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Abstract

We initiate the study of generalized AC0 circuits comprised of arbitrary unbounded fan-in
gates which only need to be constant over inputs of Hamming weight ≥ k (up to negations of
the input bits), which we denote GC0(k). The gate set of this class includes biased LTFs like
the k-OR (outputs 1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can
be seen as an interpolation between AC0 and TC0.

We establish a tight multi-switching lemma for GC0(k) circuits, which bounds the probability
that several depth-2 GC0(k) circuits do not simultaneously simplify under a random restriction.
We also establish a new depth reduction lemma such that coupled with our multi-switching
lemma, we can show many results obtained from the multi-switching lemma for depth-d size-s
AC0 circuits lifts to depth-d size-s.99 GC0(.01 log s) circuits with no loss in parameters (other
than hidden constants). Our result has the following applications:

• Size-2Ω(n1/d) depth-d GC0(Ω(n1/d)) circuits do not correlate with parity (extending a result
of Håstad (SICOMP, 2014)).

• Size-nΩ(logn) GC0(Ω(log2 n)) circuits with n.249 arbitrary threshold gates or n.499 arbi-
trary symmetric gates exhibit exponentially small correlation against an explicit function
(extending a result of Tan and Servedio (RANDOM, 2019)).

• There is a seed length O(logd−1 m log(m/ε) log log(m)) pseudorandom generator against
size-m depth-d GC0(logm) circuits, matching the AC0 lower bound of Håstad up to a
log logm factor (extending a result of Lyu (CCC, 2022)).

• Size-m GC0(logm) circuits have exponentially small Fourier tails (extending a result of
Tal (CCC, 2017)).
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1 Introduction

Proving superpolynomial circuit lower bounds against explicit functions is one of the most central
questions in complexity theory. However, after the initial flurry of work resulting in Blum’s lower
bound of 3n − o(n) [Blu84], followed by a recent revival 30 years later leading to the state of the
art 3.1n − o(n) size lower bound by Li and Yang [LY22], this problem has proven to be extremely
difficult. Furthermore, there are various proof barriers that give strong evidence that our current
intuition is not developed enough to tackle this problem [BGS75, RR97, AW09].

In order to gain more understanding on this problem, researchers considered circuits with con-
stant depth whose gates are AND,OR, or NOT with unbounded fanin. To this end there has been
a fruitful line of work culminating in the state of the art average case hardness of depth d size

2Ω(n
1

d−1 ) AC0 circuits computing the parity and majority functions [Hås14, IMP12] (with this result
being tight for parity). A natural followup question to ask is how powerful AC0 would then be if ⊕
(parity) or MAJ (majority) gates were added, corresponding to the circuit classes AC0[⊕] and TC0.
With regard to AC0[⊕], Oliveira, Santhanam, and Srinivasan [OSS19] proved that it is average case
hard for any size-2Ω(n1/(2d−4)) AC0

d[⊕] circuit to compute MAJ, improving earlier work by Razborov
[Raz87]. Smolensky [Smo87] proved exponential size lower bounds even if one replaces the ⊕ gate
with a MODp gate for prime p (MODp is the gate that outputs 0 iff p divides the sum of the input
bits).

As we see, MAJ is a hard function demonstrating exponential circuit lower bounds for almost
all the circuit classes mentioned thus far, and so we would guess TC0 is extremely powerful and
thus challenging to show circuit lower bounds for. This is evident in the current state of the art
for TC0, which is stark in contrast with the landscape of AC0[⊕]. In 1993, Impagliazzo, Paturi,
and Saks [IPS97] showed that parity is hard for depth-d size-Ω(n1+ε−d

IPS ) circuits for some constant
CIPS > 1 , which remains as the current state of the art modulo the case of d = 2, where Kane and
Williams established a n2.49-size lower bound [KW16]. In fact, a bootstrapping result by Chen and
Tell [CT19] shows that if one slightly improves (e.g. decreases CIPS) this superlinear lower bound
against certain NC1-complete problems (NC1 is the class of O(log n)-depth, polysized, constant fan-
in circuits), we would immediately get superpolynomial lower bounds and a separation of TC0 and
NC1, attesting to the hardness of this task.

Due to the halted state of affairs for TC0 circuits, we study a circuit class not as strong as TC0,
but still captures the motivation of analyzing “AC0 with the power of majority.” After it had been
shown AC0 circuits cannot efficiently compute the majority of n bits, it seemed natural that the
next step would be to add unbounded MAJ gates to AC0 to create TC0. However, due to having
unbounded fan-in, TC0 gives a size-s circuit the power to calculate the majority of up to s bits.
Hence, one could argue the reason why size s TC0 circuits are much harder to analyze than AC0

is because they are getting much more power than simply calculating the majority of n bits when
s ≫ n. In order to maintain the unbounded fan-in property of the circuit but also ration the
computational power we give AC0 to be “just sufficient” to compute the majority of n bits, one can
consider the following circuit class.

Definition 1.1 (AC0(k) Circuits). Define the unbounded fan-in gates k-OR to output 1 iff there are
at least k ones in the input string, and k-AND to output 0 iff there are at least k zeros in the input
string. Define the class of constant depth circuits created by negations and {k′-AND, k′-OR}s for
k′ ≤ k to be AC0(k).

One can observe that AC0(n/2) is a natural circuit class that contains the majority of n bits and
doesn’t add “extra power” like the majority of a much larger quantity of bits. Therefore, analyzing
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AC0(n/2) will give us a better understanding on how much power majority gives to circuits. More
generally, AC0(k) also allows us to nicely interpolate between AC0 and TC0, since a size-s AC0 circuit
is characterized by AC0(1), while a size-s TC0 circuit is characterized by AC0(s/2). Hence, studying
AC0(k) for increasing k is a necessary step and a compelling intermediary model that can help us
understand the power of TC0.

For how large of a k will AC0(k) trivially collapse to AC0? An immediate observation is that
AC0(k) contains the majority gate over 2k bits, for which we know 2Ω(k1/2d)-size AC0 lower bounds.
Hence, for k = polylog(n), we have a superpolynomial size seperation between AC0 and AC0(k).
Even for any k = ω(1), it is unknown whether AC0(k) is equivalent to AC0. A standard argument
would be to represent a k-OR with fan-in m as a width-k DNF with

(
m
k

)
clauses (check over all size

k subsets of input bits to see if some subset are all 1s) or a width-(m − k) CNF with
(
m
k

)
clauses

(check over all size m− k subsets of input bits to see if all subsets contain some 1). Therefore, if we
have a size s circuit made from k-OR and k-AND gates, we can turn this into an AC0 circuit with
size s ·

(
s
k

)
≈ sk (since a gate in the original circuit can have fan in size up to s) and depth d + 1

(one can naively get depth 2d, but by alternating CNFs and DNFs, we can collapse the depth to
d + 1). Hence, we see that a size s lower bound for AC0

d translates to a size s1/k lower bound for
AC0

d−1(k). This reduction is not an equivalence, as we pay with a reduction in depth, as well as an
asymptotically weaker size lower bound for any k = ω(1). For example, a polynomial size bound
for AC0 cannot be converted to a polynomial size lower bound for AC0(k) for any superconstant
k. Consequently, the relationship between AC0 and AC0(k) already becomes nontrivial in the mild
regime of k = ω(1).

In this paper, we study an even more general class of circuits, which we denote as GC0(k).

Definition 1.2 (G(k) gates/GC0(k) circuits). Let G(k) be the set of all unbounded fan-in gates that
are constant over all input bits with ≥ k ones, or over all input bits with ≥ k zeros (notice for
k ≥ 1 this includes negations by definition). Define GC0(k) to be the class of constant depth circuits
created from G(k) gates.

Some concrete examples of G(k) gates are arbitrary gates of fan-in k, majority of 2k bits, the
k-OR, and functions that compute parity if the input has < k ones, and is 0 otherwise. Notice that
this is indeed a generalization of AC0(k).

On top of being an alternative generalization of AND/OR gates which may be of independent
interest, one nice property about G(k) is that it includes a generalized notion of k-AND and k-OR
gates to arbitrary LTFs (functions of the form sgn(

∑
wixi − θ)).

Definition 1.3 (k-balanced LTFs). Let f(x) = sgn(
∑n

i=1wixi− θ) be an LTF, and let σ : [n]→ [n]
be a permutation sorting the wi in increasing magnitude (i.e. |wσ(1)| ≤ · · · ≤ |wσ(n)|). We say f is
k-balanced if k is the smallest index j such that −

∑
i≤j |wσ(i)|+

∑
i>j |wσ(i)| < |θ|.

One can verify that k-balanced LTFs are indeed in G(k) (see Theorem A.1). Therefore, our
results can also be seen as a study of arbitrary LTFs that are biased.

Various notions of balancedness (or regularity in some literature) for LTFs has been defined in
previous work about threshold functions [Ser06, Pot19, HHTT22], but are all distinct from the
combinatorial definition we have proposed. In light of being able to show lower bounds for this
characterization of balanced, it may be of interest to explore this class of balanced LTFs in other
contexts regarding LTF circuit complexity.

1.1 Our Results

We outline all the results we obtain regarding AC0(k) (or more generally GC0(k)) circuits. The core
result from which all the other results are derived from is an optimal multi-switching lemma for
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GC0(k) circuits. We state the result without getting into the fine-grained definitions.

Theorem 1.4 (Multi-Switching Lemma for GC(k) Circuits (Informal)). Let F = {F1, . . . , Fm} be
a list of G(k) ◦ ANDw circuits on {0, 1}n. Then

Pr
ρ∼Rp

[F|ρ do not all simultaneously “simplify”] ≤ (2km)t/r(O(pw))t

The theorem statement and proof is formally written in Theorem 4.1. This bound can be proven
to be optimal in the regime of large t. See the appendix (Theorem A.2) for the proofs of this claim.

It is illuminating to compare this result to the multi-switching lemma for AC0 circuits, which
bounds the probability by the very similar expression of mt/r(O(pw))t. The only difference is that
in the new lemma, the m and 2k are coupled in the base of the exponent. This seems to hint that
as long as 2k = O(m), one gets the same probability bound when using either the AC0 or GC0(k)
version of the multi-switching lemma. In practice, the parameter m is upper bounded by s, the
size of the circuit. Hence, we would intuit that any result obtained from the multi-switching lemma
for depth d size s AC0 circuits can then be lifted to size s GC0

d(log s) circuits. This indeed turns
out to be the case as we demonstrate through four different results. We obtain a surprising lifting
theorem: any depth d size s AC0 lower bound obtained by the multi-switching lemma immediately
lifts to depth d size s.99 GC0(.01 log s)-circuits with no loss in parameters. We demonstrate three
different results exhibiting this phenomenon.

For the first result, denote PAR to be the parity gate.

Theorem 1.5 (Optimal Correlation Bounds Against Parity). Let C be a size m depth d GC0(k)-
circuit. Then the correlation of C against parity is

|Ex[(−1)C(x)+PAR(x)]| ≤ 2−Ωd(n/(k+logm)d−1)+k.

In particular, we get a 2Ω(n1/d)-size lower bound for GC0
d(Ω(n

1/d)) circuits almost matching the
lower bound of 2Ω(n1/(d−1)) we know for AC0! This is especially surprising in light of the fact that
GC0

d(Ω(n
1/d)) is a much stronger class than AC0; there exist singleton G(n1/d) gates that cannot

be computed by size O(2n
1/2d

) AC0
d circuits. This can be seen as a limited dual result to [Raz87],

who showed AC0
d augmented with parity gates requires size 2Ω(n1/2d) to compute majority, whereas

we show AC0
d augmented with n1/d-biased majority gates requires size 2Ω(n1/d) to compute parity.

It also contrasts with [OSS19], who surprisingly showed that adding parity gates to AC0 improved
optimal circuit constructions of majority. Here, we show that majority gates whose threshold value
is shifted to Ω(n1/d) has no effect on AC0’s ability to calculate parity, even though such gates adds
a lot of power to AC0. (majority gates whose threshold has been biased to n1/d cannot be computed
by size 2Ω(n1/2d2 ) AC0

d circuits).
Notice that this result is tight in an extremely sensitive way. Letting PARn denote the parity

gate over n bits, we see PARn1/d ∈ G(n1/d), and we can calculate the parity of n bits by creating
a depth d n1/d-ary tree of PARn1/d gates, where the ith layer from the bottom has n1−i/d PARn1/d

gates that take the parity of all the bits fed below it in blocks of n1/d. This is a depth d size
O(n1−1/d) circuit computing parity. Therefore, we have a simple counterexample of a GC0

d(n
1/d)

circuit computing parity (which is sublinear in size!). This demonstrates a sharp threshold behavior
where the exponential lower bound of 2Ω(n1/d) is tight up to the hidden constant factor of the Ω(·)
in GC0

d(Ω(n
1/d)), and if the constant is too large, we suddenly go from requiring exponentially large

circuits to only needing sublinear size ones.
This theorem is tight in all other parameters as well. We show that this result is tight in the

size parameter by giving a size-2Ω(n1/d) GC0(.1n1/d) circuit computing parity. Furthermore, we show
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that the correlation bound is tight by giving a size-m GC0(k) circuit that approximates parity. See
Appendix A.2 for formal proofs of these claims.

For what k will analyzing AC0(k) give implications for TC0? A result by Allender and Koucký
([AK10], Theorem 3.8) states that there exists an absolute constant CAK such that MAJn can be
written as an AC0(nε) circuit with depth ≤ CAK/ε and size O(n1+ε). Therefore, beating the current
state of the art depth d size Ω(n1+C−d

IPS ) lower bound for TC0 reduces to beating depth CAKd/ε

size n(1+50−d)(2+ε) lower bounds for GC0(nε) circuits for any choice of ε. In our paper, we show
exponential size lower bounds against parity when ε = 1/d but at depth d rather than CAKd2.
It would be interesting to see whether with some NC1-complete problem can display strong lower
bounds for AC0(n1/d) for depth larger than d, even if it may be less than CAKd2 (but a function
other than parity would need to be considered).

Another angle researchers have taken towards understanding the power of threshold circuits
has been to start with an AC0 circuit and augment some of the gates to arbitrary threshold gates
[Vio07, LS11, ST18]. Our multi-switching lemma shows that we can instead start with a base
GC0(log s) circuit and obtain the same state of the art parameters as [ST18] if we started from an
AC0 circuit.

