
Batch Proofs are Statistically Hiding

Nir Bitansky1, Chethan Kamath2, Omer Paneth1, Ron D. Rothblum3, and Prashant Nalini
Vasudevan4

1Tel Aviv University, nirbitan@tau.ac.il,omerpa@tauex.tau.ac.il
2IIT Bombay, ckamath@protonmail.com

3Technion, rothblum@cs.technion.ac.il
4National University of Singapore, prashant@comp.nus.edu.sg

December 4, 2023

Abstract

Batch proofs are proof systems that convince a verifier that x1, . . . , xt P L, for some NP language L, with
communication that is much shorter than sending the t witnesses. In the case of statistical soundness
(where the cheating prover is unbounded but the honest prover is efficient given the witnesses), interactive
batch proofs are known for UP, the class of unique-witness NP languages. In the case of computational
soundness (where both honest and dishonest provers are efficient), non-interactive solutions are now
known for all of NP, assuming standard lattice or group assumptions.

We exhibit the first negative results regarding the existence of batch proofs and arguments:

� Statistically sound batch proofs for L imply that L has a statistically witness indistinguishable (SWI)
proof, with inverse polynomial SWI error, and a non-uniform honest prover. The implication is
unconditional for obtaining honest-verifier SWI or for obtaining full-fledged SWI from public-coin
protocols, whereas for private-coin protocols full-fledged SWI is obtained assuming one-way functions.

This poses a barrier for achieving batch proofs beyond UP (where witness indistinguishability is trivial).
In particular, assuming that NP does not have SWI proofs, batch proofs for all of NP do not exist.

� Computationally sound batch proofs (a.k.a batch arguments or BARGs) for NP, together with one-way
functions, imply statistical zero-knowledge (SZK) arguments for NP with roughly the same number of
rounds, an inverse polynomial zero-knowledge error, and non-uniform honest prover.

Thus, constant-round interactive BARGs from one-way functions would yield constant-round SZK
arguments from one-way functions. This would be surprising as SZK arguments are currently only
known assuming constant-round statistically-hiding commitments.

We further prove new positive implications of non-interactive batch arguments to non-interactive zero
knowledge arguments (with explicit uniform prover and verifier):

� Non-interactive BARGs for NP, together with one-way functions, imply non-interactive computational
zero-knowledge arguments for NP. Assuming also dual-mode commitments, the zero knowledge can
be made statistical.

Both our negative and positive results stem from a new framework showing how to transform a batch
protocol for a language L into an SWI protocol for L.
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1 Introduction

Batch proofs are interactive proof-systems that enable a prover to convince a verifier that input statements
x1, . . . , xt all belong to a language L P NP, with communication that is much shorter than sending the t
witnesses. Batch proofs have been studied recently in two main threads: depending on whether the soundness
property is required to hold against arbitrary cheating prover strategies, or only against computationally
bounded ones.

The Statistical Setting. In the statistical setting, we require that even a computationally unbounded
prover cannot convince the verifier to accept a false statement (other than with some bounded probability).
On the other hand, we require that there is an efficient honest prover strategy (given the witnesses as an
auxiliary input) for convincing the verifier of true statements. Such batch proofs systems are known as
doubly efficient (see [Gol18] for a recent survey on doubly efficient interactive proofs).

A recent sequence of works by Reingold et al. [RRR21, RRR18, RR20] construct doubly-efficient batch
proofs for any language in the class UP (consisting of NP languages in which YES instances have a unique
accepting witness). In particular, Rothblum and Rothblum [RR20] give such a protocol with communication
polypm, logptqq, where m is the length of a single witness and poly is a polynomial that depends only on
the UP language. Doubly-efficient batch proofs beyond UP remain unknown, leading to a natural question
[RRR21]:

Does every language L P NP have a statistically sound doubly-efficient batch proof? Do there
exist other subclasses of NP (beyond UP) that have such proofs?

If we waive the restriction that the honest prover is efficient, there is a simple answer to this question.
Specifically, there is a space polypn,mq � logptq algorithm for deciding whether x1, . . . , xt P L, where n is
the instance length and m is the witness length. Thus, via the IP � PSPACE theorem [LFKN92, Sha92],
there is an interactive proof for this problem with communication polypn,m, logptqq. However, this protocol
is entirely impractical as the honest prover runs in time 2Ωpnq.

The Computational Setting. A natural relaxation of the statistical soundness condition is to only
require computational soundness, which means that soundness is guaranteed only against efficient cheating
provers. Such proof systems are commonly called argument systems. The seminal work of Kilian [Kil92]
gives general-purpose succinct arguments for all of NP, assuming the existence of collision-resistant hash
functions (CRH). In more detail, Kilian’s protocol is a four-message argument-system with communication
polypλ, logpnqq, where λ is the security parameter, for any language L P NP. In particular, for any L P NP,
we can apply Killian’s result to the related NP language

Lbt �  px1, . . . , xtq P pt0, 1unqt : x1, . . . , xt P L
(

and obtain a batch argument (BARG) for L with communication polypλ, logpnq, logptqq.
Kilian’s protocol relies on collision-resistant hash functions (or certain relaxations thereof [BKP18,

KNY18a]). However, it is unclear whether such hash functions are also necessary. This gives rise to the
following question:

What are the minimal assumptions needed for succinct arguments for NP? Can BARGs be
constructed based solely on the existence of one-way functions?

We remark that it is not clear that the existence of one-way functions is even necessary for general
purpose succinct arguments for NP. The only result that we are aware of is by Wee [Wee05], who showed
that 2-message succinct arguments imply the existence of a hard-on-average search problem in NP.
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The Non-Interactive (Computational) Setting. As noted above, Kilian’s protocol requires four messages.
Reducing the number of messages in succinct arguments is a major open question in the field.1 Restricting
to the case of BARGs though, we have a much better understanding due to recent breakthrough works. In
particular, a sequence of works [BHK17, CJJ21, CJJ22, WW22, HJKS22, PP22, KLVW22] construct BARGs
consisting of a single message, given a common reference string (equivalently, 2-message publicly verifiable
arguments in the plain model), assuming specific cryptographic assumptions such as LWE or assumptions
related to discrete log.

This raises the question of whether one can make do with a general assumption as in Kilian’s protocol.
In particular:

Can non-interactive BARGs be constructed from collision-resistant hash functions?

1.1 Our Results

In this work, with the above questions in mind, we exhibit the first barriers for the existence of batch proofs
and arguments. In the non-interactive setting, our results also have positive applications, giving rise to new
non-interactive zero knowledge protocols.

Our main contribution is a new transformation that compiles a batch protocol (proof or argument) Π,
for verifying that x1, . . . , xt P L, into a protocol Π1, for a single instance, which has a secrecy property.
Specifically, we consider batch protocols Π where the communication for proving that x1, . . . , xt P L is
t1�ϵ � polypmq, for some ϵ ¡ 0, witness length m, and a polynomial poly that does not depend on t. We
show that any such Π can be transformed into a protocol Π1 for a single instance satisfying statistical witness
indistinguishability (SWI) against an honest verifier. Recall that a protocol for an NP relation R is SWI, if for
every input x and witnesses w0, w1 P tw : Rpx,wq � 1u, the view of the verifier when the prover uses w0 and
when the prover uses w1 are statistically close. We say that the protocol is honest-verifier SWI if the SWI
property only holds in an honest execution of the protocol. The transformation preserves the soundness of
the original protocol; namely, if Π is computationally (resp., statistically) sound then the resulting protocol
Π1 is computationally (resp., statistically) sound. If Π has r-rounds then Π1 has r � 1 rounds.

The transformation does have two caveats: First, the statistical WI error ε is inverse polynomial and
not negligible. Specifically, the statistical distance between the view of the verifier when the prover uses w0

and when the prover uses w1 can be set to any ε, at the cost of increasing the communication complexity
polynomially in 1{ε. The second caveat is that the efficient honest prover strategy of Π1 is non-uniform,
where the non-uniform advice depends on the specification of the protocol Π. Even given these two caveats,
the transformation is a meaningful tool for deriving barriers (in terms of complexity or cryptographic
assumptions) on the existence of batch proofs. On the positive side, in the setting of non-interactive
protocols, we show an improved transformation that overcomes both caveats, thereby giving rise to new
explicit protocols.

We next elaborate on our results in each of the settings discussed above. See Figure 1.1 for a summary
of the different implications we prove.

A Barrier for Statistically Sound Batch Proofs. Our first application of the above transformation is
in the statistical setting. Given a statistically sound batch proof, we obtain SWI against malicious verifiers,
in which the SWI error is inverse polynomial. In case we start from a public-coin batch proof the result is
unconditional. Otherwise, we need to assume one-way functions (or settle for honest-verifier SWI).2

Theorem 1 (Informally Stated, see Theorem 3.1 and Corollaries 3.18 and 3.19). Suppose that L P NP has
a statistically sound r-round public-coin batch proof. Then, for any polynomial p, the language L has an
Oprq-round SWI proof with SWI error 1

p and a non-uniform honest prover.

1We note that in the random oracle model succinct non-interactive arguments for NP (and in particular BARGs) exist
unconditionally [Mic94]. We focus on the plain model, where given a common reference string (CRS) proofs can be generated
and verified non-interactively.

2Note that the Goldwasser and Sipser [GS89] transformation from private-coin to public-coin protocols is inapplicable, since
it results in an inefficient honest prover (see also [AR21]).

4



Furthermore, for general (i.e., private-coin) statistically sound batch proofs we achieve the weaker conclusion
of honest-verifier SWI, or, assuming the existence of a one-way function, malicious verifier SWI.

It is worth pointing out that Theorem 1 is also applicable to languages in UP (for which batch proofs are
known), but there the conclusion is meaningless since UP has a trivial SWI proof - just send the witness! In
contrast, the existence of SWI proofs for all of NP would be surprising. In particular, there are no known
languages with SWI proofs beyond UP Y SZK. Here SZK is the class of languages with statistical zero-
knowledge proofs, and it is known not to contain NP (assuming the polynomial hierarchy does not collapse
[For89, AH91]).3

Corollary 2 (Informally Stated). Assume that the class of languages with an SWI proof (as in Theorem 1)
does not contain NP. Then NP does not have statistically-sound batch proofs.

We do not take for granted the fact that NP does not have SWI proofs, and we find this to be an intriguing
open question. Indeed, while we have a very deep understanding of the structure of SZK (see [Vad99]), to
the best of our knowledge, the structure of the class of languages having SWI proofs has not been explored.
Theorem 1 provides concrete motivation for a similar study of the class SWI, which we leave to future work.

A Barrier for Computationally Sound Batch Proofs. Applying our framework in the computational
setting, and assuming one-way functions, we are able to derive the stronger hiding property of statistical
zero-knowledge.

Theorem 3 (Informally Stated, See Theorem 3.1 and Corollary 3.19). Assume the existence of one-way
functions. Suppose that every L P NP has an r-round BARG. Then, for every polynomial p, every L P NP
has an Oprq-round statistical zero-knowledge argument-system (SZKA) with ZK error 1

p and a non-uniform
honest prover.

Recall that constant-round SZKA for NP are only known to exist assuming constant-round statistically-
hiding commitments, which in turn are only known based on primitives that are seemingly stronger than
one-way functions, such as collision-resistant hash functions (or variants thereof [BKP18, BDRV18, KNY18b,
BHKY19]). In fact, there are known black-box separations between constant-round statistically-hiding
commitments and one way functions [HHRS15]. Thus, Theorem 3 can be seen as a barrier toward basing
constant-round BARGs for NP on one-way functions.

In this context, a related positive result was obtained recently by Amit and Rothblum [AR23], who
constructed constant-round succinct arguments for deterministic languages (specifically for the class NC)
from one-way functions. Theorem 3 poses a barrier toward extending their result to BARGs for NP.

Explicit Proof Systems from Non-Interactive BARGs. In the context of non-interactive BARGs we
are able to push the transformation further, constructing explicit (uniform) protocols with a negligible WI
error. In particular, while one may still take a negative perspective and view these results as barriers on
non-interactive BARGs, they can also be viewed positively, as a new route to constructing non-interactive
WI (and in fact ZK) protocols.

One subtlety in applying our transformation in the non-interactive setting concerns adaptive soundness
(in the interactive setting we do away with this concern by adding a round of interaction). Here we assume
that the BARGs we start from satisfy a weak form of adaptive soundness called somewhere soundness, which
is a relaxation of somewhere extractability [CJJ22], achieved by recent BARG constructions.

We obtain the following result:

Theorem 4 (Informally Stated, See Corollaries 4.11 and 5.10). Assume that NP has somewhere-sound non-
interactive BARGs. Then, assuming also one-way functions, NP has non-interactive computational zero-
knowledge arguments (NICZKA), with a negligible non-adaptive soundness error, a negligible zero-knowledge

3Recall that statistical zero-knowledge (SZK) requires that for every efficient verifier strategy there is an efficient simulator
that generates a view that is statistically close to that in the actual interaction (for instances in the language). SWI can be
thought of as a relaxation of SZK in which the simulator can be unbounded.
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error, and a uniform honest prover. Assuming also the existence of dual-mode commitments,4 the same
implications holds for statistical zero knowledge (NISZKA).

Like non-interactive BARGs, non-interactive ZK (computational or statistical) is currently only known to
exist based on trapdoor permutations or specific algebraic and number-theoretic assumptions. Accordingly,
one (negative) perspective on Theorem 4 is as evidence that constructing non-interactive BARGs from
“relatively weak” assumptions, such as one-way functions or collision-resistant hash functions, would be
difficult. From a positive perspective, construction of non-interactive BARGs from new assumptions would
yield analogous results for NICZKA.

Toward proving Theorem 4 we prove two general enhancement theorems for NISZKA that we find valuable
on their own. The first is a reduction between average-case and worst-case notions of SZK, and the second
is an amplification theorem that reduces SZK error.

Remark 1.1 (Lossy Encryption from BARGs). We also observe that lossy public-key encryption follows
from a variant of somewhere extractable BARGs, which guarantees that it is possible to extract the specific
witness that was used in some predefined index in an honest proof. This is in contrast to the standard notion
of somewhere extractability guaranteeing that some witness can be extracted (even from maliciously generated
accepting proofs). Furthermore, we show that the standard notion of somewhere extractable BARGs imply
private information retrieval and thus also statistically sender-private oblivious transfer and lossy public-key
encryption. while perfectly-correct lossy public key encryption would imply dual-mode commitments, lossy
public-key encryption obtained has (negligible) decryption errors (which is not sufficient for Theorem 4). See
further details in Appendix B.

Remark 1.2 (Hiding for Batch Protocols). All of the results listed above start with a batch protocol for a
language L and derive a protocol with hiding properties (i.e., either SWI or SZK) for a single instance of L.
We note that all of the results can be used to obtain similar hiding properties also for a batch protocol for L
via the following simple transformation: rather than applying the basic result to L, we can apply it to Lbt1

for any t1 ! t.

Remark 1.3 (On the Possibility of Weak Batching). All of our results assume a batch protocol for t instances,
with communication t1�ϵ.5 Thus, our results are inapplicable to very weakly compressing batch protocols that
have slightly non-trivial communication such as say, t � ?m� polypmq, where m is the witness length. Such
weak batch protocols can nevertheless be quite useful (see [RRR21]) and we leave the study of this setting as
an interesting open problem.

1.2 Additional Related Works

The study of the minimal necessary communication in statistically sound interactive proofs, focusing on the
prover to verifier communication, was initiated in [GH98, GVW02]. In particular, Goldreich et al. [GVW02]
transform interactive proofs with a single bit of communication to be SZK. We emphasize that the results in
[GH98, GVW02] are inapplicable in the setting of batch proofs. For example, the main result in [GH98] says
that proofs with short communication can be emulated in time that is exponential in the communication,
but this merely indicates that the communication in batch proofs for NP needs to be Ωpm� log tq, where m
is the witness length.

4Loosely speaking, dual-mode commitments are commitment schemes defined with respect to a common reference string,
which can be generated in one of two modes: (1) hiding, in which case the commitment is statistically hiding, or (2) binding,
in which case it is statistically binding. The two types of CRS’s are computationally indistinguishible. We emphasize that we
do not require efficient extraction and so such commitments do not necessarily require the existence of public-key encryption.
In particular, they can be constructed for instance from a variant of the statistical difference problem in which NO instances
are disjoint circuits (see [Vad99])

5We remark that Kalai et al. [KLVW22] show how to amplify weak non-interactive BARGs into BARGs with very good
compression but they assume the existence of rate-1 OT, whereas we are seeking transformations that rely only on the existence
of the weak BARG.
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Kaslasi et al. [KRR�20, KRV21] consider batch verification of protocols that are a priori statistical zero-
knowledge, while retaining the zero-knowledge property. The constructions of [KRR�20, KRV21] are not
doubly-efficient and so our results are inapplicable in their context.

Batch verification is also related to the problem of AND instance compression [HN10, FS08]. In AND
instance compression, the goal is, given formulas ϕ1, . . . , ϕk, to generate in polynomial time a new formula
ϕ that is satisfiable if and only if ϕ1, . . . , ϕk are all satisfiable, and so that the length of ϕ is less than k.
Batch verification considers the dual problem of compressing the witnesses. We note that strong infeasibility
results for AND instance compression were shown by Drucker [Dru15]. Despite the differences, a main
technical lemma used by Drucker (and a subsequent simplification by Dell [Del16]) is a key inspiration
for our analysis. We note that this lemma has previously been used for identifying sufficient conditions
for obtaining cryptographic primitives from average-case hardness [BBD�20]. A closely related lemma
was established even earlier in the context of constructing an oblivious transfer protocol from any private
information retrieval scheme [DMO00].

The minimax theorem has found several applications in cryptography: see [VZ13] for the references. The
work of [CLP15] also establishes (among other results) a result of the form “succinctness implies hiding”
using the minimax theorem. To be specific, they showed that for a proof system with a laconic prover, i.e,
where the communication from the prover is Oplogpnqq bits, [GVW02] implies distributional computational
zero knowledge. It is also worth pointing out that the usage of the minimax theorem there is for a different
purpose compared to us: it is used there to switch the order of quantifiers of the simulator and distinguisher
to obtain (normal) zero knowledge from weak zero knowledge .

Lastly, we mention a recent result of Kitagawa et al. [KMY20], who show how to transform any (adaptively-
secure) SNARG (a much stronger notion than non-interactive BARG, and not known based on standard
assumptions) into a NICZKA, assuming one-way functions. We show a similar result from a weaker proof
system (in particular, one that is known based on various standard assumptions).

Comparison with [CW23]. In a concurrent and independent work, Champion andWu [CW23] constructed
computational NIZK arguments assuming non-interactive BARGs, extractable dual-mode commitments
(a.k.a lossy encryption) and sub-exponentially-secure local pseudorandom generators. Our Theorem 4 is
a strict improvement of their result, it achieves the same implication assuming only one-way functions (on
top of the BARG), or a stronger implication (statistical zero knowledge) assuming (non-extractable) dual-
mode commitments. Since [CW23] build on the result of Kitagawa et al. [KMY20], their approach is quite
different from ours.

In the first posting of our paper, which was concurrent to [CW23] we obtained a weaker NIZK result
which was technically incomparable to that [CW23] since our prover was non-uniform. Subsequently to the
first posting and that of [CW23], we obtained the stronger Theorem 4.

1.3 Technical Overview

Let R be an NP relation, and let

Rbt �
!�
px1, . . . , xtq, pw1, . . . , wtq

	
: |x1| � � � � � |xt| and @i P rts, pxi, wiq P R

)
be the corresponding batch relation. We start by assuming a batch protocol for Rbt (without specifying yet
whether soundness is statistical or computational). For simplicity, let us assume that Rbt has an entirely
non-interactive protocol - that is, a single message sent from the prover to the verifier. We view the prover
message in this case as a “compression function” f that takes as input px1, . . . , xt, w1, . . . , wtq and outputs
a short proof string π that convinces the verifier.

Since f outputs a short string, of length less than t, its output cannot contain all of the witnesses. Thus,
intuitively at least, a large portion of the information about the witnesses must be lost. This leads us to the
following natural idea for a protocol, for a single instance of R,6 that has hiding properties.

6By this we mean for an instance corresponding to LpRq, the language corresponding to the relation R.
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Ppx,wq : (where x is an input and w is a corresponding witness)

1. Choose a random index i� P rts.
2. Select input/witness pairs pxi, wiq P R for all i P rtszti�u, in some yet-to-be-specified way.

3. Generate π � fpx1, . . . , xt, w1, . . . , wtq, where we fix xi� � x and wi� � w.

4. Send px1, . . . , xt, i
�, πq to the verifier.

The verifier V accepts if (1) xi� � x and (2) the batch verifier accepts the input px1, . . . , xtq with the proof
π. Completeness and soundness of this protocol follow immediately from the completeness and soundness of
the batch protocol (notice that for soundness, it suffices that x is a NO instance for R to make px1, . . . , xtq
a NO instance for Rbt.

The key question is how to choose the instance-witness pairs in Step 2 in such a way that π hides wi� .
This choice is crucial. To see this, consider a contrived compression function whose goal is to be maximally
non-hiding for some specific input x�. For example, the compression function, in addition to outputting a
convincing proof, might check if one of the t inputs is equal to x�. If so, it also outputs the corresponding
witness as part of the proof. Notice that this strategy is still highly compressing. While this is clearly a
contrived strategy, since we seek to give a general result, that compiles any batch proof, we have to consider
such strategies as well.

The above contrived strategy is a major concern for SWI as there exists a specific input, namely x�, for
which the prover always reveals the witness. A natural approach to circumvent this attack is to consider
a distributional notion of SWI. That is, consider some efficiently sampleable distribution D supported over
triples px,w0, w1q, where px,w0q, px,w1q P R. Suppose we only want SWI to hold for random instance/witness
pairs sampled from D. In such a case, P can choose each pxi, wiq from D independently. Now, for inputs
px,w0, w1q that are also generated from D, by symmetry, the function f will be unable to discover whether w0

or w1 was guessed (other than with inverse polynomial probability). Intuitively, and this can be formalized,
this leads to a distributional-SWI protocol (with an SWI error that decreases polynomially with t).

While the distributional approach described above works, it is weaker than what we aim to achieve in
two ways. First, it is restricted to NP languages that have a solved instance generator (recall that if the
language is also hard with respect to this distribution then the sampler is a one-way function). Second, the
SWI property is distributional - it only holds with respect to instance-witness pairs sampled from D (rather
than the usual worst-case guarantee).

At this point we face a problem. If we aim to get a worst-case SWI guarantee, the contrived compression
function f that targets some specific x� seems like a non-starter. Indeed, using f as a blackbox, it is hopeless
to try to discover x�. Still, if we happened to know that the compression function is precisely the contrived
one described above, we could fix the same x� as part of prover P and then use x� (with corresponding
random witnesses that are also hardwired) in all of the coordinates of f . Doing so would hide the specific
witness that P uses in the i-th coordinate. But what about a general compression function f? Can we
somehow fix specific instance/witness pairs that are specifically good for fooling f? Somewhat surprisingly
the answer turns out to be yes.

How to find instance-witness pairs. We prove that for every compression function f there exists a
polynomial-size multiset S � Rbt (i.e. a polynomial number of instance-witness t-tuples), so that if the
tuple ppx1, w1q, . . . , pxt, wtqq used in the above protocol is sampled uniformly from S, then the resulting
protocol is SWI (with error that depends on how compressing f is).

Central to our approach is a lemma of Dell [Del16] (building on work by Drucker [Dru15] and related to a
result of [DMO00]) about information lost by compressing functions. Consider a function g : t0, 1ut Ñ t0, 1uρt
for some ρ   1. Intuitively, as the function is compressing, it must be losing information about some of its
input bits. Dell formalized this by showing that the output distribution of g when its input bits are chosen
uniformly at random is not affected much by arbitrarily fixing the bit at a randomly chosen location. Let
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B be the uniform distribution over t0, 1ut, and denote by B|jÐb the variable corresponding to sampling B
and setting the jth co-ordinate to b. Dell showed that in terms of statistical distance:

pj, gpB|jÐ0qq �?
ρ pj, gpB|jÐ1qq .

