)
∗t1 +

(
u′e2

)
∗t1 +

(
e1e2

)
∗t′

1 +
(

ue′
2

)
∗t′

1 +
(

1−e1−e′
1

)
∗(e′

2t1 + e2t′
1)

+
(

1 − u − u′
)

∗ (e′
2t′

1 + e2t1) +
(

1 − e2 − e′
2

)
∗ (t′

1 + t1) +
(

e2
1 − e1

)
∗ 0 +

(
u2 − u

)
∗ 0

+
(

e2
2−e2

)
∗0 +

(
t′
1e′

1

)
∗e2 +

(
t1e1

)
∗e′

2 +
(

1−t1−t′
1

)
∗1 +

(
t′
1u′

)
∗e′

2 +
(

t1u
)

∗e2 = 1.

Therefore the complete ∀Strat+NS ′ proof presented in this case would be (gis), (polytwin(S′
i)s), (his)

i.e.
(

0, t1, t1, t′
1, t′

1, (e′
2t1 + e2t′

1), (e′
2t′

1 + e2t1), (t′
1 + t1), 0, 0, 0

)
,

(
t′
1e′

1, t1e1, 1 − t1 −

t′
1, t′

1u′, t1u
)

,
(

e2, e′
2, 1, e′

2, e2

)
.

The degree of this refutation is 3 and size is 22.
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∀Strat+NS ′ is a polynomial time verifiable static proof system. For the detailed verification
algorithm, see Appendix: Algorithm 2.

6 Strengths and limitations of proposed systems

In this section, we analyze the strength and limitations of the proposed proof systems among
themselves and against some important QBF proof systems. We first show that ∀Exp+NS ′

and ∀Strat+NS ′ are incomparable (Theorem 22). The proof follows from Lemmas 24 and 28.

▶ Theorem 22. ∀Exp+NS ′ and ∀Strat+NS ′ are incomparable.

Consider the family of QBFs QParityn from [10, Theorem 14] restated below.

▶ Definition 23 (QParityn formulas (
⊕

n) [10]). ∃x1, . . . , xn ∀z ∃t2, . . . , tn

xor(x1, x2, t2) ∧
( ∧

i∈[3,n]
xor(ti−1, xi, ti)

)
∧ (z ∨ tn) ∧ (z ∨ tn)

where, xor(o1, o2, o) sets o = o1 ⊕ o2 by the clauses:
(o1 ∨ o2 ∨ o) ∧ (o1 ∨ o2 ∨ o) ∧ (o1 ∨ o2 ∨ o) ∧ (o1 ∨ o2 ∨ o)

▶ Lemma 24. ∀Strat+NS ′ cannot p-simulate ∀Exp+NS ′.

Proof. QParityn (Definition 23) is hard for ∀Strat+NS ′ from Theorem 25. On the other
hand, Lemma 26 below proves that QParityn has easy proofs in ∀Exp+NS ′. ◀

▶ Theorem 25. QParityn formulas (
⊕

n) have exponential sized ∀Strat+NS and ∀Strat+NS ′

refutations.

▶ Proof Sketch. Observe that the size of ∀Strat+NS (∀Strat+NS ′) refutations also counts
the strategy clauses. Therefore an obvious lower-bound in these systems can be from those
QBFs where the winning strategy needs exponential number of clauses to be represented as a
decision list. The winning strategy for

⊕
n is to set z = tn i.e. z = x1 ⊕ x2 ⊕ · · · ⊕ xn (in

terms of variables left of z). It is well known that if one can represent a Boolean function
f as a polynomial-size decision list then f ∈ AC0 [10, Lemma 13]. On the other hand, we
know that the Boolean function ‘parity’ of n-variables does not belong to AC0 [17]. Therefore,
the decision list representing the winning strategy of z = PARITY (x1, . . . , xn) must be of
exponential size in n.

▶ Lemma 26. QParityn has linear size ∀Exp+NS ′ proofs.