Theorem 1.6. There exists a function RW ∈ P (introduced by Razborov and Widgerson [RW93])
and absolute constant τ such that for C, a size nΩ(logn) GC0(Ω(log2 n))-circuit with n.249 THR gates,
we have

|Ex[(−1)RW(x)+C(x)]| ≤ 2−Ω̃(n.249).

The original motivation to study AC0 with a small number of THR gates was to use this to
gradually convert circuits gate by gate from AC0 to TC0. This result “speeds up” this process by
augmenting all AC0 gates to G(log2 n) gates (which contain unbalanced LTFs as discussed above). If
one tried proving this theorem by expanding the GC0(log2 n) circuits into an AC0 circuit, completing
the proof would require solving a longstanding open problem regarding correlation bounds against
ω(log n)-party NOF protocols! In Section 5.2, we point out this observation explicitly along with
the proof.

As another application, we can create PRGs for GC0(logm) circuits whose seed length matches
that of size m AC0 circuits. This is accomplished by fully derandomizing Theorem 1.4 and using
the partition-based PRG approach in [Lyu22]. The resulting PRG for GC0

d(logm) has identical seed
length as Lyu’s PRG, thereby also matching Håstad’s AC0 lower bound barrier up to a log logm
factor (see [TX13, ST22, Kel21] for a discussion on why an o(logd(m/ε)) seed length implies break-
through circuit lower bounds).

Theorem 1.7. For every m,n, d ≥ 3 and ε > 0, there is an ε-PRG for size-m GC0
d(logm) with

seed length O(logd−1(m) log(m/ε) log logm)

The proof is covered in Section 5.3. Notice that if we had simply expanded out all gates as width
logm CNF/DNFs, we would have a size ≈ mlogm AC0

d+1 circuit, and plugging in Lyu’s near-optimal
PRG would yield us a suboptimal seed length of O((log2m+ log(1/ε)) log2dm log logm).

Finally, we establish results on the Fourier spectrum of GC0(k) circuits. It can be shown that
every Boolean function, when written as a map {±1}n → {±1}, can be uniquely expressed as a
multivariate polynomial f(x) =

∑
S⊂[n] f̂(S)

∏
i∈S xi. We show exponentially small Fourier tail

bounds for any C ∈ GC0(k). More concretely,

Theorem 1.8. For arbitrary C ∈ GC0
d(k) of size m, the following is true for any 0 ≤ ℓ ≤ n.∑

|S|≥ℓ

Ĉ(S)2 ≤ 2
−Ω

(
ℓ

(k+logm)d−1

)
+k
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Linial, Kushilevitz, Mansour, and Tal [KM93, LMN93, Man92, Tal17] showed that with small
Fourier tails, one can get a variety of Fourier structure results, efficient learning algorithms, and cor-
relation bounds. We demonstrate applications of such techniques to GC0(k) in detail in Section 5.4.

2 Overview of the Proof of GC0(k) Lower Bounds

The novel ideas of this paper can be observed in the switching lemma and its use in collapsing the
depth of GC0(k) circuits. Therefore, we give an outline of this portion of the argument. Getting
the specialized theorems noted above is then a matter of applying the lemma in various settings.

In order to prove correlation bounds against GC0(k) cirucits, we use the framework of showing
that such circuits simplify under random restrictions. For simplicity, one can think of a random
restriction as a partial assignment created by keeping each variable unfixed with some probability
p, and fixed to 0 or 1 with 1−p

2 probability each. Showing constant depth circuits simplify under
random restrictions is usually done via following two steps:

• Establish a switching/multi-switching lemma that states all the bottom depth-2 subcircuits
“simplify” with great probability after a random restriction

• Establish a depth reduction lemma which states when the bottom subcircuits are “simplified”,
one can effectively reduce the depth of the circuit, and induct.

If both of these are established, one can argue the parity function uncorrelates with these
constant depth circuits, since parity reduces to a parity on a subset of bits when acted on by a
random restriction, while the circuit simplifies to a constant with high probability. This approach is
used to prove the well known lower bounds for AC0 circuits. The first bullet point is known to be the
technical meat of the proof for AC0, requiring complex encoding, witness, or inductive arguments
to show that the subcircuits simplify to decision trees. The second bullet point is swept under the
rug since depth reduction is almost immediate in the AC0 case.

In this paper, we will extend both bullet points to be applicable to GC0(k) circuits. To prove
the switching lemma, we extend Razborov’s encoding/witness argument, intuitively showing if our
subcircuit’s top gate was a G(k) gate instead of an OR, we only need to store k more bits in our
encoding/witness (this will be described more in the next paragraph). To prove a depth reduction
lemma, we will require a more involved proof that uses the full power of decision trees. In the
AC0 argument, only the fact that a decision tree could be unraveled into a small width DNF or
CNF was used. Here, using an additional structure property of these DNF/CNF stemming from
its derivation from a decision tree, we can extend this depth reduction argument to GC0(k). Such
a depth reduction wouldn’t be possible otherwise, and essentially uses the additional structure of
decision trees.

2.1 The Switching Lemma

To grasp this section, an understanding of Lyu’s witness/transcript proof of the switching lemma
[Lyu22] would be helpful. We still give an overview of the proof here and provide intuition from an
information-theoretic lens, which differs in certain places than the intuition presented in [Lyu22].
After the overview, we will highlight the necessary changes needed to prove the more general lemma
for GC0(k) circuits.

Say we have a k-OR◦AND circuit F (in the formal proof, we consider general G(k)◦{AND,OR}
circuits). For Λ ⊂ [n] and z ∈ {0, 1}n, denote ρ(Λ, z) to be the restriction/partial assignment where
all variables whose indices are in Λ are kept alive/unfixed, and all remaining variables xi with i /∈ Λ
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are fixed to the corresponding bit in z, zi. Consider a random restriction ρ(Λ, z), where z ∼ {0, 1}n
is a uniformly random ground assignment, and Λ is a random subset of [n] such that each element
is added with probability p. To show that with low probability, F |ρ has decision tree depth ≥ t, it
suffices to create a specific canonical decision tree (CDT) for each ρ and argue that this tree has
depth ≥ t with low probability (because if the decision tree depth of F |ρ is ≥ t, then surely the
canonical decision tree has depth ≥ t). We consider the following CDT, where we first initialize a
counter ctr ← 0, and then scan the bottom layer clauses from left to right.

• If the clause is fixed to 1 and ctr = k, terminate since we know that F evaluates to 1.
Otherwise increment ctr and move to the next clause.

• If the clause is fixed to 0, move to the next clause.

• If the clause is ambiguous, query all variables in the clause, and behave accordingly as above.

If we think of our CDT as an algorithm that queries certain bits of the input, then bad ρ that
creates a depth ≥ t CDT will produce a unique “transcript” of large size recording the behavior of
CDT (i.e. the clauses and variables the CDT queries from). Like [Lyu22], we consider transcripts
that store (ℓi), the indices of the clauses queried, along with a set P that further elucidates which
variables in the clauses were queried in an information-efficient manner. We get the following
inequality

Pr
ρ
[DT(F |ρ) ≥ t] ≤ Pr

ρ
[CDT(F |ρ) ≥ t]

≤
∑

large transcripts
(ℓi,P )

Pr
ρ
[(ℓi, P ) is a large transcript for ρ] (1)

via the union bound. A natural thought is to then bound each term in the sum. Unfortunately,
it turns out that the number of transcripts (ℓi, P ), when counted naively by multiplying the total
possible lists (ℓi) by the total possible sets P , is far too large to get our switching lemma due to the
vast amount of possible (ℓi).

However, it turns out that (ℓi) contains redundant information. Say P is a partial transcript for
ρ if it can be completed with a suitable (ℓi) to form a transcript for ρ. We can show that given ρ and
P that is a partial transcript for it, there is a unique list (ℓi) that completes P to a full transcript.
Hence ∑

large transcripts
(ℓi,P )

Pr
ρ
[(ℓi, P ) is a large transcript for ρ]

=
∑

partial transcripts P

Pr
ρ
[P is a partial transcript for ρ] (2)

which is a sum of far fewer terms, making the union bound feasible. It remains to bound each
individual term in the sum.

We want to bound the probability a particular P is a partial transcript for ρ. If we were given
the complementary (ℓi)’s, this would be easy. The (ℓi) along with P would give a transcript of
the specific set of ≥ t variables that the CDT queried, which ρ must keep alive in order to have
any hope of (ℓi, P ) being a transcript for ρ. This would happen with probability ≤ pt, which is a
sufficiently small probability to apply the union bound. However, the trickiness arises due to ℓi not
being specified. It turns out different (ℓi) might couple with the same P to form transcripts for
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different ρ! Therefore if we use no information about ρ, then we have no hope of recovering a fixed
(ℓi).

On the other hand, if we were given complete information about ρ, then we can recover a unique
(ℓi) or deduce none exists. However, this eliminates all randomness of ρ and we get the trivial large
upper bound of 1 for each term. Therefore, for such an approach to work, we need to condition
on partial information about ρ and hope that it is enough information to recover (ℓi) but not too
much information to the point where we get a weak bound on the probability due to the lack of
randomness.

This motivates us to think of a restriction by first assigning a uniform random string z to x
and then covering up a p-subset Λ with stars to create a restriction ρ(Λ, z). The intuition for this
is that hopefully the random string z, combined with P , will be enough information from ρ to fix
(ℓi), from which we can use the remaining randomness in ρ (namely Λ) to obtain the pt bound.
In particular, we hope that there is a “transcript searcher” S, which on input (z, P ), can recover a
completed transcript (ℓi, P ) such that all ρ designed by initially assigning x = z will have partial
transcript P only if (ℓi, P ) is its transcript. If such a function exists, then we could say

Pr
ρ
[P is a partial transcript for ρ] = Ez∼Un Pr

Λ
[P is a partial transcript for ρ(Λ, z)]

= Ez∼Un Pr
Λ
[S(z, P ) is a transcript for ρ(Λ, z)]

≤ pt

where the last inequality follows since ρ must keep the variables in the transcript alive. Alas, such
an S cannot exist. There can exist different restrictions created from the same ground assignment z
that are witnessed by different completions of P (this ambiguity is an unavoidable side effect of not
being able to condition on all information about ρ). We cannot hope for a unique completion, but
what if our S output all of these potential completions with decent probability over the randomness
in z? Say ρ is good if P is a partial transcript for it. In formal terms, say we can construct S
such that for any good ρ, Prz[S(z, P ) is a partial transcript for ρ] ≥ γ (earlier we were demanding
γ = 1, which turned out to be impossible). Then we can deduce

Pr
ρ
[P is a partial transcript for ρ] = EΛ Pr

z
[ρ(Λ, z) is good]

= EΛ
Prz[S(z, P ) is a transcript for ρ(Λ, z)]

Prz[S(z, P ) is a transcript for ρ(Λ, z)|ρ(Λ, z) is good]

≤ 1

γ
EΛ Pr

z
[S(z, P ) is a transcript for ρ(Λ, z)

=
1

γ
Ez Pr

Λ
[S(z, P ) is a transcript for ρ(Λ, z)]

≤ pt/γ. (3)

Stringing Equations (1),(2), and (3) lets us bound

Pr
ρ
[DT(F |ρ) ≥ t] ≤ (pt/γ) ·#{partial transcripts P}

It turns out we can define our partial transcripts P and construct a transcript searcher such that
the above term is small enough to give us the desired switching lemma. See Theorem 4.1 for the
technical details.
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2.1.1 Comparison to [Lyu22]

Although the proof structure for proving our switching lemma is similar to Lyu’s [Lyu22] proof of
the AC0 switching lemma, some changes are necessary to accommodate the general structure of
G(k) ◦ {AND,OR} circuits.

• We need to create a more complex CDT that can compute G(k) ◦ {AND,OR} circuits, and
a corresponding new definition of witnesses/partial witnesses that records the transcript of
the complex CDT so that our witness searcher can effectively reconstruct a transcript given
information about ρ and a partial witness.

• Because our CDT contains more steps, there will naturally be more possible transcripts/witnesses.
As the switching lemma hinges on a low quantity of possible partial witnesses to union bound
over, we need to argue with our new CDT, the number of partial witnesses can be controlled by
the parameter k. This makes designing the CDT and partial witness to be an act of balancing
contrasting parameters

– For example, the more complicated a CDT procedure is, the closer to the true deci-
sion tree depth it will reach (and hence a tighter bound on Prρ[CDT(F |ρ) ≥ t] can be
expected), but the larger the possible number of transcripts it will have (thereby increas-
ing the number of terms we union bound over). Therefore, this approach demands the
designed CDT to be complicated enough to give a small depth decision tree with high
probability, but simple enough to be tractable to analyze with a union bound.

– Similarly, the more that a partial witness keeps track of, the larger amount of possible
partial witnesses we will need to union bound over. However, if we keep track of too
little, there will not exist an effective witness searcher that can use the information from
the partial witness to construct the whole witness. Hence we need to keep track of just
the right amount of information.

• In the argument for AC0 circuits, one would show a multi-switching lemma on depth 2 AC0

circuits. In other words, one would argue that a collection of AC0
2 circuits simultaneously

simplify after a one random restriction is applied to all of them. Rather than the natural idea
of proving a switching lemma for the analogous GC0

2(k) circuits, we consider the hybrid class
of G(k) ◦ {AND,OR} circuits. It turns out a switching lemma on these simpler circuit classes
suffice to depth reduce and prove bounds on GC0

d(k) as we will see below.

2.2 The Depth Reduction Lemma

The multi-switching lemma gives a simplification lemma for depth 2 circuits. To extend this to
constant depth circuits, we would like to iteratively decrease the depth of the circuit and induct.
The argument for AC0 circuits was quite simple. Say we have a depth 3 OR ◦ AND ◦ OR circuit F .
Using the switching lemma, we can say with high probability, F |ρ is an OR ◦ DTt circuit. We now
expand each bottom layer decision tree into an OR ◦ ANDt circuit by enumerating over all 1-paths.
Consequently this simplifies F |ρ to a OR ◦ (OR ◦ ANDt) = OR ◦ ANDt circuit, since an OR of OR of
variables is simply a single OR over all variables involved, getting us a depth reduction from depth
3 to 2.

What happens when we try the same argument for a k-OR ◦ k-AND ◦ OR circuit F? By our
switching lemma, F |ρ, with high probability will simplify to a k-OR ◦ DTt circuit. We can then
unravel the decision trees into OR2t ◦ ANDt CNFs, resulting in a k-OR ◦OR2t ◦ ANDt circuit. Here,
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we reach an issue: a k-OR ◦ OR circuit is not necessarily itself a k-OR function! We could have up
to (k− 1)2t input bits of a k-OR ◦OR2t be 1 while still evaluating to 0 (set all 2t bits of k− 1 of the
bottom depth ORs to be 1). The best we can do is say the function is in G((k − 1)2t + 1), which is
too large of a blowup in the “k” parameter for our switching lemma to handle.