Suppose g is a function parameterized by triples pxi, w
0
i , w

1
i q, where pxi, w

0
i q, pxi, w

1
i q P R, and uses its

input bits bi to select witness wbi
i , and outputs f computed with these instance-witness pairs pxi, w

bi
i q. The

above lemma would then say that picking a random j P rts and fixing the witness used for xj to be either of
w0

j or w1
j would not make much of a difference to the output distribution of f . Denoting px1, . . . , xtq by x

and pw1, . . . , wtq by w, with j Ð rts and each wi sampled uniformly from
 
w0

i , w
1
i

(
, this implies that:�

j,x, fpx,w|jÐw0
j
q
	
�

�
j,x, fpx,w|jÐw1

j
q
	

This is already reminiscent of witness-indistinguishability, though the property here only holds for a
randomly chosen instance among a set of t instances. We can, in fact, use this to get the distributional
version of SWI discussed above. Consider any distribution D over px,w0, w1q such that px,w0q, px,w1q P R.
Now, with px,w0, w1q and all the pxi, w

0
i , w

1
i q sampled from D, we have:

pj,x|jÐx, fpx|jÐx,w|jÐw0qq � pj,x|jÐx, fpx|jÐx,w|jÐw1qq

Note that in the protocol above, when the prover inserts the given px,wq at location j and uses instances xi

and witnesses wi in the remaining locations, the view of the verifier is precisely pj,x|jÐx, fpx|jÐx,w|jÐwqq.
So the above implies that the expected SWI error for the protocol when everything is sampled as specified is
small.

In other words, for every distribution D over px,w0, w1q, there is a distribution over
�pxi, w

0
i , w

1
i q
�
such

that with samples from these, the expected SWI error in our protocol is small. We can view this process as
a 2-player zero-sum game: the row player chooses px,w0, w1q and the column player chooses a distribution
D over all such tuples. The payoff is the expected SWI error in our protocol. The above argument shows
that for every strategy D for the column player there is a mixed strategy for the row player (specifically, the
strategy D), for which we can bound the expected payoff. The minimax theorem now implies that there is a
single distribution D1 over tuples

�pxi, w
0
i , w

1
i q
�
such that for every px,w0, w1q, if the prover uses a sample

from D1 to populate the other inputs to f , the SWI error is small. Using a sparse minimax theorem [LY94]
now implies the existence of a polynomial-sized multiset of

�pxi, w
0
i , w

1
i q
�
’s such that sampling from this

leads to almost the same SWI error. This implies the existence of the set we want, which we hard-code into
the prover’s algorithm as a non-uniform advice.7

Remark 1.4. The Op?ρq error in our analysis is tight for some functions (e.g., if g is the majority
function).

Handling Multi-round Protocols. To handle multi-round protocols we follow the same basic strategy,
running the underlying batch protocol using tailor-made instance/witness pairs. While we are unable to
show that this approach satisfies malicious-verifier SWI, we manage to show that it is honest-verifier SWI.
We do so by first extending the above analysis to 2-message protocols (i.e. a verifier message followed by a
prover message). To handle protocols with more messages, we observe that when analyzing honest-verifier
SWI, we can imagine that the verifier sends to the prover all of its randomness in advance and reduce back
to the 2-message case.

Augmenting the Basic Result in The Interactive Setting. At this point we have a transformation
from any batch protocol into an honest-verifier SWI protocol with inverse polynomial SWI error and a non-
uniform prover. In the interactive setting, we improve this state of affairs as follows:

7It seems tempting to try to use a uniform minimax theorem, as in [VZ13], to obtain a uniform honest prover. A key
bottleneck however is that our payoff function does not seem to be efficiently computable. See also Remark 3.10.
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1. In the case of statistical soundness, if the batch proof is public-coin, we can rely on an information-
theoretic coin-flipping protocol due to Goldreich et al. [GSV98] which leads to malicious-verifier SWI.8

For the case of private-coin protocols, following an approach of [BMO90, OVY93, Oka96], we show that
assuming the existence of a one-way function, we can transform any honest-verifier SWI protocol to be
malicious-verifier SWI. We emphasize that despite the usage of a one-way function, both soundness
and hiding properties are statistical.

2. In the case of computational soundness, assuming the existence of a one-way function, we can rely on
the celebrated “FLS trick” of Feige et al. [FLS90] to bootstrap the honest-verifier SWI argument to an
honest-verifier SZK argument.9 Then, using the [GMW86] compiler from honest-verifier to malicious
verifier we obtain a full-fledged malicious verifier zero-knowledge argument (using the [FS90a] constant-
round private-coin argument-system as the underlying zero-knowledge proof).

Explicit Proof Systems in the Non-Interactive Setting. We now discuss our results in the non-
interactive setting, where we are able to construct new explicit proof systems from BARGs. Recall that
here we provide a computational ZK system based on one-way functions, or a statistical ZK system based
on dual-mode commitments. We start by addressing a challenge common to both, then we address the
techniques required for each of the proof systems.

Somewhere Soundness. In the non-interactive setting, the prover sends a single message that depends
on the common random string (CRS). While in the interactive setting, our transformation required that the
prover sends its choice of px1, . . . , xtq before starting the batch protocol, now these have to be chosen after
the CRS is generated, which may foil soundness. One obvious solution is to rely on adaptively-sound BARGs.
However, that is a rather strong requirement that is not met by existing non-interactive BARGs (in fact,
adaptively-sound BARGs of knowledge would already imply full-fledged succinct non-interactive arguments
[BHK17]). Instead, we use the notion of somewhere soundness, which is a relaxation of the somewhere
extractability notion that is satisfied by all existing non-interactive BARGs. Somewhere soundness requires
that the CRS can be programmed with a specific index i, so that adaptive soundness is guaranteed only with
respect to the instance xi, furthermore the programmed CRS is indistinguishable from a normal one. This
notion is already sufficient to obtain soundness of the resulting non-interactive SWI (in the CRS model).

Given the above, we can already apply a similar minmax argument to before, and obtain a non-interactive
system with a non-uniform prover and inverse polynomial WI error. We next explain how we avoid both
caveats. We start with the construction of the second (statistical ZK) system based on lossy encryption, as
it is simpler to describe and already contains most of the machinery needed.

From Distributional ZK to Worst-Case ZK, Uniformly. Our starting point is the distributional SWI
protocol we obtain from the basic transformation. Indeed, for efficiently uniformly samplable instance-
witness distributions, this protocol is uniform. Before, to enhance the distributional SWI requirement to
worst-case SWI requirement, we invoked the minmax theorem, which led to non-uniformity. Now, we take a
different route – we show a general transformation from the distributional setting to the worst-case setting
that, assuming lossy encryption, preserves statistical security. It will be easier to describe the transformation
(as well as the next one) for SZK rather than SWI; this is w.l.o.g as the gap between the two can be bridged
using one-way functions, using the well-known FLS trick [FLS90].

The distributional to worst-case transformation is inspired by local to global transformations from the
zero knowledge literature such as reducing general ZK to ZK for fixed-length statements (c.f. [Gol01, Section
4.10]) or the NIZK of [GOS06]. Specifically, in the constructed (worst-case) NIZK, the prover commits to

8Note that we cannot use the honest-to-malicious transformation of Hubácek et al. [HRV18] (which works also in the private-
coin setting) because that result relies on the connection of SZK to instance dependent commitments. Thus, it is not clear how
to apply their result in the setting of SWI.

9In a nutshell, the verifier sends to the prover z � Gpsq, where G is a PRG and s is a random seed, and the prover then
proves that either x P L or z is in the image of the PRG. Computational soundness can be argued by switching to a truly
random z, and SZK by having the simulator use s as the witness.
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all the wires of the NP verification circuit, and proves local consistency of each gate using distributional
NISZKA. Specifically, for each gate, we consider the distribution of random commitments of random wire
values satisfying the gate. While the prover actually uses a specific (worst-case) wire assignment for the
gate, this only skews the distribution by a constant factor, as the total number of assignments is constant.
As the commitment we use dual-mode commitments where for computationally indistinguishable common
reference strings, we get either statistical hiding or statistical binding. The actual proof system uses the
statistically-hiding mode, and accordingly preserves statistical ZK. In the soundness analysis, we use the
binding mode.

Reducing the SWI Error. Recall that our distributional SWI system has an inverse polynomial WI error,
accordingly so does the worst-case SZK system resulting from the last transformation. We prove a statistical
amplification theorem that enables us to reduce this error. Previously, an amplification theorem was shown
in the computational setting by [GJS19] (assuming subexponential public-key encryption). The statistical
transformation we show follows a similar blueprint to the computational one — we construct a combiner
based on MPC-in-the-head (in our case, an information-theoretic one, such as [BGW88]). The analysis in
the statistical setting is different. We show based on a coupling proof, similar to the one in [LM20], that the
combiner is in fact also an amplifier. This transformation too uses dual mode commitments as a building
block.

Computational Zero Knowledge from One-Way Functions. The only assumption used in the above
transformations (on top of BARGs) is dual-mode commitments. The first question that comes to mind is
whether the dual-mode commitments can be replaced with plain statistically-hiding commitments (which can
be constructed, for instance, based on collision-resistant hashing). However, this turns out to be insufficient
for soundness. If we replace the dual-mode commitment with a plain statistically-binding commitment
(which can be constructed from one-way functions) then soundness can be proven. Since such commitments
are only computationally hiding, we can no longer hope for statistical ZK of the final scheme, but one could
hope that this would achieve computational ZK. However, while we are able to prove that the distributional
ZK to worst-case ZK work also in the computational setting, we are unable to do the same for the second
application that reduces the SWI error to negligible. Also, we wish to avoid the computational amplification
of [GJS19], which requires also sub-exponential public-key encryption.

We overcome this difficulty using the notion of computationally instance-dependent commitments (CIDC)
[FS90b]. Such commitments are parameterized by an instance z of a given NP language L. When z R L they
guarantee statistical binding. When z P L, there is a way to generate fake commitments rc that are perfectly
hiding. Specifically, given any witness for z, it is possible to efficiently generate a fake commitment and
opening prc, rdq for message m such that rc, rd are computationally indistinguishable from a real commitment
to m with its decommitment c, d. Such commitments are known to exist for all of NP assuming one-way
functions [FS90b].10

We replace the commitments in the previous two transformations with CIDC depending on an NP
language L1. This essentially allows us to construct a L1-dependent NIZK for proving membership in any NP
language L. Here soundness is guaranteed when the system is parameterized by z R L1 and computational
ZK is guaranteed when z P L1. Indeed, when z R L1, the corresponding commitments are statistical
binding as required for soundness. When z1 P L1, we can switch (in the analysis) to a computationally-
indistinguishable world where the commitments are statistically hiding, and where accordingly the previous
described transformations do hold. To obtain our final proof system we choose L1 to be the same NP language
L for which we prove membership.

Remark 1.5 (On Using the Above in the Interactive Setting). A natural question is whether we can use
similar transformations as above to also achieve uniform protocols in the interactive setting. While the
answer is generally “yes”, the resulting interactive protocols are not as interesting, as they are subsumed by

10The above notion of instance-dependent commitments should not be confused with that of Ong and Vadhan [OV08], where
when z P L, real commitments (rather than fake ones) are statistically hiding. Indeed, this notion only exists for languages in
SZK.
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Figure 1.1: Schematic diagram showing our results. Nodes correspond to primitives. When a proof system
is suffixed with an asterisk, it indicates that its prover is non-uniform. When a proof system is prefixed with
ε, its ZK or WI error is only inverse polynomial. When an interactive proof systems is prefixed with “pc”,
then it is public-coin. Edges capture relationship between primitives. A solid arrow from primitive A to B
indicates that A implies B, with the theorem (T), lemma (L) or corollary (C) that proves this implication
linked on the arrow. Additional computational assumptions required for this implication are indicated by
dotted lines. Corollaries 3.19 to 3.22 require also the existence of one-way functions.

known results. In particular, constant round computational ZK is already known from one-way functions
[FLS90], and constant round statistical ZK is already known from statistically-hiding commitments (c.f.
[BP19]), which in turn follow from lossy encryption.

2 Definitions

We rely on standard computational concepts and notation:

� A binary relation R � t0, 1u� � t0, 1u� is said to be polynomially balanced if there is a polynomial p
such that for any strings x, y P t0, 1u�, if px, yq P R then |y| ¤ p

�|x|�. For a (polynomially-balanced)
relation R and λ P N, Rλ denotes R X pt0, 1uλ � t0, 1u�q. For a (polynomially-balanced) relation
R, we use LpRq to denote the language defined by R, i.e., tx P t0, 1u� : Dw P t0, 1u� s.t. px,wq P Ru.
LpRλq � t0, 1uλ is defined similarly, but with respect to Rλ.

� We say that a function f : N Ñ R is negligible if for all constants c ¡ 0, there exists N P N such that
for all n ¡ N , fpnq   n�c. We sometimes denote negligible functions by negl. We say that a function
f : NÑ R is overwhelming if 1� f is negligible.

� A PPT algorithm is a probabilistic polynomial-time algorithm. A family of circuits A � pAλqλPN
is polynomial-sized if there exists a polynomial p such that for all λ P N, |Aλ| ¤ ppλq. We follow
the common practice of modelling any efficient adversary as a family of polynomial-size circuits A �
pAλqλPN. We also say that such an A runs in non-uniform polynomial time.
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� For a distribution X over a set Ω and x P Ω, we use x Ð X to denote the result of sampling from X.
For a random variable X over Ω and x P Ω, we use Xpxq to denote the probability that the value of
the random variable is x. We denote statistical distance by SD. For two random variables X,Y and
ε P r0, 1s, we write X �ε Y to denote the fact that SDpX,Y q ¤ ε and say that X is ε-statistically
indistinguishable from Y . For two ensembles X � pXλqλPN and Y � pYλqλPN and function ε, we write

X �ε Y if for all large enough λ, Xλ �εpλq Yλ. For X , Y and ε as above, we write X c�ε Y to
denote that the computational distance is at most ε. That is, for every polynomial-sized family of
distinguishers D � pDλqλPN and large enough λ P N���� Pr

xÐXλ

rDλpxq � 1s � Pr
yÐYλ

rDλpyq � 1s
���� ¤ ϵpλq.

In both cases, we drop ε from subscript when it is a negligible function. Therefore, X c� Y denotes
that X is computationally indistinguishable from Y.

� We say that an ensemble of distributions D � pDλqλPN is efficiently sampleable if there exists a
polynomial-sized family of circuits S � pSλqλPN such that the distribution of the outputs of Sλ, on input
a uniformly random string, is Dλ. We also use the stronger uniform notion of efficient sampleability,
where there exists a PPT algorithm S such that the output distribution of Sp1λq is Dλ.

� We denote by xPÔ Vy an interactive protocol between two parties P and V. For common input x and
auxiliary input w for P, by xPpwqÔ Vypxq we denote the view of V in the protocol, including all received
messages and random coins (if V is randomized). We abuse notation and write xPpwqÔ Vypxq � 1 to
denote the fact that V accepts. A similar convention applies also to non-interactive protocols, which
are denoted by xPÑ Vy.

2.1 Interactive Protocols: Soundness, Privacy and Batching

In this paper, we are mainly interested in doubly-efficient interactive protocols [Gol18] as defined below.

Definition 2.1 (Doubly-Efficient Interactive Protocols). Let xPÔ Vy be an interactive protocol for an NP
relation R, i.e., the common input is a statement x P R and the auxiliary input for the (honest) prover P is
a witness w for x. The protocol xPÔ Vy is doubly efficient if both P and V are PPT algorithms.

Remark 2.2. We will also consider doubly-efficient interactive protocols where the prover is non-uniform
(i.e., a polynomial-sized family of circuits), in which case we will always explicitly point this out. In the
rest of the paper, we drop “doubly efficient”, and by interactive protocols we always refer to doubly-efficient
interactive protocols.

We next define the relevant notions of completeness, soundness and privacy. In the following definitions
xPÔ Vy is a (doubly-efficient) protocol for an NP relation R.

Definition 2.3 (Completeness). xP Ô Vy is complete with (completeness) error ε if for all large-enough
λ P N and every px,wq P Rλ

Pr rxPpwqÔ Vypxq � 1s ¥ 1� εpλq .

Definition 2.4 (Statistical Soundness). The protocol xPÔ Vy is statistically sound with (soundness) error
ε if for every (unbounded) prover P�, all large enough λ P N and every x P t0, 1uλzLpRq,

Pr rxP� Ô Vypxq � 1s ¤ εpλq .

A statistically sound protocol is also called a proof.
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Definition 2.5 (Computational Soundness). xPÔ Vy is computationally sound if for every polynomial-size
circuit family of provers P� � pP�λqλPN, there exists a negligible function µ, such that for every λ P N and

every x P t0, 1uλzLpRq,
Pr rxP�λ Ô Vypxq � 1s ¤ µpλq .

A computationally-sound protocol is also called an argument.

Definition 2.6 (SWI: Statistical Witness Indistinguishability). xPÔ Vy is statistically witness-indistinguishable
with error ε if for every polynomial-size circuit family V� � pV�λqλPN,

pxPpw0qÔ V�λypxqqpx,w0,w1qPR
|x|�λ

�ε pxPpw1qÔ V�λypxqqpx,w0,w1qPR
|x|�λ

,

where px,w0, w1q P R is an abuse of notation to be interpreted as px,w0q, px,w1q P R. If the above
indistinguishability is only guaranteed for the honest verifier V, then xP Ô Vy is honest-verifier statistically
witness-indistinguishable.

Definition 2.7 (SZK and CZK: Statistical and Computational Zero Knowledge). xPÔ Vy is statistically
zero-knowledge with error ε if there exists an expected PPT simulator S such that for every polynomial-size
circuit family V� � pV�λqλPN,

pxPpwqÔ V�λypxqqpx,wqPR
|x|�λ

�ε pSpx,V�λqqpx,wqPR
|x|�λ

. (1)

The definition of computational ZK is obtained by replacing statistical distance in Eq. (1) with computational

distance (i.e., �ε with
c�ε). The protocol is honest-verifier statistical or computational zero-knowledge if the

above is only guaranteed for the honest verifier V.

Interactive Batching. Here we define interactive batch protocols.

Definition 2.8 (Interactive Batch Protocol). A batch protocol for R is an interactive protocol for
�

tPN Rbt,
where:

Rbt :� tpx1, . . . , xtq, pw1, . . . , wtq : |x1| � � � � � |xt|, px1, w1q, . . . , pxt, wtq P Ru . (2)

� The protocol’s completeness and soundness errors (δpλ, tq and εpλ, tq) are defined to be its largest
completeness and soundness errors, respectively, on any t instances (and any of their witnesses) of size
λ

� The protocol has compression rate ρ � ρpλ, tq, for instance length λ and number of instances t, if
maximum total length of prover messages (over all such sets of instances) is ρt

2.2 Non-Interactive Protocols: Soundness, Privacy and Batching

In this paper, we only consider doubly-efficient non-interactive protocols in the common reference string
(CRS) model. Below we define this primitive and the different notions of soundness and privacy that we
need.

Definition 2.9 (Non-Interactive Protocol in CRS model). A non-interactive protocol xP Ñ Vy in CRS
model for an NP relation R is a triple of algorithms pGen,P,Vq, with the following syntax:

� crs Ð Genp1λq: Given the instance size λ, the randomised set-up algorithm Gen outputs a CRS crs.

� π Ð Ppcrs, x, wq: Given CRS crs, instance x, and witness w, the randomised prover outputs a proof π

� b :� Vpcrs, x, πq: Given CRS crs, instance x, and proof π, the deterministic verifier returns a bit b
representing accept or reject.
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In the following definitions, xPÑ Vy is a non-interactive protocol in CRS model for an NP relation R.

Definition 2.10 (Completeness for Non-Interactive Protocols). xP Ñ Vy has completeness error δ if for
all large enough λ P N and px,wq P Rλ,

Pr
crsÐGenp1λq
πÐPpcrs,x,wq

rVpcrs, x, πq � 1s ¥ 1� δpλq.

For soundness, we will need the following notions.

Definition 2.11 (Non-Adaptive Computational Soundness). xP Ñ Vy is non-adaptively computationally
sound if for every polynomial-size circuit family of provers P� � pP�λqλPN, there is a negligible function µ,

such that for all λ P N and all x P t0, 1uλzLpRq:
Pr

crsÐGenp1λq
rVpcrs, x,P�λpcrs, xqq � 1s ¤ µpλq.

Definition 2.12 (Adaptive Computational Soundness). xP Ñ Vy is adaptively computationally sound if,
for every polynomial-size circuit family of provers P� � pP�λqλPN, there is a negligible function µ, such that
for all λ P N:

Pr
crsÐGenp1λq

rx R LpRλq ^ Vpcrs, x, πq � 1s ¤ µpλq,

where px, πq :� P�λpcrsq.
We will need the following notions of (worst-case) hiding.

Definition 2.13 (SWI and CWI). xPÑ Vy is non-adaptively SWI with error ε if

pcrs, π0qpx,w0,w1qPR
|x|�λ

�ε pcrs, π1qpx,w0,w1qPR
|x|�λ

, (3)

where crs Ð Genp1λq, π0 Ð Ppcrs, x, w0q, and π1 Ð Ppcrs, x, w1q. The definition of non-adaptive CWI is
obtained by replacing statistical distance in Eq. (3) with computational distance.

Definition 2.14 (SZK and CZK). xP Ñ Vy is non-adaptively statistically zero-knowledge with error ε if
there exists a PPT simulator S such that:

ppcrs, πqqpx,wqPR
|x|�λ

�ε pSpxqqpx,wqPR
|x|�λ

. (4)

where crs Ð Genp1λq and π Ð Ppcrs, x, wq. The definition of non-adaptive CZK is obtained by replacing
statistical distance in Eq. (4) with computational distance.

We will also need distributional notions of hiding [Gol93, DNRS99].

Definition 2.15 (DSWI: Distributional SWI for Non-Interactive Protocols). Let D � pDλqλPN be an
efficiently-sampleable distribution, where Dλ is supported over triples px,w0, w1q such that px,w0q, px,w1q P
Rλ. xPÑ Vy is distributionally SWI for D with error ε if for all large enough λ P N

E
px,w0,w1qÐDλ

rSD ppcrs, π0q, pcrs, π1qqs ¤ εpλq,

where crsÐ Genp1λq, π0 Ð Ppcrs, x, w0q, and π1 Ð Ppcrs, x, w1q.
Definition 2.16 (DSZK: Distributional SZK for Non-Interactive Protocols). Let D � pDλqλPN be an
efficiently-sampleable distribution, where Dλ is supported over Rλ. xP Ñ Vy is distributionally SZK for
D with error ε if there exists a PPT simulator S such that for all large enough λ P N

E
px,wqÐDλ

rSD ppcrs, πq,Spxqqs ¤ εpλq,

where crsÐ Genp1λq and π Ð Ppcrs, x, wq.
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Dual-Mode Non-Interactive Protocols. It will be useful to define non-interactive protocols where the
set-up algorithm has two different, indistinguishable modes [GOS12].

Definition 2.17 (Dual-Mode Non-Interactive Protocol). A dual-mode non-interactive protocol for an NP
relation R is a four-tuple of algorithms pGen1,Gen2,P,Vq, such that both pGen1,P,Vq and pGen2,P,Vq are
non-interactive protocols for R with syntax as defined in Definition 2.9. We require the protocol to satisfy
the following basic properties:

1. pGen1,P,Vq and pGen2,P,Vq are both complete (Definition 2.10).

2. The CRS generated by the two set-up modes Gen1 and Gen2 must be computationally indistinguishable.
We refer to this property as mode-indistinguishability.

We need three instantiations of Definition 2.17, presented in Definitions 2.18 and 2.19.

Definition 2.18 (Dual-Mode NISZKA and NISWIA). A dual-mode non-interactive protocol pSHGen,ASGen,P,Vq
for an NP relation R is a dual-mode ε-NISZKA (resp., ε-NISWIA) for R if the following additional requirements
are satisfied:

1. pSHGen,P,Vq is statistically ZK (resp., WI) with error ε. Therefore, we refer to this mode as the
statistically-hiding mode.

2. pASGen,P,Vqq is adaptively computationally sound with negligible soundness error. Therefore, we refer
to this mode as the adaptively-sound mode.

In the distributional formulation, i.e., dual-mode ε-NIDSZKA (resp., ε-NIDSWIA), the hiding requirement
in Item 1 is relaxed to its distributional formulation, i.e., Definition 2.16 (resp., Definition 2.15).

Definition 2.19 (Dual-Mode NIDSZKA and NIDSWIA). Let R be an NP relation, and let D be an efficiently-
sampleable distribution as in Definition 2.16 (resp., Definition 2.15). A dual-mode non-interactive protocol
pSHGen,ASGen,P,Vq for R is a dual-mode ε-NIDSZKA (resp., ε-NIDSWI) for D if the following additional
requirements are satisfied:

1. pSHGen,P,Vq is distributionally SZK (resp., SWI) for D with error ε. We refer to this mode as the
statistically-hiding mode.

2. pASGen,P,Vqq is adaptively computationally sound with negligible soundness error.11 We refer to this
mode as the adaptively-sound mode.

Remark 2.20 (On Definitions 2.18 and 2.19). The following remarks are stated for dual-mode NISZKA, but
it applies to all the other instantiations of Definition 2.17.