Proof. In [9, Theorem 2], the authors gave a polynomial size ∀Exp+ResT proof π of
QParityn. In π, the clauses are expanded with 0, 1 values of z, doubling the total number
of clauses. We can easily convert π into an ∀Exp+NS ′ proof π′: derive the same expansion
clauses as axioms in π′ and ResT proof can be converted into NS′ proof by Lemma 6. In π,
every variable is resolved at most constant (i.e. 8) times. Therefore size(π′) is linear in n. ◀

Consider the family of QBFs defined by Janota and Marques-Silva from [23, Formula 2]
restated below. (The original paper uses notation ϕn, but here we refer them as JMn).

▶ Definition 27 (Janota and Marques-Silva (JMn) formulas [23]).
∃e1∀u1∃c1, c2 . . . ∃en∀un∃c2n−1, c2n∧

i∈[n]

{
(ei ∨ c2i−1) ∧ (ui ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

}
∧ (

∨
i∈[2n]

ci)

▶ Lemma 28. ∀Exp+NS ′ cannot p-simulate ∀Strat+NS ′.
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Proof. JMn is hard for ∀Exp+NS ′ from Proposition 29. On the other hand, Theorem 30
below proves that JMn has easy proofs in ∀Strat+NS ′. ◀

▶ Proposition 29. JMn needs exponential size proofs in the ∀Exp+NS and ∀Exp+NS ′ systems.

▶ Proof Sketch. The size of an ∀Exp+NS and ∀Exp+NS ′ proof also includes fi polynomials .
Hence, one type of obvious lower bounds in these systems are all formulas where exponential
axiom downloads are required to maintain the falsity of the formula. The authors in [23,
Proposition 3] prove that JMn formulas need exponential axiom downloads as every sub-
formula in any expansion is satisfiable.

▶ Theorem 30. JMn formulas have linear sized ∀Strat+NS ′ proofs.

Proof. The winning strategy for universal variables in JMn formulas (Definition 27) is to set
all ui = ei. As a decision list:

if(ei) → ui

else → ui

The Tseitin definition clauses would be
∧

i∈[n]
(ti ↔ ei) and the decision list clauses would be∧

i∈[n]
(ti ∨ ui) ∧ (ti ∨ ui). Now, let JM′

n be the resulting formulas after adding these clauses to

the definition clauses of JMn from Definition 27. JM′
n has easy ResT proof as follows:

(ui ∨ c2i−1)
(ei ∨ c2i−1)

(ti ∨ ei) (ti ∨ ui)
(ei ∨ ui)

(ui ∨ c2i−1)
(c2i−1) (c1 ∨ · · · ∨ c2n)

(ei ∨ c2i)
(ti ∨ ei) (ti ∨ ui)

(ei ∨ ui)
(ui ∨ c2i) (ui ∨ c2i)

(c2i)
⊥

Lemma 6 implies that JM′
n has a linear-sized NS′ proof. That is, (JMn + strategy clauses)

has easy NS′ refutations. Implying that JMn has easy proofs in ∀Strat+NS ′. ◀

We end this paper by showing that eFrege+∀red ([8]) p-simulates the strategy based
static proof systems ∀Strat+NS and ∀Strat+NS ′ (Theorem 31). It is known that eFrege+∀red
p-simulates almost all important existing dynamic QBF proof systems [13, Figure 1]. Our
result shows that eFrege+∀red is capable of simulating even static QBF-proof systems.

▶ Theorem 31. eFrege+∀red p-simulates ∀Strat+NS ′ and ∀Strat+NS.

Proof. From either a ∀Strat+NS ′ or ∀Strat+NS refutation of Π.ϕ we immediately have a
winning strategy S in a series of decision lists D1, . . . Dn for each of the universal variables
u1, . . . un as a part of the input. The NS and NS′ proofs refute (

∧n
i=1 Di)∧ϕ. By propositional

simulation (Lemma 5) we can get a PCR refutation of (
∧n

i=1 Di)∧ϕ and thus by propositional
simulation [25, Lemma 7.1.1] again an eFrege refutation of the same. The decision list Di

explicitly assigns the universal variable ui, but instead of Di which outputs a {ui, ūi}-
assignment, a circuit σi in the same input variables can be constructed by re-balancing the
decision list into a circuit that outputs a {0, 1}-assignment (in fact a bounded-depth circuit
as shown in [8, Prop. 4.2]). And using eFrege to prove that Di can be replaced by ui ↔ σi

due to logical equivalence. We therefore have an eFrege refutation of
∧n

i=1(ui ↔ σi) ∧ ϕ.
Now that we have a formalised proof of the soundness of the strategy, in fact we get a
∀StratCirc+eFrege refutation which is equivalent to eFrege+∀red (Observation 11).

