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Abstract

We study the black-box function inversion problem, which is the problem of finding x ∈ [N ]
such that f(x) = y, given as input some challenge point y in the image of a function f : [N ]→
[N ], using T oracle queries to f and preprocessed advice σ ∈ {0, 1}S depending on f . We prove
a number of new results about this problem, as follows.

1. We show an algorithm that works for any T and S satisfying

TS2 ·max{S, T} = Θ̃(N3) .

In the important setting when S < T , this improves on the celebrated algorithm of Fiat
and Naor [STOC, 1991], which requires TS3 ≳ N3. E.g., Fiat and Naor’s algorithm is
only non-trivial for S ≫ N2/3, while our algorithm gives a non-trivial tradeoff for any
S ≫ N1/2. (Our algorithm and analysis are quite simple. As a consequence of this, we
also give a self-contained and simple proof of Fiat and Naor’s original result, with certain
optimizations left out for simplicity.)

2. We observe that there is a very simple non-adaptive algorithm (i.e., an algorithm whose
ith query xi is chosen based entirely on σ and y, and not on the f(x1), . . . , f(xi−1))
that improves slightly on the trivial algorithm. It works for any T and S satisfying S =
Θ(N log(N/T )), for example, T = N/poly log(N), S = Θ(N/ log logN). This answers a
question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether non-trivial
non-adaptive algorithms exist; namely, algorithms that work with parameters T and S
satisfying T + S/ logN < o(N). We also observe that our non-adaptive algorithm is what
we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is
always one of the oracle queries x1, . . . , xT .

For guess-and-check algorithms, we prove a matching lower bound, therefore completely
characterizing the achievable parameters (S, T ) for this natural class of algorithms.
(Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive
algorithms would imply new circuit lower bounds.)

3. We show equivalence between function inversion and a natural decision version of the
problem in both the worst case and the average case, and similarly for functions f : [N ]→
[M ] with different ranges. Some of these equivalence results are deferred to the full version
[ECCC, 2022].
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All of the above results are most naturally described in a model with shared randomness (i.e.,
random coins shared between the preprocessing algorithm and the online algorithm). However,
as an additional contribution, we show (using a technique from communication complexity due
to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness
into one that does not.
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1 Introduction

We revisit the fundamental problem of black-box function inversion. That is, we study the problem
of finding x ∈ [N ] such that f(x) = y, given as input some challenge point y in the image of
f : [N ]→ [N ] and oracle access to f .

Of course, given only oracle access to f , inverting general functions f will clearly require roughly
N queries, which is not very interesting. However, if we allow our inversion algorithm access to
some additional information about f , then inversion might be possible with much fewer queries.
So, we consider the following model. First, using unlimited computational power, a preprocessing
algorithm P analyzes f and outputs S bits of advice σ ∈ {0, 1}S . Then, an online algorithm A is
given a point y in the image of f , the advice σ, and oracle access to f and, using at most T oracle
queries, must output some x such that f(x) = y. We wish to design such algorithms that minimize
the complexity measures S and T , which are often referred to informally as “space” and “time.”
For example, notice that it is trivial to invert f if S/ logN + T ≥ N , by simply including the first
S/ logN values of f as advice and querying the remaining N − S/ logN ≤ T values.

This model is very well studied, since it arises naturally in a number of contexts, from cryptog-
raphy [Hel80, Yao90, FN91, GT00, Wee05, Unr07, DTT10, DGK17, CDGS18, CDG18, CK19]
(where an appropriate version of this problem corresponds to the problem of breaking a
black-box one-way function in the non-uniform model) to data structures and complexity the-
ory [Yao90, CK19, GGH+20, DKKS21]. Indeed, many variants of the problem have been studied.
For example, we might ask for algorithms that invert arbitrary functions f [FN91], random functions
f [Hel80] (in which case the algorithm should work with reasonable probability over the function f),
or special classes of functions f , like permutations [Yao90]; or one might place restrictions on the
algorithm by, e.g., requiring the oracle queries to be non-adaptive [CK19, CHM20] or requiring that
the algorithm otherwise has some special structure [BBS06]. Other work has considered stronger
models of computation, such as quantum algorithms [NABT15, CLQ20, CGLQ20].

In his celebrated 1980 work, Hellman [Hel80] published the first non-trivial function inversion
algorithm. Hellman’s algorithm inverts random functions for any S and T satisfying TS2 ≳ N2,
under certain heuristic assumptions. (Here and elsewhere in the introduction, we use ≳ to represent
an inequality that holds up to factors polylogarithmic in N .) In their seminal 1991 paper, Fiat
and Naor [FN91] presented an algorithm that (1) provably achieves Hellman’s tradeoff for random
functions f ; and (2) achieves a different non-trivial tradeoff for any function f . Specifically, their
algorithm can invert any function f provided that S and T satisfy

TS3 ≳ N3 . (1)

For example, when T = S, this works for any S = T ≳ N3/4, while the result becomes trivial for
S ≲ N2/3 (since in that case they require T ≥ N , which can be matched by the trivial algorithm).