1. Whenever we say that a dual-mode NISZKA is statistically ZK (resp., adaptively sound), we are
implicitly referring to its statistically-hiding (resp., adaptively-sound) mode.

2. As a consequence of mode-indistinguishability, if one of the modes has negligible correctness error, then
so does the other.

The following remarks are stated for dual-mode NISZKA, but it applies also to dual-mode NISWIA.

3. As a consequence of mode-indistinguishability, we can infer that:

(a) the statistically-hiding mode has non-adaptive computational soundness (with negligible soundness
error),

(b) the adaptive-soundness mode is computationally ZK with error ε� neglpλq
11Note that the soundness requirement here is worst case, with respect to the relation R.
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Remark 2.21 (On Adaptive ZK). Throughout the paper we focus on non-adaptive ZK, both in the statistical
and computational settings. We note here that the guarantee can be strengthened to adaptive ZK:

1. Non-adaptive statistical ZK with error ε implies adaptive statistical ZK with error ε �2n. Accordingly, if
ε can be made small enough, one gets adaptive statistical ZK (this will be the case in our construction).
For dual-mode NISZKA, mode indistinguishability also implies adaptive computational ZK in the
adaptively-sound mode.

2. In the case of computational zero knowledge, it is known [KMY23] that assuming one-way functions,
any adaptively-sound NICZKA can be turned into one with adaptive CZK.

Remark 2.22 (Multi-Instance ZK). We restrict attention to single-instance non-interactive ZK. We note
that assuming one-way functions, this can be strengthened to multi-instance (in both the statististical and
computational settings) [FLS90].

Non-Interactive Batching. Here we define non-interactive batch protocols and the notion of soundness
we need.

Definition 2.23 (Non-Interactive Batch Protocol in the CRS Model). A non-interactive batch protocol is
a four-tuple of algorithms pGen,TGen,P,Vq with the following syntax::

� crs Ð Genp1λ, 1tq: Given the instance size λ and the number of instances t, the randomised set-up
algorithm outputs a CRS crs

� pcrs�, tdq Ð TGenp1λ, 1t, i�q: Given in addition an index i� P rts, the trapdoored set-up algorithm
outputs a CRS crs� together with a trapdoor td

� π Ð Ppcrs, px1, . . . , xtq, pw1, . . . , wtqq: Given CRS crs, instances xi, and witnesses wi, the randomised
prover outputs a proof π

� b :� Vpcrs, px1, . . . , xtq, πq: Given CRS crs, instances xi, and proof π, the deterministic verifier outputs
a bit b representing accept or reject

Here, the prover’s communication is just the proof π, and the compression rate is defined with respect to this.

The following definitions of soundness properties are adapted from [CJJ22], though they have been
simplified and slightly weakened as this is sufficient for our purposes.

Definition 2.24 (CRS Indistinguishability). A batch protocol pGen,TGen,P,Vq is CRS-indistinguishable
if for every polynomial t and every ipλq P rtpλqs, the distributions of Genp1λ, 1tpλqq and crs� sampled from
TGenp1λ, 1tpλq, ipλqq are computationally indistinguishable.

Definition 2.25 (Somewhere Soundness). A batch protocol pGen,TGen,P,Vq for a relation R is somewhere
computationally sound if it satisfies CRS indistinguishability, and for every polynomial t and polynomial-
size circuit family of provers P� � pP�λqλPN, there is a negligible function µ such that for all λ P N, letting
t � tpλq, and for every i� P rts:

Pr
crs

rxi� R LpRλq ^ Vpcrs, px1, . . . , xtq, πq � 1s ¤ µpλq,

where pcrs, tdq Ð TGenp1λ, 1t, i�q, and ppx1, . . . , xtq, πq :� P�λpcrs, i�q.

2.3 List of Proof Systems

The proof systems that are relevant to this paper are listed below.

� Batch proof: Interactive batch protocol (Definition 2.8) satisfying Definitions 2.3 and 2.4.
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� BARG – Batch ARGument: Interactive batch protocol satisfying Definitions 2.3 and 2.5.

� NIBARG – Non-Interactive Batch ARGument: Non-interactive batch protocol (Definition 2.23) satisfying
Definitions 2.10 and 2.25.

� SWI (resp., SWIA) – Statistical Witness-Indistinguishable proof (resp., Argument): Interactive protocol
satisfying Definitions 2.3 and 2.6 and Definition 2.5 (resp., Definition 2.4).

� HVSWI (resp., HVSWIA) – Honest-Verifier SWI proof (resp., Argument): Interactive protocol satisfying
Definition 2.3, Definition 2.6 restricted to honest verifiers and Definition 2.4 (resp., Definition 2.5).

� SZKA – Statistical Zero-Knowledge Argument: Interactive protocol (Definition 2.1) satisfying Definitions 2.3,
2.5 and 2.7.

� Dual-Mode NISZKA (resp., NISWIA) – Dual-Mode Non-Interactive SZKA (resp., SWIA): Definition 2.18.

� Dual-mode NIDSZKA (resp., NIDSWIA) – Dual-mode Non-Interactive Distributional SZKA (resp.,
SWIA): Definition 2.19

� NICZKA (resp., NICWIA) – Non-Interactive Computational ZK (resp., WI) Argument: Non-interactive
protocol (Definition 2.9) satisfying Definitions 2.10, 2.12 and 2.14 (resp., Definition 2.13).

� Dual-Mode ID-NICZKA (resp., ID-NICWIA) – Dual-Mode Instance-Dependent NICZKA (resp., NICWIA):
Definition 5.4.

3 Statistical Witness Indistinguishability from Batching

In this section, we prove that a sufficiently shrinking batch protocol for a relation can be used to construct
an honest-verifier statistically witness-indistinguishable protocol for it with the same soundness properties.
This is captured by the following theorem. In Section 3.2, we prove a related theorem that preserves
non-interactivity and stronger notions of computational soundness, which is required for our results for non-
interactive BARGs. Recall that for a relation R and polynomial t, the relation Rbt denotes the product
relation (as in Definition 2.8).

Theorem 3.1. Consider an NP relation R. Suppose it has a batch protocol Π � xP Ô Vy that, when run
on some polynomial t � tpλq instances of size λ, has compression rate ρ � ρpλq   1. Then, R has a protocol
ΠWI � xPWI Ô VWIy with the following properties (on instances of size λ):

� ΠWI is HVSWI with error O
�?

ρ
�
.

� ΠWI has the same completeness error as Π run on t instances.

� If Π is statistically sound, then so is ΠWI, with the same soundness error as Π run on t instances.

� If Π is computationally sound, then so is ΠWI.

� If P is computed by a family of polynomial-sized circuits, then so is PWI; and VWI runs in uniform
polynomial-time given blackbox access to V.

� The communication and round complexity in ΠWI are the same as those of Π, plus an additional message
sent by PWI at the start that is pλ � t� log tq bits long.

Fix some relation R for which there is a batch protocol xPÔ Vy with compression rate ρ as hypothesized.
We will show how to construct from this a protocol xPWI Ô VWIy for R that inherits its soundness properties
and is, in addition, HVSWI. This protocol follows the template in Fig. 3.1, which is parameterized by an
ensemble of distributions D and a function t, which we will instantiate later.
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Given a batch protocol xPÔ Vy, a function t : N Ñ N, and an ensemble of distributions D � pDλqλPN,
where the support of Dλ is contained in pt0, 1uλ � t0, 1u�qtpλq, the protocol xPWI Ô VWIypD,tq works as
follows given an instance x P t0, 1uλ and a witness w P t0, 1u�:

1. PWI generates a sample tpxi, wiquiPrtpλqs from Dλ, and samples j Ð rtpλqs
2. PWI sends all the xi’s and j to VWI

3. PWI and VWI run the protocol xP Ô Vy on the input px1, . . . , xj�1, x, xj�1, . . . , xtpλqq, with PWI

using pw1, . . . , wj�1, w, wj�1, . . . , wtpλqq as the witnesses

4. VWI accepts iff the verifier V in the above execution accepts

Figure 3.1: Template for constructing HVSWI protocols from batch protocols

We next state lemmas capturing the properties of this protocol, and use them to prove Theorem 3.1. The
proof of Lemma 3.2 is included below, and Lemma 3.3 is proven in Section 3.1.

Lemma 3.2 (Completeness and Soundness). Suppose xP Ô Vy is a batch protocol for a relation R. Let t

be any polynomial and D � pDλqλPN be such that the support of Dλ is contained within Rbtpλq
λ . Then, the

protocol xPWI Ô VWIy in Fig. 3.1, when instantiated with xPÔ Vy, D and t, is a protocol for R that satisfies
the following:

1. If xPÔ Vy has completeness error δpλq when run with tpλq instances of size λ, then xPWI Ô VWIypD,tq

has completeness error δpλq.
2. If xP Ô Vy has statistical soundness error ϵpλq when run with tpλq instances of size λ, then xPWI Ô

VWIypD,tq has statistical soundness error ϵpλq.
3. If xPÔ Vy is computationally sound, then xPWI Ô VWIypD,tq is also computationally sound.

Proof. Fix any x such that |x| � λ, and denote tpλq by t. As all the pxi, wiq’s sampled from Dλ are contained
in R, the input px1, . . . , xj�1, x, xj�1, . . . , xtq is contained in Rbt if and only if there is some w such that
px,wq P R. The completeness and statistical soundness errors of xP Ô Vy thus carry over immediately to
xPWI Ô VWIy as stated in the theorem.

For computational soundness, suppose there is a malicious prover P�WI that can make VWI accept with
probability µ given an x R R. Then, without loss of generality, there exists a j P rts and px1, . . . , xtq such
that P�WI can make VWI accept with probability µ with the first message being px1, . . . , xj�1, x, xj�1, . . . , xtq
and j. As VWI is just emulating the verifier V, this means there is a P� that emulates P�WI and makes V
accept on this input with probability µ. Further, if P�WI is polynomial-time, so is P�, as t is a polynomial. If
µpλq is non-negligible, this breaks computational soundness of xPÔ Vy, proving the theorem.

Lemma 3.3 (Witness Indistinguishability). Consider a batch protocol xP Ô Vy for a relation R that has
polynomial-sized witnesses. For a polynomial t, when the protocol is run with tpλq instances of size λ, suppose
the total communication from the prover is at most ρpλqtpλq bits for some function ρ. Then, there is an

efficiently sampleable ensemble of distributions D � pDλqλPN, where Dλ is supported in Rbtpλq
λ , such that

the protocol xPWI Ô VWIy in Fig. 3.1, when instantiated with xP Ô Vy, D, and t, is HVSWI with error

O
�a

ρpλq
	
.

Using Lemmas 3.2 and 3.3 (the latter is proved in Section 3.1), we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider a relation R with polynomial-sized witnesses and a batch protocol xPÔ Vy
that, for some polynomial t, when run on tpλq instances of size λ, has completeness error δpλq, statistical
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soundness error ϵpλq, and at most ρpλqtpλq bits of communication from the prover for some function ρ. Let
D be the ensemble guaranteed by Lemma 3.3, and consider the protocol xPWI Ô VWIy as described in Fig. 3.1
instantiated with this D and t. This protocol has the following properties:

� Lemma 3.3 implies that this protocol is HVSWI with WI error O
�a

ρpλq
	
.

� Lemma 3.2 implies that its completeness and statistical soundness errors are δpλq and ϵpλq, respectively.
� Lemma 3.2 implies that if xPÔ Vy is computationally sound, then so is xPWI Ô VWIy.
� All VWI does is run V on an input provided by PWI and accept iff it accepts. PWI also simply runs P
on an input and witnesses, and in addition computes samples from Dλ and rtpλqs, which can be done
in non-uniform polynomial time since D is efficiently sampleable.

� In addition to the messages of xP Ô Vy, the only additional communication in xPWI Ô VWIy is the
initial prover message consisting of tpλq instances and an element of rtpλqs.

The above arguments prove the respective properties of the protocol promised by the theorem.

3.1 Witness Indistinguishability

In this section, we prove Lemma 3.3 about the witness indistinguishability of the protocol from Fig. 3.1.
We will first come up with an ensemble of distributions D that, when used to instantiate this protocol, will
make the protocol witness-indistinguishable. Fix any batch protocol xP Ô Vy for a relation R, an instance
length λ, witness length m, and the number of batch instances t. Suppose that when xP Ô Vy is run on t
instances of length λ, each with witness of length m, the total prover communication is at most ρt, where
the compression rate ρ is less than 1.

Compressing Functions. We will use the fact that compressing functions necessarily lose information
to make such a prover lose information about the witness we want to hide. This property of compression is
captured by the following lemma by Dell, building on the work of Drucker [Dru15]. Similar consequences of
compression have been used in the context of cryptography in the past, for instance to construct Oblivious
Transfer from Private Information Retrieval protocols [DMO00, Lemma 1].

Lemma 3.4 ([Del16, Lemma 9]). Let t P N, ρ P r0, 1q, and B be the uniform distribution over t0, 1ut. For
any randomized mapping f : t0, 1ut Ñ t0, 1uρt, with j Ð rts, we have:

E
jÐrts

rSD pf pB|jÐ0q , f pB|jÐ1qqs ¤
a
2 ln 2 � ρ,

where B|jÐb is the result of drawing a sample pb1, . . . , btq Ð B and then replacing bj with b.

We now define a function that captures the knowledge gained by the honest verifier by interacting with
the honest prover in the protocol xP Ô Vy. Its input consists of t instances x1, . . . , xt P t0, 1uλ, potential
witnesses w1, . . . , wt P t0, 1um, and potential random string r of V. We use x to denote px1, . . . , xtq for
brevity.

fppx1, . . . , xtq, pw1, . . . , wtq, rq:
1. Run xPÔ Vy with input px1, . . . , xtq, using r as randomness for V, and with
pw1, . . . , wtq as the witnesses provided to P

2. Output the sequence of prover messages in the above execution

20



In addition, for any pair of tuples of t potential witnesses y1, . . . , yt P t0, 1um and z1, . . . , zt P t0, 1um, we
define the following function on bits bi.

gx,y,z,rpb1, . . . , btq:
1. For each i P rts, set wi � yi if bi � 0, and wi � zi if bi � 1

2. Output fpx,w, rq

The proposition below follows immediately from Lemma 3.4 and the compression of the protocol.

Proposition 3.5. For any tuple of xi P t0, 1uλ, yi, zi P t0, 1um, and any r of the appropriate length, letting
B be the uniform distribution over t0, 1ut,

E
jÐrts

rSD pgx,y,z,r pB|jÐ0q , gx,y,z,r pB|jÐ1qqs ¤
a
2 ln 2 � ρ.

Interpreting the function g in terms of the function f then gives the following.

Proposition 3.6. Consider any t-tuple of xi P t0, 1uλ, yi, zi P t0, 1um, and any r of the appropriate length.
For i P rts, let Wi be set to yi or zi uniformly at random. Then,

E
jÐrts

�
SD

�
f
�
x,W |jÐyj

, r
�
, f

�
x,W |jÐzj , r

��� ¤a
2 ln 2 � ρ.

Two-Player Zero-Sum Games. Consider a two-player zero-sum game G � pR,C, pq, where R is the set
of pure strategies for the “row” player, C the same for the “column” player, and p : R�C Ñ R is the payoff
function. Let ρ and κ denote mixed strategies for the two players, which are distributions over R and C,
respectively. The value of this game is defined as:

valpGq � min
ρ

max
κ

E
rÐρ
cÐκ

rppr, cqs � max
κ

min
ρ

E
rÐρ
cÐκ

rppr, cqs .

where the equality follows from von Neumann’s minimax theorem [vN28]. Lipton and Young prove the
following sparse minimax theorem that will be useful for us to infer sampleable mixed strategies.

Lemma 3.7 ([LY94]). Consider any two-player zero-sum game G � pR,C, pq such that ppr, cq P r0, 1s for
any pr, cq. For any ϵ ¡ 0, there is multiset S � R of size Θplog |C|{ϵ2q such that for every c P C:

E
rÐS

rppr, cqs ¤ valpGq � ϵ.

That is, there is a sparse mixed strategy that is almost as good as the optimal strategy over R. We will
now define a game that captures the witness indistinguishability of the protocol described in Fig. 3.1, and
use the above lemma to find a distribution Dλ with which to instantiate the protocol. Note that this is the
first point in the proof where we involve the relation R that the protocols are for.
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The game GW � pR,C, pq is defined with the following sets of pure strategies:

� R � tpx,y, zqu, where each vector is of length t, xi P t0, 1uλ, yi, zi P t0, 1um, and
pxi, yiq, pxi, ziq P R

� C � tpx, y, zqu, where x P t0, 1uλ, y, z P t0, 1um, and px, yq, px, zq P R

Given r � px,y, zq P R, for each i P rts, define a random variable Wi that is set to yi or zi
uniformly at random. The payoff function p : R� C Ñ r0, 1s is then defined as follows, with
r distributed uniformly over the appropriate domain:

p ppx,y, zq, px, y, zqq � E
jÐrts,r

rSD pf px|jÐx,W |jÐy, rq , f px|jÐx,W |jÐz, rqqs

Proposition 3.8. The value of the game GW defined above is at most
?
2 ln 2 � ρ.

Proof. It is sufficient to show that for any distribution pX,Y, Zq over C, there is a distribution pX,Y ,Zq
over R such that the expected payoff under these strategies is at most the required bound. Given such a
distribution pX,Y, Zq, consider pX,Y ,Zq defined by pxi, yi, ziq Ð pX,Y, Zq for i P rts. The expected payoff
is then as follows, with each Wi set to yi or zi at random:

E
px1,y1,z1qÐpX,Y,Zq

...
pxt,yt,ztqÐpX,Y,Zq

E
px,y,zqÐpX,Y,Zq

E
jÐrts,r

rSD pf px|jÐx,W |jÐy, rq , f px|jÐx,W |jÐz, rqqs .

Noting that r and j are sampled independently of all the other quantities12, by linearity of expectation, the
above is the same as:

E
jÐrts,r

���� E
px1,y1,z1qÐpX,Y,Zq

...
pxt,yt,ztqÐpX,Y,Zq

E
px,y,zqÐpX,Y,Zq

rSD pf px|jÐx,W |jÐy, rq , f px|jÐx,W |jÐz, rqqs

���� .

As px, y, zq and pxj , yj , zjq are identically distributed and are independent of all other variables, this is the
same as:

E
jÐrts,r

���� E
px1,y1,z1qÐpX,Y,Zq

...
pxt,yt,ztqÐpX,Y,Zq

�
SD

�
f
�
x,W |jÐyj

, r
�
, f

�
x,W |jÐzj , r

������� .

By Proposition 3.6 and linearity of expectation, the above is at most
?
2 ln 2 � ρ, which proves the proposition.

By Lemma 3.7 and Proposition 3.8, we have the following proposition.

Proposition 3.9. For every ϵ ¡ 0, there is a multiset S � tpx,y, zqu of size Θppλ�mq{ϵ2q such that:

� for every i P rts, both pxi, yiq and pxi, ziq are in R
12This requirement of independence, specifically between r and x, is why this proof only provides honest-verifier SWI and

does not work for a malicious verifier. The WI of our protocol could potentially be broken by a malicious verifier that chooses
r based on x.
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� for every x P t0, 1uλ and y, z P t0, 1um such that px, yq, px, zq P R,

E
px,y,zqÐS
wiÐtyi,ziu

jÐrts,r

rSD pf px|jÐx,w|jÐy, rq , f px|jÐx,w|jÐz, rqqs ¤
a
2 ln 2 � ρ� ϵ.

Proof of Lemma 3.3. We can now describe the distribution Dλ that we will instantiate the protocol in
Fig. 3.1 with. Recall that ρpλq is the compression rate of the batch protocol we started with when run on
tpλq instances of size λ.

Let S be the multiset guaranteed by Proposition 3.9 for ϵ � a
ρpλq. The

distribution Dλ is sampled as follows:

1. Sample px,y, zq Ð S.

2. For each i P rtpλqs, set wi to yi or zi uniformly at random.

3. Output tpxi, wiquiPrtpλqs.

As S is of size Θppλ �mpλqq{ϵ2q � Θppλ �mpλqq{ρpλqq, which is polynomial in λ, the distribution Dλ

can be sampled non-uniformly in polypλq time. In any element px,y, zq of S, we are guaranteed that each

pxi, yiq and pxi, ziq is in R. So the support of Dλ is contained in Rbtpλq
λ , as required.

To argue HVSWI of the protocol xPWI Ô VWIy when instantiated with this distribution, we need to show
that for every possible pair px, yq, px, zq P Rλ, the views of the verifier VWI on input x when PWI uses y or z
as the witness are statistically close. Fix any such pair.

Note that for any px,wq sampled from Dλ, the view of VWI on input x, when P uses witness w, is
completely determined by the following quantities: x, j, r, and fpx|jÐx,w|jÐw, rq – all this is missing is
the sequence of verifier messages in the protocol, which can be reconstructed efficiently given the verifier
randomness r and the prover messages fp� � � q. Thus, by the data processing inequality, the statistical
distance between the views of VWI in the cases where PWI uses witness y or z is at most the following, where
px,wq Ð Dλ, j Ð rtpλqs, and r is over the appropriate domain:

SD ppx, j, r, fpx|jÐx,w|jÐy, rqq , px, j, r, fpx|jÐx,w|jÐz, rqqq .
Taking into account the definition of Dλ, this is equal to:

E
px,y,zqÐS
wiÐtyi,ziu

jÐrts,r

rSD pfpx|jÐx,w|jÐy, rq, fpx|jÐx,w|jÐz, rqqs ,

which, by Proposition 3.9, is at most
a
2 ln 2 � ρpλq � ϵ � Opaρpλqq, proving the lemma.

Remark 3.10. The prover PWI in protocol xPWI Ô VWIy we construct is non-uniform even if the prover
P from the original batch protocol is uniform. This is because the minimax theorem we use (Lemma 3.7),
while constructive, is not uniform. An interesting question here is whether a uniform version of the minimax
theorem can be used instead to preserve uniformity of the prover. As far as we can tell, existing uniform
minimax theorems ([VZ13], for instance) do not seem useful for this purpose. They require the payoff of the
game to be efficiently computable given the strategies, which does not seem to be the case here as it involves
computing the statistical distance between two rather arbitrary distributions.

Remark 3.11. The bound of Op?ρq in the statements above (and particularly in Lemma 3.4) is optimal
upto constant factors. In the case of Lemma 3.4, a function g that splits its input into blocks of size Θp1{ρq
and outputs the majority of the bits in each block witnesses this optimality. This can then be extended to
proof systems, where the bits may represent predicates that distinguish between two witnesses.
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3.2 Non-Interactive Protocols

In this section, we focus on non-interactive protocols. In Theorem 3.12 below, we prove the counterpart of
Theorem 3.1 for non-interactive protocols. We also observe that if we only require a distributional notion
of SWI, then we can avoid the non-uniformity of the prover in Theorem 3.12. We refer the readers to
Definitions 2.17 and 2.18 for definitions pertaining to dual-mode non-interactive protocols.

Theorem 3.12. Suppose an NP relation R has a non-interactive batch protocol Π � pGen,TGen,P,Vq that,
when run on some polynomial t � tpλq instances of size λ, has compression rate ρ � ρpλq   1. Then, R has
a dual-mode non-interactive protocol ΠWI � pSHGenWI,ASGenWI,PWI,VWIq, which is described in Fig. 3.2,
with the following properties (on instances of size λ):

� In statistically-hiding mode, ΠWI is SWI with error O
�?

ρ
�
.

� Assume Π is CRS-indistinguishable. Then ΠWI, in both modes, has completeness error negligibly close
to that of Π run on t instances. In addition, ΠWI is mode-indistinguishable.

� If Π is somewhere computationally sound, then ΠWI in adaptively-sound mode is adaptively computationally
sound.

� If P is computed by a family of polynomial-sized circuits, then so is PWI; and VWI, SHGenWI, and
ASGenWI run in uniform polynomial-time given blackbox access to V and TGen, respectively.

� The length of the proof in ΠWI is that in Π plus an additional λ � t bits. The length of the CRS is that
in Π plus an additional log t bits.

Fix some relationR for which there is a non-interactive batch protocol pGen,TGen,P,Vq with compression
rate ρ as hypothesized. We will show how to construct from this a dual-mode non-interactive SWI protocol
pSHGenWI,ASGenWI,PWI,VWIq for R in a manner similar to that earlier in this section for general interactive
protocols. This protocol follows the template in Fig. 3.2, which is parametrised by an ensemble of distributions
D and a function t, which we will instantiate later.
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Given a non-interactive batch protocol pGen,TGen,P,Vq, a function t : N Ñ N, and an ensemble of
distributions D � pDλqλPN, where the support of Dλ is contained in pt0, 1uλ � t0, 1u�qtpλq, the dual-
mode non-interactive protocol pSHGenWI,ASGenWI,PWI,VWIq is as follows.