◀
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7 Conclusion and Future work

The paper commences the study of Nullstellensatz (NS) for QBFs as well as a new general
∀Strat framework for static (and dynamic) propositional proof systems along with the
reintroduction of ∀Exp. To the best of our knowledge, these are the first static QBF proof
systems with non-trivial results in the literature. The remaining open problems in the scope
of this paper are pointed below.

In this paper, we show an incomparability result between the ∀Exp+NS ′ and the
∀Strat+NS ′ systems. However, the relationship between ∀Exp+NS and ∀Strat+NS is still
open. As is the case for ∀Exp+NS ′ and ∀Strat+NS ′ when quantifier alternations are bounded.
Bounded alternations are particularly interesting because Q-Res and ∀Exp+Res are not
incomparable in bounded alternations [9], but the simulation of Q-Res by ∀Exp+Res clearly
uses the dynamic structure of the Resolution proof [9] and it is not clear how this can be
replicated in a static system.

Further is the open relationship with Tree-like Q-Resolution. Tree-like ∀Exp+Res can
be simulated by ∀Exp+NS′, but it is unclear if Tree-like Q-Resolution can be simulated by
∀Strat+NS′. The issue is whether one can extract a strategy from a Tree-like Q-Resolution
proof that when encoded will never cause a change in propositional hardness for NS′.

From our observation in the propositional domain (Lemma 3), we derive that ∀Exp+NS
cannot simulate ∀Exp+NS ′ and also ∀Strat+NS cannot simulate ∀Strat+NS ′. The other
direction in both of these is still open.

Finally we can speculate, but require more work to prove that just as eFrege+∀red p-
simulates ∀Strat+NS and ∀Strat+NS ′, eFrege+∀red also p-simulates ∀Exp+NS and ∀Exp+NS.
First the strategy extraction property would have to be proven for these systems and then
a formalised strategy extraction argument can be made for a simulation (see [13, 12] for
examples of how this can be done for other systems).
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Appendix (Missing Algorithms and Examples from Section 5)

Algorithm 1 is the verifier for a ∀Strat+NS proof and Algorithm 2 is the verifier for a
∀Strat+NS ′ proof. These both inherently use the Algorithm 3 to decide if or not the CNF
clauses form a decision list.

Algorithm 1 Verifier for ∀Strat+NS

Require: Quantifier prefix Π, list of standard input polynomials F1, . . . , Fn, Strategy en-
codings as polystd(S1), . . . , polystd(Sm), standard multipliers g1, . . . , gn, h1, . . . , hm

1: function verify(Π, {F1, . . . , Fn}, {polystd(S1), . . . , polystd(Sm)}, {g1, . . . , gn}, {h1, . . . , hn})
2:
3: sum =

∑
i∈[n]

Figi +
∑

j∈[m]
polystd(Sj)hj

4: if sum ̸= 1 then return FALSE
5: end if
6:
7: StratC = {} /*empty list to hold strategy clauses computed from

encodings*/
8: for S ∈ {polystd(S1), . . . , polystd(Sm)} do
9: if S is a Boolean axiom then

10: continue /*ignores current clause and moves to the next iteration*/
11: end if
12:
13: neg = literals appearing in all monomials of S. /*negative literals in the clause*/
14: pos = {} /*empty list to hold positive literals in the clause*/
15: for monomial M ∈ S do
16: M := M \ neg /*drop the common literals from all monomials*/
17: if degree(M)= 1 and coeff(M)= −1 then
18: pos.append(|M |)
19: end if
20: end for
21: Snew = neg