We rewind a bit to our k-OR ◦ DTt circuit and unravel the bottom-layer trees to OR2t ◦ ANDt

DNFs by enumerating over 1-paths. But we now make the key observation about each DNF which
follows from the fact any assignment uniquely defines a path on a decision tree: any assignment of
x makes at most 1 ANDt clause true. To use more standard terminology, the DNF created from
decision trees is unambiguous. This means the pathological case above of all clauses under k − 1
OR2t gates being satisfied cannot happen. In fact, we can prove something stronger. Since at most
one clause under each OR2t gate can be satisfied in the unraveled k-OR ◦ OR2t ◦ ANDt circuit, the
number of middle layer OR2t clauses that are satisfied will be precisely the total number of bottom
layer ANDt clauses that are satisfied. Hence, a k-OR over the OR gates is exactly the same as a
k-OR over the ANDt clauses themselves, and we can indeed collapse to a k-OR ◦ANDt circuit! This
gets us our depth reduction. A slightly more involved argument is carried out to show the more
general G(k)◦DTt circuit can be calculated by a G(k)◦ANDt circuit, but the heart of the argument
is captured in the k-OR case itself.

2.3 Putting It All Together

We now have all the ingredients to simplify GC0
d(k) circuits. The argument will be the following

inductive process, where we are effectively inducting on circuits of the form GC0
d(k) ◦ {AND,OR}w

rather than GC0
d directly. Given a GC0

d(k) circuit,

1. Add a trivial (d+ 1)-st layer at the bottom that is simply the identity gate (think of it as an
AND1 gate)

2. By the multi-switching lemma, we know the depth 2 G(k) ◦ {AND,OR} subcircuits simplify
to DTt trees with high probability, resulting in a GC0

d−1(k) ◦ DTt circuit.

3. By the depth reduction lemma, each of the bottom depth 2 G(k) ◦ DTt subcircuits can be
calculated by a G(k) ◦ {ANDt,ORt} circuit, resulting in a GC0

d−1(k) ◦ {AND,OR} circuit.

4. The depth has reduced by 1, so we go back to Step 2 and induct.

This argument allows us to use the multi-switching lemma along with the depth reduction lemma
to establish size lower bounds for GC0

d(k) bounds. We show a formal argument of this outline in
Section 4.

3 Preliminaries

3.1 Notation

[n] = {1, 2, . . . , n} denotes the set of the first n positive integers.
([n]
k

)
denotes the set of all size k

subsets of [n]. log is assumed to be in base 2. This paper concerns constant-depth circuits, and so
the depth variable, d, should be treated as a constant. In particular hidden constants in O(·) or
Ω(·) may depend on d. For S ⊂ [n], we denote xS =

∏
i∈S xi.
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3.2 Random Restrictions and Partial Assignments

A partial assignment or restriction is a string ρ ∈ {0, 1, ⋆}n. Intuitively, a ⋆ represents an index
that is still “alive” and hasn’t been fixed to a value yet.

An alternative way of defining a restriction is by the set of alive variables and a “ground
assignment” string. Given a “⋆ set” Λ and a ground assignment z ∈ {0, 1}n, we define ρ(Λ, z) to be
the partial assignment where we assign

ρ(Λ, z)i =

{
⋆ i ∈ Λ

zi i /∈ Λ

Sometimes, Λ may be in the form of an indicator {0, 1}n string, where the set is defined to be the
set of indices containing a 1.

We also define a composition operation on partial assignments. For two restrictions ρ1, ρ2, define
ρ1 ◦ ρ2 so that

(ρ1 ◦ ρ2)i =

{
ρ1i ρ1i ̸= ⋆

ρ2i ρ1i = ⋆.

Intuitively, one can see this as fixing bits determined by ρ1 first, and then out of the remaining alive
positions, fix them according to ρ2.

A random restriction is simply a distribution over restrictions. A common random restriction
we will use is Rp, the distribution where each index will be assigned ⋆ with probability p, and 0, 1
each with probability 1−p

2 .
The main reason for defining restrictions is to observe their action on functions. Given a restric-

tion ρ and function f : {0, 1}n → {0, 1}, we define f |ρ : {0, 1}n → {0, 1} to be the function mapping
f |ρ(x) := f(ρ ◦ x).

3.3 Models of Computation

Circuits

We measure the size of a circuit by the total number of wires (including input wires) in it. We
define the width of a DNF or CNF to be the maximum number of variables in any of its clauses.
We also use k-DNF (resp. k-CNF) to denote DNF (resp. CNF) of width at most k. AC0

d are depth
d circuits with unbounded fan-in whose gate set is {AND,OR,NOT}. In general, if we have a gate
G, a subscript Gk will refer to its fan-in (in this case, G is fixed to have fan-in k). We now define
more general circuit classes that we analyze in this work.

Definition 3.1 (k-OR/k-AND/AC0
d(k)). Define k-ORm : {0, 1}m → {0, 1} to be a function that

evaluates to 1 iff x contains ≥ k ones. Analogously define k-ANDm to be 0 iff x contains ≥ k
zeros. Define AC0

d(k) to be the class of depth d circuits with unbounded fan-in whose gate set is
{k′-AND, k′-OR,NOT} for all k′ ≤ k.

In more generality, we define G(k) gates and GC0
d(k) circuits.

Definition 3.2 (G(k)/GC0(k)). Define a gate set G(k) to be the set of all arbitrary fan-in gates
such that they are constant on inputs with ≥ k ones (we call such gates orlike) or are constant on
inputs with ≥ k zeros (we call such gates andlike). GC0(k) is the class of constant depth circuits
made by G(k) gates.
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In the rest of the paper, we may write circuit classes GC0
d(k) ◦ {AND,OR} or G(k) ◦ {AND,OR}.

In the literature, this usually refers to the circuit class whose gates above the bottom layer are in
G(k), and whose bottom layer gates can either be AND or OR with no restriction on the choice.
However, in this paper, assume this notation implicitly restricts AND gates to only be under orlike
G(k) gates and OR gates to only be under andlike G(k) gates.

On top of being an alternate generalization of AND/OR gates, G(k) gates capture arbitrary LTFs
that are “unbalanced” in some sense. We will use the {±1} bits to define these, but one can convert
between {0, 1} and {±1} via the map b→ (−1)b.

Definition 3.3 (Balance of an LTF/TC0(k)). Consider an arbitrary LTF f : {±1} → {±1} with
f(x) = sgn(

∑
wixi − θ). Let σ : [n] → [n] be a permutation ordering (wi) such that |wσ(1)| ≤

· · · ≤ |wσ(n)|. Define the balance of f (denoted as bal(f)) to be the smallest integer k such that
−
∑

i≤k |wi| +
∑

i>k |wi| < |θ|. Now denote TC0(k) to be the class of constant depth circuits made
out of THR gates with balance ≤ k.

We prove that up to negations in the inputs and output, THR gates with balance k are in G(k)
in the appendix (Theorem A.1). All results in this paper hold for TC0(k), but from now on, we will
only refer to GC0(k) as it is the more general class.

Decision Trees

We assume knowledge of decision trees (see Definition 3.13 in [O’D14] for a reference). We will be
using slightly more complex models of decision trees in this work.

Definition 3.4 (Partial Decision Trees). For a collection of functions F = {F1, . . . , Fm}, we say
F can be computed by an r-partial depth-t DT if there exists a singe depth r tree such that for all
Fi and paths π of T , Fi|π can be computed by a depth t decision tree (here, F |π is F acted on by
the restriction induced by taking path π down T ).

Definition 3.5 ((d, C)-tree). Let d be an integer and C a computational model (e.g. a circuit class).
A function is computable by a (d, C)-tree if it is computable by a depth t decision tree with C functions
as its leaves. That is, there exists a depth d decision tree T such that for every path π in T , F |π ∈ C.

3.4 Pseudorandomness and Probability

We will use various pseudorandom primitives and terminology. We will use Un to denote the uniform
distribution over n bits unless specified otherwise.

Definition 3.6 (ε-error PRG/Seed Length). A distribution D over {0, 1}n is called an ε-error PRG
for a computational model C if for all C ∈ C,

|Ex∼Un [C(x)]− Ex∼D[C(x)]| ≤ ε

The seed length s of D is defined to be the minimal quantity s such that the following is true: there
exists a polytime computable function G : {0, 1}s → {0, 1}n such that the distribution of G(z) over
z ∼ Us is exactly D.

Definition 3.7 ((ε, k)-wise independent source). A distribution D over {0, 1}n is an (ε, k)-wise
independent source if for all 1 ≤ i1 < · · · < ik ≤ n and α ∈ {0, 1}k,

| Pr
x∼D

[xi1xi2 . . . xik = α]− 2−k| < ε.
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There exists constructions of these sources with seed length O(log log n+k+log(1/ε)) [AGHP90].

Definition 3.8 (k-wise Independent Hash Family). Let H be a distribution over hash functions
mapping {0, 1}n → {0, 1}m. We say that H is k-wise independent if for any k input-output pairs
(x1, y1), . . . , (xk, yk) ∈ {0, 1}n × {0, 1}m where x1, . . . , xt are distinct, it holds that

Pr
h∼H

[∀i ∈ [k], h(xi) = yi] = 2−km.

Such functions can be sampled using O(k(n+m)) bits (Chapter 3.5.5 of [Vad12]).

Definition 3.9 (k-wise p-bounded Subset). Let Λ be a random subset of [n]. Λ is a k-wise p-bounded
subset iff for all subsets S ⊂ [n] of size ≤ k, PrΛ[S ⊂ Λ] ≤ p|S|.

For example, Rp is n-wise p-bounded.

3.5 Fourier Analysis

Every Boolean function f : {±1}n → {±1} has a unique representation as a multilinear real
polynomial

f(x) =
∑
S⊂[n]

cSx
S .

Given f , we can think of the Fourier transform of f , f̂ to be a function mapping 2[n] → R such that
f̂(S) = cS . This is well defined by the uniqueness of the polynomial representation of S. One can
explicitly compute f̂(S) = Ex[f(x)x

S ]. By Parseval’s, one can derive
∑

S⊂[n] f̂(S)
2 = 1. There are

various quantities involving the Fourier coefficients that we will work with.

Definition 3.10 (Fourier Tails). For a Boolean function f , define

W≥k[f ] :=
∑
|S|≥k

f̂(S)2.

Definition 3.11 (Discrete Derivative/Influence). For Boolean f and i ∈ [n], define the discrete
derivative

Dif(x) =
f(x(i→1))− f(x(i→−1)

2

where x(i→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn). Now for S ⊂ [n] with S = {i1, . . . , ik}, define

DSf = Di1Di2 . . . Dik .

Now for S ⊂ [n], define the influence

InfS(f) = Ex∼{±1}n [DSf(x)
2].

Finally, define the degree k influence

Infk(f) =
∑
|S|=k

InfS(f).
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4 Simplification Theorem of GC0
d(k) Circuits

Theorem 4.1. Let F be computable by a depth-2 G(k)◦{AND,OR}w circuit. Let Λ be a (t+w)-wise
p-bounded subset of [n], and x a uniform string. Then

Pr
Λ,x

[DT(F |ρ(Λ,x)) ≥ t] ≤ (20pw)t2k.

Proof. The proof will follow that of Section 5 in [Lyu22]. We urge the reader to first read the
overview given in Section 2.1. As discussed there, the main differences between this proof and
the one presented there are present in the constructions of the canonical decision tree and witness
searchers, the definition of witnesses, and the counting of partial witnesses. These are altered to
support the more general G(k) gates. Besides this, the general proof strategy remains the same.
Let m be the fan-in of the F . We present a procedure that constructs a decision tree (which we
deem the “Canonical Decision Tree”).

Algorithm 1: Canonical Decision Tree
Input: (orlike G(k)) ◦ ANDw circuit F = G(C1, . . . , Cm), black-box access to a string

α ∈ {0, 1}n.
initialize:

j∗ ← 0
x← (⋆)n

ctr ← 0
while j∗ < m do

Find the first j > j∗ such that Cj(x) ̸≡ 0. If no such j exists, exit the loop.
Bj ← the set of unknown variables in Cj(x) (may be empty).
Query αBj .
Set xBj ← αBj .
if Cj(x) = 1 then

ctr ← ctr + 1;
if ctr = k then

return G(1m)
end

end
j∗ ← j

end
return F (x ◦ 0n).

The difference between the CDT defined in [Lyu22] and the one presented here is the use of ctr.
Intuitively, this is added in to keep track of the number of satisfied clauses we see before we reach
our limit of k. We rigorously prove this in the following claim.

Claim 4.2. The CDT correctly outputs F (α).

Proof. The CDT scans the clauses in order to find the first one not fixed to zero. There are only
two return statements in the algorithm, so we consider the two cases of terminating on each one.
Suppose we terminate at the first return statement and output F (1m). Notice ctr is incremented
each time the CDT encounters a satisfied clause. Therefore, when ctr = k, at least k Ci evaluate to
1, and therefore F (C1, . . . , Cm) = F (1m) by virtue of F ∈ G(k) being orlike, proving correctness.
Now suppose we terminate after the while loop and output C(x ◦ 0). If CDT finishes the while loop
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without terminating, that must mean all clauses must be determined by the partial assignment x.
This is because for any clause Cj′ , if the clause wasn’t already determined in the algorithm when
j∗ = j′, all unknowns of Cj′ would have been queried and fixed in the partial assignment x, thereby
determining it. Therefore, in this case, C(x) is determined, and in particular is equal to C(x ◦ 0n).

Therefore, CDT is indeed a decision tree computing F . Define CDT(F ) to be the depth of the
canonical decision tree TF .If ρ is bad (i.e. DT(F |ρ) ≥ t), then clearly CDT(F |ρ) ≥ DT(F |ρ) ≥ t and
so TF |ρ will result in at least t queries for some choice of α (this is equivalent to saying that some
path of TF |ρ must have length ≥ t). We define a witness that will effectively be the transcript of
the algorithm on this particular α.