SHGenWIp1λq:

� Sample j, j1 Ð rtpλqs, and crsÐ TGenp1λ, 1tpλq, j1q.
� Output pj, crsq.

ASGenWIp1λq:

� Sample j Ð rtpλqs, and crsÐ TGenp1λ, 1tpλq, jq.
� Output pj, crsq.

PWIppj, crsq, x, wq:
� Sample tpxi, wiquiPrtpλqs from Dλ.

� Compute π Ð Ppcrs, px1, . . . , xj�1, x, xj�1, . . . , xtpλqq, pw1, . . . , wj�1, w, wj�1, . . . , wtpλqqq.
� Output px, πq.

VWIppj, crsq, x, px, πqq:
� Accepts iff Vpcrs, px1, . . . , xj�1, x, xj�1, . . . , xtpλqq, πq accepts.

Figure 3.2: Template for constructing dual-mode NISWI protocols from non-interactive batch protocols

We next state lemmas capturing the properties of this protocol, and use them to prove Theorem 3.12.

Lemma 3.13 (Completeness and Mode Indistinguishability). Suppose Π � pGen,TGen,P,Vq is a non-
interactive batch protocol for a relation R. Let t be any polynomial and D � pDλqλPN be such that the support

of Dλ is contained within Rbtpλq
λ . Then, the protocol ΠWI � pSHGenWI,ASGenWI,PWI,VWIq in Fig. 3.2, when

instantiated with Π, D and t, is a dual-mode non-interactive protocol for R that satisfies the following:

� If Π has completeness error δpλq when run with tpλq instances of size λ and is CRS-indistinguishable,
then ΠWI has completeness error δpλq � neglpλq in both modes.

� If Π is CRS-indistinguishable, then ΠWI is mode-indistinguishable.

Proof. We focus on the statistically-hiding mode, since completeness for the adaptively-sound mode will
follow by mode indistinguishability (see Remark 2.20.2). Let t � tpλq. If crs in SHGenWIp1λq had been
sampled from Genp1λ, 1tq instead of TGenp1λ, 1t, jq, then the completeness of ΠWI in this mode follows that
of Π, with the same error δpλq (by the same arguments as in Lemma 3.2). By the CRS-indistinguishability
of Π, and as both PWI and VWI are polynomial-time algorithms, making this change in SHGenWI can only
change the completeness error by a negligible amount.

Mode indistinguishability follows directly from CRS indistinguishability.

Lemma 3.14 (Soundness). If Π is somewhere computationally sound, then adaptively-sound mode of ΠWI

is adaptively computationally sound.
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Proof. Suppose there is a malicious prover P�WI and a non-negligible function µ such that, with crsWI Ð
ASGenWIp1λq and px, πq Ð P�WIpcrsWIq we have:

Pr rx R LpRλq ^ VWIpcrsWI, x, πq acceptss ¥ µpλq.

By the definition of the protocol, the above is the same as the following: with j Ð rts, crs Ð TGenp1λ, 1t, jq,
px,x, πq Ð P�WIpj, crsq,

Pr rx R LpRλq ^ Vpcrs,x|jÐx, πq acceptss ¥ µpλq,

which immediately contradicts the somewhere computational soundness of pGen,TGen,P,Vq if µ is non-
negligible. This proves the lemma.

Lemma 3.15 (Witness Indistinguishability). Consider a non-interactive batch protocol Π � pGen,TGen,P,Vq
for a relation R that has polynomial-sized witnesses. For a polynomial t, when the protocol is run with tpλq
instances of size λ, suppose the length of the proof is at most ρpλqtpλq bits for some function ρ. Then, there

is an efficiently sampleable ensemble of distributions D � pDλqλPN, where Dλ is supported in Rbtpλq
λ , such

that the statistically-hiding mode of the protocol ΠWI in Fig. 3.2, when instantiated with Π, D, and t, is SWI

with error O
�a

ρpλq
	
.

Proof Sketch. The proof of this lemma is identical to that of Lemma 3.3, with the only difference being that
instead of the verifier’s random string r, here we use the CRS sampled by SHGenWI (specifically, the crs part
of pj, crsq that it samples).

Remark 3.16. Note that the adaptively-sound mode is not necessarily statistically hiding since the CRS
generated depends on the index j. The proof of statistical hiding in Lemma 3.15 works out only when the
CRS is generated as in SHGen, where the index j is independent of the crs sampled from TGen.

Proof of Theorem 3.12. Consider a relation R with polynomial-sized witnesses and a non-interactive batch
protocol Π � pGen,TGen,P,Vq that, for some polynomial t, when run on tpλq instances of size λ, has
completeness error δpλq, statistical soundness error ϵpλq, and proofs of length at most ρpλqtpλq bits for
some function ρ. Let D be the ensemble guaranteed by Lemma 3.15, and consider the protocol ΠWI �
pSHGenWI,ASGenWI,PWI,VWIq as described in Fig. 3.2 instantiated with this D and t. This protocol has the
following properties:

� Lemma 3.15 implies that this protocol in statistically-hiding mode is SWI with WI error O
�a

ρpλq
	
.

� Lemma 3.13 implies that its completeness error in both modes is δpλq � neglpλq.
� By Lemma 3.14, if Π is somewhere computationally sound, then the adaptively-sound mode of ΠWI is
adaptively computationally sound.

� All VWI does is run V on an input provided by PWI and accept iff it accepts. SHGenWI and ASGenWI

similarly only sample from rtpλqs and run TGen once. PWI also simply runs P on an input and witnesses,
and in addition computes samples from Dλ and rtpλqs, which can be done in non-uniform polynomial
time since D is efficiently sampleable.

� In addition to the proof from Π, the proof in ΠWI consists only of the tpλq instances of length λ sampled
by PWI. And the CRS only has an additional element from rtpλqs.

The above arguments prove the respective properties of the protocol promised by the theorem.
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Dual-Mode NIDSWIA with uniform prover. Finally, we show that when the hiding requirement can
be weakened to distributional SWI (Definition 2.15), it is possible to avoid the non-uniformity of prover in
Theorem 3.12.

Theorem 3.17 (Dual-Mode NIDSWIA with uniform prover from NIBARG). Consider an NP relation R and
let D1 � pD1

λqλPN be a distribution where D1
λ is supported over triples px,w0, w1q such that px,w0q, px,w1q P

Rλ. Consider the distribution D � pDλqλPN, where Dλ is supported over Rλ and defined via the following
sampling procedure. On input 1λ,

1. Sample px,w0, w1q Ð D1
λ and bÐ t0, 1u

2. Output px,wbq.
Let Π � pGen,TGen,P,Vq be a non-interactive batch protocol for R that, when run on some polynomial
t � tpλq instances of size λ, has compression rate ρ � ρpλq   1. Then, the dual-mode non-interactive
protocol ΠWI � pSHGenWI,ASGenWI,PWI,VWIq from Fig. 3.2 instantiated with Π and Dbt has the following
properties (on instances of size λ):

� If D1 is uniformly efficiently-sampleable, then the prover PWI is uniform.

� In statistically-hiding mode, ΠWI is distributional SWI for D1 with error O
�?

ρ
�
.

� Assume Π is CRS-indistinguishable. Then ΠWI, in both modes, has completeness error negligibly close
to that of Π run on t instances. In addition, ΠWI is mode-indistinguishable.

� If Π is somewhere computationally sound, then ΠWI in adaptively-sound mode is adaptively computationally
sound.

� The length of the proof in ΠWI is that in Π plus an additional λ � t bits. The length of the CRS is that
in Π plus an additional log t bits.

Proof Sketch. We focus on the first two claims since the rest of the claims can be proved as in Theorem 3.12.
From the description of the sampling procedure, it is clear that if D1 is uniformly efficiently sampleable then
D also is, and as a result the prover PWI is uniform. To prove the second claim, observe that

E
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where

� crsWI � pj, crsq Ð SHGenWIp1λq and πb Ð PWIpcrsWI, x, w
bq in the first equality;

� πb is generated using P as described within PWI in Fig. 3.2 in the second and third equalities;

� the third equality follows by the definition of D; and

� the inequality follows from the proof of Proposition 3.8 with fpx,w, rq :� Ppr,x,wq and column
player’s mixed strategy set to D1.
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3.3 Corollaries

In this section we state some of the known results on transforming HVSWI protocols into SWI and SZK
protocols against malicious verifiers. Starting from a public-coin HVSWI proof, Corollary 3.18 gives an SWI
proof against malicious verifiers without any additional assumptions. Even if the original HVSWI proof is
not public coin, we can use it to obtain an SWI proof under computational assumptions. This transformation
is given by Corollary 3.19. Moving on to the setting of computational soundness, assuming OWFs exist,
Corollary 3.19 shows that any HVSWI argument can be transformed into an SWI argument. Under the same
assumption, Corollary 3.20 gives a transformation from an SWI argument to an SZK argument. Finally,
Corollary 3.21 gives a similar transformation from an SWI argument to an SZK argument for non-interactive
protocols; Corollary 3.22 is its distributional counterpart.

Corollary 3.18. If there exists a public-coin HVSWI proof Π for an NP relation R then there exists a
public-coin SWI proof ΠM for R with the following properties:

� ΠM has negligible completeness and soundness error.

� ΠM has WI error polypλq � ε� 2�Θpλq where λ is the instance length and ε is WI error of Π.

� If Π has d rounds then ΠM has 2d rounds.

� If the honest prover in Π is non-uniform then so is the honest prover in ΠM .

Proof Sketch. The proof is based on [Vad99, Theorem 6.3.5] which gives a transformation from any public-
coin HVSZK proof to a public-coin SZK proof with the following properties:

� ΠM has negligible completeness error 2�λ and soundness error 1{λ.
� ΠM has ZK error polypλq � ε� 2�Θpλq where λ is the instance length and ε is ZK error of Π.

� If Π has d rounds then ΠM has 2d rounds.

� If the honest prover in Π is non-uniform then so is the honest prover in ΠM .

We observe that the same transformation also transforms any HVSWI proof to an SWI proof with the same
properties. To see that, recall that a protocol xP Ô Vy is SWI with error ε if and only if there exists an
(unbounded) simulator S such that for every polynomial-size circuit family V� � pV�λqλPN,

txPpwqÔ V�λypxqupx,wqPR
|x|�λ

�ε tSpx,V�λqupx,wqPR
|x|�λ

.

Similarly, the protocol is HVSWI if and only if the above is guaranteed for the honest verifier V. The proof
of [Vad99, Theorem 6.3.5] uses the polynomial time simulator of the original SZK proof to construct a
polynomial-time simulator for the new proof system. By inspecting the transformation and its analysis, we
conclude that if the original protocol has an unbounded simulator instead of a polynomial-time one, the
simulator constructed for the new proof system is also unbounded with the same error as in the efficient
case.

The SWI proof resulting from the [Vad99] transformation has a non-negligible soundness error. To get
an SWI proof with the claimed properties we can repeat the resulting SWI proof in parallel polypλq times.
This reduces the soundness error to negligible and only increases the WI error by a factor of polypλq.
Corollary 3.19. Let Π be an HVSWI protocol for an NP relation R with d rounds.

� Assume there exists a statistically hiding commitment with d� rounds. If Π is statistically sound then
there exists an SWI proof for R with Opd � d�q rounds and soundness error that is negligibly close to
that of Π.
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Let Com be a two-message statistically binding commitment (with canonical decommitment). Let
xPCZK Ô VCZKy be a constant-round computational ZK argument. Let xPWI Ô VWIy be a d-round
HVSWI argument where verifier’s randomness is of length ℓ. Assume WLOG that d is even.
The SWI argument xPM Ô VM y is as follows. The prover and verifier are given an instance x P t0, 1uλ.
The prover is also given a witness w P t0, 1u�.

1. PM samples a first message k for Com and sends it to VM

2. VM samples rV Ð t0, 1uℓ and a commitment cÐ ComkprV q, and sends c to PM

3. PM samples rP Ð t0, 1uℓ sends it to VM

4. For i � 1, . . . , d:

(a) VM computes the next message of VWI using randomness r � rV ` rP :

αi Ð VWIpx, α1, β1, . . . , αi�1, βi�1; rq ,

and sends αi to PM

(b) VM and PM execute the protocol xPCZK Ô VCZKy where VM proves to PM that there exist
strings r̃V and σ such that:

c � Comkpr̃V ;σq ^ αi � VWIpx, α1, β1, . . . , αi�1, βi�1; r̃V ` rP q

(c) If VCZK rejects then PM aborts. Otherwise, PM computes the next message of PWI:

βi Ð PWIpx,w, α1, β1, . . . , αiq ,

and sends βi to VM

Figure 3.3: Malicious-verifier SWI argument from an HVSWI argument and OWFs

� Assuming OWFs exist, if Π is computationally sound then there exists an SWI argument for R with
Opdq rounds.

The WI error of the new protocol is negligibly close to that of Π. If the honest prover in Π is non-uniform
then so is the honest prover in the new protocol.

Statistically-hiding commitment be constructed in two rounds from CRHFs [DPP97, FS90a, HM96], in a
constant number of rounds from multi-collision resistant hash functions [BDRV18, KNY18a] or distributional
CRHFs [BHKY19], and in Opλq rounds from OWFs [HNO�09].

Proof Sketch. The proof is based on the compiler of [GMW86]. We start with the case of computational
soundness and then explain how to modify the protocol to obtain statistical soundness. The verifier starts
by committing to a random string rV using a statistically-binding commitment and the prover responds with
a random string rP . Then the prover and verifier execute the HVSWI protocol where the verifier uses the
randomness rV ` rP . After each message, the verifier proves using a computational ZK argument that the
message was generated correctly. The SWI argument xPM Ô VM y is described in Fig. 3.3. The construction
uses a two-message statistically binding commitment and a constant-round computational ZK argument,
both of which can be constructed from OWFs [Nao91, FS90a]. Next, we sketch the proof of soundness and
SZK.
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Computational soundness. Assume towards contradiction that there exists a polynomial-size cheating
prover P� that can prove a false statement with non-negligible probability ε. We use P� to break the
computational soundness of the HVSWI argument xPWI Ô VWIy. First we consider a hybrid experiment where
we emulate an execution P� with the verifier VM , but each execution of the ZK argument xPCZK Ô VCZKy is
simulated. By the zero-knowledge property of the ZK argument, P� will continue to produce accepting proofs
with probability that is negligibly close to ε. In the next hybrid, we modify the value in the initial commitment
sent by VM from rV to 0ℓ. By the computational hiding property of the commitment, P� will continue to
produce accepting proofs with probability that is negligibly close to ε. Now we can break the soundness of
the HVSWI argument xPWI Ô VWIy by emulating this final hybrid experiment and forwarding the messages
of the external verifier VWI to P� instead of computing them using the randomness r � rV ` rP . Since the
string r is uniformly distributed, we convince the external verifier of a false statement with probability that
is negligibly close to ε.

SWI. Fix any polynomial-size cheating verifier V� and statement-witness pairs px,w0q, px,w1q P R. Let ε
denote the distance between the views View0 � xPM pw0qÔ V�ypxq and View1 � xPM pw1qÔ V�ypxq. Since
the commitment Com is statistically binding, we can fix the first commitment message k sampled by PM

such that Comk is perfectly binding and the distance between View0 and View1 remains negligibly close to
ε. Let r̃V be the string that V� commits to in its first message.

For b P t0, 1u we consider the view of the honest verifier VWI in the interaction of xPWIpwbq Ô VWIypxq
which consist of the verifier’s randomness r and the prover’s messages pβ1, . . . , βdq. We argue that given this
view we can efficiently sample from a distribution that is negligibly close to Viewb (with the first commitment
message fixed to k). Therefore, it follows that ε must be negligibly close to the SWI error of the HVSWI
argument.

Given the view r, pβ1, . . . , βdq we sample from a distribution close to Viewb as follows. We emulate the
execution of V�, setting the first prover message to k and the second prover message to rP � r̃V ` r. Since r
is uniform, rP is distributed exactly as in Viewb. In every one of the remaining d rounds, starting from i � 1
to d we interact with V� emulating the verifier of the ZK argument xPCZK Ô VCZKy. If the ZK argument is
accepted then we set the next prover message to βi, otherwise the prover aborts.

Let E be the event that the verifier V� proves a true statement in each of the accepting executions of the
ZK argument xPCZK Ô VCZKy. Conditioned on E, the view sampled above is distributed exactly the same
as Viewb. By the computational soundness property of the ZK argument, E occurs with all but negligible
probability. Therefore, the sampled view is negligibly close to Viewb.

An SWI proof. If the original SWI protocol xPWI Ô VWIy has statistical soundness we can modify the
protocol xPM Ô VM y described in Fig. 3.3 and obtain an SWI proof. We make the following modifications:

� We replace the two-message statistically-binding commitment with a statistically-hiding commitment.

� After the verifier sends the commitment c and before the prover sends rP , have the verifier prove that it
knows an opening of c using a SZK argument of knowledge where SZK holds even against an unbounded
malicious verifier.13 (We describe how this SZK argument of knowledge is constructed below.)

� Replace each invocation of the computational ZK argument with a SZK argument of knowledge against
an unbounded malicious verifier.

Since the verifier’s commitment and ZK arguments are all statistical, we can show statistical soundness
following the same argument as in the computational case. To prove SWI, modify the above proof as follows.
Since the commitment c is statistically-hiding, the string r̃V that V� commits to is not well defined. Instead,
we invoke the knowledge extractor of the SZK argument of knowledge and extract an opening to a string
r̃V . To prove SWI we need to show that, with all but negligible probability, all the messages β1, . . . , βd are
computed according to the strategy of the honest verifier in the HVSWI argument VWI using the randomness

13This is in contrast to the weaker notion of SZK in Definition 2.7 that only considers polynomial-size malicious verifiers.
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r̃V ` rP . If this is not the case for some βi, we can use the knowledge extractor of the SZK argument
of knowledge and obtain an opening of the commitment c to a value other than rV with non-negligible
probability, contradicting the computational binding property of the commitment.

Using a statistically-hiding commitment with d� rounds, a SZK argument of knowledge against an
unbounded malicious verifier with Opd�q rounds can be constructed following the outline of [FLS90, GK96]:
Start from an SWI argument of knowledge against an unbounded verifier in Opd�q rounds. Such a protocol
can be obtained by taking the parallel repetition of the ZK protocol of [Blu81, GMW86] and instantiating
the commitment scheme with the statistically hiding commitment. Next, the SWI argument of knowledge is
transformed into an SZK argument of knowledge using the compiler of [FLS90]. In more details, the verifier
starts by committing to trapdoor statement using a statistically hiding commitment and proving that the
committed statement is true using a computational ZK proof of knowledge. Then the prover uses the SWI
argument of knowledge to prove that either the original statement or the committed trapdoor statement is
true. The required computational ZK proof of knowledge can be constructed by combining the computational
ZK proof of [GK96] (instantiated with the statistically-hiding commitment) with a computational WI proof
of knowledge (given by parallel repetition of the ZK protocol of [Blu81, GMW86], instantiated with a
statistically binding commitment) via the [FLS90] compiler.

Corollary 3.20. Assuming one-way functions exist, if there exists an SWI argument Π for an NP-complete
relation R with d rounds, then there exists an SZK argument ΠZK for R with Opdq rounds and ZK error
that is negligibly close to the WI error of Π. If the honest prover in Π is non-uniform then so is the honest
prover in ΠZK.

Proof Sketch. The proof is based on the compiler of [FLS90]. The verifier starts by sending a random image
y of a length-doubling PRG and proving that it knows a corresponding preimage using a computational
ZK argument of knowledge. Then, the prover and verifier execute the SWI protocol proving that either the
original statement is true or that y is in the image of the PRG. In other words, the prover and verifier
execute SWI protocol to prove that px, yq P ROR, which is the relation obtained by “ORing” R and the
relation defined by the PRG: i.e,

ROR :� tppx, yq, zq : px, zq P R_ PRGpzq � yu (5)

The SZK argument xPZK Ô VZKy is described in Fig. 3.4. The construction uses a PRG and a constant-round
computational ZK argument of knowledge, both of which can be constructed from OWFs [HILL99, FS90a].
Next, we sketch the proof of soundness and SZK.

Soundness. Assume towards contradiction that there exists a polynomial-size cheating prover P� that can
prove a false statement with non-negligible probability ε. We use P� to break the computational soundness
of the SWI argument xPWI Ô VWIy. First we consider a hybrid experiment where we emulate an execution
P� with the verifier VZK, but the execution of the computational ZK argument xPCZK Ô VCZKy is simulated.
By the zero-knowledge property of the ZK argument, P� will continue to produce accepting proofs with
probability that is negligibly close to ε. In the next hybrid, we sample a uniform y Ð t0, 1u2λ instead of
sampling y as a random image of the PRG. By the pseudorandomness of the generator, P� will continue
to produce accepting proofs with probability that is negligibly close to ε. Now, the statement for the
SWI argument xPWI Ô VWIy is false with probability 1 � 2�λ. Therefore, we can break the soundness of
xPWI Ô VWIy with probability that is negligibly close to ε.

SZK. We describe a simulator S. The simulator is given an instance x P LpRq and the description of a
cheating verifier V�. S emulates an interaction with V�. If the verifier VCZK rejects in the execution of the
computational ZK argument of knowledge xPCZK Ô VCZKy then S outputs the transcript of the interaction
with V� up to that point. Otherwise, S invokes the knowledge extractor of xPCZK Ô VCZKy on the description
of the residual verifier V� after sending its first message, right before the execution of xPCZK Ô VCZKy. If the
extractor fails to output a string r such that y � PRGprq then S aborts. Otherwise, S continues to emulate
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Let PRG : t0, 1uλ Ñ t0, 1u2λ be a length-doubling PRG. Let xPCZK Ô VCZKy be a constant-round
computational ZK argument of knowledge. Let xPWI Ô VWIy be an SWI argument.
The SZK argument xPZK Ô VZKy is as follows. The prover and verifier are given an instance x P t0, 1uλ.
The prover is also given a witness w P t0, 1u�.

1. VZK samples a string r Ð t0, 1uλ and sends y � PRGprq to PZK

2. VZK proves to P using xPCZK Ô VCZKy that there exists a string r̃ such that y � PRGpr̃q
3. If VCZK rejects then PZK aborts. Otherwise, PZK proves to VZK using xPWI Ô VWIy that there exist

strings w̃ and r̃ such that:
px, w̃q P R _ y � PRGpr̃q ,

using the witness w̃ � w and r̃ � K

Figure 3.4: SZK argument from an SWI argument and a PRG

an interaction with V� by executing the honest prover of the SWI argument xPWI Ô VWIy using the witness
w̃ � K and r̃ � r. Finally, S outputs the transcript of the entire interaction with V�. Fix any px,wq P R
and a polynomial-size cheating verifier V�. Since the extractor runs in time that is inverse polynomial to
the probability that the proof given by V� is accepted, it follows that S runs in expected polynomial time.
By the knowledge soundness property of the computational ZK argument of knowledge the extractor fails
to find a witness and the simulation aborts only with negligible probability. Conditioned on the fact that
S does not abort, the only difference between the simulated view generated by Spx,V�q and the real view
xPZKpwq Ô V�ypxq is the witness used by the honest prover in the execution of xPWI Ô VWIy. Therefore,
the ZK error of the SWI argument xPZK Ô VZKy is negligibly close to the WI error of the SWI argument
xPWI Ô VWIy.

Non-Interactive SZK. Finally, we describe the transformation for non-interactive protocols. To be
specific, building on [FLS90], we transform a dual-mode (distributional) NISWIA to a dual-mode (distributional)
NISZKA.

Corollary 3.21. Assuming one-way functions exist, if there exists a dual-mode NISWIA Π for an NP-
complete relation R, then there exists a dual-mode NISZKA ΠZK for R such that:

� In the statistically-hiding mode, the ZK error of ΠZK is the same as the WI error of Π.

� If the honest prover in Π is non-uniform then so is the honest prover in ΠZK (otherwise ΠZK is uniform).

We skip the proof of this corollary and prove below the more general corollary.