Despite thirty years of effort, no improvements have been made to Eq. (1). This has naturally led
to a search for matching lower bounds. Indeed, Barkan, Biham, and Shamir showed that Hellman’s
algorithm (or Fiat and Naor’s variant with proven correctness) gives essentially the optimal tradeoff
between S and T for inverting random functions if we restrict our attention to a certain rather
specific class of algorithms [BBS06]. However, the best known lower bound [Yao90, GT00, DTT10]
against arbitrary algorithms (which applies for random functions and even random permutations)
only says that S and T must satisfy

ST ≳ N , (2)
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which is much weaker than Eq. (1). (While the lower bound in Eq. (2) is quite far from the best
upper bounds known for arbitrary functions or even for random functions, Hellman proved it is
tight in the special case when the function f is a permutation [Hel80].)

Corrigan-Gibbs and Kogan explained the lack of progress on lower bounds by showing that
any significant improvement to the lower bound in Eq. (2) would yield a breakthrough in circuit
lower bounds [CK19]. (See also [DKKS21], which showed that lower bounds on function inversion
are closely related to many other major open problems, such as the hardness of sorting and the
Network Coding Conjecture.) In fact, Corrigan-Gibbs and Kogan [CK19] showed that even a lower
bound against non-adaptive algorithms that improves upon Eq. (2) would imply new circuit lower
bounds. An online algorithm A is non-adaptive if the queries x1, . . . , xT that it makes to its oracle
are functions only of its input y, the preprocessed advice σ, and shared randomness r—i.e., if xi+1

is chosen independently of the answers f(x1), . . . , f(xi) to the previous queries. This result is quite
tantalizing because (1) all of the non-trivial algorithms described above rely crucially on adaptive
queries; (2) very strong lower bounds are in fact known for slightly weaker models [CHM20]; and (3)
it seems intuitively clear that non-adaptive algorithms should not be able to do much better than
the trivial algorithm, which requires S/ logN+T ≥ N . (Notice that in the context of non-adaptive
algorithms, we do not leave out logarithmic factors, as even small improvements are interesting
here.) Indeed, Corrigan-Gibbs and Kogan naturally speculated that no non-adaptive algorithm
can do significantly better than the trivial algorithm—specifically, that no non-adaptive algorithm
can solve function inversion with S < o(N logN) and T < o(N).

1.1 Our results

Improving on the Fiat-Naor algorithm for T > S. Our first main result is an algorithm
that inverts any function f : [N ]→ [N ] on any challenge y in its image for any T and S satisfying

T 2S2 ≳ N3 . (3)

Recall that the original Fiat-Naor algorithm requires TS3 ≳ N3 (as in Eq. (1)). So, our
algorithm is better than Fiat and Naor’s algorithm if (and only if) T > S. This is arguably
the most interesting setting, since non-uniform advice is arguably a more expensive resource than
queries (as Hellman pointed out in [Hel80]).1 In particular, our algorithm remains non-trivial (i.e.,
outperforms the trivial algorithm that requires S + T ≳ N) as long as S ≳ N1/2, whereas the
original Fiat-Naor algorithm is trivial for S ≲ N2/3.

In fact, our algorithm is a surprisingly simple variant of Fiat and Naor’s original. Our presen-
tation of the algorithm and its analysis is also notably simpler. So, as an additional benefit, we
also give a significantly simpler presentation of the original result in [FN91].2 Indeed, we present
the two algorithms together, as a single algorithm (that behaves differently in one step depending
on whether S > T ) that solves function inversion for any S and T satisfying

TS2 ·max{S, T} ≳ N3 . (4)

1However, a big part of the reason that advice is considered to be expensive is because memory is often considered
to be more expensive than computing time. Unfortunately, though our algorithm can use much less than T bits of
advice, our online algorithm still must use roughly T bits of space. So, though we do show an algorithm that uses
less advice, we do not show an algorithm that uses less space.

2Admittedly, this simplicity is partially (though not entirely) due to the fact that we chose not to optimize for
parameters other than S and T , while Fiat and Naor were quite careful to optimize, e.g., the actual running time
and space of both the query algorithm and the preprocessing algorithm. See Section 1.4 for more discussion.
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In other words, we give a unified presentation that achieves the best of both worlds, matching the
original tradeoff achieved by Fiat and Naor in Eq. (1) and our new tradeoff in Eq. (3).

A lower bound against guess-and-check (non-adaptive) algorithms. We next address
Corrigan-Gibbs and Kogan’s question about whether non-trivial non-adaptive algorithms are pos-
sible. Corrigan-Gibbs and Kogan naturally guessed the answer was negative. But, surprisingly,
we observe that there is a very simple algorithm that (slightly) outperforms the trivial algorithm.3

Recall that the trivial algorithm simply stores inverses for as many range elements as it can, and
achieves parameters S/ logN + T = N .