Definition 4.3. Let F be the circuit described above and ρ a restriction. Let t ≥ 1. Consider the
tuple (r, ℓi, si, Bi, αi) where

• r ∈ [1, t+ k] is an integer

• (ℓ1, . . . , ℓr) ∈ [m]r is an increasing list of indices

• (s1, . . . , sr) is a list of non-negative integers, at most k of which are allowed to be 0, such that
s :=

∑r
i=1 si ∈ [t, t+ w − 1]

• (B1, . . . , Br) is a list of (potentially empty) subsets of [w] satisfying |Bi| = si.

• (α1, . . . , αr) is a list of (potentially empty) bit strings satisfying |αi| = si.

(r, ℓi, si, Bi, αi) is called a t-witness for ρ if there exists an α ∈ {0, 1}n such that

• When we run TF |ρ on α, Cℓi is the i-th term queried by TF |ρ .

• TF |ρ queries si variables in Cℓi , and the relative location of those variables within Cℓi are
specified by set Bi.

• TF |ρ receives αi in response to its i-th batch query.

The size of the witness (r, ℓi, si, Bi, αi) is defined to be s :=
∑r

i=1 si. We may denote the size of
a witness W as size(W ).

Claim 4.4. For every ρ such that DT(F |ρ) ≥ t, there exists a t-witness for ρ

Proof. We simply run TF |ρ on α that causes at least t queries to be issued. We then record the
transcript until the number of variables queried exceeds t, after which we halt. To be more explicit,
we let r be the number of times the CDT stops at a clause before either outputting a bit or exeeding
t queries. At the ith stop, say on clause Cj , we set ℓi = j, si to be the number of unknown variables
queried (which may be 0), Bi to be the subset of [w] indicating the relative positions of the variables
in the clause, and αi being the query replies received from the black-boxed α. We can first verify
this creates a valid tuple.

• r ∈ [1, t + k]. Every time we stop at a clause, either it evaluates to 1 and we increment ctr,
or we have to query at least 1 variable. Since ctr can incremented at most k times and we
can query variables from at most t clauses before reaching our quota of t queried variables, it
follows we stop at most t+ k times.
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• (ℓ1, . . . , ℓr) ∈ [m]r is an increasing list of indices since the CDT linearly sweeps the clauses in
increasing index order.

• (s1, . . . , sr) is a list of non-negative integers, at most c of which are allowed to be 0, such that
s :=

∑r
i=1 si ∈ [t, t+ w − 1]. A particular si being zero implies that the CDT’s ith stop was

at a clause Cj that was already determined to be 1, and hence ctr was incremented. Since
ctr can be incremented at most k times, at most k of the si’s are zero. s is the total number
of variables queried before halting. Notice after the penultimate clause is queried, there are
< t clauses queried. Consequently when the ultimate clause is queried, there clearly will be
< t + w variables queried, since k is the width of the clause. Of course, since the transcript
halted after this clause, ≥ t variables had to be queried.

• (B1, . . . , Br) is a list of (potentially empty) subsets of [w] satisfying |Bi| = si trivially by
construction.

• (α1, . . . , αr) is a list of (potentially empty) bit strings satisfying |αi| = si trivially by con-
struction.

We can then easily see by construction of the tuple, it is indeed a t-witness for ρ.

We note that the difference between Definition 4 in [Lyu22] and the one here is the relaxation
to allow (s1, . . . , sr) to contain up to k zeros, rather than to all be positive. As evident in the proof,
this is to handle cases the CDT encounters a clause that was already fixed to 1, which causes the
corresponding si value to be 0. This wasn’t recorded in Lyu’s witness definition because in the
case of CNFs, one satisfied clause determines the value of the circuit, and the CDT immediately
halts. Why do we still record that the CDT didn’t query any variables at a clause instead of just
ignoring this behavior and moving on? It turns out if we don’t include this piece of information,
the witness searcher we create will not have enough information to reconstruct the whole witness
(see the “balancing act” discussion in Section 2.1.1).

We now move on to define partial witnesses.

Definition 4.5. Let F be a circuit and ρ a restriction. We call (r, si, Bi, αi) a partial t-witness for
ρ if there exists (ℓ1, . . . , ℓr) such that (r, ℓi, si, Bi, αi) is a t-witness for ρ.

We note the following important claim.

Claim 4.6. If P is a partial witness for ρ, then there exists exactly one list of integers (ℓi) such
that (ℓi, P ) is a witness for ρ.

Proof. By construction of Algorithm 1, ℓ1 must be be the index of the first clause not fixed to 0 by
ρ. But now, we notice ℓ2 must be the index of the first clause after Cℓ1 not fixed to 0 by ρ ◦α1. We
then continue this induction to get our unique list (ℓi), Where ℓj will be forced to be the index of
the first clause after Cℓj−1

that is not fixed to 0.

Therefore, by Claims 4.4 and4.6

Pr
ρ
[DT(F |ρ) ≥ t] ≤

∑
(ℓi,P )

Pr
ρ
[(ℓi, P ) is a t-witness for ρ] ≤

∑
P

Pr
ρ
[P is a partial t-witness for ρ]] (4)

where P ranges over all partial t-witness tuples.
Going back to our proof, we now define our witness searcher S.
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Algorithm 2: Witness Searcher S
Input: (orlike G(k)) ◦ ANDw circuit F (C1, . . . , Cm), ground assignment z ∈ {0, 1}n, partial

witness W = (r, si, Bi, αi) .
initialize:

j∗ ← 0
x← (⋆)n

ctr ← 1
while ctr ≤ r do

while j∗ < m do
Find the first j > j∗ such that Cj(z) ≡ 1. If no such j exists, exit the inner while
loop.
ℓctr ← j
Query αBj .
Set the Bctr portion of z to be αctr.
ctr ← ctr + 1
j∗ ← j

end
end
return (ℓi,W )

We now prove the following essential property about S, stating in a probabilistic way, it can use
a partial witness to reconstruct a total witness for ρ.

Lemma 4.7. Let P be a partial witness, and let s be its size. Define a restriction ρ to be good for
P if P is a partial t-witness for it.

Pr
z
[S(z, P ) is a t-witness for ρ(Λ, z)|ρ(Λ, z) is good for P ] = 2−s

Furthermore this event is solely dependent on zI , where I is the set of variable indices referred
to by the unique completion of P with respect to ρ.

Proof. If ρ = ρ(Λ, z) is good, then by Claim 4.6 we know there exists unique ℓi such that (ℓi, P )
witnesses ρ. In particular, we know that Λ must contain all the indices I that (ℓi, Bi) identify. Let
Ij be the index set identified by ℓj and Bj (so I = I1 ⊔ · · · ⊔ Ir). Now condition on a fixed ρ. This
means all bits in z not covered by Λ are fixed. In particular, only source of randomness left are the
bits covered by Λ, which is a superstring of zI . We now claim every zIj is assigned the unique bit
string such that Cℓi |zIj ̸≡ 0 (not forced to be unsatisfied) iff S successfully outputs (ℓi, P ). This
consequently proves the lemma, since this has probability 2−|I| = 2−s of happening.

By construction of TF |ρ we know that all clauses before Cℓ1 was falsified by ρ. Upon inspection,
we see S correctly skips past these clauses (as z is a completion of ρ). Now we note Cℓ1 was not
fixed to 0 ρ, causing TF |ρ to query all unknowns in Cℓ1 at the time (which might be nothing if Cℓ1

was fixed to 1), which is xI1 . Inspecting S, we see S will set the correct ℓ1 iff Cℓ1(z) is satisfied iff
zI1 is assigned the unique string such that Cℓi |zIj ̸≡ 0 (since all variables outside I1 ocurring in Cℓ1

is fixed by ρ). S then (importantly) replace zI1 with αI1 so that all variables encountered thus far
are assigned exactly as TF |ρ did.

We then repeat this argument r times, noting that due to z ◦ αI1 ◦ · · · ◦ αIj being a completion
of ρ ◦ αI1 ◦ · · · ◦ αIj , S rightfully skips all clauses between Cℓj and Cℓj+1

. We then similarly argue
that S will set ℓj+1 to be the j + 1st clause TF |ρ queries iff zIj+1 is the unique string such that
Cℓj+1

|zIj+1
̸≡ 0.
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Combining Equation (4) and Lemma 4.7, it follows that

Pr
ρ
[DT(F |ρ) ≥ t] ≤

∑
P

Pr
ρ
[P is a partial t-witness for ρ]

≤
∑
P

EΛ
Prz[S(z, P ) is a t-witness for ρ(Λ, z)]

Prz[S(z, P ) is a t-witness for ρ(Λ, z)|ρ(Λ, z) is good]

≤
∑
P

2size(P )Ez Pr
Λ
[S(z, P ) is a t-witness for ρ(Λ, z)] (5)

Notice a necessary condition for a restriction ρ(Λ, z) to be t-witnessed by a size-s W is for Λ to
cover the s variables that W recorded as the CDT needing to query, which happens with probability
≤ ps (as s ≤ t + w and Λ is (t + w)-wise p-bounded). Hence, every term in the sum in (5) can be
bounded by psize(P ) and it remains to find the number of partial t-witness tuples P .

For a fixed s, we can bound the number of potential partial witnesses naively by noting

• the number of choices of (r, si) can be bounded by the number of ways to write s as the sum
of at most s + k nonnegative integers, which is

∑s+k
r=1

(
s+r
r

)
≤
∑s+k

r=1

(
2s+k
r

)
≤ 22s+k (notice

that we get a larger count here than the analogous quantity of 22s in Lyu’s proof [Lyu22],
which is a side effect of looking at a more complicated circuit class),

• the choices for (Bi) can be bounded by
∏

i

(
w
si

)
≤ ws,

• and the choices for (αi) can be bounded by 2s,

giving a total count of (8w)s2k. Combining this count with the previous paragraph’s observation
and (5), while remembering to sum over all sizes, we derive

Pr
ρ
[DT(F |ρ) ≥ t] ≤

t+w−1∑
s=t

(2p)s(8w)s2k =
t+w−1∑
s=t

(16pw)s2k ≤ (20pw)s2k.

Remark. One may ask whether the failure probability of (20pw)t2k tight. We show that PARkw can
be expressed as a G(k) ◦ ANDw cirucit and prove this saturates the above bound in the Appendix
(Theorem A.2).

After defining witnesses, partial witnesses, and witness searchers for G(k) ◦ {AND,OR} circuits,
we notice that Lyu’s proof of the multi-switching lemma directly goes through with these definitions
with zero changes (even down to the exact algorithm of the canonical partial decision tree and global
witness searcher). Due to this, we defer the proof of the multi-switching lemma to the appendix.
However, we do highlight here what properties about the circuit class is needed in order to invoke
Lyu’s lift from a switching lemma to a multi-switching lemma. The key properties needed were that

• the number of partial witnesses for a depth t canonical decision tree needed to be small, and

• there needed to exist a witness searcher function S such that for all ρ and a partial witness
for ρ, S recovers the full witness with decent probability over an advice string.

• given a complete witness, there needed to be a small chance that a random restriction witnessed
it
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Theorem 4.8. Let F = {F1, . . . , Fm} be a list of G(k) ◦ ANDw circuits on {0, 1}m. Then

Pr
ρ∼Rp

[F|ρ does not have r-partial depth-t DT] ≤ 4(64(2km)1/rpw)t

Proof. See Theorem A.5.

Remark. At this point, we can observe an aspect of the expression that illuminates an important
unifying flavor of the rest of the results. Notice that the only difference in the failure probability
expression between the standard AC0 multi-switching lemma in (lyu) and the above one for G(k) is
that every occurrence of m is multiplied by a factor of 2k. This means if constants in the exponent
can be ignored, the multi-switching lemma asymptotically gives the same result as the AC0 version
if 2k ≈ m. In particular, we can expect any result for size s AC0 circuits to immediately extend
to GC0(log s) circuits with no loss in parameters! This will be demonstrated in various settings in
future sections.

With our multi-switching lemma in hand, we can simplify depth 2 circuits with high probability.
To extend this to constant depth circuits, we also require a depth reduction lemma. In the case of
AC0, this was trivial enough to embed in the main proof, but in the case of GC0(k), we need to be
more delicate and use more specific properties of decision trees.

Lemma 4.9. Any depth 2 circuit of the form G(k) ◦ DTw with top gate fan-in m can be expressed
as a circuit in G(k) ◦ {AND,OR}w of size m2w.

Proof. Say the circuit we start with is F (D1, . . . , Dm), where Di are the bottom layer depth w
decision trees. Assume F is orlike (the andlike case is analogous). By enumerating over all 1-paths,
expand out each Di as an OR of ANDs, namely Ci

1 ∨Ci
2 ∨ · · · ∨Ci

2w . Now define a function F ′ over
m2w bits, where

F ′(x11, . . . x
1
2w , x

2
1, . . . , x

m
2w) =

{
F (1m)

∑
i,j x

i
j ≥ k

F (
∨2w

i=1 x
1
j , . . . ,

∨2w

i=1 x
m
j ) otherwise

Clearly by construction, F ′ ∈ G(k). Therefore to prove the lemma, it suffices to show that over all
input assignments, F (D1, . . . , Dm) = F ′(C1

1 , . . . C
1
2w , C

2
1 , . . . , C

m
2w).

If ≥ k of the Di are satisfied, we know since F is an orlike G(k) function, F (D1, . . . , Dm) =
F (1m). This also clearly implies ≥ k of the Ci

j are satisfied. Therefore by construction of F ′,
F ′(C1

1 , . . . , C
m
2w) also evaluates to F (1m).

If < k of the Di are satisfied, then we need to use the following observation. For any assignment
of inputs, at most one of the clauses Ci

1, . . . , C
i
2m can be satisfied for each i, since each assignment

uniquely defines a path in a decision tree. In more conventional terms, the DNF created by the
decision tree Di is unambiguous. Therefore the amount of Di satisfied is exactly equal to the
number of Ci

j satisfied, and so < k clauses Cj
i are satisfied. This forces us into the second case of

the piecewise definition of F ′, and so

F ′(C1
1 , . . . , C

m
2w) = F (

2w∨
i=1

C1
j , . . . ,

2w∨
i=1

Cm
j ) = F (D1, . . . , Dm)

as desired.