Corollary 3.22 (Dual-Mode NIDSZKA with uniform prover from NIDSWIA and OWF). Let PRG be a length-
doubling PRG. Consider an NP relation R and let D � pDλqλPN be any uniformly efficiently-sampleable
distribution such that Dλ is supported over Rλ. Moreover, consider the relation ROR defined in Eq. (5), and
the (uniformly) efficiently-sampleable distribution DOR � pDOR,λqλPN on ROR, where DOR,λ is defined via
the following sampling procedure. On input 1λ,

1. Sample px,wq Ð Dλ,

2. Sample sÐ t0, 1uλ and set y :� PRGpsq,
3. Output ppx, yq, w, sq.
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Let PRG be a length-doubling PRG. Let ΠWI :� pSHGenWI,ASGenWI,PWI,VWIq be a dual-mode NISWIA
for any NP-complete relation. The dual-mode NISZKA ΠZK :� pSHGenZK,ASGenZK,PZK,VZKq for any
NP relation R is defined as follows.

crsZK Ð SHGenZKp1λq

1. Sample a random element y P t0, 1u2λ from the image of PRG.

2. Set up ΠWI in statistically-hiding mode: crsWI Ð SHGenWIp1λq.
3. Output crsZK :� pcrsWI, yq as the CRS.

crsZK Ð ASGenZKp1λq

1. Sample a random element y P t0, 1u2λ from the codomain of PRG.

2. Set up ΠWI in adaptively-sound mode:: crsWI Ð ASGenWIp1λq.
3. Output crsZK :� pcrsWI, yq as the CRS.

π Ð PZKpcrsZK, x, wq
1. Use witness w to generate a proof that px, yq P ROR (see Eq. (5)): π Ð PWIpcrsWI, px, yq, wq.
2. Output π.

b :� VZKpcrsZK, x, πq
1. Accept (b :� 1) if and only if VWIpcrsZK, px, yq, πq accepts.

Figure 3.5: ΠZK, a dual-mode NISZKA constructed from a dual-mode NISWIA and PRG.

If Π is a dual-mode NIDSWIA for DOR then ΠZK, defined in Fig. 3.5, is dual-mode NIDSZKA for D such that

� In the statistically-hiding mode, the ZK error of ΠZK is the same as the WI error of Π.

� If the honest prover in Π is uniform then so is the honest prover in ΠZK.

Proof Sketch. Completeness follows readily; below we argue adaptive soundness and statistical ZK.

Adaptive soundness. Note that the y sampled as part of pcrsWI, yq in ASGen lies outside the image of
PRG with overwhelming probability. As a result px, yq R ROR implies that x R R, and we end up reducing
to adaptive soundness of Π (in adaptively-sound mode).

Distributional SZK. Recall the definitions of the distributions D and DOR. With the simulator described
in Fig. 3.6, we have

E
px,wqÐDλ

rSDppcrsZK, πZKq,Spxqqs � E
px,wqÐDλ

rSDppcrsWI, y, πwq, pcrsWI, y, πsqqs ¤

E
px,wqÐDλ

rSDppcrsWI, y, s, πwq, pcrsWI, y, s, πsqqs �

E
ppx,yq,w,sqÐDOR,λ

rSDppcrsWI, πwq, pcrsWI, πsqqs ,
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Let PRG and ΠWI be as in Fig. 3.5. The simulator for statistically-hiding mode of ΠZK is described below.

pcrsZK, πq Ð SZKpxq

1. Sample a random image as follows: y :� PRGpsq, where sÐ t0, 1uλ is the trapdoor information.

2. Set up ΠWI in statistically-hiding mode: crsWI Ð SHGenWIp1λq.
3. Use the trapdoor information to generate proof that px, yq P ROR: π Ð PWIpcrsWI, x, sq.
4. Output pcrsZK, πq, where crsZK :� pcrsWI, yq.

Figure 3.6: SZK, a simulator for NISZKA from Fig. 3.5.

where in the first equation crsWI Ð SHGenWIp1λq, s Ð t0, 1uλ, y � PRGpsq, πw Ð PWIpcrsWI, px, yq, wq and
πs Ð PWIpcrsWI, px, yq, sq.

4 NISZKA from NIBARG and Dual-Mode Commitments

The WI and ZK errors for the protocols obtained in the previous section were only inverse-polynomially small.
Moreover, the prover in those protocols was non-uniform. In this section, we remedy both these issues in
the non-interactive setting. First, in Section 4.2, assuming dual-mode commitments (DMC), we show that
any (dual-mode) NIDSZKA for some appropriate distribution, can be transformed to (dual-mode) worst-case
NISZKA for any NP relation R with inverse-polynomial SZK error. Then, in Section 4.3, assuming DMC, we
boost privacy to obtain (dual-mode) NISZKA for all of NP (formally we first obtain NISWIA and then apply
Corollary 3.21). Both of the above transformations are uniform, and thus plugging-in our NIDSZKA from
BARGs (see Corollary 3.22), we obtain uniform proof systems.

Remark 4.1 (On the Restriction to Non-interactive Setting). We note that both steps described above
crucially rely on dual-mode commitments and are hence only interesting in the non-interactive setting.
Indeed, since dual-mode commitments imply two-message statistically-hiding commitments, in the interactive
setting they alone would allow the construction of constant-round statistical zero knowledge arguments with
a uniform prover, negligible ZK error (and no reliance on BARGs).

4.1 Dual-Mode Commitments

First, we define the notion of DMC [DN02].

Definition 4.2 (DMC). A dual-mode commitment scheme ∆ is a four-tuple of polynomial-time algorithms
pBGen,HGen,Com,VOpenq with following syntax:

� crs Ð BGenp1λq. The randomised binding CRS generation algorithm, on input a security parameter
λ P N, outputs a CRS crs P t0, 1upolypλq. When using a CRS generated by BGen, we say that ∆ is set
up in binding mode.

� crs Ð HGenp1λq. The randomised hiding CRS generation algorithm, on input a security parameter
λ P N, outputs a CRS crs P t0, 1upolypλq. When using a CRS generated by HGen, we say that ∆ is set
up in hiding mode.

� pc, dq Ð Compcrs,mq. The randomised commitment algorithm, on input a CRS crs and a message
m P t0, 1upolypλq, outputs a commitment c P t0, 1upolypλq and decommitment d P t0, 1upolypλq.
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� b :� VOpenpcrs, c, d,mq. The deterministic verify opening algorithm takes as input a commitment c,
decommitment d and a message m. It outputs a bit b indicating accept or reject.

We require the following properties from ∆:

1. Perfect correctness. For every λ P N,m P t0, 1upolypλq, crs in the support of BGenp1λq YHGenp1λq, and
pc, dq in the support of Compcrs,mq,

VOpenpcrs, c, d,mq � 1 .

2. Mode indistinguishability. The binding and hiding modes are computationally indistinguishable. Formally,
for every polynomial-size circuit family A � pAλqλPN, there is a negligible function µ, such that for all
λ P N: ���� Pr

pcrs,tdqÐBGenp1λq
r1Ð Aλpcrsqs � Pr

crsÐHGenp1λq
r1Ð Aλpcrsqs

���� ¤ µpλq.

3. Statistical indistinguishability in hiding mode. In the hiding mode, for a random CRS, the distribution
of commitments of any two messages must be statistically close. To be specific, for a function δpλq,
we say that ∆ is δ-statistically-indistinguishable if

pcrs, c0qm0,m1Pt0,1upolypλq
λPN

�δ pcrs, c1qm0,m1Pt0,1upolypλq
λPN

where crs Ð HGenp1λq and pcb, dbq Ð Compcrs,mbq for b P t0, 1u.
4. Almost-everywhere perfect binding in binding mode. With overwhelming probability over the choice of

binding CRS, we require that every possible commitment c opens to at most one message. Formally,
there exists a negligible function µ such that for all λ P N

Pr
crsÐBGenp1λq

�
Dc, d, d1,m � m1 P t0, 1upolypλq s.t. VOpenzpcrs, c, d,mq � VOpenzpcrs, c, d1,m1q � 1

�
¤ µpλq.

Remark 4.3 (On Definition 4.2).

� Using standard amplification (XOR Lemma), δ can be made as small as 2�polypλq for any poly at the
cost of polynomially increasing the size of commitments (cf. [LM20]).

� Our definition allows for a general VOpen algorithm. Following common practice, we could restrict
attention to canonical opening where the decommitment information is the randomness used in commitment
(in which case correctness follows automatically). Nevertheless, using the more general VOpen syntax,
will allow us to present the next Section 5.3 more smoothly. (Specifically, there we will consider an
alternative to DMC, where canonical opening is not necessarily possible.)

� A related notion to DMC is extractable dual-mode commitments a.k.a lossy encryption. In this related
notion, in the binding mode, one can also efficiently extract (or decrypt) the commitment using a
trapdoor associated with the CRS. In contrast, the notion of DMC we use requires no such efficient
extraction, and in particular does not necessitate public-key encryption. It can be constructed for
instance from average-case hardness of the statistical difference problem with one-sided error

4.2 Dual-Mode NISZKA from Dual-Mode NIDSZKA and DMC

In this section, we construct dual-mode NISZKA for the circuit satisfiability relation C given dual-mode
NIDSZKA and DMC.
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Local consistency relation Gg

� Hardwired. Description of the DMC ∆ � pBGen,HGen,Com,VOpenq, and a Boolean gate g.

� Instance. pcrs∆, c1, c2, c3q, where crs∆ is a CRS of ∆ and ci, i P r1, 3s, are commitments.

� Witness. ppw1, w2, w3q, pd1, d2, d3qq, where wi and di, i P r1, 3s, are wire values and decommitments.

� The relation holds if following conditions hold.

1. Commitments are valid : VOpenpcrs∆, ci, di, wiq � 1 for all i P r1, 3s
2. Wire values are consistent : gpw1, w2q � w3

Distribution Dg � pDg,nq over Gg, where Dg,n is defined via following sampling procedure for input 1n:

1. Sample a random hiding CRS: crs∆ Ð HGenp1nq
2. Sample a random assignment pw1, w2, w3q consistent with g, i.e., such that gpw1, w2q � w3.

3. Generate a commitment and decommitment to each wire: for i P r3s, pci, diq Ð Compcrs∆, wiq.
4. Output pcrs∆, c1, c2, c3q as the instance and ppw1, w2, w3q, pd1, d2, d3qq as the witness.

Figure 4.1: Gg, the relation capturing local consistency of wire values and Dg, the distribution supported
over Gg.

Local consistency. Before presenting our construction, we define an NP relation Gg that captures local
consistency of commitments to wires associated with a gate (Fig. 4.1 ), and a uniformly-sampleable distribution
Dg � pDg,λqλPN supported over Gg. Looking ahead, for every Boolean gate g, we will require the underlying
protocol to be NIDSZKA for Dg. The following notation will also be useful.

Notation 4.4 (Notation for circuits.). Let C be a Boolean circuit with wires labeled by rns. We use the same
label for wires fanning out from the same gate or input bit. We say that an assignment w � pw1, � � � , wnq P
t0, 1un satisfies a gate g with input wires i, j and output wire k if gpwi, wjq � wk. An assignment w satisfies
C if it satisfies all of its gates and the value of the output wire is 1. Thus, Cn, the circuit satisfiability relation
for circuits with n wires is defined as pC,wq such that w satisfies C.

Our protocol ΠZK is described formally in Fig. 4.2. The construction is similar in spirit to [GOS12] in
that the prover commits to the wire values and then, for each gate in the circuit, proves local consistency of
the commitments to that gate’s wires. The main difference is that we rely on dual-mode NIDSZKA instead
of homomorphic proof commitments to prove local consistency.

Theorem 4.5 (Dual-Mode NISZKA from Dual-Mode NIDSZKA and DMC). Consider the non-interactive
protocol ΠZK for circuit satisfiability relation C described in Fig. 4.2, and instantiate:

� Π using a dual-mode NIDSZKA for Dg with ZK error ε; and

� ∆ using any DMC that is δ-statistically-indistinguishable.

Then ΠZK is a dual-mode 4npδ � εq-NISZKA for C, where n denotes the number of wires in the circuit. If Π
has negligible (resp., 0) completeness error then so does ΠZK.

Proof. Completeness follows readily. Mode indistinguishability of ΠZK follows directly by mode indistinguishability
of ∆ and Π. We prove soundness and zero knowledge next.
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For n P N, let pC,wq P Cn be an instance-witness pair of circuit satisfiability (see Notation 4.4). Let

� Π � pSHGen,ASGen,P,Vq be the base dual-mode NIDSZKA for Dg over Gg (Fig. 4.1); and

� ∆ � pBGen,HGen,Com,VOpenq be an DMC.

The dual-mode (worst-case) NISZKA ΠZK � pSHGenZK,ASGenZK,PZK,VZKq for Cn is described below.

crsZK Ð SHGenZKp1nq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. For each gate, set up Π in statistically-hiding mode: for i P rns, crsi Ð SHGenp1nq.
3. Output crsZK :� pcrs∆, pcrs1, . . . , crsnqq as the CRS.

crsZK Ð ASGenZKp1nq
1. Set up ∆ in binding mode: crs∆ Ð BGenp1nq.
2. For each gate, set up Π in adaptively-sound mode: for i P rns, crsi Ð ASGenp1nq.
3. Output crsZK :� pcrs∆, pcrs1, . . . , crsnqq as the CRS.

πZK Ð PZKpcrsZK, C,wq
1. Use ∆ to commit to the value of each wire: for i P rns, generate pci, diq Ð Compcrs∆, wiq. (Recall

that wires fanning out from the same gate or input bit have the same label and hence a single
commitment.)

2. For each gate g in C with input wires i, j P rns and output wire k P rns, use ppwi, wj , wkq, pdi, dj , dkqq
as witness to generate a proof πg that pcrs∆, ci, cj , ckq P LpGgq:

πg Ð P pcrsg, pcrs∆, ci, cj , ckq, ppwi, wj , wkq, pdi, dj , dkqqq .

3. Output πZK :� ppc1, � � � , cnq, pπ1, � � � , π|C|q, dnq.
b :� VZKpcrsZK, C, πZKq

1. Output b :� 1 (accept πZK) if and only if the checks below pass.

(a) For each gate g in C, with input wires i, j P rns and output wire k P rns, use πg to verify that
pcrs∆, ci, cj , ckq P LpGgq: i.e., V pcrsg, pcrs∆, ci, cj , ckq, πgq � 1.

(b) Verify that C evaluates to 1, by ensuring that cn opens to 1: VOpenpcrs∆, cn, dn, 1q � 1.

Figure 4.2: ΠZK, a dual-mode NISZKA for circuit satisfiability.
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Let C, n, Π � pSHGen,ASGen,P,Vq and ∆ � pBGen,HGen,Com,VOpenq be as defined in Fig. 4.2. Let
S denote the simulator for Π. The simulator SZK for ΠZK from Fig. 4.2 is described below.

pcrsZK, πZKq Ð SZKpCq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. Generate dummy commitments for each wire: for i P rns, pci, diq Ð Compcrs∆, 1q.
3. Simulate underlying views for all gates using S. That is, for each gate g in C with input wires

i, j P rns and output wire k P rns generated simulated view that pcrs∆, ci, cj , ckq P LpGgq:

pcrsg, πgq Ð Sppcrs∆, ci, cj , ckqq.

4. Set crsZK :� pcrs∆, pcrs1, . . . , crsnqq and πZK :� ppc1, � � � , cnq, pπ1, � � � , π|C|q, dnq.
5. Output pcrsZK, πZKq.

Figure 4.3: SZK, a simulator for ΠZK (Fig. 4.2).

Adaptive Soundness. Note that in the adaptively-sound mode of ΠZK, ∆ is set up in the binding mode
using BGen and all instances of Π are set up in adaptively-sound mode using ASGen. Since commitments
generated in binding mode of ∆ act as perfectly-binding commitments with overwhelming probability, we
are able to show that adaptive soundness of Π implies adaptive soundness of ΠZK, as explained next.

Assume for contradiction that P� � pP�nqnPN, a polynomial-sized family of malicious provers, breaks ΠZK’s
adaptive soundness with non-negligible probability. Given a challenge CRS crs�, the reduction generates

crs�ZK :� pcrs∆, pcrs1, . . . , crsnqq,

by sampling crs∆ using BGen, setting crsg� :� crs� for g� Ð rns, and independently and randomly sampling
the remaining CRSs using ASGen. The reduction then runs P� on crs�ZK, which outputs pC�, π�ZKq such that
C� is unsatisfiable but π�ZK �: ppc�1 , � � � , c�nq, pπ�1 , � � � , π�|C|q, d�nq is accepted by VZK. Since the commitments

pc�1 , � � � , c�nq are perfectly binding, they open to certain wire values w� P t0, 1un. Since C� is unsatisfiable,
there must exist a gate g in C� with input wires i, j P rns and output wire k P rns such that pcrs∆, c�i , c�j , c�kq R
LpGgq, i.e., the commitments are locally inconsistent with respect to g (recall that Cpw�q � 1 for a proof
to be accepted). Since VZK accepts π�ZK if and only if V accepts all the underlying proofs and g � g�

holds with probability 1{n (since g� is sampled randomly and independently), the reduction can output
ppcrs∆, c�i , c�j , c�kq, π�g�q to break Π’s adaptive soundness with a 1{n loss. Since this is non-negligible, we
contradict the assumption that Π is adaptively sound with negligible error.

Statistical Zero Knowledge. Recall from Remark 2.20.1 that when referring to statistical ZK of a dual-
mode NISZKA, we are implicitly referring to its statistically-hiding mode. The simulator for ΠZK is formally
described in Fig. 4.3, and to prove that

SDpxPZKpwq Ñ VZKypCq,SZKpCqq ¤ 4npδ � εq (6)

for any pC,wq P Cn, where xPZKpwq Ñ VZKypCq denotes VZK’s view (in statistically-hiding mode), we proceed
in two steps.

In the first step, we switch to an intermediate distribution HZK, described in Fig. 4.4, where all views
pcrsg, πgq of the underlying NIDSZKA Π are simulated but using actual commitments to w. We claim that
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For n P N, let pC,wq P Cn. Let Π � pSHGen,ASGen,P,Vq, ∆ � pBGen,HGen,Com,VOpenq and S be as
defined in Fig. 4.3. The hybrid distribution HZK for proof of Theorem 4.5 is described below.

pcrsZK, πZKq Ð HZKpC,wq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. Use ∆ to commit to value of each wire: for i P rns, pci, diq Ð Compcrs∆, wiq.
3. Simulate underlying views for all gates using S. That is, for each gate g in C with input wires

i, j P rns and output wire k P rns generate a simulated view that pcrs∆, ci, cj , ckq P LpGgq:

pcrsg, πgq Ð Spcrs∆, ci, cj , ckq.

4. Set crsZK :� pcrs∆, pcrs1, . . . , crsnqq and πZK :� ppc1, � � � , cnq, pπ1, � � � , π|C|q, dnq
5. Output pcrsZK, πZKq

Figure 4.4: HZK, the intermediate hybrid distribution in proof of Theorem 4.5.

Π being distributionally SZK for Dg with error ε implies for all pC,wq as above,
SDpxPZKpwq Ñ VZKypCq, HZKpC,wqq ¤ 4|C|ε. (7)

To argue this, we proceed via a hybrid argument consisting of |C| steps, where in the ℓ-th hybrid HZK,ℓ �
HZK,ℓpC,wq, ℓ P r0, |C|s, the views corresponding to the first ℓ gates (say, according to topological order)
are simulated using S. Hence HZK,0 corresponds to xPZKpwq Ñ VZKypCq and HZK,|C| corresponds to the
intermediate distribution HZK. We aim to prove that for every ℓ P r1, |C|s

SDpHZK,ℓ�1, HZK,ℓq ¤ 4ε. (8)

To this end, for the gate g that is switched from real to simulated in the ℓ-th hybrid, let us consider the
“local distributions” Rg and Sg for g formally defined in Fig. 4.5.

In the following claim, we prove statistical indistinguishability of Rg and Sg assuming Π is ε-DSZK for Dg.
Note that the Rg and Sg are worst-case with respect to consistent assignments, and the crucial observation
is that a worst-case to average-case reduction is possible since the number of consistent assignments for a
Boolean gate is bounded.

Claim 4.6. Fix a gate g. For any assignment w � pw1, w2, w3q P t0, 1u3 consistent with g,

SDpRgp1n,wq, Sgp1n,wqq ¤ 4ε .

Proof. Since there are at most four consistent assignments, and Dg samples a uniformly random one, we
have that for any consistent assignment w,

1

4
� SDpRgp1n,wq, Sgp1n,wqq � 1

4
� E
crs∆,pc,dq

rSDppcrsg, πgq,Spcrs∆, cqqs

¤ E
w1

�
E

crs∆,pc1,d1q

�
SDppcrsg, π1gq,Spcrs∆, c1qq

��
(9)

� E
ppcrs∆,c1q,pw1,d1qqÐDgp1nq

�
SDppcrsg, π1gq,Spcrs∆, c1qq

�
¤ ε, (10)

where
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Let g denote the gate that is switched from real to simulated in hybrid ℓ, and let pwi, wj , wkq denote
its wire values. The distributions local to g in the ℓ� 1-th and ℓ-th hybrids are described below.

Real local distribution Rgp1n, wi, wj , wkq
1. Sample a random hiding CRS: crs∆ Ð HGenp1nq
2. For l P ti, j, ku, generate pcl, dlq Ð Compcrs∆, wlq
3. Sample crsg Ð SHGenp1nq and πg Ð P pcrsg, pcrs∆, ci, cj , ckq, ppwi, wj , wkq, pdi, dj , dkqqq
4. Output pcrs∆, crsg, πg, pci, cj , ckq, pdi, dj , dkqq

Simulated local distribution Sgp1n, wi, wj , wkq
1. Sample a random hiding CRS: crs∆ Ð HGenp1nq
2. For l P ti, j, ku, generate pcl, dlq Ð Compcrs∆, wlq
3. Sample pcrsg, πgq Ð S pcrs∆, ci, cj , ckq
4. Output pcrs∆, crsg, πg, pci, cj , ckq, pdi, dj , dkqq

Figure 4.5: Rg and Sg, the local distributions in the ℓ� 1-th and ℓ-th hybrids, respectively, in Claim 4.6.

� crsg Ð SHGenp1nq, pci, diq Ð Compcrs∆, wiq for i P r3s, πg Ð Ppcrsg, pcrs∆, cq, pw,dqq;
� the expectation in Eq. (9) is over random consistent wire valuesw1 P t0, 1u3, and pc1i, d1iq Ð Compcrs∆, w1

iq
for i P r3s, π1g Ð Ppcrsg, pcrs∆, c1q, pw1,d1qq; and

� Eq. (10) follows from our assumption that Π is ε-DSZK for Dg.

Since the views for the rest of the gates in HZK,ℓ�1 and HZK,ℓ can be generated from the output
pcrs∆, crsg, πg, pci, cj , ckq, pdi, dj , dkqq using the same random process, Claim 4.6 implies Eq. (8). By applying
the triangle inequality to Eq. (8) with every ℓ P r0, |C|s, we get SDpHZK,0, HZK,|C|q ¤ 4|C|ε, completing the
first step.

In the second step, all commitments (except that of the output wire) in HZK are switched to dummy
commitments. The resulting distribution is the same as the output distribution of SZK (Fig. 4.3). Since ∆ is
used in hiding mode, this switch is ppn� 1qδq-statistically-indistinguishable by ∆’s δ statistical hiding, i.e.:

SDpHZKpC,wq,SZKpCqq ¤ pn� 1qδ. (11)

Using the fact that |C| ¤ n, Eq. (6) follows by applying the triangle inequality to Eqs. (7) and (11).

4.3 Privacy Amplification Using DMC and MPC

Finally, given a dual-mode NISZKA for any NP relation R with a sufficiently-small inverse-polynomial ZK
error, we use DMC and semi-honest MPC to obtain a dual-mode NISWIA for R with negligible WI error. By
Corollary 3.21, this (together with the fact that DMC implies OWF) implies dual-mode NISZKA for R with
negligible ZK error.

We start with the definition of semi-honest MPC, following the convention from [IKOS07].
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Definition 4.7 (Multi-Party Computation (MPC) [IKOS07]). For n P N, an MPC protocol is a protocol
involving n parties P1, . . . , Pn that takes place in ρ � ρpnq rounds of communication. The public input
is denoted by x, while the private input and random coins of Pi are denoted by wi P t0, 1upolyp|x|q and
ri P t0, 1upolyp|x|q, respectively. The protocol is specified by its next-message function

pmi,j,kqjPrns :�Mpi, x, wi, ri, ppmj,i,1qjPrns , . . . , pmj,i,k�1qjPrnsqq,

where, for i � j P rns and k P rρs, mi,j,k denotes the returns the message sent by Pi to Pj in round k. The
view of party Pi, denoted by vi � vipx,w1, . . . , wn; r1, . . . rnq, consists of the private input and randomness,
and the messages it receives over all rounds: i.e.,

vi :�
�
wi, ri, pmj,i,kqjPrns,kPrρs

	
. (12)

Two views vi and vj are said to be consistent if the outgoing messages implicit in vi are identical to the
incoming messages in vj and vice versa.