The simple algorithm, by contrast, stores only part of an inverse for each range element. Specif-
ically, for each y ∈ [N ] having at least one inverse, the preprocessing algorithm stores the first
log(N)− log(T ) = log(N/T ) bits of an inverse xy. On challenge y, the online algorithm queries all
T = 2log T elements whose first log(N/T ) bits match the stored prefix of xy. One of these queries
will discover that f(xy) = y. This simple algorithm evidently achieves the tradeoff

S = N log(N/T ) . (5)

For example, setting T = N/ logC(N) for any constant C > 0, the simple algorithm uses S =
O(N log logN) bits of advice, beating the trivial algorithm by a polylogarithmic factor in both
time and space.

The simple algorithm is very straightforward by any standard, and in particular, it always
outputs one of the points xi that it queries. We call non-adaptive algorithms with this property
guess-and-check algorithms, since such an algorithm can be viewed as making T guesses x1, . . . , xT
up front, and then using its queries to check whether any of its guesses is in fact a inverse of y.

To our knowledge, we are the first to consider this class of algorithms, though we find them
to be quite natural. For example, we note in passing that guess-and-check algorithms can be
thought of as “highly parallel algorithms” in the sense that they capture the model in which T
processors independently compute and check one potential preimage xi of y (i.e., one “guess”), and
the algorithm succeeds if and only if any of these processors discovers that xi is in fact a preimage
of y. Indeed, [CK19] introduced non-adaptive algorithms in part because of their relationship with
parallelism. (Other special classes of non-adaptive algorithms were studied in [CK19] and [CHM20],
but none of the previously defined classes captures guess-and-check algorithms, as we explain in
Section 1.3.)

Our second contribution is a lower bound showing that no guess-and-check algorithm can do
significantly better than Eq. (5) (even for inverting permutations). Specifically, we show that Eq. (5)
is tight up to a constant factor in S and T . We therefore characterize the query-preprocessing
tradeoff for guess-and-check non-adaptive function inversion up to a constant factor. If our lower
bound could be extended to general non-adaptive algorithms, it would imply new strong circuit
lower bounds, using the result of Corrigan-Gibbs and Kogan [CK19]. 4

3In fact, we also missed this algorithm. An earlier version of this paper described a much more complicated
algorithm that achieves the same parameters. We are very grateful to the anonymous CRYPTO reviewer who
reviewed that version and discovered the simple algorithm.

4In fact, two of the authors of the present work originally proved the lower bound without realizing the distinction
between general non-adaptive algorithms and guess-and-check algorithms. We were quite excited to have proven a
new circuit lower bound, before we realized this subtle error.

3



Search-to-decision reductions. Next, we consider a natural variant of function inversion,
which we call decision function inversion (DFI). In DFI, the goal is simply to determine whether
the input point y ∈ [M ] is in the image of a function f : [N ]→ [M ], given oracle access to f , shared
randomness r, and S bits of preprocessed advice σ that may depend on r and f . (Notice that in the
context of DFI, it is natural to consider functions with a range [M ] for M ≫ N . In Appendix A,
we show that many versions of function inversion are equivalent to their respective variants when
the range is changed.) Given the very slow progress on the search function inversion (SFI) problem
that we discussed above, it is natural to ask whether the decision variant is any easier.

Unfortunately, we show that this cannot be the case—for either random functions or worst-
case functions. Specifically, we show a reduction from average-case SFI to average-case DFI (in
which both the function and the target are uniformly random, as in definitions Definitions 2.4
and 2.5), and a reduction from worst-case SFI to worst-case DFI. These reductions incur very little
overhead—only increasing S and T by a factor that is polylogarithmic in N—and both reductions
are non-adaptive, in the sense that they convert non-adaptive DFI algorithms into non-adaptive
SFI algorithms. (See Remarks 5.3 and 5.5.)

These reductions can be viewed as variants of a reduction in [CK19] (as we discuss in Sections 1.2
and 1.3). In Appendix B, we show another search-to-decision reduction for injective functions,
which is a more direct adaptation of the reduction in [CK19].

Removing shared randomness. Our final contribution is a generic way to convert a function
inversion algorithm with shared randomness into an algorithm without shared randomness, at the
expense of a small (additive) increase in S. Indeed, prior work used slightly different models
for function inversion—depending on whether the preprocessing and query algorithms are allowed
access to a shared random string, which does not count as part of the preprocessed advice. Often,
this shared random string is represented by shared access to a random oracle.