22: for literal l ∈ pos do
23: Snew := Snew · (1 − l)
24: end for
25: if S ̸= Snew then return FALSE
26: else
27: lit = {} /*empty list to hold literals of a clause*/
28: for literal l ∈ neg do
29: lit.append(l)
30: end for
31: for literal l ∈ pos do
32: lit.append(l)
33: end for
34: StratC .append(lit)
35: end if
36: end for
37: return V ERIFY -STRATEGY (Π, StratC)
38: end function
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Description of Algorithm 1: This ∀Strat+NS-verifier takes as input the Quantifier
prefix, input polynomials, polynomials of strategy clauses and multiplier-polynomials of the
∀Strat+NS-refutation π needing verification. Lines 3-5 check if Equation 1 is satisfied for π

and reject otherwise. Strategy clauses (ignoring axiom clauses) are handled from lines 13
onward. Lines 13-20 identify positive and negative literals from the polynomial of the strategy
clause. Lines 21-25 rebuild the polynomial with the above found positive and negative literals
and cross-check if it matches the original and reject otherwise. Lines 27-35 make a set of
positive literals as x and negative as x to represent a CNF clause and add it to the StratC

list. That is, at last StratC is a list of CNF clauses with each CNF clause in-turn encoded as
a list. Finally this algorithm calls the VERIFY-STRATEGY function on these CNF clauses
to check if they form a decision list or not.

Step 2 of Example 18 explains lines 13-25 of Algorithm 1. These lines handle the process of
mapping the refutation-polynomials to their respective CNF clause-forms. To understand
the process of this, let’s see two cases in the following example.

▶ Example 32. Let polynomial P1 := p1 − p1n1 − p1n2 + p1n1n2
First, positive literals of the clause = literals common in all monomials = {p1} in this case.

Dropping them implies, P ′
1 := 1 − n1 − n2 + n1n2

Next, negative literals of the clause = single degree monomials with a coeficient of −1 =
{n1, n2} in this case.

To cross-check, re-building the polynomial implies P ′′
1 := p1(1 − n1)(1 − n2). Opening up

the monomials, P1 = P ′′
1 . Therefore this polynomial P1 is valid.

On the other hand, suppose polynomial P2 := p1 − p1n1 − p1n2 − p1n3 + p1n1n2 − p1n1n3
positive literals = {p1}.
negative literals = {n1, n2, n3}

P ′′
2 := p1(1 − n1)(1 − n2)(1 − n3) := p1 − p1n1 − p1n2 − p1n3 + p1n1n2 + p1n1n3 + p1n2n3 −

p1n1n2n3. Since P2 ̸= P ′′
2 , this polynomial P2 is in-valid.

Description of Algorithm 2: This ∀Strat+NS ′-verifier works similar to the ∀Strat+NS-
verifier above. That is, it takes as input the Quantifier prefix, input polynomials, polynomials
of strategy clauses and multiplier-polynomials of the ∀Strat+NS ′-refutation π needing veri-
fication. Lines 3-5 check if Equation 2 is satisfied for π and reject otherwise. Strategy clauses
(ignoring boolean and twin axioms) are handled from lines 16 onward. Lines 16-23 make a
set of positive literals as x and negative as x to represent a CNF clause and add it to the
StratC list. That is, at last StratC is a list of CNF clauses with each CNF clause in-turn
encoded as a list. Finally this algorithm calls the VERIFY-STRATEGY function on these
CNF clauses to check if they form a decision list or not.

Next, we see how the proof from Example 21 can be verified as a correct ∀Strat+NS ′

proof.

▶ Example 33. Given the Q-polynomials F and the final proof in Example 21 as input, we
will see how to verify if it is a valid ∀Strat+NS ′ proof or not.
1. First, we cross-check that Equation 2 is satisfied.
2. Next, we convert the polytwin(Si)s into clauses and ignore any Boolean/ twin axioms

present.
In a monomial, l are negative literals and l′ are positive literals of the clause.

3. The next steps are same as in ∀Strat+NS Example 18. Therefore at the last, the 1−t1 −t′
1

will be ignored and the rest 4 clauses will be marked in the same way as the former
example. Therefore it is a valid ∀Strat+NS ′ proof.
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Algorithm 2 Verifier for ∀Strat+NS ′

Require: Quantifier prefix Π, list of twin input polynomials F1, . . . , Fn, Strategy encodings
as polytwin(S1), . . . , polytwin(Sm), twin multipliers g1, . . . , gn, h1, . . . , hm

1: function verify(Π, {F1, . . . , Fn}, {polytwin(S1), . . . , polytwin(Sm)}, {g1, . . . , gn}, {h1, . . . , hn})
2:
3: sum =

∑
i∈[n]