Definition 4.8 (t-Perfectly-Secure MPC in the Semi-Honest Model [IKOS07]). For t ¤ n P N, an MPC
protocol M realises an n-party functionality f � fpx,w1, . . . , wnq with t-perfect-security in the semi-honest
model if the following properties hold:

1. M realises f with perfect correctness. That is, for any input px,w1, . . . , wnq, the probability (over the
choice of r1, . . . , rn) that the output of some player is different from the value of f is 0.

2. M realises f with perfect t-privacy. That is, there is a PPT simulator SM such that for any inputs
x,w1, . . . , wn and any set of corrupted players C � rns with |C|   t, the distribution of joint views of
players in C, denoted VC � VCpx,w1, . . . , wnq, is identical to SMpC, x, pwiqiPC , fCpx,w1, . . . , wnqq. Here
fCpx,w1, . . . , wnq :� pfipx,w1, . . . , wnqqiPC and fi denotes the i-th output of f .

In our constructions, we will need an MPC protocol to compute the following (Boolean) functionality
based on an NP relation R:

fRpx,w1, . . . , wnq :� Rpx,`n
i�1wiq. (13)

Lemma 4.9 ([BGW88, AL17]). Let R be any NP relation, and consider fRpx,w1, . . . , wnq defined in
Eq. (13). There exists an n{2-perfectly-secure semi-honest MPC protocol for computing fR.

Amplification Theorem. Our amplification protocol ΠWI is described formally in Fig. 4.6, followed by
the amplification theorem in Theorem 4.10. The approach is similar in spirit to that in [GJS19] in the sense
that the prover executes an MPC protocol “in its head” [IKOS07], commits to the view of each party in the
execution and then proves consistency of each pair of views using the underlying proof system.

There are some key differences though:

1. We use DMC instead of a (plain) commitment scheme. DMC has two (indistinguishable) modes
of operation: in the binding mode it act as a perfectly-binding commitment with overwhelming
probability, whereas in the hiding mode it acts as a statistically-hiding commitment. Since we set
it up in our protocol in hiding mode (see Fig. 4.6, Line 1), we are able to show amplification of privacy
using statistical tools. In particular, we build on the approach from [LM20] based on statistical coupling
[Ald83]. On the other hand, when arguing soundness we first switch the commitment to binding mode
and exploit the fact that it acts as a perfectly-binding commitment. Thus, we are able to avoid the
argument based on (computational) hardcore lemmas [Imp95, Hol05], which [GJS19] rely on.

2. We commit to the views as a whole (as in [IKOS07]) instead of the fine-grained way of committing in
[GJS19]. In more detail, [GJS19] commit to the private inputs of parties, their private coins and each
message in the transcript using separate commitments; we only commit to the view of each party as a
whole.
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3. Since we start from a dual-mode NISWIA with a negligible soundness error, MPC correctness in our
protocol is guaranteed and therefore semi-honest privacy suffices. This is in contrast to [GJS19] who
rely on malicious security to deal also with a soundness error of the underlying proof system.

Before stating and proving the theorem that ΠWI amplifies hiding, we define in Fig. 4.7 an NP relation
V, that captures local consistency of commitments to views.

Theorem 4.10 (Amplification Theorem). Let R be any NP relation. Consider the dual-mode non-interactive
protocol ΠWI for Rn described in Fig. 4.6, and instantiate:

1. M using an n{2-perfectly-secure semi-honest MPC protocol for fR (Eq. (13)).

2. ΠZK using a dual-mode NISZKA for V with ZK error ε � 1{100n.
3. ∆ using an DMC that is δ-statistically-indistinguishable.

Then ΠWI is a dual-mode NISWIA for R with following properties:

� If ΠZK has negligible (resp., 0) completeness error then so does ΠWI.

� The soundness error is negligible in ∆’s (computational) security parameter.

� The WI error is 2�n�1 � 2n�2δn. In particular, taking δ ¤ 2�2n{n, the WI error is at most Op2�nq.
As a corollary of Theorems 3.17, 4.5 and 4.10 and Corollaries 3.21 and 3.22, we get the main result of

this section.

Corollary 4.11. Let R be any NP-complete relation. Assuming DMC, a sufficiently-compressing somewhere-
sound NIBARG for R implies a dual-mode NISZKA for R.

Proof Sketch. Completeness, mode indistinguishability and soundness follow readily. We focus on zero
knowledge. Suppose that the NIBARG we start off with has a sufficiently small compression rate ρpλq �
Op1{λ4q, where λ is the security parameter. Recall the local consistency relation Gg and the corresponding
distribution Dg (Fig. 4.1). By Theorem 3.17 and Corollary 3.22, NIBARG and OWF (which is implied by
DMC) implies a dual-mode NIDSZKA for Dg with error Op1{λ2q, as explained below.

1. By Theorem 3.17, the NIBARG implies a dual-mode NIDSWIA for any efficiently-sampleable distribution
D1 � pD1

λqλPN with errorOp1{λ2q, whereD1
λ is supported over triples px,w0, w1q such that px,w0q, px,w1q P

Rλ.

2. Consider the “OR” relation GOR and distributionDg,OR defined analogous to Eq. (5) and Corollary 3.22.
Thanks to the Karp reduction from Gg to R, Line 1 also implies a dual-mode NIDSWIA for Dg,OR with
error Op1{λ2q.

3. Finally, by Corollary 3.22, we get the claimed dual-mode NIDSZKA for Dg with error Op1{λ2q.
Assuming that DMC is δ-statistically-indistinguishable for a negligible δ (see Remark 4.3), Theorem 4.5 now
yields a dual-mode NISZKA for R with ZK error Op1{λq (where we invoke the Karp reduction from R to
C). Moreover, if δ is exponentially-small, say 2�2λ{λ, applying the amplification theorem in Theorem 4.10
to this dual-mode NISZKA, we get a dual-mode NISWIA for R with exponentially-small WI error. Finally,
an application of Corollary 3.21 yields a dual-mode NISZKA for R with exponentially-small ZK error. By
Remark 2.20.1, the ZK of this NISZKA in statistically-hiding mode can be made adaptive.

Proof of Theorem 4.10. The fact that ΠWI is uniform if ΠZK is follows by construction. Mode indistinguishability
follows from mode indistinguishability of ∆ and ΠZK. We prove the rest of the properties in Propositions 4.12,
4.13 and 4.16.

Proposition 4.12 (Completeness). If ΠZK has completeness error εc in statistically-hiding (resp., adaptively-
sound) mode, then ΠWI has completeness error n2 � εc in statistically-hiding (resp., adaptively-sound) mode.
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Let R be any NP relation and, for n P N, let px,wq P Rn. Let

� ΠZK � pSHGenZK,ASGenZK,PZK,VZKq be a base dual-mode ε-NISZKA for V (Fig. 4.7),

� ∆ � pBGen,HGen,Com,VOpenq be an DMC; and

� M be an MPC protocol for fR.

The amplified dual-mode NISWIA ΠWI � pSHGenWI,ASGenWI,PWI,VWIq for Rn is described below.

crsWI Ð SHGenWIp1nq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. For each pair of parties, set up ΠZK in statistically-hiding mode: for pi, jq P �rns

2

�
, crsi,j Ð

SHGenZKp1nq.
3. Output crsWI :� pcrs∆, crs1,2, . . . , crsn�1,nq as the CRS.

crsWI Ð ASGenWIp1nq
1. Set up ∆ in binding mode: crs∆ Ð BGenp1nq.
2. For each pair of parties, set up ΠZK in adaptively-sound mode: for pi, jq P �rns

2

�
, crsi,j Ð

ASGenZKp1nq
3. Output crsWI :� pcrs∆, crs1,2, . . . , crsn�1,nq as the CRS.

πWI Ð PWIpcrsWI, x, wq
1. Execute M “in the head” for fR (Eq. (13)) and use crs∆ to commit to the views:

(a) Generate shares w1, . . . , wn of the witness w: sample w1, . . . , wn�1 Ð t0, 1u|w| and then set
wn :� w ` w1 ` . . .` wn�1.

(b) Sample random coins r1, . . . , rn for the n parties P1, . . . , Pn.

(c) Set x as the public input, wi and ri, respectively, as Pi’s private input and random coins, and
run M for fRpx,w1, . . . , wnq. Let vi denote Pi’s view in the above execution.

(d) Commit to the view of each party: for i P rns, set pci, diq Ð Compcrs∆, viq.
2. Prove pairwise local consistency: for all pi, jq P �rns

2

�
, use pvi, di, vj , djq as witness to generate a

proof πi,j that pci, cjq P LpVi,jq

πi,j Ð PZKpcrsi,j , pci, cjq, pvi, di, vj , djqq.

3. Output πWI :� ppc1, . . . , cnq, pπ1,2, . . . , πn�1,nqq.
b :� VWIpcrsWI, x, πWIq

1. Output b :� 1 (accept πWI) if and only if for each pair of parties pi, jq P �rns2 �, πi,j is a valid proof
for pci, cjq P LpVi,jq, i.e., VZKpcrsi,j , pci, cjq, πi,jq � 1.

Figure 4.6: ΠWI, a dual mode NISWIA for any NP relation R.
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Local consistency relation Vi,j (for index n P N)

� Hardwired.

1. Descriptions of a DMC scheme ∆ � pBGen,HGen,Com,VOpenq and MPC protocol M

2. A CRS crs∆ of ∆

3. Indices i, j P rns of parties.
� Instance. A pair of commitments pci, cjq
� Witness. pvi, di, vj , djq, where vi and vj are views, and di and dj are decommitments.

� The relation holds if following conditions hold.

1. Commitments are valid : VOpenpcrs∆, ci, di, viq � 1 and VOpenpcrs∆, cj , dj , vjq � 1

2. Views vi and vj are consistent with respect to public input x and protocol M, and locally
accepting (i.e., the local outputs are 1).

Figure 4.7: V :� pVi,jqpi,jqPpn2q, the relation capturing local consistency of views.

Proof Sketch. Let us focus on statistically-hiding mode – the proof for adaptively-sound mode is similar.
Completeness of ΠWI in statistically-hiding mode reduces to completeness of ΠZK in statistically-hiding
mode thanks to the perfect correctness of M as we argue next. If px,wq P R, then by correctness of M all
pairs of views pvi, vjq are consistent and locally accepting. This implies that ppci, ciq, pvi, di, vj , djqq P Vi,j for
every execution pi, jq.14 Since VWI accepts if VZK accepts all the underlying proofs, and since the CRSs of

ΠZK are sampled independently, the correctness error is at most p1� p1� εcqp
n
2qq ¤ εc �

�
n
2

� ¤ n2 � εc.
Proposition 4.13 (Adaptive Soundness Preserved). In adaptively-sound mode, ΠWI is adaptively sound
with a negligible soundness error.

Proof Sketch. We reduce from adaptive soundness of ΠZK, the underlying NISZKA. Let P� � pP�nqnPN be
any polynomial-sized family of malicious provers that breaks ΠWI’s adaptive soundness with a non-negligible
probability. Given a challenge CRS crs�, the reduction generates

crs�WI :� pcrs∆, pcrs1,2, . . . , crsn�1,nqq,

where crs∆ is a binding CRS of ∆ sampled using BGen, crsi�,j� :� crs� for pi�, j�q Ð �rns
2

�
, and the

remaining CRSs of ΠZK are sampled independently using ASGenZK. The reduction runs P� on crs�WI, which
outputs px�, π�WIq such that x� R LpRq but π�WI �: ppc�1 , � � � , c�nq, pπ�1,2, � � � , π�n�1,nqq is accepted by VWI. Recall
that in binding mode, ∆ act as perfectly-binding commitments with overwhelming probability. Therefore,
the commitments pc�1 , � � � , c�nq open to some views pv�1 , � � � , v�nq. Since x� R LpRq, there must exist at least
one pair of views pv�i , v�j q such that pc�i , c�j q R Vi,j , i.e., the views are inconsistent with respect to the public
input, which is the instance x�, or do not lead to output 1. Otherwise, if all pairs of views are consistent with
respect to x�, then by perfect correctness of M it can be argued that x� P LpRq (see [IKOS07, Lemma 2.3]
about local vs. global consistency). Since VWI accepts π

�
WI if and only if all the underlying proofs accept, and

14Note that we don’t rely on correctness of decryption of ∆ here and only use the fact that the encryption algorithm is a
map once the random coins are fixed.
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pi, jq � pi�, j�q with probability at least 1{n2, the reduction can output ppc�i� , c�j�q, π�i�,j�q to break ΠZK’s

soundness with a 1{n2 loss, which is still non-negligible.15

Before proving WI in Proposition 4.16, we establish some useful notation.

Notation 4.14 (Non-Standard String Notation).

� For a string or vector s of length n and a set S � rns, we use sS to denote psiqiPS .
� We let N denote

�
n
2

�
, and interpret a string s P t0, 1uN as psi,jqpi,jqPprns2 q.

� By t0, 1uN¥T , we denote subset of strings in t0, 1uN with Hamming weight at least T : i.e. t0, 1uN¥T :� 
s P t0, 1uN : }s}0 ¥ T

(
.

Notation 4.15 (Hybrid Distributions).

� We use xPWIpwq Ñ VWIypxq to denote the random variable corresponding to VWI’s view when the
protocol in Fig. 4.6 is executed in statistically-hiding mode on px,wq P R, i.e., pcrs∆, crs, c,πq, where
pcrs∆, crsq Ð SHGenWIp1nq and pc,πq Ð PWIppcrs∆, crsq, x, wq.

� Similarly, xPZKppvi, di, vj , djqq Ñ VZKypci, cjq denotes the random variable corresponding to VZK’s views
when the protocol ΠZK is executed in statistically-hiding mode on ppci, cjq, pvi, di, vj , djqq P Vi,j, i.e.,
pcrsi,j , πi,jq, where crsi,j Ð SHGenZKp1nq and πi,j Ð PZKpcrsi,j , pci, cjq, pvi, di, vj , djqq.

� For s P t0, 1uN , we use xPWIpwq Ñ VWIyspxq to denote the hybrid distribution described in Fig. 4.8,
where the views of VZK in executions pi, jq such that si,j � 1 are simulated using SZK (thus xPWIpwq Ñ
VWIy0N pxq corresponds to the real view). For a distribution S over t0, 1uN , xPWIpwq Ñ VWIySpxq is
defined as in Fig. 4.8, with s first sampled according to S.

Proposition 4.16 (Privacy Amplified). ΠWI is HVSWI with an error 2�n�1 � 2n�2δn.

Proof. The proof proceeds in two steps. We first prove in Claim 4.17 that, when set up in statistically-hiding
mode, ΠWI is a combiner: if a large enough fraction of the NISZKA proofs are perfect ZK, then the resulting
protocol is WI (with a negligible WI error). Then, taking a common approach in the literature, we prove in
Claim 4.18 that any such combiner is also a good amplifier: provided that every NISZK has a small enough
ZK error ε, the resulting protocol is WI (with a negligible WI error related to that of the corresponding
combiner). Specifically, the proof of the latter claim follows the ideas developed in [LM20].

Claim 4.17 (ΠWI is a Threshold Combiner). For any n P N, T :� N � n{4 � 1 and any s P t0, 1uN¥T ,
px,wq, px,w1q P R,

SDpxPWIpwq Ñ VWIyspxqq, xPWIpw1q Ñ VWIyspxqq ¤ 2δn.

Claim 4.18 (Amplification from Threshold Combiners). For T :� N � n{4� 1 and any px,wq, px,w1q P R,

SDpxPWIpwq Ñ VWIypxq, xPWIpw1q Ñ VWIypxqq ¤
2�n�1 � 2n�1 � max

sPt0,1uN¥T

SDpxPWIpwq Ñ VWIyspxq, xPWIpw1q Ñ VWIyspxqq .

Proof of Claim 4.17. We proceed via a hybrid argument, and letH1 � H1,s denote the distribution xPWIpwq Ñ
VWIyspxq from Fig. 4.8. Since }s}0 ¥ T � N � n{4 � 1 and as each proof depends on at most two parties,
there exists a set H � rns determined by s of size at least n{2 such that si,j � 1 holds for every i P H and
j P rnsz tiu. We think of these as the honest parties of the MPC protocol.

15This explains why we require ΠZK to be adaptively sound (in the adaptively-sound mode) to start off with: the instance
pc�i , c

�

j q and the associated proof π�i,j that breaks ΠZK’s soundness are determined by the output of the cheating prover P�.
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Let n :� |x| and N :� �rns
2

�
. For s P t0, 1uN , the distribution H1 � H1,s is defined below. For a

distribution S over t0, 1uN , the hybrid distribution xPWIpwq Ñ VWIySpxq is defined as H1,s with s first
sampled according to S.

pcrs∆, crs, c,πq Ð H1,spx,wq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. Generate the commitments c as specified in Fig. 4.6, Line 1. That is:

(a) Run MPC as in Fig. 4.6, Lines 1a to 1c to generate views pv1, . . . , vnq.
(b) Compute the n-tuple of commitments c, where pci, diq Ð Compcrs∆, viq, as in Fig. 4.6,

Line 1d.

3. Generate VZK’s views in Fig. 4.6, Line 2 depending on s. That is, sample pcrs,πq, where for

pi, jq P �rns2 �
pcrsi,j , πi,jq Ð

#
xPZKppvi, di, vj , djqq Ñ VZKypci, cjq if si,j � 0

SZKpci, cjq otherwise.

4. Output pcrs∆, crs, c,πq.

Figure 4.8: H1 � H1,s, a hybrid distribution used in proof of Proposition 4.16.

� In hybrid H2 � H2,s, we switch the messages underlying the commitments cH from honestly-generated
views vH to a dummy message independent of the witness w: see Fig. 4.9. To see why SDpH1, H2q ¤ δn
(for any s), fix any i P H. Since the view xPZKppvi, di, vj , djqq Ñ VZKypci, cjq in every execution pi, jq,
j P rnsz tiu, is simulated, it follows that the decommitments di corresponding to the commitment ci
(which serve as part of witness for ΠZK) are no longer required for generating proofs. Therefore, it is
possible to use δ-statistical-indistinguishability of ∆ to switch all commitments in H (of which there
are at most n of).

� In the next hybrid H3 � H3,s, we simulate the joint views vH of the remaining parties using the
MPC simulator SMPC: see Fig. 4.10. The commitments and proofs that depend on vH are generated
accordingly. Note that H3 is distributed identically to H2 thanks to n{2-privacy of M.

We get that SDpH1, H3q ¤ δn. By a symmetric argument to above it is possible to show that SDpH3, xPWIpw1q Ñ
VWIyspxqq ¤ δn. The claim now follows by an application of the triangle inequality.

Proof of Claim 4.18. For s P t0, 1uN and distribution S over t0, 1uN , recall the distributionsH1,s � xPWIpwq Ñ
VWIyspxq and H1,S � xPWIpwq Ñ VWIySpxq defined in Fig. 4.8. Similarly, let H 1

1,s and H 1
1,S denote

xPWIpw1q Ñ VWIyspxq and xPWIpw1q Ñ VWIySpxq, respectively. Recall that our goal is to show that

SDpH1,0N , H 1
1,0N q ¤ 2�n�1 � 2n�1 � max

sPt0,1uN¥T

SDpH1,s, H
1
1,sq .
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Let n :� |x| and N :� �rns
2

�
. For s P t0, 1uN , the distribution H2 � H2,s is defined below.

pcrs∆, crs, c,πq Ð H2,spx,wq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. Generate the commitment c with dummy messages for the parties in H. That is:

(a) Run MPC as in Fig. 4.6, Lines 1a to 1c to generate views pv1, . . . , vnq.
(b) Compute the n-tuple of commitments c depending on h, where h P t0, 1un denotes the indicator

string for H determined by s:

pci, diq Ð
#
Compcrs∆, viq if hi � 0

Compcrs∆, 0|vi|q otherwise

3. Generate VZK’s views in Fig. 4.6, Line 2 depending on s. That is, sample pcrs,πq, where for

pi, jq P �rns2 �
pcrsi,j , πi,jq Ð

#
xPZKppvi, di, vj , djqq Ñ VZKypci, cjq if si,j � 0

SZKpci, cjq otherwise

4. Output pcrs∆, crs, c,πq

Figure 4.9: H2 � H2,s, a hybrid distribution used in proof of Claim 4.17.

Let n :� |x| and N :� �rns
2

�
. For s P t0, 1uN , the distribution H2 � H2,s is defined below.

pcrs∆, crs, c,πq Ð H3,spx,wq
1. Set up ∆ in hiding mode: crs∆ Ð HGenp1nq.
2. Generate the commitment c with dummy messages for the parties in H and simulated views for

parties in H. That is:

(a) Generate shares w1, . . . , wn of the witness w and use it to simulate the MPC (joint) views
vH :� SMPCpH, x, pwiqiPH , p1, . . . , 1qq

(b) Compute the n-tuple of commitments c depending on h, where h P t0, 1un denotes the indicator
string for H determined by s:

pci, diq Ð
#
Compcrs∆, viq if hi � 0

Compcrs∆, 0|vi|q otherwise

3. Generate VZK’s views in Fig. 4.6, Line 2 depending on s. That is, sample pcrs,πq, where for

pi, jq P �rns2 �
pcrsi,j , πi,jq Ð

#
xPZKppvi, di, vj , djqq Ñ VZKypci, cjq if si,j � 0

SZKpci, cjq otherwise

4. Output pcrs∆, crs, c,πq

Figure 4.10: H3 � H3,s, a hybrid distribution used in proof of Claim 4.17.
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First, for any distributions Z over t0, 1uN¥T Y
 
0N

(
, we have

SDpH1,Z , H
1
1,Zq �

1

2

¸
h

��H1,Zphq �H 1
1,Zphq

��
� 1

2

¸
h

������
¸

zPt0,1uN¥TYt0Nu
ZpzqpH1,zphq �H 1

1,zphqq
������

¥ 1

2

¸
h

��Zp0N q
���H1,0N phq �H 1

1,0N phq
���� ¸

zPt0,1uN¥T

Zpzq ��H1,zphq �H 1
1,zphq

���
� Zp0N q � SDpH1,0N , H 1

1,0N q �
¸

zPt0,1uN¥T

Zpzq � SDpH1,z, H
1
1,zq

¥ Zp0N q � SDpH1,0N , H 1
1,0N q � max

zPt0,1uN¥T

SDpH1,z, H
1
1,zq.

Thus, for any distribution Z over t0, 1uN¥T Y
 
0N

(
with Zp0N q ¡ 0, and distribution S over t0, 1uN¥T ,

SDpH1,0N , H 1
1,0N q ¤ Zp0N q�1 � pSDpH1,Z , H

1
1,Zq � max

zPt0,1uN¥T

SDpH1,z, H
1
1,zqq

¤ Zp0N q�1 � pSDpH1,Z , H1,Sq � SDpH1,S , H
1
1,Sq � SDpH 1

1,S , H
1
1,Zq � max

zPt0,1uN¥T

SDpH1,z, H
1
1,zqq

¤ Zp0N q�1 � pSDpH1,Z , H1,Sq � SDpH 1
1,Z , H

1
1,Sqq � 2Zp0N q�1 � max

zPt0,1uN¥T

SDpH1,z, H
1
1,zq .

To complete the proof, we use the following Lemma.

Lemma 4.19. There exist two distributions Z and S, where Z is over t0, 1uN¥T Y
 
0N

(
, with Zp0N q ¡ 2�n,

and S is over t0, 1uN¥T , such that

Zp0N q�1 �max
 
SDpH1,Z , H1,Sq,SDpH 1

1,Z , H
1
1,Sq

( ¤ �
4eN

n
ε


n{4
. (14)

Indeed, for our setting of parameters, i.e., N � �
n
2

�
and ε � 1{100n, the value of Eq. (14) is at most 1{2n.

The proof of Lemma 4.19 is based on a coupling argument and roughly follows [LM20]. The proof can be
found in Appendix A. This concludes the proof of Claim 4.18.

This concludes the proof of Proposition 4.16

This concludes the proof of Theorem 4.10.

5 NICWIA from NIBARG and OWF

Recall that the main result in Section 4 was a construction of dual-mode NISZKA from NIBARG and
dual-mode commitment (DMC) (Corollary 4.11). In this section, we show that we can replace the DMC
in this construction with one-way functions (OWF) at the cost of relaxing statistical zero knowledge to
computational. Toward this we follow a similar template to that in Section 4, with the main difference being
that we use computational instance-dependent commitments, which are implied by OWFs, instead of DMC.

5.1 Instance-Dependent Primitives

We now define the notion of computational instance-dependent commitments, as well as corresponding
notions of instance-dependent proofs.
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Computational Instance-Dependent Commitment (CIDC). A CIDC scheme [FS90b] is associated
with an NP relation I. Its corresponding algorithms are parametrized by an instance z, which determines
the security properties according to whether or not z is a member of I. When z R LpIq, a commitment
c is statistically binding. In contrast, when z P LpIq, then given a witness y for z, there is a way to
generate fake commitments rc that are perfectly hiding. For any given message m, a real commitment c along
with its decommitment information d are computationally indistinguishable from a fake commitment and
decommitment prc, rdq for m.16 Our formal definition is in the common random string model and is given
below.