E.g., Corrigan-Gibbs and Kogan [CK19] allowed their query and preprocessing algorithms access
to the same random oracle. In contrast, Fiat and Naor [FN91] did not allow for this. Even in this
more conservative setting, however, it is often far more convenient to first describe algorithms that
do have access to shared randomness, typically in the form of a random oracle, and then to describe
how to remove this shared randomness by, e.g., replacing the random oracle with a suitable carefully
chosen hash function (with a suitably short key that can be included as part of the preprocessed
advice) and arguing that this has little to no effect on the correctness of the algorithm.

We show a generic way to convert any function inversion algorithm with shared randomness
into a function inversion algorithm without shared randomness. Our conversion is quite simple
(and actually applies to a more general class of problems; see Section 6), as it simply replaces
the shared randomness r with a string ri chosen by the preprocessing algorithm from a relatively
small number of fixed strings r1, . . . , rk. (In fact, a random list of strings will work with high
probability.5) Because the number of such strings is relatively low (e.g., k ≤ N · poly log(N) in all
of our settings), the index i can be appended to the preprocessed advice essentially for free (costing
only an additional log k ≈ logN bits of advice).

5At first, this statement might sound trivial, since we started with an algorithm that works with shared random-
ness r, and we seem to have converted into an algorithm with more shared randomness. The difference, however, is
in the order of quantifiers. In the shared randomness model, we ask that for any function f with high probability
over the randomness r, the algorithm inverts f . Here, we show that with high probability over the random strings
r1, . . . , rk, for every function f there exists i such that the algorithm inverts f with randomness ri.
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In particular, nearly all of the results listed are most naturally presented using shared random-
ness, but this procedure shows that this shared randomness can be removed without changing any
of our stated results (up to a lower-order additive term in S)! And, this shows that the carefully
chosen hash functions in much prior work were in some sense not necessary. (In particular, our
result implies that it is not necessary to use these hash functions to remove shared randomness.
However, these hash functions are still useful for optimizing additional complexity measures that
we ignore in this work, like the size of the description of the (nonuniform) preprocessing algorithm.
See Section 1.4.)

Our proof of this result is an adaptation to our setting of a celebrated result in communica-
tion complexity. Specifically, we adapt Newman’s beautiful technique for converting public-coin
protocols to private-coin protocols [New91].

This does not come completely for free, however. Our proof shows that a random list of strings
r1, . . . , rk will work with high probability. But, these strings still need to be stored somehow.
So, while our conversion process does not increase the number of queries T and only (additively)
increases the size S of the advice by a very small amount, it does require both the preprocessing
algorithm P and the online algorithm A to be non-uniform.

Since non-uniformity is often assumed in this setting, this does not bother us much. But, there
do exist practical applications of function inversion algorithms, e.g., in cryptanalysis, for which
truly non-uniform algorithms are an unreasonable model. We note, however, that in practical
applications it is typically sufficient to simply use a cryptographic hash function as a replacement
for a random oracle. If this is done, our algorithm becomes uniform, while retaining the desirable
property from Fiat and Naor’s algorithm that preprocessing only requires Õ(N) time. Thus our
improvement over Fiat and Naor’s algorithm in the low-space regime S < T also applies in this
setting.

1.2 Our techniques

Improving Fiat-Naor. Our improvement to Fiat and Naor’s algorithm starts by recalling the
following. In the original Fiat-Naor procedure, the preprocessing algorithm first generates a list of
nearly S “heavy hitters”—that is, elements in the image of f having many inverses—and it includes
this list together with a preimage for each heavy hitter in its advice to the online algorithm.

The online algorithm then operates in two phases. It first checks this list to see if its input y is
a heavy hitter, in which case it immediately outputs the corresponding preimage contained in the
advice. Otherwise, (ignoring important technical details for simplicity) the algorithm effectively
runs a function inversion algorithm on the function f restricted to elements whose images are
not heavy hitters. With the heavy hitters removed, the new restricted function is much better
behaved than the original, allowing for the final tradeoff. (In particular, the restricted function will
have relatively low collision probability, which Fiat and Naor show is sufficient for a Hellman-like
algorithm to invert it with the desired tradeoff. See Section 3 for the details.)

In fact, as Fiat and Naor observe, it is sufficient to simply include a list of nearly S pairs
(xi, f(xi))1≤i≲S for uniformly random xi ∼ [N ] as part of the advice, rather than explicitly looking
for heavy hitters. (Notice that any elements y ∈ [N ] with very many preimages will still be
contained in such a list with high probability, which is why this works.)

At this high (and slightly misleading) level of detail, our modification to Fiat and Naor’s al-
gorithm is straightforward: rather than having the preprocessing algorithm include many random
queries (xi, f(xi))i as part of the preprocessing, we have the online algorithm generate this list itself.
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This allows us to replace a list of length S with a list of length T , which gives us our advantage
over the original algorithm when T > S.

Of course, many details must be worked out to make this actually work. Most significantly, it is
crucial that the same list (xi, f(xi))i is known to both the preprocessing algorithm and the online
algorithm, so that they both work with the same restricted function f ′. For this, we rely on shared
randomness (which can then be removed quite painlessly using the result from Section 6), allowing
the online algorithm and the preprocessing algorithm to share the same list (xi)i of random query
points.