We have finally built up the tools to prove our main result: a constant depth simplification
lemma.
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Theorem 4.10. Let G be any gate, and let F be a G ◦ GC0
d(k) circuit of size m. Then for p =

1
128(m2k)1/w

(128w(m2k)1/w)−d+1 and any t ≥ 1,

Pr
ρ∼Rp

[F |ρ is not computed by a ((2d − 1)t, G ◦ DTw)-decision tree] ≤ 4d · 2−t

Proof. WLOG assume the circuit is layered (all paths down the circuit are of length exactly d+1).
We first append an extra layer of {AND,OR}1 gates to the bottom of the circuit so that the input
level fan-in is 1. We then apply a random restriction ρ0 ∼ Rp0 with p0 = 1

128(m2k)1/w
and use

Theorem 4.8 on all the depth-2 subcircuits to deduce that

Pr
ρ0∼Rp0

[F |ρ is not computed by (t, G ◦ GC0
d−1(k) ◦ DTw)-decision tree] ≤ 4 · 2−t.

Letting F (0) be a good tree from above which does simplify, we see that there are at most 2t leaves
of the partial decision tree, with each leaf containing a G◦GC0(k)d−1◦DTw circuit (which we will refer
to as “leaf-circuits”). By Lemma 4.9, these circuits can be simplified to G ◦GC0

d−1(k) ◦ {AND,OR}w
circuits. We apply Theorem 4.8 on the depth-2 subcircuits of a particular leaf-circuit with p1 =

1
128w(m2k)1/w

, using 2t instead of t, union bound over all 2t leaves, and then apply Lemma 4.9 to get
that

Pr
ρ1∼Rp1

[F (0)|ρ1 is not a (t+ 2t, G ◦ GC0
d−2(k) ◦ {AND,OR}w-decision tree] ≤ 4 · 2−2t · 2t = 4 · 2−t.

Iterating this argument d−2 more times, where we apply Theorem 4.8 on the depth 2 subcircuits
using pi = 1

128w(m2k)1/w
and 2it instead of t on the ith iteration, and then union bound over all

2(2
i−1)t leaves, we get that on the ith iteration, our desired single depth simplification happens with

probability 2 ·2−t. If the desired simplifications happen on all iterations, we result in a ((2d−1)t, G◦
DTw)-decision tree with probability at most

∑d−1
i=0 4 · 2−t = 4d · 2−t (via a union bound over the d

iterations) and with a restriction from Rp where p =
∏

pi =
1

128(m2k)1/w
· (128w(m2k)1/w)−d+1. The

conclusion follows.

With this theorem, we can let G be a G(k) gate to get the following corollary.

Corollary 4.11. Let C be a GC0
d(k) circuit of size m and let p = 1

40(128(k+logm))d−1 . Then

Pr
ρ∼Rp

[DT(C|ρ) ≥ t] ≤ 2 · 2−
t

2d−1
+k

Proof. Applying Theorem 4.10 to C with w = k + logm, it follows for p1 =
1

128(128(k+logm))d−2 ,

Pr
ρ∼Rp1

[C|ρ is not computed by a ((2d−1 − 1)t,G(k) ◦ DTk+logm)-decision tree] ≤ 4d · 2−t.

Fix a ρ such that C simplifies to such a tree, T . By Lemma 4.9, the leaf circuits simplify to
G(k) ◦ {AND,OR}k+logm circuits. Let ℓ be a leaf, and let Cℓ be the associated leaf-circuit. By
Theorem 4.1, we know that for p2 = 1/40w, Prτ∼Rp2

[DT(Cℓ|τ ) ≥ 2d−1t] ≤ 2−2d−1t2k. Union
bounding over all ≤ 2(2

d−1)t leaves ℓ, it follows that

Pr
ρ∼Rp1 ,τ∼Rp2

[C|ρ◦τ is not computed by a ((2d−1 − 1)t,DT2d−1t)-decision tree]

≤ 2(2
d−1)t · 2−2d−1t2k + 4d · 2−t

≤ 2 · 2−t+k. (6)
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Because ρ ◦ τ ∼ Rp1p2 , p := p1p2 =
1

40(128(k+logm))d−1 , and a ((2d−1− 1)t,DT2d−1t)-tree is simply
a DT2d−1, (6) implies

Pr
ρ∼Rp

[DT(C|ρ) ≥ (2d − 1)t] ≤ 2 · 2−t+k.

The desired result then follows after a change of variables from t→ t/(2d − 1).

5 Applications of The GC0(k) Simplification Theorem

5.1 Exponential Lower Bounds Against Parity

Given Theorem 4.1 and Corollary 4.11, we can establish correlation bounds of GC0
d(k) circuits

against PAR (parity).

Theorem 5.1. Let C ∈ GC0
d(k) have size m and let PAR be the parity function. Then the correlation

of C and PAR is
Ex∼{0,1}n [(−1)C(x)+PAR(x)] ≤ 2−Ω(n/(k+logm)d−1)+k.

Proof. The uniform distribution is equivalent to performing a fair random restriction (a random
restriction where non-star variables are set to a uniform bit), and then filling in the ⋆s with uniform
bits. We will show that under a fair random restriction, C will become constant with high probability
while PAR becomes a parity over the live variables. Averaging over these live variables then gives a
correlation of zero. The total correlation is then the probability C doesn’t become constant.

Let p = 1
40(128(k+logm))d−1 . Applying Corollary 4.11, we see that

Pr
ρ∼Rp

[DT(C|ρ) ≥ pn/4] ≥ 2 · 2−
pn

4(2d−1)
+k

.

By a Chernoff bound, we know ρ will have ≥ pn/2 stars with ≥ 1 − 2−pn/8 probability. Let E be
the event both of these events happen, and fix such a ρ. Consider performing a random walk down
the depth ≤ pn/4 decision tree (start at the root and iteratively pick which of the 2 children to
travel to uniformly, effectively filling in ≤ pn/4 of the variables with uniform bits), which induces
a random restriction τ . No matter which path restriction τ was taken, C|ρ◦τ becomes constant,
while PAR|ρ◦τ becomes a parity over ≥ pn/2− pn/4 = pn/4 variables. The correlation of these two
functions is trivially 0. Therefore,

Ex∼{0,1}n [(−1)C(x)+PAR(x)] = |EρEx[(−1)C|ρ(x)+PAR|ρ(x)]|

≤ Pr[¬E ] + Eρ[|Ex[(−1)C|ρ(x)+PAR|ρ(x)]|
∣∣E ]

≤ 2 · 2−
pn

4(2d−1)
+k

+ 2−pn/8Eρ[Eτ |Ex[(−1)C|ρ◦τ (x)+PAR|ρ◦τ (x)]|
∣∣E ]

≤ 2−Ω(n/(k+logm)d−1)+k.

As an application, we can observe that for 0 ≤ k ≤ .1n1/d one can set m = 2Θ((n/k)
1

d−1 ) in the
above lemma such that the correlation is < 1/2, yielding us the following corollary.

Corollary 5.2. For some absolute constant C, integer d and 0 ≤ k ≤ .1n1/d, GC0
d(k) circuits

computing PARn requires size 2Ω((n/k)
1

d−1 ).
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This is an interesting result in multiple ways. First, notice the dependence of the lower bound
on the “k” parameter is extremely tight and the corollary becomes absurdly false if k = n1/d. This
is seen by the fact PARn1/d ∈ G(n1/d), and so one can create a size O(n1−1/d) GC0

d(n
1/d) formula

computing PARn simply by having the ith depth from the bottom have n1−i/d PARn1/d gates, each
of which takes in inputs from n1/d gates below it. Hence we observe a “sharp threshold” behavior
where a difference in constants can change an exponential lower bound to a sublinear one.

We also observe that this lower bound almost matches the classic 2Ω(n
1

d−1 ) construction for AC0
d

circuits calculating parity. Thus, augmenting AC0 with unbounded fan-in gates which have the
power to calculate the majority of polynomially many bits has no effect on its ability to calculate
parity, even thought we know such gates require exponentially sized AC0

d circuits. In fact, by an
argument resembling Shannon’s classic circuit lower bound, there exists gates in G(k) which require
size 2Ω(n1/2d) AC0

d circuits.
We can also show that the size lower bound in Corollary 5.2 and the correlation bound in

Theorem 5.1 is tight. In particular, the gap between the 2Ω(n
1

d−1 ) lower bound for AC0 and 2Ω(n
1
d )

bound established for GC0(.1n1/d) cannot be bridged. We defer the formal proofs to Appendix A.2.

5.2 Correlation Bounds for GC0(k) Circuits With Few Arbitrary Threshold
Gates

In this section, we prove that state of the art correlation bounds against AC0 circuits [ST18] with
a small number of threshold gates extends to if we instead start with GC0(log2 n) circuits. We first
give an overview of their proof. As in previous works studying this correlation [RW93, Vio07, LS11,
ST18], the hard function we uncorrelate with is

RWm,k,r(x) =
m⊕
i=1

k∧
j=1

r⊕
ℓ=1

xijk

A uniform string can be sampled by performing a random restriction and then filling the ⋆s with
uniform bits. Driven by this, the overlying strategy is to apply a random restriction, and show the
circuit collapses while the RW function maintains integrity. It turns out because our multi-switching
lemma gives no loss in parameters (up to constants), we can apply the exact same argument in
[ST18], except replace the AC0 simplification lemma (Corollary 3.2 of [ST18]) with our more general
Theorem 4.10.

Theorem 5.3. Fix u. Let v = .005 log n and q =
√

n/(v + 1) There exists a function RWq,v,q ∈ P
and small enough constant τ such that for all circuits ANYu ◦THR◦GC0

d(Ω(log
2 n)) circuits F where

each of the u THR ◦ GC0
d subcircuits of F has size at most s = nτ logn, we have

|Ex∼Un [(−1)RW(x)+C(x)] ≤ 2−Ω(n.499/u)

Proof. We immediately apply Theorem 4.10 to F with G being the top ANYu ◦ THR circuit, m =
u · 2(ε/100d) log2 n, w = ε logm, t = q/2 and k = (ε/100d) log2 n to get that for ρ′ ∼ Rp, where
p = n−ε/50,

Pr[F |ρ′ is an (m/2,ANYu ◦ THR ◦ DTw)-decison tree] ≤ 1− 4d · 2−q/2.

This computational model is now void of G(k) gates, and we can essentially port in the rest of [ST18]
to finish. By the “Second Step” and “Third Step” under Section 2 of [ST18], one can compose ρ′ with
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another restriction to get a final random restriction ρ that simplifies the tree further and prunes the
fan-in to an ANYu ◦ THR ◦ ANDv circuit.

It was shown in Lemma 4.3 of [ST18] that the same random restriction ρ will have RW|ρ
equal(after restricting additional bits and negating input bits and/or the output) GIPq/2,v+1 except
with probability 2−Ω̃(pq). Theorem 21 in [ST18] then states that an ANYu ◦ THR ◦ ANDv circuits
can be calculated by a randomized NOF (v + 1)-party protocol with error γ = 2−q.99/u using
O(uv3 log n log(n/γ)) = O(q.99v3 log n) bits. Finally, by Theorem 14 in [ST18], we can conclude
the correlation between GIPq/2,v+1 and ANYu ◦ THR ◦ ANDv is at most 2−Ω(q.99/u). Hence the
overall correlation can be bounded, via union bound, by the sum of the error probabilities and the
correlation of GIPq/2,v+1 and ANYu ◦ THR ◦ ANDv, yielding

|Ex∼Un [(−1)RW(x)+C(x)] ≤ 4d · 2−q/2 + 2−Ω̃(pq) + 2−Ω(q.99/u) = 2−Ω(n.49/u)

as desired.

With this theorem, we can prove the actual correlation bound for GC0(k) circuits with arbitrary
gates.

Theorem 5.4. Let C be a GC0(Ω(log2 n)) circuit, g of whose gates are arbitrary THR gates. Then

E[(−1)C(x)+RW(x)] ≤ 2
−Ω(n

.499

g
−g)

.

In particular, plugging in g = Θ(n.249) tells us

E[(−1)C(x)+RW(x)] ≤ 2−Ω(n.249)

Proof. This follows from Theorem 5.3 exactly like how Theorem 3 follows from Lemma 6 in [LS11].

Remark. We note that an argument analogous to the above can be used to show 2−Ω(n.499) correlation
bounds against GC0(Ω(log2 n)) circuits with n.499 gates, via the same argument presented in [ST18].

It is worth noting that if we had tried performing this argument by expanding the size nΩ(logn)

GC0(log2 n) circuit naively into an AC0 circuit, not only would we get a loss in parameters, but the
argument will not go through. The proof crucially relied on correlation bounds against v = .005 log n
party protocols. Had we asymptotically increased the size of our circuit by writing it as an AC0

circuit, then after applying random restrictions to prune the fan-in of our circuit, we will be left
with trying to uncorrelate against arbitrary ω(log n)-party protocols, a longstanding open problem
(Problem 6.21 in [KN96]).

5.3 Derandomizing the Multi-Switching Lemma and PRGs for GC0(k)

Using the same techniques appearing in [Kel21, Lyu22], we can completely derandomize our switch-
ing and multi-switching lemma. We defer the proof to the appendix (Theorem A.11).

Theorem 5.5. Let F = {F1, . . . , Fm} be a list of size m G(k) ◦ {AND,OR}w circuits. Let (Λ, z) be
a joint random variable such that

• Λ is a (t+ w)-wise p-bounded subset of [n]

• Conditioned on any instance of Λ, z ε-fools CNF of size ≤ m2.
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Then

Pr
Λ,z

[F|ρ(Λ,x) has no r-partial depth-t DT] ≤ 4(m2k)t/r(64pw)t + (64wm)t+w(2m)2kt/r · ε

Proof. See the Theorem A.11 in the appendix.

Using the derandomized multi-switching lemma, we can use the partition-based template in
order to create PRGs for GC0(k). The arument to reduce any constant depth to depth 2 will be
a very similar argument. [Lyu22] simply uses a CNF PRG to tackle the base case of AC0

2 circuits,
but we cannot do so with a G(k) ◦ ANDw circuit unless we want to expand it out as a CNF and
incur a multiplicative k loss in our seed length. We instead use the derandomized switching lemma
one more time to simplify GC(k) ◦ ANDw to a DTlogm and then fool this with an (ε/m, logm)-wise
independent seed. We quickly prove this latter statement in the following lemma.

Lemma 5.6 (PRG for Depth t Decision Trees). There exists a ε-error PRG with O(log log n+ t+
log(1/ε)) seed length for DTt.

Proof. Let D be a (ε/2t, t)-wise independent distribution, samplable using O(log log n+t+log(2t/ε)) =
O(log n+ t+ log(1/ε)) bits. For arbitrary T ∈ DTt, label the leaves L1, . . . , L2t , and let the value
of leaf Li be ℓi. Then

T (x) =
2t∑
j=1

ℓj · 1(T (x) reaches Lj).