Notation 5.1 (Instance-dependent schemes). For an instance dependent scheme, we will use Πz to denote
both cases where the instance has been set to z and where the instance is unspecified (as a placeholder). The
same applies to Π’s constituent algorithms.

Definition 5.2 (CIDC: Computational Instance-Dependent Commitment). Let I be an NP relation. An
computational instance-dependent commitment (CIDC) scheme for I is a five-tuple of polynomial-time
algorithms pGen,Comz,VOpenz,SHComz,yq, with the following syntax:

� crs Ð Genp1nq. The randomised set-up algorithm takes as input a security parameter n P N and
outputs a common random string crs P t0, 1upolypnq.
The rest of the algorithms below take as input crs, and are parameterized by an instance z P t0, 1un of
I, which is indicated in the superscript. The last algorithm is also parameterized by y P t0, 1u�.

� pc, dq Ð Comzpcrs,mq. The randomised (honest) commitment generation algorithm takes as input a
message m P t0, 1upolypnq. It outputs a commitment c P t0, 1upolypnq to m, along with decommitment
information d P t0, 1upolypnq.

� b :� VOpenzpcrs, c, d,mq. The deterministic verify opening algorithm takes as input a commitment
c P t0, 1upolypnq, decommitment d P t0, 1upolypnq and a message m P t0, 1upolypnq. It outputs a bit b
indicating accept or reject.

� pc, dq Ð SHComz,ypcrs,mq. The randomised (fake) commitment generation algorithm takes as input
a message m P t0, 1upolypnq. It outputs a commitment c P t0, 1upolypnq to m, along with decommitment
information d P t0, 1upolypnq.

We require the following properties:

1. Correctness of honestly-generated commitments. For every n P N, z P t0, 1un and m P t0, 1upolypnq,
Pr

crsÐGenp1nq
pc,dqÐComzpcrs,mq

rVOpenzpcrs, c, d,mq � 1s � 1.

2. Almost-everywhere perfect binding depending on z R LpIq. With overwhelming probability over the
choice of CRS, we require that for all z R LpIq, every possible commitment c opens to at most one
message. More formally, there exists a negligible function µ such that for all n P N

Pr
crsÐGenp1nq

�
Dc P t0, 1upolypnq Dz R LpInq Dd, d1,m � m1 P t0, 1upolypnq

s.t. VOpenzpcrs, c, d,mq � VOpenzpcrs, c, d1,m1q � 1

�
¤ µpnq.

3. Perfect hiding of fake commitments with respect to pz, yq P I. Formally,

pcrs,Comzpcrs,m0qq nPN,pz,yqPIn

m0,m1Pt0,1upolypnq
� pcrs,SHComz,ypcrs,m1qq nPN,pz,yqPIn

m0,m1Pt0,1upolypnq
,

where crs Ð Genp1nq.
16We note that this notion of computational instance-dependent commitments should not be confused with the notion of

(statistical) instance-dependent commitments of Ong and Vadhan [OV08], where when z P LpIq, real commitments (rather
than fake ones) are statistically hiding. Indeed, this notion only exists for languages in SZK.
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4. Indistinguishability of real and fake commitments with respect to pz, yq P I. Formally,

pcrs,Comzpcrs,mqqnPN,pz,yqPIn

mPt0,1upolypnq
c� pcrs,SHComz,ypcrs,mqqnPN,pz,yqPIn

mPt0,1upolypnq
,

where crs Ð Genp1nq.
A construction of CIDC based on non-interactive commitments is described in [FS90b]. In the CRS model,

where non-interactive commitments follow from one-way functions [Nao91], it too can be based on one-way
functions.

Theorem 5.3 ([FS90b, Nao91]). Assuming OWFs exist, there exists CIDC for any NP relation I.

Instance-Dependent ZK and WI. We next define the notions of instance-dependent (ID) NISZKA and
NISWIA. An instance-dependent proof system for proving membership in L is associated with an additional
NP relation I. The system is parametrized by an instance z, which determines the security properties
according to whether or not z is a member of I, analogously to instance-dependent commitments. When
z R LpIq, the system is adaptively-sound. In contrast, when z P LpIq, then given a witness for z, there is a
way to efficiently generate fake CRS and proof �crs, rπ that are computationally indistinguishable from a real
CRS and proof pcrs, πq. Moreover, the fake CRS and proof are statistically private (SZK or SWI), as a proof
system for the language L. This guarantee will allow us, in the analysis, to (computationally) switch to a
world where we’ll be able to invoke the statistical guarantees required for the amplification theorems from
the previous section.

Definition 5.4 (ID-NISZKA and ID-NISWIA). Let R and I be NP relations. A non-interactive protocol
Π :� pASGen,Pz,Vz,SHGen,SHPz,yq for R is a ε-ID-NISZKA (or NISWIA) for R depending on I if the
following requirements are satisfied:

1. For any z P t0, 1u�, pASGen,Pz,Vzq has perfect completeness.

2. With respect to (adaptively-chosen) instances z R LpIq, pASGen,Pz,Vzq is adaptively computationally
sound. Formally, for every polynomial-size circuit family of provers P� � pP�λqλPN, there is a negligible
function µ, such that for all λ P N:

Pr
crsÐASGenp1λq

rz R LpIq ^ x R LpRλq ^ Vzpcrs, x, πq � 1s ¤ µpλq,

where pz, x, πq :� P�λpcrsq.
3. With respect to (non-adaptively-chosen) instances z P LpIq, pSHGen,SHPz,y,Vzq is SZK with error ε.

Formally, there exists a PPT simulator Sz,y such that

pcrs,SHPz,ypcrs, x, wqqnPN,pz,yqPLpInq
px,wqPRn

�ε pSz,ypxqqnPN,pz,yqPLpInq
px,wqPRn

, (15)

where crs Ð SHGenp1λq.
4. With respect to (non-adaptively-chosen) pz, yq P I, pASGen,Pzq and pSHGen,SHPz,yq are computationally

indistinguishable. Formally,�
crs,Pzpcrs, x, wq : crs Ð ASGenp1λq� nPN,

pz,yqPLpInq,
px,wqPRn

c�ε

�
crs,SHPz,ypcrs, x, wq : crs Ð SHGenp1λq� nPN,

pz,yqPLpInq,
px,wqPRn

.

(16)

The definition of ε-ID-NISWIA is obtained by replacing Condition 3 with following.

3. With respect to (non-adaptively-chosen) instances z P LpIq, pSHGen,SHPz,y,Vzq is SWI with error ε.
Formally,

pcrs,SHPz,ypcrs, x, w0qq nPN,pz,yqPLpInq
px,w0q,px,w1qPRn

�ε pcrs,SHPz,ypcrs, x, w1qq nPN,pz,yqPLpInq
px,w0q,px,w1qPRn

(17)

where crs Ð SHGenp1λq.
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5.2 ID-NISZKA from Dual-Mode NIDSZKA and CIDC

We construct an ID-NISZKA based on CIDC and dual-mode NIDSZKA that satisfies a natural distribution-
obliviousness property, satisfied by the system constructed in Section 3. The property essentially says that
the NIDSZKA for a given relation G, only depends on the underlying distribution D on G as a black-box;
namely, it only requires i.i.d. samples from D.

Definition 5.5. A non-interactive proof system with an oracle-aided prover pASGen,SHGen,Pp�q,Vq for
relation G is a dual-mode distribution-oblivious ε-NIDSZKA if for any sampler D supported on G, pASGen,SHGen,
PD,Vq is a dual-mode ε-NIDSZKA for D.

Claim 5.6. The ε-NIDSZKA constructed in Section 3 is distribution oblivious.

Proof Sketch. Recall that in the constructed NIDSWIA proof system, the prover simply plants its input and
witness at random among polynomially many i.i.d. samples from the underlying distribution (and applies
the BARG prover). The NIDSZKA for distribution D is constructed from a corresponding NIDSWIA for the
corresponding FLS distribution DOR, where samples in DOR are efficiently generated from samples in D.

The Construction. Consider the relation Gg (Fig. 4.1) naturally augmented to Gz
g , described in Fig. 5.1.

Let Π be a distribution-oblivious dual-mode ε-NIDSZKA for Gz
g . We show that Π, along with CIDC, implies

an Opεnq-ID-NISZKA for the circuit satisfiability relation C, where n is the circuit size. The protocol, ΠZK,
is described formally in Fig. 5.2.

Theorem 5.7 (ID-NISZKA from Distribution-Oblivious Dual-Mode NIDSZKA and CIDC). Let I be any NP
relation. Consider the protocol ΠZK described in Fig. 5.2, and instantiate:

� Π using a distribution-oblivious dual-mode NIDSZKA for Gz
g (Fig. 5.1), with SZK error ε; and

� C using a CIDC for I.

Then ΠZK is a 4nε-ID-NISZKA for C, where n denotes the number of wires in the circuit. If Π has negligible
(resp., 0) completeness error then so does ΠZK.

Proof Sketch. Completeness follows that of the underlying NIDSZKA and the correctness of CIDC. We next
prove soundness (for no instances), and zero knowledge and mode indistinguishability (for yes instances).

Adaptive Soundness when z R LpIq. The proof is identical to that of adaptive soundness in Theorem 4.5,
except that instead of relying on binding of DMC, it relies on CIDC’s binding. Indeed, recall that with
overwhelming probability over crs, the CRS sampled for CIDC, for any (adaptively chosen) z R LpIq, Comz

is a perfectly binding commitment.

SZK with Respect to z P LpIq. Fix any pz, yq P I. Here we need to prove that pSHGenZK,SHPz,y
ZK ,V

z
ZKq

is 4nε-SZK. The proof is identical to that of 4npε� δq-SZK in Theorem 4.5, except that:

� Instead of relying on the δ-statistical hiding of DMC, we rely on the perfect statistical hiding of
SHComz,y (corresponding to δ � 0).

� Accordingly, we rely on the ε-SZK of the NIDSZKA pSHGen,P pDz,y
g,n ,Vq for the distribution pDz,y

g,n over
the relation Gz

g .

Indistinguishability of Real and Fake Proofs. Here we need to prove that for pz, yq P I, px,wq P
R, a real CRS and proof pcrsZK, πZKq generated by ASGenZKp1nq and PzpcrsZK, x, wq are computationally
indistinguishable from ones generated by SHGenZKp1nq and SHPz,y

ZK pcrsZK, x, wq. There are two differences
between the two distributions:
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Local consistency relation Gz
g (for index n P N)

� Hardwired.

1. Description of a relation R and an instance z P t0, 1un
2. Description of CIDC algorithms C � pGen,Comz,VOpenz,SHComz,yq.
3. A Boolean gate g

� Instance. pcrs, c1, c2, c3q, where crs is a CRS of C and ci, i P r1, 3s, are commitments.

� Witness. ppw1, w2, w3q, pd1, d2, d3qq, where wi and di, i P r1, 3s, are wire values and decommitments.

� The relation holds if following conditions hold.

1. Commitments are consistent : VOpenzpcrs, ci, di, wiq � 1 for all i P r1, 3s
2. Wire values are consistent : gpw1, w2q � w3

Distribution Dz
g �

�
Dz

g,n

�
over Gz

g , where Dz
g,n is defined via following sampling procedure for input 1n:

1. Sample a CRS: crs Ð Genp1λq
2. Sample a random assignment pw1, w2, w3q consistent with g, i.e., such that gpw1, w2q � w3.

3. For i P r3s: generate commitment pci, diq Ð Comzpcrs, wiq to wi.

4. Output pcrs, c1, c2, c3q as the instance and ppw1, w2, w3q, pd1, d2, d3qq as the witness.

Distribution pDz,y
g �

� pDz,y
g,n

	
over Gz

g , where
pDz,y
g,n is defined similarly to Dz

g except for item 3:

3. For i P r3s: generate fake commitment pci, diq Ð SHComz,ypcrs, wiq to wi.

Figure 5.1: Gz
g , the relation capturing local consistency of wire values. Dz

g , the distribution supported over
Gz
g used in the real proof. Dz,y

g , the distribution supported over Gz
g used in the analysis.
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For n P N, let pC,wq P Cn be an instance-witness pair of circuit satisfiability (see Notation 4.4). Let

� I be any NP relation, and z P t0, 1un;
� Π � pSHGen,ASGen,Pp�q,Vq be the distribution-oblivious dual-mode NIDSZKA for Gz

g (Fig. 5.1);

� C � pGen,Comz,VOpenz,SHComz,yq be a CIDC for I.

The ID-NISZKA ΠZK � pASGenZK,Pz
ZK,V

z
ZK,SHGenZK,SHP

z,y
ZK q for the circuit satisfiability relation Cn is

described below.

crsZK Ð ASGenZKp1nq
1. Run C’s set-up algorithm to generate a CRS: crs Ð Genp1nq.
2. For each gate, set up Π in adaptively-sound mode: for i P rns, crsi Ð ASGenp1nq.
3. Output crsZK :� pcrs, crs1, . . . , crsnq.

πZK Ð Pz
ZKpcrsZK, C,wq

1. Use C with instance z to commit to the value of each wire: for i P rns, pci, diq Ð Comzpcrs, wiq.
2. For each gate g in C with input wires i, j P rns and output wire k P rns, use
ppwi, wj , wkq, pdi, dj , dkqqq as witness to generate a proof πg that pcrs, ci, cj , ckq P LpGz

g q:

πg Ð PDz
g,n pcrsg, pcrs, ci, cj , ckq, ppwi, wj , wkq, pdi, dj , dkqqq .

3. Output πZK :� ppc1, � � � , cnq, pπ1, � � � , π|C|q, dnq.
b :� Vz

ZKpcrsZK, C, πZKq
1. Output b :� 1 (accept πZK) if and only if all the checks below pass.

(a) For each gate g in C with input wires i, j P rns and output wire k P rns, use πg to verify that
pcrs, ci, cj , ckq P LpGz

g q: i.e., V pcrsg, ppk , ci, cj , ckq, πgq � 1.

(b) Verify that C evaluates to 1, by ensuring that cn opens to 1: VOpenzpcrs, cn, dn, 1q � 1.

crsZK Ð SHGenZKp1nq
1. Run C’s set-up algorithm to generate a CRS: crs Ð Genp1nq.
2. For each gate, set up Π in statistically-hiding mode: for i P rns, crsi Ð SHGenp1nq.
3. Output crsZK :� pcrs, crs1, . . . , crsnq as the CRS.

πZK Ð SHPz,y
ZK pcrsZK, C,wq

1. For i P rns, generate a fake commitment pci, diq Ð SHComz,ypcrs, wiq.
2. For each gate g in C with input wires i, j P rns and output wire k P rns:

πg Ð P
pDz,y
g,n pcrsg, pcrs, ci, cj , ckq, ppwi, wj , wkq, pdi, dj , dkqqq ,

using the fake distribution oracle pDz,y
g,n.

3. Output πZK :� ppc1, � � � , cnq, pπ1, � � � , π|C|q, dnq.

Figure 5.2: ΠZK, an ID-NISZKA for circuit satisfiability.
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Local consistency relation Vz
i,j (for index n P N)

� Hardwired.

1. Description of an instance z P t0, 1un of relation I
2. Descriptions of the CIDC algorithms C � pGen,Comz,VOpenzq and MPC protocol M.

3. A CRS crs of C

4. Indices i, j P rns of parties.
� Instance. A pair of commitments pci, cjq
� Witness. pvi, di, vj , djq, where vi and vj are views, and di and dj are random coins.

� The relation holds if following conditions hold.

1. Commitments are consistent : VOpenzpcrs, ci, di, viq � 1 and VOpenzpcrs, cj , dj , vjq � 1

2. Views vi and vj are consistent with respect to public input x and protocol M and locally
accepting (i.e., the local outputs are 1).

Figure 5.3: Vz :� �
Vz
i,j

�
pi,jqPpn2q, the relation capturing local consistency of views.

� In the first, the CRS’s crsi for the distribution-oblivious dual-mode NIDSZKA is sampled using ASGen
whereas in the second, it is sampled using SHGen.

� All commitments and decommitments in the first are generated using Comz, whereas in the second,
they are sampled using SHComz,y. This in particular includes the generation of commitments and
decommitments by the samplers Dz

g,n and pDz,y
g,n, respectively.

To prove indistinguishability, we first switch all crsi to be sampled using SHGen. This is computationally
indistinguishable by the mode-indistinguishability guarantee of the underlying NIDSZKA. We then switch
the generation of all commitments and decommitments to be done using SHComz,y. This is indistinguishable
by the fact that in CIDC, real and fake commitments (plus decommitments) are indistinguishable, whenever
pz, yq P I.

5.3 Privacy Amplification using CIDC and MPC

We show how to amplify privacy of any ID-NISZKA with small enough statistical error to one with negligible
error, assuming CIDC. Specifically, we follow the same construction from Section 4.3, replacing NISZKA with
ID-NISZKA and DMC with CIDC. This construction results in ID-NISWIA with negligible error (which can
then be made ID-NISZKA using the FLS transformation). The amplified ID-NISWIAΠWI � pASGenWI,P

z
WI,V

z
WI,

SHGenWI,SHP
z,yq for Rn, depending on I, is described in Fig. 5.4. The relation V (Fig. 4.7) is naturally

augmented to Vz, described in Fig. 5.3.

Theorem 5.8 (Amplification Theorem). Let R and I be any NP relations. Consider the non-interactive
protocol ΠWI for R described in Fig. 5.4, and instantiate:

1. M using an n{2-perfectly-secure semi-honest MPC protocol for fR (Eq. (13)).

2. ΠZK using an ID-NISZKA for Vz, depending on I, with SWI error ε � 1{100n.
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Let R be any NP relation and px,wq P Rn. Let I be any NP relation and z P t0, 1un. Let
� ΠZK � pASGenZK,Pz

ZK,V
z
ZK,SHGenZK,SHP

z,yq an ID-NISZKA depending on I.

� C � pGen,Comz,VOpenz,SHComz,yq be a CIDC depending on I; and

� M be an MPC protocol for fR.

crsWI Ð ASGenWIp1nq
1. Run C’s set-up algorithm to generate a CRS: crs Ð Genp1nq.
2. For each two parties pi, jq P �rns2 �, set up ΠZK in adaptively-sound mode: crsi,j Ð ASGenZKp1nq.
3. Output crsWI :� pcrs, crs1,2, . . . , crsn�1,nq as the CRS.

πWI Ð Pz
WIpcrsWI, x, wq

1. Execute M “in the head” as in Fig. 4.2, and use CIDC with instance z to commit to the views: i.e.,
for i P rns, generate pci, diq Ð Comzpcrs, viq.

2. Prove local consistency: for all pi, jq P �rns2 �, prove that ppci, cjq, ppvi, di, vj , djqqq P Vz
i,j (Fig. 5.3)

πi,j Ð Pz
ZKpcrsi,j , pci, cjq, pvi, di, vj , djqq.

3. Output πWI :� ppc1, . . . , cnq, pπ1,2, . . . , πn�1,nqq
b :� Vz

WIpcrsWI, x, πWIq

1. Output b :� 1 (accept πWI) if and only if for each pair of parties pi, jq P �rns2 �, πi,j is a valid proof
for pci, cjq P LpVi,jq, i.e., Vz

ZKpcrsi,j , pci, cjq, πi,jq � 1.

crsWI Ð SHGenWIp1nq
1. Run C’s set-up algorithm to generate a CRS: crs Ð Genp1nq.
2. For each two parties pi, jq P �rns2 �, set up ΠZK in statistically-hiding mode: crsi,j Ð SHGenZKp1nq.
3. Output crsWI :� pcrs, crs1,2, . . . , crsn�1,nq as the CRS.

πWI Ð SHPz,y
WI pcrsWI, x, wq

1. Execute M “in the head” as in Fig. 4.2, and use CIDC with instance z to generate fake commitments
to the views: i.e., for i P rns, generate pci, diq Ð SHComz,ypcrs, viq.

2. Generate fake proofs of local consistency: for all pi, jq P �rns2 �, prove that ppci, cjq, ppvi, di, vj , djqqq P
Vz
i,j using

πi,j Ð SHPz,y
ZK pcrsi,j , pci, cjq, pvi, di, vj , djqq.

3. Output πWI :� ppc1, . . . , cnq, pπ1,2, . . . , πn�1,nqq

Figure 5.4: ΠWI, a ID-NISWIA protocol for any NP relation R.
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3. C using a CIDC depending on I.

Then ΠWI is an ID-NISWIA for R depending on I with following properties:

� If ΠZK has negligible (resp., 0) completeness error then so does ΠWI.

� The soundness error is negligible in C’s (computational) security parameter.

� The SWI error is 2�n�1.

Proof Sketch. Completeness follows that of the underlying NISZKA and the correctness of CIDC. We next
prove soundness (for no instances), and zero knowledge and mode indistinguishability (for yes instances).

Adaptive Soundness when z R LpIq. The proof is identical to that of adaptive soundness in Theorem 4.10,
except that instead of relying on binding of DMC, it relies on CIDC’s binding. Again, recall that with
overwhelming probability over crs, the CRS sampled for CIDC, for any (adaptively chosen) z R LpIq, Comz

is a perfectly binding commitment.

SWI with Respect to z P LpIq. Fix any pz, yq P I. Here we need to prove that pSHGenWI,SHP
z,y
WI ,V

z
WIq

is 2�n�1-SWI. The proof is identical to that of p2�n�1 � 2n�2δnq-SWI in Theorem 4.10, except that:

� Instead of relying on the δ-statistical hiding of DMC, we rely on the perfect statistical hiding of
SHComz,y (corresponding to δ � 0).

� Instead of relying on ε-SZK of a dual-mode NISZKA, we rely on the ε-SZK of fake proofs in the
ID-NISZKA.

Indistinguishability of Real and Fake Proofs. Here we need to prove that for pz, yq P I, px,wq P
R, a real CRS and proof pcrsZK, πZKq generated by ASGenZKp1nq and PzpcrsZK, x, wq are computationally
indistinguishable from ones generated by SHGenZKp1nq and SHPz,y

ZK pcrsZK, x, wq. There are two differences
between the two distributions:

� In the first, the CRS’s crsi,j and proofs πi,j of the ID-NISZKA are sampled using ASGenZK and PZK

whereas in the second, it is sampled using SHGenZK and SHPz,y
ZK .

� All commitments and decommitments in the first are generated using Comz, whereas in the second,
they are sampled using SHComz,y.

To prove indistinguishability, we first switch all crsi,j , πi,j to be sampled using SHGenZK,SHP
z,y
ZK . This

is computationally indistinguishable by the real vs. fake indistinguishability of the underlying NISZKA,
whenever pz, yq P I. We then switch the generation of all commitments and decommitments to be done
using SHComz,y. This is indistinguishable by the fact that in CIDC, real and fake commitments (plus
decommitments) are indistinguishable, whenever pz, yq P I.

5.4 Corollaries

To conclude the section, we derive several corollaries.
First, we observe that any ID-NISWIA implies a NICZKA; namely, a plain (rather, than instance dependent)

computational WI argument. We focus on the case of negligible error (although this holds more generally).

Lemma 5.9 (NICWIA from Dual-Mode ID-NISWIA). Let R be any NP relation. If there exists a negl-ID-
NISWIA for R, depending on I � R, the there exists a NICWIA (with a negligible computational error).
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Proof Sketch. Given the ID-NISWIA pASGen,Pz,Vz,SHGen,SHPz,yq, we construct the NICWIA pGen,P,Vq
as follows. Gen invokes ASGen, Ppcrs, x, wq invokes Pxpcrs, x, wq, and Vpcrs, x, πq invokes Vxpcrs, x, πq.
Completeness and adaptive soundness follow directly from completeness and adaptive soundness of the ID
scheme (recall that adaptive soundness also holds with respect to the depending instance). CWI follows by
a direct hybrid argument. For any x P LpRq and two witnesses w0, w1, we have that

pcrs,Ppcrs, x, w0qq c� p�crs,SHPx,w0p�crs, x, w0qq � p�crs,SHPx,w0p�crs, x, w1qq c� pcrs,Ppcrs, x, w1qq ,

where crs Ð ASGenp1λq and �crs Ð SHGenp1λq. Here the outer two computational indistinguishabilities
follow by real vs. fake indistinguishability of the ID scheme since px,w0q P R, and the inner statistical
indistinguishability follows from the SWI of fake proofs.

As a corollary of Theorems 3.17, 5.7 and 5.8, Lemma 5.9, and Corollaries 3.21 and 3.22, we get the main
result of this section.