Our reliance on shared randomness also greatly simplifies the description and analysis of both
our algorithm and Fiat and Naor’s original. Indeed, as we mentioned above, we give a simple
presentation of a single unified algorithm that works whenever

S2T ·max{S, T} ≳ N3 .

This simplified presentation might itself be of independent interest.

A tight bound against guess-and-check algorithms. The proof of our lower bound against
guess-and-check algorithms follows the high-level framework used by [DTT10] and [DGK17]. The
idea here is to show that a function inversion algorithm with certain properties would imply an
unreasonably succinct way to encode a function f : [N ] → [N ]—i.e., a succinct bit string that
can be used to recover f . (In this high-level description, we ignore for simplicity the fact that our
algorithms (P,A) may be randomized and the related fact that they might fail some fraction of
the time. To fix this, we must work with randomized encodings that themselves have some chance
of failure.) In fact, we restrict our attention to permutations f , so that in order to encode f , it
suffices to encode the unique inverse of each element y ∈ [N ]. (This only makes our lower bound
stronger.)

Our encoding will consist of the S bits of preprocessed advice σ ∈ {0, 1}S together with some
additional information. Recall that a non-adaptive algorithm has the property that the queries

x
(y)
1 , . . . , x

(y)
T made by A on input y are fixed for fixed σ (where here we are ignoring any randomness

for simplicity). Furthermore, if a guess-and-check (non-adaptive) algorithm succeeds, then one of
the xi must be a preimage of y. Our encoding will therefore simply record for each y ∈ [N ] the index

iy ∈ [T ] such that x
(y)
iy

is the unique preimage of y. Notice that this information, together with σ,

is actually enough to completely reconstruct the function f . (Notice also that this argument relies
quite heavily on guess-and-check non-adaptivity. For a general non-adaptive algorithm, it might

be necessary to include the responses to all queries x
(y)
1 , . . . , x

(y)
T .)

This gives an encoding of f that uses only N log T + S bits. Since there are N ! permutations
over [N ], this is a contradiction unless N log T +S ≥ log(N !) ≥ Ω(N logN). Rearranging gives our
lower bound of S ≥ Ω(N log(N/T )).

Search-to-decision reductions. Corrigan-Gibbs and Kogan [CK19] observed that there is a
reduction from SFI on injective functions f : [N ] → [M ] to (a different version of) DFI on worst-
case functions, where the reduction works by essentially “asking the DFI oracle for the ith bit of
the unique preimage.” Specifically, at a high level their reduction works by essentially running the
DFI algorithm separately on the functions fi : [N/2]→ [M ] corresponding to f restricted to inputs
whose ith bit is, say, zero. By solving DFI on the functions fi and target point yi, they can recover
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the unique preimage to y “one bit at a time.”6 Notice in particular that this reduction is careful to
only work with a small number of functions fi that are defined independently of the target point,
which allows the SFI algorithm to work with preprocessed advice from the DFI algorithm for a
small number of functions.

Both of our search-to-decision reductions start with the simple (and, on its own, not particularly
interesting) observation that the above idea can be generalized to invert any function f : [N ]→ [M ],
provided that the target point y that we are inverting has a unique preimage.

At a high level, our reduction from worst-case SFI to worst-case DFI then works by directly
reducing from worst-case SFI with a general target point y to the variant in which y is promised
to have a unique preimage. For this, we use an idea inspired by Valiant and Vazirani’s celebrated
Isolation Lemma [VV85]. Specifically, we find a small number of subsets Uj ⊆ [N ] of the domain
of f (which are chosen independently of y!) such that with high probability y has exactly one
preimage when f is restricted to Uj . Then, (ignoring many technical details) we can use the ideas
described above to solve this search problem using only a DFI algorithm.

For our reduction from average-case SFI to average-case DFI, we can more-or-less assume that
the target point y has a unique preimage, since a large fraction of the elements in the image of
a random function f have a unique preimage. However, here we run into a different problem: an
average-case DFI oracle is only guaranteed to work with some reasonable probability when the
function f : [N ]→ [M ] is uniformly random (see Section 5.2 for the details). While the restrictions
fi (as described above) of a uniformly random function f are themselves uniformly random, they
are certainly not independent. This means that a DFI oracle could potentially have very high
success probability but still could, e.g., always fail on one (or even many) of the functions fi (out of
logN total functions f1, . . . , flogN ), which would cause our search-to-decision reduction to always
fail to find the ith bit of the preimage (and therefore to fail).