Note that ℓj ·1(T (x) reaches Lj) depends on at most t bits, and so D will ε/2t-fool it. Therefore,

|Ex∼Un [T (x)]− Ex∼D[T (x)]| ≤
2t∑
j=1

|Ex∼U [ℓj · 1(T (x) reaches Lj)]− Ex∼D[ℓj · 1(T (x) reaches Lj)]|

≤
2t∑
j=1

ε/2t

= ε.

With this, we are now ready to prove our final PRG for GC0(logm).

Theorem 5.7. For m,n ∈ N and w ≤ logm, there is an ε-error PRG with O((w logd−1(m) +
log2(m)) log(m/ε) log logm) seed length for GC0

d(logm) ◦ ANDw circuits.

Proof. Let ℓ = 512w and t = 10 log(m/ε).

• Let H : [n]→ [ℓ] be a 2t-wise independent hash function which needs

O(t log n) = O(log n log(m/ε))

bits. We will let Hi be an n-bit string such that (Hi)j = 1 iff H(j) = i.

• Let ε′ = ε/(ℓ · 2t+1) and set X1, . . . , Xℓ to be strings that ε′-fool GC0
d−1(logm) ◦ ANDlogm

circuits of size 4m2 if d ≥ 2, which by the inductive hypothesis uses

O(logd−1(m) log(m/ε) log logm)

seed length per Xi. If d = 1, use the PRG from Lemma 5.6 giving a seed length, which needs
O(log(m/ε)) seed per Xi.

25



• Let Y be a string that ε/((64mw)t+w+1(2m)2t)-fools CNF of size m2, samplable using

O(logm log((mw)t+wmt/ε) log logm) = O(log(m/ε) log2m log logm)

bits

The PRG will sample the above strings and output the following computation

Y ⊕ (X1 ∧H1)⊕ · · · ⊕ (Xℓ ∧Hℓ)

where ∧ and ⊕ are the bitwise AND and XOR operations, respectively. Therefore, we get a total
seed length of

O(log n log(m/ε) + ℓ log(m/ε) + log(m/ε) log2m log logm) = O(log(m/ε) log2m log logm)

if d = 1 and

O(log n log(m/ε) + ℓ logd−1(m) log(m/ε) log logm+ log(m/ε) log2m log logm)

= O((w logd−1(m) + log2(m)) log(m/ε) log logm).

Let C be an arbitrary GC0
d(logm)◦ANDw circuit, and let U1, . . . Uℓ be independent and uniform

n-bit strings. Like in [Lyu22] we use a hybrid argument to prove the theorem using the hybrid
distributions

Di = Y ⊕
⊕
1≤j≤i

(Ui ∧Hi)⊕
⊕
i<j≤ℓ

(Xi ∧Hi)

for 0 ≤ i ≤ ℓ. Noting D0 is the PRG output, while Dℓ is a uniform string, it suffices to show

|Ex∼Di−1 [C(x)]− Ex∼Di [C(x)]| ≤ ε/ℓ (7)

for all 1 ≤ i ≤ ℓ, from which summing over all i and applying the triangle inequality gets the desired
result.

Notice each Hi is 2t-wise 1
ℓ -bounded. Conditioned on H, note that Zi := Y ⊕

⊕
1≤j<i(Ui ∧

Hi)⊕
⊕

i<j≤ℓ(Xi ∧Hi) ε/((64mw)t+w+1(2m)2t)-fools CNF of size m2 since Y does. Let F be the
collection of all bottom depth-2 G(k) ◦ {ANDw,ORw} subcircuits of C. Therefore, if we let E be the
event that F|ρ(Hi,Zi) has no logm-partial depth-t DT, by Theorem 5.5 it follows

Pr
H,Y,U<i,X>i

[E ] ≤ 4(m2logm)t/ logm(64w/ℓ)t + (64mw)t+w(2m)2t logm/ logm · ε

(64mw)2t(2m)2t

≤ 4 · 22t(1/16)t + ε

(64mw)40 log(m/ε)−logm

≤ 4(1/4)t +
ε

4ℓ

≤ ε

2ℓ

Conditioning on ¬E , H, Y, U<i, X>i, we see upon replacing all depth 2 subcircuits with DTts and
applying Lemma 4.9, C|ρ(Hi,Zi) is computable by a depth-t DT where each leaf Lj is an GC0

d−1(k) ◦
{AND,OR}w circuit of size ≤ m · 2logm + m ≤ 2m2, and will become a DTlogm tree if d = 1. In
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either case, we see by construction that Xi will fool it. Formally, we note that conditioned on the
good events above, we have Cρ(Hi,Zi)(y) =

∑2t

j=1 Lj(y) ·1{T (y) reaches Lj}. By construction of Xi,

|EXi [Lj(Xi+Zi) ·1{T (Xi+Zi) reaches Lj}]−EUi [Lj(Ui+Zi) ·1{T (Ui+Zi) reaches Lj}]| ≤
ε

ℓ · 2t+1

Summing over all 1 ≤ j ≤ 2t, applying the Triangle Inequality, and using linearity of expectation,
we see

EXi [Cρ(Hi,Zi)(Xi + Zi)]− EUi [Cρ(Hi,Zi)(Ui + Zi)]| ≤
ε

2ℓ
.

Therefore,

|Ex∼Di−1 [C(x)]− Ex∼Di [C(x)]| ≤ Pr[E ] + Pr[¬E ] · ε
2ℓ
≤ ε

ℓ

and (7) is proven.

From this, we immediately get PRGs for size-m GC0
d(logm) circuits.

Theorem 5.8. For every m,n, d and ε > 0, there is an ε-PRG for size-m GC0
d(logm) with seed

length O((logd−1(m) + log2(m)) log(m/ε) log logm)

Proof. Add trivial fan-in 1 gates to the bottom so that we effectively have a GC0
d(logm)◦AND1 cir-

cuit. By Theorem 5.7, we can fool this with seed length O((logd−1(m)+log2(m)) log(m/ε) log logm).

5.4 Fourier Spectrum Bounds for GC0(k)

Linial, Mansour, Nisan, and Tal showed that many notions of the Fourier spectrum of a function
class is intimately related [LMN93, Man92, Tal17]. [Tal17] writes out four key properties and
conveniently describes the implications existing between them. We report a slightly altered version
here.

Theorem 5.9 ([LMN93, Man92, Tal17]). Say for a class of functions, C we have the following
property.

• ESFT: Exponentially small Fourier tails. For all f ∈ C,

W≥k[f ] ≤ Ce−Ω(k/t).

for some constant C.

Then, C also satisfies the following for some constant C ′.

• SLPT: Switching lemma type property. For all f ∈ C, d, p,

Pr
ρ∼Rp

[deg(C|ρ) ≥ d] ≤ C ′ ·O(pt)d.

• InfK: Bounded total degree-k influence. For all f ∈ C,0 ≤ k ≤ n,

Infk[f ] ≤ C ′ ·O(t)k.
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• L1: Bounded L1 norm at the kth level. For all f ∈ C, 0 ≤ k ≤ n,∑
|S|=k

|f̂(x)| ≤ C ′ ·O(t)k

• FMC: Fourier mass concentration. For all f ∈ C, f is ε-concentrated on tO(t log(1/ε)) coeffi-
cients.

Due to the above unification result, it appears like we can bootstrap Corollary 4.11 to give
us a plethora of information about the Fourier spectrum of GC0(k). Unfortunately, upon closer
inspection, the Corollary doesn’t quite give the exact property of SLPT. We instead show that
GC0(k) has ESFT. Our proofs will use the following lemma.

Lemma 5.10 ([LMN93]). For f : {±1}n → {±1}, 0 ≤ ℓ ≤ n, and p ∈ [0, 1],

W≥ℓ[f ] ≤ 2Eρ∼RpW
≥kp[f |ρ]

We first start off with depth 2 circuits.

Lemma 5.11. Let f be a G(k) ◦ {AND,OR}w. Then

W≥ℓ[f ] ≤ 2 · 2−ℓ/80w+k

Proof. Let p = 1/40w and t = ℓ/80w. By Theorem 4.1, if ρ ∼ Rp, f |ρ becomes a depth-t DT with
≥ 1− (20w/40w)t2k = 1− 2−t+k probability. Such trees have no Fourier mass above level t. Say ρ
is good if f |ρ does indeed become a DT. Using Lemma 5.10 it follows

W≥ℓ[f ] ≤ 2Eρ∼Rp [W
≥pℓ[f |ρ]]

≤ 2Eρ∼Rp [W
≥ℓ/40w[f |ρ]|ρ is good] + 2 · 2−t+k

≤ 2 · 2−ℓ/80w+k.

We can now use this as a base case to prove ESFT for GC0. We will need to utilize the following
lemma.

Lemma 5.12 ([Tal17]). Let f : {±1}n → {±1}, 0 ≤ ℓ ≤ n, and let T be a depth d decision tree
such that for any leaf ℓ and the corresponding restriction ρℓ induced by the root-to-leaf path, we have
W≥ℓ[f |ρℓ ] ≤ ε. Then W≥ℓ+d[f ] ≤ ε.

We now state and prove the theorem. Define the effective size of a Boolean circuit to be the
number of gates in the circuit at distance 2 or more from the inputs.

Theorem 5.13. Let f be a GC0
d(k) ◦ {AND,OR}w circuit with effective size m. Then

W≥ℓ[f ] ≤ 4d · 2−
ℓ

80w(128(k+logm))d−1+k

Proof. We apply induction. The base case of d = 1 is taken care of by Lemma 5.11.
We now prove the inductive step for depth d. Sample ρ ∼ Rp with p = 1

128w(m2k)1/(k+logm) = 1
128w ,

and let t = pℓ/2 = ℓ/256w. By Theorem 4.8, all the bottom depth-2 G(k)◦{AND,OR}w subcircuits
of f |ρ can be calculated by a (k+ logm)-partial depth-t decision tree with probability ≥ 1− 4 · 2−t.
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By Lemma 4.9, this implies f |ρ becomes a (t,GC0
d−1(k) ◦ {AND,OR}k+logm)-tree T . Furthermore,

each leaf circuit has effective size ≤ m. Call ρ good if f |ρ simplifies to such a tree. Then

W≥ℓ[f ] ≤ 2Eρ∼Rp [W
≥pℓ[f |ρ]] ≤ 2Eρ∼Rp [W

≥pℓ[f |ρ]|ρ is good] + 8 · 2−t.

Fix a good ρ. For a leaf L of T , let τL be the restriction induced by the path to L in T . We
know by Lemma (cite) that

W≥pℓ[f |ρ] ≤ max
leaf L

W≥pℓ−t[f |ρ◦τL ] ≤ max
leaf L

W≥pℓ/2[f |ρ◦τL ].

As f |ρ◦τL is a GC0
d−1(k) ◦ {AND,OR}k+logm circuit for every L we can then use the inductive

hypothesis to bound

max
leaf L

W≥pℓ/2[f |ρ◦τL ] ≤ 4d−1 · 2−
pℓ

80(k+logm)(128(k+logm))d−2+k
= 4d−1 · 2−

ℓ

80w(128(k+logm))d−1+k
.

Putting this all together, we get

W≥ℓ[f ] ≤ 2Eρ∼Rp [W
≥pℓ[f |ρ]|ρ is good] + 8 · 2−t

≤ 2 · 4d−1 · 2−
ℓ

80w(128(k+logm))d−1+k
+ 8 · 2−ℓ/256w

≤ 4d · 2−
ℓ

80w(128(k+logm))d−1+k

We can bootstrap Theorem 5.13 with Theorem 5.9 to yield the following properties about GC0(k)

Theorem 5.14. Let f be a size-m GC0
d(k) circuit and define t := (k+logm)d−1. Then the following

is true for some C

1. ESFT: W≥ℓ[f ] ≤ C · 2k · 2−Ω( ℓ
t ).

2. SLTP: For all 0 < p < 1, Prρ∼Rp [deg(f |ρ) ≥ ℓ] ≤ C ·O(pkt)ℓ.

3. InfK: Infℓ[f ] ≤ C ·O(kt)ℓ.

4. L1:
∑

|S|=ℓ |f̂(x)| ≤ C ·O(kt)ℓ.

5. FMC: f is ε-concentrated on 2O((k+log(1/ε))t log t) coefficients.

where f and any hidden constants only depend on d.

Proof. Add a trivial (d + 1)-st layer of AND1 gates at the base of f and apply Theorem 5.13 to
deduce that

W≥ℓ[f ] ≤ 4d · 2−
ℓ

80(128(k+logm))d−1+k
,

proving the first item. Now since we know W≥ℓ[C] ≤ 1 (by Parseval’s) and k ≥ 1, it follows that

W≥ℓ[f ] ≤ (W≥ℓ[C])1/k ≤ Cd · 2−Ω( ℓ
kt).

Therefore, the second, third, and fourth items follow by applying Theorem 5.9 (as well as a version
of the fifth item with weaker parameters). We now prove Item 5.
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Notice that for w := t ·O(k+ log(1/ε)), we have by Item 1 that W≥w[f ] ≤ ε/2. Now by Item 4,

∑
|S|<w

|f̂(S)| ≤
w−1∑
i=0

O(kt)i ≤ (C ′kt)w. (8)

Now let F = {S : |S| < w and |f̂(S)| ≥ ε/2
(C′kt)w }. Notice that∑

S∈F
f̂(S)2 = 1−

∑
|S|≥w

f̂(S)2 −
∑

|S|<w,S /∈F

f̂(S)2

≥ 1− ε/2− ε/2

(C ′kt)w

∑
|S|<w

|f̂(S)|

≥ 1− ε.

By Eq. (8), the maximum number of terms in F can be at most

(C ′kt)w/

(
ε/2

(C ′kt)w

)
= 2(C ′kt)2w/ε = 2O(w log(kt)+log(1/ε)) = 2O((k+log(1/ε))t log t)

and thus Item 5 is proved.

As a first application, the work of Kushilevitz and Mansour [KM93] allows us to translate FMC
to learnability results.

Lemma 5.15 ([KM93]). Let f be a Boolean function such that there exists a t-sparse multivariate
polynomial g (over the Fourier basis) such that Ex∼Un [(f(x)−g(x))2] ≤ ε. There exists a randomized
algorithm, whose running time is polynomial in t, n, 1/ε, log(1/δ) such that given blackbox access to
f and δ > 0, outputs a function h such that over the randomness of the algorithm,

Pr[Ex∼Un [(f(x)− h(x))2] ≤ O(ε)] ≥ 1− δ.