Corollary 5.10. Let R be any NP-complete relation. Assuming OWFs, a sufficiently-compressing somewhere-
sound NIBARG for R implies an adaptively-sound NICZKA for R.
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de Probabilités XVII 1981/82: Proceedings, pages 243–297. Springer, 1983. 41, 63

[AR21] Gal Arnon and Guy N. Rothblum. On prover-efficient public-coin emulation of interactive proofs.
In Stefano Tessaro, editor, 2nd Conference on Information-Theoretic Cryptography, ITC 2021,
July 23-26, 2021, Virtual Conference, volume 199 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. 4

57



[AR23] Noga Amit and Guy N. Rothblum. Constant-round arguments from one-way functions. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1537–1544. ACM, 2023.
5

[BBD�20] Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon Rosen, Vinod
Vaikuntanathan, and Prashant Nalini Vasudevan. Cryptography from information loss. In
Thomas Vidick, editor, ITCS 2020, volume 151, pages 81:1–81:27. LIPIcs, January 2020. 7

[BDRV18] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan. Multi-
collision resistant hash functions and their applications. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science,
pages 133–161. Springer, 2018. 5, 29

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988. 11, 41

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and batch
NP verification from standard computational assumptions. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 474–482. ACM,
2017. 4, 10

[BHKY19] Nir Bitansky, Iftach Haitner, Ilan Komargodski, and Eylon Yogev. Distributional collision
resistance beyond one-way functions. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part III, volume 11478 of Lecture Notes in Computer Science, pages 667–695. Springer, 2019. 5,
29

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm
for keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 671–684. ACM, 2018. 3, 5

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, CRYPTO’81, volume ECE
Report 82-04, pages 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., 1981. 31

[BMO90] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (true) complexity of statistical zero
knowledge. In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 494–502. ACM, 1990. 10

[BP19] Nir Bitansky and Omer Paneth. On round optimal statistical zero knowledge arguments. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694
of LNCS, pages 128–156. Springer, Heidelberg, August 2019. 12

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for
NP from standard assumptions. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 394–423, Virtual Event, August 2021. Springer,
Heidelberg. 4

[CJJ22] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd
FOCS, pages 68–79. IEEE Computer Society Press, February 2022. 4, 5, 17

58



[CLP15] Kai-Min Chung, Edward Lui, and Rafael Pass. From weak to strong zero-knowledge and
applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume
9014 of LNCS, pages 66–92. Springer, Heidelberg, March 2015. 7, 57

[CW23] Jeffrey Champion and David J. Wu. Non-interactive zero-knowledge from non-interactive batch
arguments. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II,
volume 14082 of LNCS, pages 38–71. Springer, Heidelberg, August 2023. 7

[Del16] Holger Dell. And-compression of NP-complete problems: Streamlined proof and minor
observations. Algorithmica, 75(2):403–423, 2016. 7, 8, 20

[DMO00] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private information
retrieval implies oblivious transfer. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 122–138. Springer, Heidelberg, May 2000. 7, 8, 20, 66

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 581–596. Springer, Heidelberg, August 2002. 34

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from
decryption errors. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 342–360. Springer, Heidelberg, May 2004. 67

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. In 40th
FOCS, pages 523–534. IEEE Computer Society Press, October 1999. 15

[DPP97] Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. J. Cryptol., 10(3):163–194, 1997. 29

[Dru15] Andrew Drucker. New limits to classical and quantum instance compression. SIAM J. Comput.,
44(5):1443–1479, 2015. 7, 8, 20

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based
on a single random string (extended abstract). In 31st Annual Symposium on Foundations of
Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 308–317.
IEEE Computer Society, 1990. 10, 12, 17, 31, 32

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. Adv. Comput. Res., 5:327–343, 1989.
5

[FS90a] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In Harriet
Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 416–426. ACM, 1990. 10, 29, 31

[FS90b] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 526–544. Springer, Heidelberg,
August 1990. 11, 49, 50

[FS08] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs
for NP. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 133–142.
ACM Press, May 2008. 7

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett., 67(4):205–214, 1998. 6

59



[GJS19] Vipul Goyal, Aayush Jain, and Amit Sahai. Simultaneous amplification: The case of
non-interactive zero-knowledge. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 608–637. Springer, Heidelberg, August
2019. 11, 41, 42

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems
for NP. J. Cryptol., 9(3):167–190, 1996. 31

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages
174–187. IEEE Computer Society, 1986. 10, 29, 31

[Gol93] Oded Goldreich. A uniform-complexity treatment of encryption and zero-knowledge. Journal of
Cryptology, 6(1):21–53, March 1993. 15

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge
University Press, 2001. 10

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Found. Trends Theor. Comput.
Sci., 13(3):158–246, 2018. 3, 13

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 97–111. Springer,
Heidelberg, August 2006. 10

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.
J. ACM, 59(3):11:1–11:35, 2012. 16, 36

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. Adv. Comput. Res., 5:73–90, 1989. 4

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In Jeffrey Scott Vitter, editor, Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-
26, 1998, pages 399–408. ACM, 1998. 10

[GVW02] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover.
Comput. Complex., 11(1-2):1–53, 2002. 6, 7

[HHRS15] Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding collisions in interactive
protocols - tight lower bounds on the round and communication complexities of statistically
hiding commitments. SIAM J. Comput., 44(1):193–242, 2015. 5

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999. 31

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P
from sub-exponential DDH and QR. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 520–549. Springer, Heidelberg,
May / June 2022. 4

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes from collision-
free hashing. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 201–215.
Springer, Heidelberg, August 1996. 29

60



[HN10] Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic
applications. SIAM J. Comput., 39(5):1667–1713, 2010. 7

[HNO�09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil P. Vadhan.
Statistically hiding commitments and statistical zero-knowledge arguments from any one-way
function. SIAM J. Comput., 39(3):1153–1218, 2009. 29

[Hol05] Thomas Holenstein. Key agreement from weak bit agreement. In Harold N. Gabow and Ronald
Fagin, editors, 37th ACM STOC, pages 664–673. ACM Press, May 2005. 41
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A Proof of Lemma 4.19

Before stating and (re)proving Lemma 4.19, which completes the proof of Claim 4.18 and therefore Theorem 4.10,
we define statistical coupling (Definition A.1) and recall a lemma about statistical coupling (Lemma A.2)
that will be key to the proof. We also introduce some notation (Notation A.3) that will help reduce clutter.

Definition A.1 (Statistical Coupling). Let X and Y be two probability distributions defined on a finite set
Ω. A joint probability distribution XY on Ω2 is a statistical coupling of X and Y if its marginal distributions
are X and Y , respectively, i.e., for every x P Ω:

Xpxq �
¸
yPΩ

XY px, yq,

and for every y P Ω:
Y pyq �

¸
xPΩ

XY px, yq.

Lemma A.2 (Coupling Lemma [Ald83]). Let X and Y be probability distributions over the same set Ω.
Then

1. For every coupling XY of X and Y ,

SDpX,Y q ¤ Pr
px,yqÐXY

rx � ys
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2. There exists an “optimal” coupling XY � such that

SDpX,Y q � Pr
px,yqÐXY �

rx � ys

Notation A.3 ([LM20]). For two vectors of objects (e.g., distributions) a � pa1, . . . , anq and b � pb1, . . . , bnq,
and a string s P t0, 1un, we use xa{bys � xa1{b1, a2{b2, . . . , an{bnys to denote the vector c � pc1, . . . , cnq where

ci :�
#
ai if si � 0

bi if s1 � 1.

The following lemma is a restatement of Lemma 4.19 and is based on Lemma 7, Theorem 3 and Corollary 1
from [LM20]. The notation and presentation has been altered for the sake of compatibility with this paper.

Lemma A.4. There exists two distributions Z and S, where Z is over t0, 1uN¥T Yt0Nu, with Zp0N q ¡ 2�n,
and S is over t0, 1uN¥T , such that

Zp0N q�1 �max
 
SDpH1,Z , H1,Sq,SDpH 1

1,Z , H
1
1,Sq

( ¤ �
4eN

n
ε


n{4
, (18)

where N , n, T , ε, H1,Z , H1,S, H
1
1,Z and H 1

1,S are as defined in Section 4.3.

Proof. We proceed in two steps. First, we define what it means for a pair of distributions Z and S, as in
the statement of the lemma, to be “good”. Then, we show that if Z and S are good then the lemma follows
(this roughly corresponds to [LM20, Lemma 7]).

Step I. For two strings s, e P t0, 1uN , let blindps, eq be the function that returns the substring of s at
indices i such that ei � 1.

Definition A.5 (Good pair of distributions). Let E � pEi,jqpi,jqPprns2 q denote a tuple of N independent

Bernoulli distributions with bias at most ε, i.e., for every pi, jq P �rns2 �, it holds that

Pr
ei,jÐEi,j

rei,j � 1s ¤ ε.

A pair of distributions Z and S is good if

� Z is supported over t0, 1uN¥T Y t0Nu,
� Zp0N q ¡ 2�n,

� S is supported over t0, 1uN¥T ,

� EeÐE rSDpblindpZ, eq,blindpS, eqqs ¤ Zp0N q � 4eN
n ε

�n{4
.

In [LM20], a pair of such good distributions is constructed explicitly. For the sake of completeness, we
include a description of the [LM20] distributions in Appendix A.1.

Step II. We now prove the lemma given that the pair of distributions Z and S described in Stage I is
good. To be specific, we show

SDpH1,Z , H1,Sq ¤ E
eÐE

rSDpblindpZ, eq,blindpS, eqqs . (19)

The proof of the corresponding claim for H 1 is similar and is hence omitted.
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pζ,σq Ð GRI�

1. Sample ppcrsR,πRq, pcrsI ,πIqq Ð RI�

2. Compute e � tei,jupi,jqPprns2 q, where ei,j is indicator for the event R
�
i,j � I�i,j : i.e., ei,j � 1ô R�

i,j �
I�i,j , where recall that R�

i,j � pcrsR,i,j , πR,i,jq and I�i,j � pcrsI,i,j , πI,i,jq.
3. Consider the random variables blindpZ, eq and blindpS, eq induced by Z and S, and let

blindpZ, eqblindpZ, eq� denote the optimal coupling between the two.

4. Sample pz1, s1q Ð blindpZ, eqblindpS, eq�.
5. Sample z Ð Z conditioned on blindpz, eq � z1 and sÐ S conditioned on blindps, eq � s1

6. Set ζ :� pxcrsR{crsIyz, xπR{πIyzq and σ :� pxcrsR{crsIys, xπR{πIysq
7. Output pζ,σq

Figure A.1: Coupling experiment G.

Recall the distributions H1,Z and H1,S from Fig. 4.8. Next, consider H1,Z and H1,S with the execution
of M and Λ fixed, i.e., the hiding CRS crs∆, views v and ciphertext-random coin pair pc,dq in distribution
H1,Z and H1,S are fixed. To prove the lemma, it suffices to show Eq. (19) holds for every pcrs∆,v, c,dq.
Hence, from here on, let’s consider H1,Z and H1,S with pcrs∆,v, c,dq fixed.

For pi, jq P �rns2 �, let’s denote by Ri,j and Ii,j the random variables corresponding to the real and simulated
execution of ΠZK, respectively (see Fig. 4.8, Line 3). Following [LM20], we denote H1,Z by H1pxR, IyZq (see
Notation A.3). Since ΠZK is ZK with error ε � 1{100n, we have SDpRi,j , Ii,jq ¤ ε. As a result, by Lemma A.2,
there exists an optimal coupling RI�ij of Ri,j and Ii,j such that

Pr
ppcrsR,i,j ,πR,i,jq,pcrsI,i,j ,πI,i,jqqÐRI�i,j

rpcrsR,i,j , πR,i,jq � pcrsI,i,j , πI,i,jqs ¤ ε. (20)

Let’s use R�
i,j and I�i,j to denote the first and second argument of RI�i,j , respectively. Then, we have

SDpH1,Z , H1,Sq � SDpH1pxR, IyZq, H1pxR, IySqq
� SDpH1pxR�, I�yZq, H1pxR�, I�ySqq
¤ SDpxR�, I�yZ , xR�, I�ySq. (21)

Here, the second equality follows by the definition of coupling (which requires the marginals to match) and
the inequality is a consequence of data processing inequality. To upper bound Eq. (21), we set up a coupling
experiment G, described in Fig. A.1, involving RI�. To see why G is a valid coupling, we claim that the
marginal distributions of z and s sampled as part of G are Z and S respectively, z is independent of R, and
s is independent of I. As a result, the marginal distributions of ζ and σ are the same as H1,Z and H1,S

respectively. To see why the (marginal) distribution of z sampled as part of G is Z (the argument for s
and S is analogous) and independent of R, note that for any e sampled in the first step, z1 is distributed as
blindpZ, eq, and z is sampled from Z conditioned on z1.
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Therefore, by Lemma A.2 (“for every” claim), we have from Eq. (21) that

SDpxR�, I�yZ , xR�, I�ySq ¤ Pr
G
rζ � σs

�
¸

e1Pprns2 q
Pr
G

�
ζ � σ, e � e1

�
�

¸
e1Pprns2 q

Pr
G

�
blindpz, eq � blindps, eq, e � e1

�
�

¸
e1Pprns2 q

Pr
G|e�e1

�
blindpz, e1q � blindps, e1q� � Pr

G

�
e � e1

�
�

¸
e1Pprns2 q

SDpblindpZ, e1q,blindpS, e1qq � Pr
G

�
e � e1

�
(22)

where ζ, σ, e and pz, sq above are sampled as part ofG, and Eq. (22) follows by optimality of blindpZ, eqblindpS, eq�.
Since each ei,j in G is distributed as required (because ΠZK is zero-knowledge with error ε and the executions
are independent), we get from Eqs. (21) and (22) that

Zp0N q�1 � SDpH1,Z , H1,Sq ¤ Zp0N q�1 � E
e1ÐE

�
SDpblindpZ, e1q,blindpS, eqq� ¤ �

4eN

n
ε


n{4
,

where the final inequality follows from the fact that Z and S is a pair of good distributions.

A.1 Good Distributions

We recall the good pair of distributions Z and S defined in [LM20], described using multisets, Z and S,
respectively:17

S :�
¤

jPtT,T�2,��� ,Nu

"�
b,

�
j � 1

T � 1




: b P t0, 1uN , }b}0 � j

*
, and

Z :� tp0N , 1qu Y
¤

jPtT�1,T�3,��� ,Nu

"�
b,

�
j � 1

T � 1




: b P t0, 1uN , }b}0 � j

*
.

The proof that Z and S constitute a pair of good distributions can be found in [LM20, Theorem 3 and
Corollary 1].

B LPKE via Somewhere Extractable NIBARGs

In this section, we recall the definition of somewhere extractable BARGs from the literature, and also define a
variant thereof, which we call honestly somewhere extractable. We prove that somewhere-extractable BARGs
imply (single databased, computationally-) private information retrieval (PIR), which in turn is known
to imply statistically sender-private oblivious transfer and lossy public-key encryption (LPKE) [DMO00,
PVW08].

The resulting LPKE suffers from a negligible decryption error, which makes it insufficient for the NISZKA
amplification theorem in Section 4.3. We observe that if the BARGs satisfy honest-somewhere extraction
then the resulting LPKE has a stronger correctness guarantee, which is also sufficient for our amplification
theorem. First, we recall the definition of LPKE.

17A multiset M over a domain Ω is represented as tpx,mxq : x P Ωu where mx P N is the multiplicity of the element x. The
cardinality of M is then defined as |M| :�

°
xPΩ mx. The probability distribution M induced by M is defined naturally: the

probability of an element x P Ω is mx{|M|.
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Definition B.1 (LPKE). A lossy public-key encryption scheme Λ with message-space M and ciphertext-
space C is a tuple of polynomial-time algorithms pKGen, LGen,E,Dq with following syntax:

� ppk , skq Ð KGenp1λq. The randomised binding-key-generation algorithm, on input a security parameter
λ P N, outputs a public-private key-pair ppk , skq. We refer to a public key generated by KGen as a
binding key.

� pk Ð LGenp1λq. The randomised lossy-key-generation algorithm, on input a security parameter λ P N,
outputs a public key pk, which we refer to as a lossy key.

� c Ð Eppk ,mq. The randomised encryption algorithm takes as input a public key pk and a message
m PM, and outputs a ciphertext c P C.

� m :� Dpsk , cq. The deterministic decryption algorithm takes a secret key sk and a ciphertext c P C as
input and outputs a message m PM.

We require the following properties from Λ:

1. Binding public keys are almost-all-keys perfectly correct [DNR04]. With overwhelming probability
over the choice of binding keys, perfect correctness of decryption must hold. More formally, with
overwhelming probability over ppk , skq Ð KGenp1λq, for every m PM

Pr
cÐEppk ,mq

rDpsk , cq � ms � 0.

2. Lossy keys are statistically hiding. For a random lossy key, the distribution of ciphertexts of any two
messages must be statistically close. To be specific, we say that the lossy keys are δ-statistically-hiding
if for all m0,m1 PM and large enough λ P N:

SDpppk ,Eppk ,m0qq, ppk ,Eppk ,m1qqq ¤ δpλq,

where pk Ð LGenp1λq.
3. Mode indistinguishability. We require that the binding and lossy keys are computationally indistinguishable.

More formally, for every polynomial-size circuit family A � pAλqλPN, there is a negligible function µ,
such that for all λ P N:���� Pr

ppk ,skqÐKGenp1λq
r1Ð Aλppkqs � Pr

pkÐLGenp1λq
r1Ð Aλppkqs

���� ¤ µpλq.

Remark B.2 (Weak LPKE as Dual-Mode Commitments). We note that with overwhelming probability
over the choice of a random binding key pk, the encryption algorithm Eppk , �q acts as a perfectly-binding
(non-interactive) commitment, with the random coins used for encryption serving as opening (see [LS19]).
Analogously, over the choice of a random hiding key pk, the encryption algorithm Eppk , �q acts as a perfectly-
hiding (non-interactive) commitment. By mode indistinguishability of LPKE, it follows that LPKE implies
dual-mode commitments. In fact, LPKE implies the stronger notion of DMC where the binding CRS is
extractable via a trapdoor, here, the secret key (see Remark 4.3). Our results in the reverse direction achieving
LPKE from somewhere extractable BARGs (Appendix B) achieve efficient decryption, and therefore implies
the stronger notion of DMC.

B.1 PIR from Somewhere Extractability

Definition B.3 (Somewhere Extractability). A batch protocol pGen,TGen,P,Vq for a relation R is somewhere
extractable if it satisfies CRS indistinguishability, and if there is a PPT extractor E such that, for every
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polynomial t and polynomial-size circuit family of provers P� � pP�λqλPN, there is a negligible function µ such
that for every λ P N, t � tpλq, and i� P rts:

Pr
crs�,td,E

rVpcrs�, px1, . . . , xtq, πq accepts ^ pxi� , wq R Rs ¤ µpλq,

where pcrs�, tdq Ð TGenp1λ, 1t, i�q, ppx1, . . . , xtq, πq Ð P�λpcrs�, i�q, and w Ð Eptd , i�, crs�, px1, . . . , xtq, πq.
Definition B.4 (Single-Database, Computational PIR [KO97]). A one-round, single-database computational
PIR is a tuple of polynomial-time algorithms pQ,D,Rq with the following syntax:

� pk,Qq Ð Qp1λ, ℓ, iq. The randomized user query algorithm takes as input a security parameter λ P N,
a parameter ℓ P N that represents the length of the database, and a target index i P rℓs. It outputs a
key k and a query Q.

� a :� DpD,Qq. The deterministic database answer algorithm takes as input a database D :� pD1, . . . , Dℓq P
t0, 1uℓ and a query Q and outputs an answer a.

� d :� Rpk, aq. The deterministic user reconstruct algorithm takes as input the key k and answer a and
outputs a data bit d.

We require the following properties:

1. Correctness of reconstruction. There exists a negligible function µ such that for every λ P N, ℓ P polypλq,
database D P t0, 1uℓ and query i P rℓs:

Pr
pk,QqÐQp1λ,ℓ,iq

rRpk,DpD,Qqq � Dis ¥ 1� µpλq.

2. Succinctness. We say that the PIR is succinct if |a| ¤ ℓϵ for some ϵ   1. We say that the PIR is fully
succinct if there exists poly such that |a| ¤ polypλq.

3. Computational user privacy. No efficient adversary can distinguish between user queries on two target
indices. That is, for every polynomial-size circuit family of distinguishers A � tAλuλPN, there is a
negligible function µ, such that for all λ P N, ℓ P polypλq and i, j P rℓs���� Pr

pk,QqÐQp1λ,ℓ,iq
r1Ð AλpQqs � Pr

pk,QqÐQp1λ,ℓ,jq
r1Ð AλpQqs

���� ¤ µpλq.

The PIR scheme constructed from somewhere-extractable NIBARG is described in Fig. B.1. It relies on
the fact that somewhere-extractable NIBARG implies one-way functions (OWFs) , and given a OWF f , we
can define an NP relation

Rf :� tppy0, y1q, xq : fpxq � y0 _ fpxq � y1u (23)

that allows sampling an instance along with two witnesses. To be precise, the hard sampler for Rf invokes
the OWF on two random preimages x0 and x1, and then outputs the instance py0 :� fpx0q, y1 :� fpx1qq.
Theorem B.5 (Somewhere-Extractable NIBARG Implies PIR). If there exists a somewhere-extractable
NIBARG pGen,TGen,P,Vq, then the scheme in Fig. B.1 is a one-round, single database PIR. If the size
of BARGs is independent of the number of instances, then the PIR is fully succinct.

Proof Sketch. The construction inherits succinctness of the NIBARG. Whereas, user privacy follows from
its CRS indistinguishability (Definitions 2.24 and B.3). Correctness follows from somewhere extractability
of the NIBARG and one-wayness as argued next. By somewhere extractability, it is guaranteed that with
overwhelming probability the extractor returns some witness of pyi,0, yi,1q, i.e., some pre-image of yi,0 or yi,1
under f . One-wayness of f ensures that it returns a witness corresponding to yi,Di

and not yi,Di
. Indeed,

since Q generates the NIBARG proof based only on the witness/pre-image xi,Di
, it is oblivious of the other

witnesses xi,Di
. As a result, the extractor outputting xi,Di

is tantamount to breaking f ’s one-wayness.
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PIR scheme pQ,D,Rq, built using a somewhere-extractable NIBARG pGen,TGen,P,Vq with extractor E,
and hard sampler for the relation Rf from Eq. (23).

pk,Qq Ð Qp1λ, ℓ, iq
1. Use the hard sampler for Rf to generate ℓ instance-witness pairs

q :� pppy1,0, y1,1q, x1,0, x1,1q, . . . , ppyℓ,0, yℓ,1q, xℓ,0, xℓ,1qq.

2. Use TGen to sample a CRS with trapdoor set up at index i: pcrs�, tdq Ð TGenp1λ, 1ℓ, iq.
3. Output ppi, td , pcrs�, qqq, pcrs�, qqq.

a :� DpD,Qq
1. Run the batch prover on witnesses determined by D:

π Ð Ppcrs�, ppy1,0, y1,1q, . . . , pyℓ,0, yℓ,1qq, px1,D1
, . . . , xℓ,Dℓ

qq.

2. Output π.

d :� Rpk, aq
1. Halt without output if the BARG verifier rejects, i.e., Vpcrs�, ppy1,0, y1,1q, . . . , pyℓ,0, yℓ,1q, πqq � 0.

2. Use BARG extractor to extract witness at i: w Ð Eptd , i, crs�, ppy1,0, y1,1q, . . . , pyℓ,0, yℓ,1qq, πq, and
set

d :�
#
0 if fpwq � yi,0

1 otherwise.

3. Output d.

Figure B.1: PIR scheme pQ,D,Rq.
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B.2 Honest Somewhere Extractability

Definition B.6 (Honest Somewhere Extractability). A batch protocol pGen,TGen,P,Vq for a relation R is
honestly somewhere extractable if it satisfies CRS indistinguishability, and if there is a PPT extractor E
such that, for every λ P N, t � tpλq, px1, w1q, . . . , pxt, wtq P R and i� P rts:

Pr
crs�,td,E

rwi� � ws � 0,

where pcrs�, tdq Ð TGenp1λ, 1t, i�q, π Ð Ppcrs�, px1, w1q, . . . , pxt, wtqq, and w Ð Eptd , i�, crs�, px1, . . . , xtq, πq.
Remark B.7. We can in fact further weaken the above requirement, asking for perfect correctness for almost
any CRS. Namely, that with overwhelming probability over the choice of CRS, extraction is perfect.

Going back to the construction if Fig. B.1, in case the BARG satisfies honest somewhere extractability
(Definition B.6), then the construction satisfies perfect correctness of reconstruction. Indeed, the NIBARG
proof generated by Q is honest, the extractor is guaranteed to return the actual witness used at position i,
which is xi,Di

.
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