We solve the above problem by using good error-correcting codes. That is, instead of working
with the functions fi corresponding to the bits of elements in [N ] written in binary, we work with a
larger number of functions f ′i corresponding to the bits of encodings of elements in [N ] using a good
error-correcting code. That is, f ′i is the function f restricted to the set of elements in [N ] whose
corresponding codeword has ith bit equal to zero. By using a good enough code, we can recover a
preimage of the target by solving just O(logN) decision problems, even if a 1/4− ε fraction of the
answers are wrong. (Indeed, we can even decode efficiently, though we mostly do not worry about
this.)

1.3 Related work

Here, we describe some of the related work that has not already been discussed, as it relates to the
present work.

De, Trevisan, and Tulsiani [DTT10] showed improvements to Fiat and Naor’s algorithm along a
different axis. Specifically, they showed how to achieve surprisingly small values of S and T in the
setting in which the algorithm is only required to invert y := f(x) for uniformly random x ∼ [N ]
with some very small probability ε. (In contrast, all of our algorithms invert such a y with high

6We are oversimplifying quite a bit here and leaving out many important details. Perhaps most importantly, we
are assuming here for simplicity that the DFI oracle always outputs the correct answer, while Corrigan-Gibbs and
Kogan worked with a much weaker DFI oracle. They were also careful to keep the domain of the functions fi the
same as the domain of the function f , while we are not concerned with this.
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probability.) They show a slight variant of Fiat and Naor’s algorithm that works for any S, T , and
ε satisfying ST ≳ εN for ε < N−1/3 (which they show is optimal) and TS3 ≳ ε5N3 otherwise.

Like us, Chawin, Haitner, and Mazor [CHM20] showed lower bounds on special cases of non-
adaptive algorithms. In particular, they considered the function gσ,y : [N ]T → [N ] that maps the
responses f(x1), . . . , f(xT ) to the queries made by A to the final output of A (i.e., the guess that
A makes for the preimage of y). For example, they showed that S ≥ Ω(N) (regardless of T ) if
gσ,y is an affine function. They also showed that dS logN + T ≥ Ω(N) if gσ,y can be implemented
by a depth-d affine decision tree. We note that neither of these models captures guess-and-check
algorithms, for which gσ,y(y1, . . . , yT ) = xi, where i is such that yi = y. (Such a gσ,y is certainly not
affine, and it seems that it requires depth d ≈ T to implement such a function as an affine decision
tree, as one must sequentially check whether yi = y for all i.)

Corrigan-Gibbs and Kogan also defined a special case of non-adaptive algorithms, which they
call strongly non-adaptive [CK19]. For a strongly non-adaptive algorithm, the function gσ,y may
be arbitrary, but the queries x1, . . . , xT must be computed independently of the preprocessing (and
non-adaptively), so that they are effectively completely independent of the function f . [CK19]
showed that lower bounds against even such weak models would imply new circuit lower bounds.
However, strongly non-adaptive algorithms are incomparable to our model of guess-and-check al-
gorithms, so that our lower bound on guess-and-check algorithms unfortunately does not directly
apply.

For general non-adaptive algorithms, Dvořák, Koucký, Král, and Sĺıvová [DKKS21] showed a
conditional lower bound of T ≥ Ω(logN/ log logN) for any S ≤ εN logN for some small constant
ε > 0, assuming the Network Coding Conjecture. Notice that this lower bound holds in a more
general setting than our lower bound or those of [CHM20] but it requires an unproven conjecture and
is quantitatively weaker than ours and those in of [CHM20]. (E.g., for guess-and-check algorithms
with S ≤ εN logN , our lower bound implies that T ≥ N1−O(ε).)

There is also a long line of work [DTT10, DGK17, CDGS18, CDG18, CK19, GGKL21] studying
a different version of DFI than the one that we study, which is sometimes simply called the PRG
problem. Here, the goal is to distinguish (perhaps with relatively small distinguishing advantage) a
uniformly random element y ∼ [M ] from f(x) for uniformly random x ∼ [N ], where f : [N ]→ [M ].
In particular, Corrigan-Gibbs and Kogan show a search-to-to-decision reduction from SFI over
injective functions to the worst-case PRG problem. Our search-to-decision reductions are essentially
generalizations of their reduction from [CK19] to the setting of non-injective functions. We pay
for this non-injectivity by requiring our DFI algorithm to solve problems that are harder than the
PRG problem, and by requiring significantly more complicated reductions.

1.4 A note on the many facets of function inversion

There are many variants of the function inversion problem and many different complexity measures
that one can use to assess algorithms in this context. The landscape is therefore quite complicated.
Indeed, our search-to-decision reductions and our proof that shared randomness can be removed
(as well as the reductions between versions of SFI with different range sizes in Appendix A) can
be viewed as small steps towards simplifying the picture a bit.