Using this lemma, we can derive a learning algorithm for GC0(k).

Theorem 5.16. There exists an algorithm such that given blackbox access to any C ∈ GC0
d(k) of

size m and δ > 0, outputs a function h such that over the randomness of the algorithm,

Pr[Ex∼Un [(f − h)2] ≤ O(ε)] ≥ 1− δ.

Furthermore, this algorithm runs in poly(n, 2Õ((k+log(1/ε))(k+logm)d−1), 1/ε, log(1/δ))

Proof. From Theorem 5.14, for any C ∈ GC0
d(k), there exists g of sparsity t = 2Õ((k+log(1/ε))(k+logm)d−1),

created by taking the Fourier expansion of C and only keeping the ε-concentrated coefficients
S ⊂ 2[n], such that

Ex∼{±1}n [(C(x)− g(x))2] ≤ Ex∼{±1}n

(∑
S/∈S

Ĉ(S)xS

)2
 =

∑
S/∈S

Ĉ(S)2 ≤ ε.

The result then follows by Lemma 5.15.
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We also can prove a new correlation bound result with this Fourier spectrum. It is known
that MAJ is a symmetric function that has Od(log

d−1(m)/
√
n) correlation against size-m AC0

d[⊕]
circuits. A natural question to ask is whether Majority is special in this regard, or if a random
symmetric function (use n + 1 coin tosses to assign a bit to each Hamming level) will display
Od(log

d−1(m)/nα) correlation against size-m AC0
d[⊕] circuits for some α. Tal ([Tal17], Theorem

6.1) used ESFT and L1 of AC0 to prove that random symmetric functions (or more specifically
balanced symmetric functions) display Od(log

d−1(m)/
√
n) correlation against size-m AC0

d circuits,
so it is natural to believe that this should similarly be true against AC0[⊕]. Unfortunately, since
PAR has all its Fourier weight at level n, this proof approach is doomed to fail for AC0[⊕] circuits, as
the class doesn’t demonstrate ESFT. However, we can now give partial progress towards this goal
by showing a random symmetric function uncorrelates with GC0(k) circuits, as this class contains
gates which calculate parity as long as the Hamming weight of the input is at most k. This result
can be seen as finding out how general of a circuit class we can stretch the Fourier argument before
we reach the roadblock on this approach demonstrated by PAR.

Theorem 5.17. Let f ∈ GC0
d(k), and let g be a symmetric function, both mapping {±1}n → {±1},

and let (k + logm)d−1 ≤ O
(

n
k+logn

)1/3
. Then

corr(f, g) := Ex[f(x)g(x)] ≤ |ĝ(∅)|+
Cdk(k + logm)d−1

√
n

Proof. We note for ℓ′ to be picked later, we can decompose

corr(f, g) = |Ex[f(x)g(x)]| =

∣∣∣∣∣∣
∑
S⊂[n]

f̂(S)ĝ(S)

∣∣∣∣∣∣ ≤ |ĝ(∅)|+
∑
|S|<ℓ′

|f̂(S)ĝ(S)|+
∑
|S|≥ℓ

|f̂(S)ĝ(S)|. (9)

We will bound the first summation using L1, and the second summation by ESFT. The second
summation can be bounded as follows using Cauchy-Schwarz.∑

|S|≥ℓ

|f̂(S)ĝ(S)| ≤
√

W≥ℓ′ [f ] ·W≥ℓ′ [g] ≤
√
4d · 2−

ℓ′
80(128(k+logm))d−1+k ≤ 1/

√
n (10)

if we set ℓ′ = cd(k + log n)(k + logm)d−1 for some constant cd only depending on d. Now to
bound the first summation, note since g is symmetric, ĝ(S) is constant over all S of same cardinality.
Therefore,

|ĝ(S)| =
√

ĝ(S)2 =

√√√√ 1(
n
|S|
) ∑

S′;|S′|=|S|

ĝ(S′)2 ≤
√

1(
n
|S|
) .

Hence using L1 from Theorem 5.14, we can bound

∑
|S|<ℓ′

|f̂(S)ĝ(S)| ≤
∑

1≤ℓ<ℓ′

√
1(
n
ℓ

) ∑
|S|=ℓ

|f̂(S)| ≤
∑

1≤ℓ<ℓ′

(
Cdk(k + logm)d−1√

n/ℓ

)ℓ

(11)

where Cd is some constant depending on d. We bound this sum by a geometric series of the same
first term and with common ratio 1/2. Indeed, we see that the ratio of consecutive terms will be(

Cdk(k+logm)d−1√
n/(ℓ+1)

)ℓ+1

(
Cdk(k+logm)d−1√

n/ℓ

)ℓ
=

Cdk(k + logm)d−1

√
n

√
(ℓ+ 1)ℓ+1

ℓℓ
≤ Cdk(k + logm)d−1

√
n

√
eℓ′ ≤ 1/2
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where the last inequality follows from the assumption (k + logm)d−1 ≤ O
(

n
k+logn

)1/3
. Hence the

quantity in Equation (11) can be upper bounded by twice the first term, so

∑
|S|<ℓ′

|f̂(S)ĝ(S)| ≤ Cdk(k + logm)d−1

√
n

.

Hence from (9),

corr(f, g) ≤ |ĝ(∅)|+ 1√
n
+

Cdk(k + logm)d−1

√
n

.

6 Open Problems

We conclude with some directions for future research.

• Our tightness result in Theorem A.2 uses a function in G(k) ◦ ANDw, but it is not known
whether a k-OR ◦ ANDw circuit can saturate the bound. In particular, is Theorem 4.1 tight
for AC0(k) or TC0(k) circuits?

• It was already noted that Corollary 5.2 is tight in essentially every way possible for GC0(k)
circuits. However, all our tightness results (Theorem A.2) use constructions that abuse the
generality of GC(k). Are there constructions exhibiting tightness which are in TC0(k) or
AC0(k)? Alternatively, can we obtain stronger size lower bounds if we were only concerned with
AC0(k) or even TC0(k) circuits? Either finding a pathological construction in AC0(k)/TC0(k)
or proving stronger lower bounds for these weaker circuit class would be interesting.

• We touched up on how a result of Allender and Koucký ([AK10], Theorem 3.8) states that
there exists an absolute constant CAK such that MAJn can be written as an AC0(nε) circuit
with depth ≤ CAK/ε and size O(n1+ε). [AK10] actually only use AND2,OR2, and MAJnε

gates. If we were allowed all the gate classes in AC0(nε), could we find a better construction
(more specifically a lower depth blowup)? That way, we would get a stronger reduction from
proving bounds on TC to AC0(nε) where we only need to show size lower bounds on smaller
depth AC0(nε) circuits.

• Are there any other applications of the generalized switching lemma? Due to the versatility of
this theorem, it can essentially be plugged in wherever the classical switching lemma was used
to get more general results. Perhaps this can generalize other results or even push a switching
lemma argument that initially wouldn’t go through (the remark after Theorem A.2 gives an
example of the general switching lemma giving stronger bounds than the classical one).
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A Deferred Proofs

A.1 Showing TC0(k) ⊂ GC0(k)

Here, we prove that circuits created by biased LTF gates are indeed contained in GC0(k).

Theorem A.1. Any THR gate f with balance ≤ k (see Definition 1.3) is, upon negating certain
input bits, in G(k).

Proof. Let f : {0, 1}n → {±1} be defined as f(x) = sgn(
∑n

i=1wi(−1)xi − θ). By negating input
bits, we can assume each wi ≥ 0. Furthermore, since the definition of G(k) is symmetric (solely
depends on the sum of input bits), we can assume WLOG that 0 ≤ w1 ≤ · · · ≤ wn. Since f has
balance ≤ k, we know that −

∑
i≤k wi +

∑
i>k wi < θ. Assuming −

∑
i≤k wi +

∑
i>k wi < |θ|, we

will show f is an orlike G(k) gate (an analogous proof will show the case for −θ and andlike).
Consider x such that

∑
xi ≥ k. Let Sx ⊂ [n] denote the set where i ∈ Sx iff xi = 1. It follows
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that

f(x) = sgn

−∑
i∈Sx

wi +
∑
i/∈Sx

wi − θ


= sgn

−∑
i≤k

wi +
∑
i>k

wi − θ + 2
∑

i∈[k]\Sx

wi − 2
∑

i∈[k+1,n]∩Sx

wi

 (12)

We know by assumption that −
∑

i≤k wi +
∑

i>k wi − θ ≤ 0. Since |Sx| ≥ k,

|[k] \ Sx| = k − |k ∩ Sx| ≤ |[k + 1, n] ∩ Sx|,

and each element in [k] \Sx is strictly smaller than each element in [k+1, n]∩Sx. Combining these
observations with the fact w1 ≤ · · · ≤ wn, it follows

2
∑

i∈[k]\Sx

wi − 2
∑

i∈[k+1,n]∩Sx

wi ≤ 0.

Therefore,
−
∑
i≤k

wi +
∑
i>k

wi − θ + 2
∑

i∈[k]\Sx

wi − 2
∑

i∈[k+1,n]∩Sx

wi ≤ 0.

Combining this with (12) it follows f(x) = −1 for any x with
∑

xi ≥ k. Hence f is an orlike G(k)
gate as desired.

A.2 Tightness of the GC0(k) Switching Lemma and Correlation Bounds

In this section, we give constructions which show that various bounds we establish are indeed tight.
We first show that the switching lemma we established is tight.

Theorem A.2. Let p, w, t, k be parameters such that pkw < 1/2 and t > k/2. There exists a
G(k) ◦ ANDw circuit C such that

Pr
ρ∼Rp

[DT(C|ρ) ≥ t] ≥ 2k/2(.5pw)t

Proof. We will take C = PARkw. To see that this is computable in G(k) ◦ ANDw, write

PARkw(x) = PARk(PARw(x1, . . . , xw), . . . ,PARw(x(k−1)w+1, . . . , xkw)).

Now, write out each bottom layer PARw as a size w2w−1 CNF which takes the ORs of the 2w−1 AND
clauses corresponding to w-bit inputs with an odd number of ones. Notice that for any assignment,

• at most one of the 2w−1 clauses under each OR can simultaneously be satisfied,

• which implies at most k of the bottom layer clauses can be simultaneously satisfied.

By the first bullet point, we can turn the OR gates into PAR gates, turning C into a PARk2w−1◦ANDw

circuit. By the second bullet point, we can replace the top PARk2w−1 gate with the gate G ∈ G(k)
which calculates parity if at most k input bits are one, and outputs 0 otherwise. Consequently, C
can be calculated by a G(k) ◦ ANDw circuit.
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We can now directly calculate the simplification probability. Notice that if ≥ t variables are
alive in ρ, then C|ρ must have decision tree depth ≥ t (since even if d − 1 input bits are known,
parity remains ambiguous). Hence we calculate

Pr
ρ∼Rp

[DT(C|ρ) ≥ t] ≥
kw∑
i=t

(
kw

i

)
pi(1− p)kw−i

≥ (1− p)kw
(
kw

t

)t( p

1− p

)t

≥ (1− pkw)2k/2
(

pw

1− p

)t

≥ 2k/2(.5pw)t

where the third inequality follows from the fact (k/t)t is increasing in t for t > k/2

Remark. Notice that if PARn was written as a width n-CNF and the classical switching lemma was
applied, we would get a “failure to simplify” probability bound of ≤ (5pn)t. However, if we rewrite
PARn as a G(t log(n/t))◦ANDn/t log(n/t) circuit in a similar manner as above, and use Theorem 4.1,
we get a bound of ≤ (20pn/t log(n/t))t2t log(n/t) ≤ (20pn2/t2)t, which is asymptotically stronger when
t = ω(

√
n). This shows that we can potentially obtain tighter parameters by expressing functions as

a more compact GC0(k) circuit and applying Theorem 4.1 rather than using the classical switching
lemma on a larger AC0 circuit computing the same function.

We will now show that the circuit lower bound established in Corollary 5.2 is tight. We thank
an anonymous reviewer for pointing us to this construction.

Theorem A.3. There exists a size-2O((n/k)
1

d−1 ) GC0
d(k) circuit which computes PARn.

Proof. Split the input string into k blocks of size n/k bits each. We can compute the parity of each
of the n/k-size blocks straightforwardly using a depth d− 1 circuit made out of PAR

(n/k)
1

d−1
gates;

iteratively group the bits into blocks of (n/k)
1

d−1 , and use a gate to take the parity of each block,
thereby creating a depth d − 1 tree of PAR

(n/k)
1

d−1
gates. Finally, we can take a PARk of these k

depth-(d−1) circuits to get a depth d circuit which computes the parity of all n bits. We now focus
on converting this parity-riddled circuit to a GC0(k) one.

Consider the top depth-2 subcircuit, which is a PARk ◦PAR
(n/k)

1
d−1

circuit. Notice that PARk ∈
G(k) and PAR

(n/k)
1

d−1
is trivially computable by a decision tree in DT

(n/k)
1

d−1
. Therefore by

Lemma 4.9, this top subcircuit can be replaced by a size 2O((n/k)
1

d−1 ) G(k) ◦ OR
(n/k)

1
d−1

. Con-

sequently, we have converted our original depth-d circuit into a new one where the first 2 layers are
made from gates in G(k).

We now use the fact that any PAR
(n/k)

1
d−1

can be expressed as a size 2O((n/k)
1

d−1 ) CNF or DNF

to convert the remaining PAR
(n/k)

1
d−1

gates to AND/OR gates while preserving the depth. Convert

the third layer PAR
(n/k)

1
d−1

gates to a DNF (OR of ANDs), and then collapse the 2nd and 3rd

layer as they both consist solely of OR gates. The third layer now consist of AND gates, so replace
the fourth layer PAR

(n/k)
1

d−1
gates with a CNF (AND of ORs) to again induce a collapse of the

consecutive AND layers. Repeat this procedure down to the bottom of the circuit.
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Clearly after this procedure, all gates are in G(k) (in fact, all but the top gate are AND or OR).
Notice that at each stage, we increased the circuit depth by 1 when plugging in the DNF/CNF,
but then reduced the circuit depth when collapsing layers of the same gate type. Hence the final

circuit is still of depth d. We already calculated the top depth-2 subcircuit is of size 2O((n/k)
1

d−1 ).
Assuming we didn’t collapse any gates, we would have replaced each of the o(n1−ε) parity gates

with a size-2O((n/k)
1

d−1 ) circuit, so clearly the final circuit size is at most

2O((n/k)
1

d−1 ) + o(n/k) · 2O((n/k)
1

d−1 ) ≤ 2O((n/k)
1

d−1 ).