Figi +
∑

j∈[m]
polytwin(Sj)hj

4: if sum ̸= 1 then return FALSE
5: end if
6:
7: StratC = {} /*empty list to hold strategy clauses computed from encodings*/
8: for S ∈ {polytwin(S1), . . . , polytwin(Sm)} do
9: if size(S) ̸= 1 then

10: if S is a Boolean/ Twin axiom then
11: continue /*ignores current clause and moves to the next iteration*/
12: else
13: return FALSE
14: end if
15: end if
16: lit = {} /*empty list to hold literals of a clause*/
17: for literal l′ ∈ S do
18: lit.append(l)
19: end for
20: for literal l ∈ S do
21: lit.append(l)
22: end for
23: StratC .append(lit)
24: end for
25: return VERIFY-STRATEGY(Π, StratC)
26: end function

Description of Algorithm 3: This is a general verifier for proof systems using ∀StratDL

framework. It takes as input the quantifier prefix Π and the strategy clauses as CNFs. For a
universal variable u, in Lines 5-6, it separates out the decision list clauses of u and sorts them
by ascending order of width size (if two clauses are of same width, the one with a positive t

variable will be first). Lines 9-11 check if u has some trivial strategy as 0/1 i.e without any
decision list. Lines 13-15 check that all negative literals (except u) in the decision clause
are already seen tis, otherwise rejects instantly. Line 16-21 deal with the positive literals
(excluding u) in the decision clause, note that if no positive literal in the clause it is the ’else’
part of the decision list and if more than 1 positive literal is present, then it is against the
definition so rejects immediately. Now in the case that only 1 positive t literal is present,
Lines 22-25 separate out the definition clauses of this t variable and find the one clause CT

with t in it. The Lines 26-33 are checking if the remaining literals (say x) in CT are to the
left of u in Π and if there exist definition clauses t ∨ x in the strategy clauses. Once all such
clauses exist, we mark them and remember that this particular t has been handled. This
process repeats as you keep finding new ts in the decision clauses of every universal variable
u ∈ Π. Finally we accept the input if all clauses have been marked and none of the clauses
we search for are missing.
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Algorithm 3 Algorithm for checking if strategy clauses form a decision list

Require: Quantifier prefix Π and list of CNF clauses StratC .
1: function verify-strategy(Π, StratC)
2: n = length(StratC)
3: checked[n] = {0, . . . , 0}
4: for ∀u ∈ Π do
5: clausesu := {C ∈ StratC | u/u ∈ C} /*decision list clauses*/
6: sort-by-width-ascending(clausesu) /*if equal positive t-clause will be first*/
7: varsT = {} /*empty list to store Tseitin variables used for a u*/
8: for C ∈ clausesu do
9: if length(C)= 1 then /*trivial 0/1 strategy*/

10: checked=MARK-CHECKED(C, checked, StratC)
11: break /*breaks loop to fetch another universal u*/
12: end if
13: neg := {l | l ∈ C & var(l) ̸= u}
14: if neg ̸= varsT then return FALSE
15: end if
16: pos := {l | l ∈ C & var(l) ̸= u}
17: if length(pos)> 1 then return FALSE
18: end if
19: checked=MARK-CHECKED(C, checked, StratC)
20: if length(pos)= 0 then break /*last line in decision list*/
21: end if
22: clausesT := {C ′ ∈ StratC | pos/pos ∈ C ′ & u /∈ C ′} /*definition clauses*/
23: CT := {C ′ ∈ clausesT | pos ∈ C ′} /*long t clause*/
24: if length(CT )> 1 then return FALSE
25: end if
26: for literal l ∈ CT & l ̸= pos do
27: if l /∈ LΠ(u) then return FALSE
28: end if
29: if {l, pos} /∈ clausesT then return FALSE
30: else
31: checked=MARK-CHECKED({l, pos}, checked, StratC)
32: end if
33: end for
34: checked=MARK-CHECKED(CT , checked, StratC)
35: varsT .append(pos)
36: end for
37: end for
38: if checked[n] = {1, . . . , 1} then return TRUE
39: else return FALSE
40: end if
41: end function
42: function mark-checked(C, checked, StratC)
43: indx = StratC .index(C)
44: checked[indx] = 1
45: return checked

46: end function
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