But, there are still certainly many variants and complexity measures that we simply do not
address in this work. E.g., while we mostly focus on the number of queries T and the length S of
the preprocessed advice, much prior work was also interested in the time and space complexity of
the algorithms P and A, which we largely ignore. E.g., prior work [FN91, DTT10] used specialized
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hash functions to replace shared randomness because removing shared randomness is itself a worthy
goal, but also to optimize the running time of their algorithms (which is not the same as the
query complexity T ). For the sake of simplicity, we have chosen to largely ignore these additional
complexity measures in our algorithms, and we have therefore not optimized our algorithms for
these complexity measures at all. (We do note that our algorithms run in essentially optimal time
when they are implemented with shared randomness in the form of shared access to a random
oracle. In particular, the preprocessing algorithms can be implemented in time Õ(N), and the
online algorithms can be implemented in time T · poly log(N).)

As another example, as we discussed above, De, Trevisan, and Tulsiani [DTT10] studied the
dependence of S and T in terms of the fraction ε of inputs x ∈ [N ] for which the algorithm
successfully inverts f(x). They showed that for small ε one can do much better than Eq. (1), using
essentially the same algorithm. It is natural to ask whether their techniques can be applied to our
new version of the Fiat-Naor algorithm; we believe that they can be, but we leave this to future
work.

2 Preliminaries

We define 1µ as 1µ = 1 if µ is true, and 0 otherwise. All logarithms are base 2, i.e., log 2n = n.

2.1 Definitions of function inversion problems

In the following definitions, M and N are positive integers, and (P,A) is a pair of randomized
algorithms. For a set X ⊆ [N ], f(X) denotes the image of X under f , and for y ∈ [N ], f−1(y)
denotes the preimage of y under f . The first few definitions are core to our study of function
inversion.

Definition 2.1. We say that

1. (P,A) uses S bits of preprocessing if for all inputs, the output of P has bitlength at most S.

2. (P,A) uses T queries if for all inputs, Af makes at most T queries to f .

Definition 2.2. We say that (P,A) solves (N,M)-search function-inversion ((N,M)-SFI) with
success probability δ ∈ (0, 1] if for all f : [N ]→ [M ] and y ∈ f([N ]),

Pr
r∼{0,1}l

[Af (P(f, r), y, r) ∈ f−1(y)] ≥ δ.

Here r is the shared randomness between the algorithms A and P. It has some (typically
unspecified) finite bitlength l.

Definition 2.3. We say that (P,A) solves (N,M)-decision function-inversion ((N,M)-DFI) with
advantage ε ∈ (0, 1/2] if for all f : [N ]→ [M ] and y ∈ [M ],

Pr
r∼{0,1}l

[Af (P(f, r), y, r) = 1y∈f([N ])] ≥ 1/2 + ε.

In words, A is likely to output 1 when y is in the image of f , but is unlikely to output 1 when y is
in [M ] \ f([N ]).
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We will abuse terminology slightly and simply refer to (P,A) as an algorithm when the meaning
is clear from context. When N = M , we will drop the parameters and just write SFI or DFI. We
will also sometimes write “worst-case SFI” or “worst-case DFI” to distinguish from the average-case
variants that we define next.

Definition 2.4. We say that (P,A) solves average-case (N,M)-SFI with success probability δ if

Pr
r∼{0,1}l

f∼{g:[N ]→[M ]}
x∼[N ];y←f(x)

[Af (P(f, r), y, r) ∈ f−1(y)] ≥ δ.

Definition 2.5. We say that (P,A) solves average-case (N,M)-DFI with advantage ε if

Pr
r∼{0,1}l

f∼{g:[N ]→[M ]}
x∼[N ];y←f(x)

[Af (P(f, r), y, r) = 1] ≥ 1/2 + ε,

and
Pr

r∼{0,1}l
f∼{g:[N ]→[M ]}
y∼[M ]\f([N ])

[Af (P(f, r), y, r) = 0] ≥ 1/2 + ε.

In order to state our results removing shared randomness, we need the following definition of
function-inversion algorithms without shared randomness.

Definition 2.6. We say that (P,A) solves (N,M)-SFI with success probability δ without shared
randomness if for all f : [N ]→ [M ] and all y ∈ f([N ]),

Pr
r1,r2∼{0,1}l

[Af (P(f, r1), y, r2) ∈ f−1(y)] ≥ δ.

We make analogous definitions for the 3 other problems ((N,M)-DFI, average-case (N,M)-SFI,
average-case (N,M)-DFI).

Note that we will say, for example, “(N,M)-SFI for injective functions”, when we mean Defini-
tion 2.2, but with the function f ranging over all injective functions from [N ] → [M ]. Finally, we
define some special classes of algorithms that will be studied in Section 4.

Definition 2.7. An algorithm A is called non-adaptive if Af (σ, y, r) only queries f on points
x1(σ, y, r), . . . , xT (σ, y, r) depending only on the inputs σ, y, and r (i.e., not depending on the results
of previous queries).

Definition 2.8. An algorithm A is a guess-and-check algorithm if it is non-adaptive and whenever
x← Af (σ, y, r), then x is one of the points queried by Af .