Therefore at the end of this procedure, we get our desired circuit.

We now show that not only is the size lower bound tight, but the average case correlation bound
established in Theorem 5.1 as well.

Theorem A.4. Assume m ≥ kd. There is a GC0(k) circuit C of size ≤ m such that

Ex[(−1)C(x)+PAR(x)] ≥ 2Ω(k) · 2−O(n/(k+logm)d−1)

Proof. Let M = max{k, cd logm}, where cd is a constant such that the parity over (c logm)d−1

bits can be computed by an AC0
d circuit of size ≤ m. Split the input into ⌈n/Md−1⌉ blocks of

size ≤ Md−1. If M = cd logm, each block can be calculated by an AC0
d circuit of size m, and if

M = k, each block can be calculated by a ≤ kd ≤ m-size GC0
d−1(k) circuit using a tree of PARks.

Now if ⌈n/Md−1⌉ = 1, this circuit computes the parity of all n bits and we are done, so assume
⌈n/Md−1⌉ ≥ 2.

Join all the ⌈n/Md−1⌉ subcircuits by the gate G defined to compute parity if the Hamming
weight of the input is at most k, and to equal 0 otherwise. Clearly G ∈ G(k). Therefore, if
the subcircuits were constructed to be in AC0

d, we can collapse the top two layers into one using
Lemma 4.9 (similar to Theorem A.3), giving us a GC0

d(k) circuit. If the subcircuits were GC0
d−1(k),

we trivially get a GC0
d(k) gate after adding G. In the case more than k of the ⌈n/Md−1⌉ input

blocks have parity 1, our circuit will be constant, and thus will agree with parity about half the
time. Let us crudely lower bound the correlation in this case to be 0. When ≤ k have parity 1, the
top gate computes parity exactly. Therefore our correlation is simply the probability at most k of
the input blocks have parity 1, which is simply

2−⌈n/Md−1⌉
∑
i≤k

(
⌈n/Md−1⌉

k

)
≥ 2−⌈n/Md−1⌉ · 2Ω(k) ≥ 2Ω(k) · 2−O(n/(k+logm)d−1).

This gives our correlation lower bound as desired.

A.3 Proof of the GC0(k) Multi-Switching Lemma

We prove the multi-switching lemma here.

Theorem A.5 (Proof of Theorem 4.8). Let F = {F1, . . . , Fm} be a list of G(k) ◦ANDw circuits on
{0, 1}m. Then

Pr
ρ∼Rp

[F|ρ does not have r-partial depth-t DT] ≤ 4(64(2km)1/rpw)t
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Proof. We follow the proof in [Lyu22] exactly, where the only difference is that the “Canonical Partial
Decision Tree” (CPDT) will use the modified CDT we created in Algorithm 1, the definition of global
witnesses (resp. global partial witnesses) will now use the witnesses (resp. partial witnesses) that
we defined in Definition 4.3 (resp. Definition 4.5), and the “Global Witness Searcher” will run the
modified witness searcher we created in Algorithm 2.

Consider the following CPDT procedure.

Algorithm 3: Canonical Partial Decision Tree
Input: A list of G(k) ◦ {AND,OR}w circuits F = {F1, . . . , Fm}, black-box access to a

string β ∈ {0, 1}n, and an auxiliary string z ∈ {0, 1}n.
initialize:

x← (⋆)n.
j ← 1.
counter← 0.

while counter < t do
Find the smallest i ≥ j such that DT(Fi|x) > w. If no such i exists, exit the loop.
y ← (⋆)n.
I ← ∅.
while Fi|x◦y(⋆) is not constant and counter < t do

Ci,q ← the term that TFi|x◦y from Algorithm 1 will query.
Bi,q ← the set of unknown variables in Ci,q|x◦y.
yBi,q ← zBi,q .
I ← I ∪Bi,q.
counter← counter + |Bi,q|.

end
Query βI , and set xI ← βI .
j ← i.

end
return x

With this, we can define the following notion of a “global witness” to intuitively be a transcript
on adversarially chosen inputs.

Definition A.6. Let t, w be two integers. Consider a list of G(k) ◦ {AND,OR}w circuits F =
{F1, . . . , Fm}. Suppose ρ ∈ {0, 1, ⋆}n is a restriction. Let (R,Li, Si,Wi, βi) be a tuple, where

• 1 ≤ R ≤ t
r is an integer;

• 1 ≤ L1 ≤ L2 ≤ · · · ≤ LR ≤ m is a list of R non-decreasing indices;

• S1. . . . , SR is a list of R integers such that
∑R

i=1 Si ∈ [t, t+ w];

• W1, . . . ,WR is a list of witnesses (as per Definition 4.3). For every i ∈ [R], Wi has size Si;

• β1, . . . , βR are R strings where |βi| = Si for every i ∈ [R].

We call the tuple a (r, t)-global witness for ρ, if it satisfies the following.

1. Set ρ1 = ρ. W1 is a S1-witness for FL1 |ρ1.
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2. For every i ≥ 2, let Ii−1 ⊆ [n] be the set of variables involved in Wi−1. Note that |Ii−1| = Si−1

since the size of Wi−1 is Si−1. Identify βi−1 as a partial assignment in {0, 1, ⋆}n where only
the part βi−1,Ii−1 is set and other coordinates are filled in with ⋆. Construct ρi = ρi−1 ◦ βi−1.
Then Wi is a Si-witness for FLi |ρi .

The size of the global witness is defined as
∑R

i=1 Si.

Lemma A.7. Consider a list of G(k) ◦ {AND,OR}w circuits F = {F1, . . . , Fm}. Suppose ρ ∈
{0, 1, ⋆}n is a restriction such that F|ρ does not have w-partial depth-t decision tree. Then there
exists an (r, t)-global witness for ρ.

Proof. Same as the proof of Corollary 1 in [Lyu22].

We now define partial global witnesses, as there are far too many global witnesses to union bound
over.

Definition A.8. Let t, w be two integers. Consider a list of G(k) ◦ {AND,OR}w circuits F =
{F1, . . . , Fm}. Suppose ρ ∈ {0, 1, ⋆}n is a restriction. Let (R,Li, Si, Pi, βi) be a tuple, where

• 1 ≤ R ≤ t
r is an integer;

• 1 ≤ L1 ≤ L2 ≤ · · · ≤ LR ≤ m is a list of R non-decreasing indices;

• S1. . . . , SR is a list of R integers such that
∑R

i=1 Si ∈ [t, t+ w];

• P1, . . . , PR is a list of partial witnesses. For every i ∈ [R], Pi has size Si.

• β1, . . . , βR are R strings where |βi| = Si for every i ∈ [R].

We call (R,Li, Si, Pi, βi) a (r, t)-global partial witness for ρ, if we can complete Pi to get a witness
Wi for every i ∈ [R], such that (R,Li, Si,Wi, βi) is a global witness for ρ.

By a simple induction, one can show the following claim.

Claim A.9. Given a global partial witness for ρ, there is exactly one way to complete it and get a
global witness for ρ.

We now construct a global witness searcher that will reconstruct a global witness from a partial
one using advice.

We note the following important lemma about the searcher, which we denote S.

Lemma A.10. Let P be a size S global partial witness. Say ρ is good if P is a global partial witness
for ρ, then

Pr
z
[S(z, P ) is a global witness for ρ(Λ, z)|ρ is good] = 2−S

Proof. Same as proof of Lemma 8 in [Lyu22], but we instead appeal to Lemma 4.7 whenever Lyu’s
proof refers to Lemma 6.

By this lemma, we have

Pr
Λ,z

[ρ(Λ, z) is good for P ] = EΛ
Prz[S(z, P ) is a global witness for ρ(Λ, z)]

Prz[S(z, P ) is a global witness for ρ(Λ, z)|ρ is good]
= 2SEΛ Pr

z
[S(z, P ) is a global witness for ρ(Λ, z)]

≤ 2SEz Pr
Λ
[S(z, P ) is a global witness for ρ(Λ, z)]

≤ (2p)s (13)
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Algorithm 4: Global Witness Searcher
Input: A list of DNFs F = {F1, . . . , Fm}, a global partial witness (R,Li, Si, Pi, βi), and an

advice z ∈ {0, 1}n.
initialize:

c← 1.
ρ(1) ← ρ.

while c ≤ R do
Run Algorithm 2 on (FLc , ρ

(c), Pc, y). If it reports ERROR, report ERROR and
terminate the procedure. Otherwise let Wc be the witness returned.
Ic ← the set of variables involved in Wc.
Identify βc as a partial assignment, where only βIc is fixed.
ρ(c+1) ← ρ(c) ◦ βc.
c← c+ 1.

end
return x

where the last inequality follows from the fact that ρ needs to keep the S variables specified by
the global witness alive in order to have any hope of being witnessed by it. By the (t + w)-wise
p-boundedness of Λ, this happens with probability ≤ pS .

Finally, if we let NS be the number of global witnesses of size S, we can see by using Lemma A.7
and Claim A.9, along with (13) that

Pr
ρ
[F|ρ has no r-partial depth-t DT] ≤

∑
P

Pr
ρ
[P is a global partial witness for ρ]

≤
t+w∑
S=t

NS(2p)
S (14)

We can upper bound NS as follows.

• There are ≤ t
r ·
(
m
t/r

)
≤ 2mt/r ways to pick (R,Li)

• There are ≤ 2S choices for (Si) (since there are ≤ 2n−1 ways to write n as an ordered partition)

• From Theorem 4.1, we know that there are (8w)S2k partial witnesses of size S, giving a total
amount of ≤

∏
i(8w)

Si2k = (8w)S2kR ≤ (8w)S2kt/r

• There are clearly 2
∑

Si = 2S possibilities for (βi).

Combining all this tells us that NS ≤ 2mt/r(32w)S2kt/r. Hence, from (14), we deduce

Pr
ρ
[F|ρ has no r-partial depth-t DT] ≤

t+w∑
S=t

NS(2p)
S ≤ mt/r2kt/r

t+w∑
S=t

(32pw)S ≤ 4(64(2km)1/rpw)t

Theorem A.11 (Proof of Theorem 5.5). Let F = {F1, . . . , Fm} be a list of size m G(k)◦{AND,OR}w
circuits. Let (Λ, z) be a joint random variable such that

• Λ is a (t+ w)-wise p-bounded subset of [n]
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• Conditioned on any instance of Λ, z ε-fools CNF of size ≤ m2.

Then

Pr
Λ,z

[F|ρ(Λ,x) has no r-partial depth-t DT] ≤ 4(m2k)t/r(64pw)t + (64wm)t+w(2m)2kt/r · ε

Proof. All steps of the proof of Theorem 4.8 follow identically until we reach the step

Pr
Λ,z

[F |ρ(Λ,x) has no w-partial depth-t DT]

= Pr
∑

(R,L,Si,Pi,βi)

Pr
Λ,z

[(R,L, Si, Pi, βi) is a global partial witness for ρ(Λ, z)]

From Claim A.9, we can deduce the event decomposes

1{(R,Li, Si, Pi, βi) is a global partial witness for ρ(Λ, z)}

=
∑

Wi:completion of Pi

1{(R,Li, Si,Wi, βi) is a global witness for ρ(Λ, z)}.

For a fixed Λ and (R,Li, Si,Wi, βi), we can let

h
(R,Li,Si,Wi,βi)
Λ (z) = 1{(R,Li, Si,Wi, βi) is a global witness for ρ(Λ, z)}.

We will now show that h is a predicate computable by a small size CNF, so that z will fool it.
h is true iff Wi is a witness for FLi |ρ(Λ,z)◦β1...βi−1

for all 1 ≤ i ≤ R. Now for each i, one can verify
Wi = (r′, ℓi, si, Bi, αi) is a witness by a size m CNF as follows.

• For all j < ℓ1, Cj is falsified by ρ(Λ, z). This is true iff (¬C1) ∧ (¬C2) ∧ · · · ∧ (¬Cℓ1). Notice
¬Ci becomes an OR clause by De Morgan’s Law

• Cj1 is satisfied, which is an AND of variables.

• Cj is falsified by ρ(Λ, z) ◦α1 for ℓ1 < j < ℓ2, which is true iff (¬Cℓ1+1)∧ · · · ∧ (¬Cℓ2−1). Each
¬Ci is an OR clause

• and so on and so forth until we verify Cjr′ .

Each bullet points gives a disjunction of (maybe trivial) conjunctions, so for all bullet points to
hold, we simply take the AND of all of them, resulting in a CNF whose size is bounded by m (since
our CNF is essentially FLi but with some gates and negations changed. Hence, if we want to verify
Wi simultaneously over all i, we take the AND of all R ≤ m CNFs to get a size m2 CNF. Hence, z
ε-fools h. From Theorem 4.1, we know over a uniform string x,∑

(R,Li,Si,Wi,βi)

EΛExh
(R,Li,Si,Wi,βi)
Λ (x) ≤ 4(m2k)t/r(64pw)t

Therefore, over z, we have

Pr
Λ,z

[F |ρ(Λ,x) has no w-partial depth-t DT] =
∑

(R,Li,Si,Wi,βi)

EΛEzh
(R,Li,Si,Wi,βi)
Λ (z)

≤
∑

(R,Li,Si,Wi,βi)

EΛ(ε+ Exh
(R,Li,Si,Wi,βi)
Λ (x))

≤ 4(m2k)t/r(64pw)t +
∑

(R,Li,Si,Wi,βi)

ε.

The number of tuples (R,Li, Si,Wi, βi) can be bounded as follows.
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• From the proof of Theorem A.5, we know there are 2mt/r2kt/r(32w)S many global partial
witnesses of size S.

• We now multiply by the number of (ℓi) possible for each partial Pi of size Si, which is at most(
m
t+k

)
< mSi+k. Hence, the total number of (Wi) over all 1 ≤ i ≤ R is∏

i

mSi+k = mS+kR ≤ mS+ct/r

Hence the total number of size-S tuples is upper bounded by

2mt/r2kt/r(32w)SmS+kt/r ≤ (32mw)S(2m)2kt/r.

Summing over all t ≤ S ≤ t+ w gives us a grand total of

t+w∑
S=t

(32mw)S(2m)2kt/r ≤ (64mw)S(2m)2kt/r.

Therefore,

Pr
Λ,z

[F |ρ(Λ,x) has no r-partial depth-t DT] ≤ 4(m2k)t/r(64pw)t + (64mw)t+w(2m)2kt/r · ε.
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