We will say that (P,A) is non-adaptive (resp. a guess-and-check algorithm) if A is non-adaptive
(resp. a guess-and-check algorithm).
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2.2 Some basic probability results

We will use the following version of Chernoff’s bound (see, e.g., [MU17]).

Lemma 2.9. Suppose X1, . . . , Xn are independent random variables taking values in {0, 1}. Let
X denote their sum, and µ := E[X]. Then for any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ exp
(−δ2µ
2 + δ

)
.

Moreover, for 0 ≤ ε ≤ 1,

Pr[X ≤ (1− ε)µ] ≤ exp
(−ε2µ

2

)
.

We will also need the following simple bound.

Lemma 2.10. For any integers N ≥ 1 and M ≥ 2,

Pr
f∼{g:[N ]→[M ]},x∼[N ]

[|{x′ ∈ [N ] : f(x) = f(x′)}| = 1] ≥ e−N/M−N/M2
.

Proof. This is exactly equal to

Pr
y1,...,yN−1∼[M ]

[∀i, yi ̸= 0] = (1− 1/M)N−1 ≥ e−N/M−N/M2
.

For the last inequality, it suffices to show that 1−x ≥ e−x−x
2
for 0 ≤ x ≤ 1/2. Indeed, plugging in

x = 1/M gives 1−1/M ≥ e−1/M−1/M
2
, which implies (1−1/M)N−1 > (1−1/M)N ≥ e−N/M−N/M2

.
To prove this, let f(x) = 1 − x, g(x) = e−x−x

2
, and h(x) = f(x)/g(x). Computing d

dx log(h(x)) =
d
dx(log(1−x)− (−x−x2)) = −1/(1−x)+1+2x = x(1− 2x)/(1−x), we see that it is nonnegative

on [0, 1/2]. Since the logarithm is increasing, it follows that d
dxh(x) is also nonnegative on [0, 1/2],

and so h(x) ≥ h(0) = 1 on [0, 1/2]. But this implies f(x) ≥ g(x) for all 0 ≤ x ≤ 1/2, which is what
we wanted to prove.

2.3 Binary linear codes

Recall that a binary linear code C with rank n is an n-dimensional subspace C ⊆ Fm
2 , and C ∈ Fm×n

2

is a generator matrix for C if C = CFn
2 . For x ∈ Fm

2 , we write ∥x∥H for the Hamming weight of x
(i.e., the number of non-zero coordinates). The notation mn,ε ≤ Oε(n) means that there exists a
function f(ε) such that mn,ε ≤ f(ε)O(n).

Theorem 2.11 ([Jus72, MS77, ABN+92, Spi95]). For every constant ε > 0, there exists a family
Cn,ε ⊆ Fm

2 with rank n and m = mn,ε ≤ Oε(n), an efficiently computable generator matrices
Cn,ε ∈ Fm×n

2 , and an efficient decoding algorithm Dec such that for every x ∈ Fn
2 and every e ∈ Fm

2

with ∥e∥H ≤ (1/4− ε) ·m, Dec(Cn,εx⊕ e) = x.

For any C ⊆ Fm
2 and 1 ≤ i ≤ m, we can easily define the subcode Ci := {c = (c1, . . . , cm) ∈

C : ci = 0}. Notice that we have either |Ci| = |C| or |Ci| = |C|/2 (where the first case only occurs
if all c ∈ C have zero ith coordinate), and that given a generator matrix C ∈ Fm×n

2 for a code C,
it is trivial to compute a generator matrix for Ci. Notice also that we may assume without loss
of generality that the codes C := Cn,ε in Theorem 2.11 satisfy |Ci| = |C|/2 for all i (since we may
simply remove any coordinates that are always zero).
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3 An improvement to Fiat and Naor’s algorithm

From our perspective, there are two core techniques used in Fiat and Naor’s algorithm [FN91]. First,
Fiat and Naor’s algorithm generates a list L of pairs (x, f(x)) for random domain elements x ∈ [N ],
which effectively serves as a list of preimages of “heavy hitters”—i.e., elements x such that f(x) has
many preimages. In the original algorithm, L is included as part of the preprocessed advice. Second,
(following Hellman [Hel80]) Fiat and Naor describe a randomized subroutine (P ′,A′) that takes L as
auxiliary input and for all y ∈ f([N ]), inverts y with some small probability. This subroutine is then
run many times to boost its success probability (with a fixed list L but independent randomness for
P ′ and A′). Our improvement differs from the original only in the first part, and the difference can
be described in one sentence: if T > S, instead of including the list L in the preprocessed advice,
we reconstruct it using queries to f . This can be done because the random domain elements x
can be derived from shared randomness (which we also show in Corollary 6.3 is available in the
non-uniform model for essentially no cost). This allows us to construct a larger list L in the case
when T > S, with |L| ≈ T instead of |L| ≈ S.

Our formal theorem is the following.

Theorem 3.1. For all S, T satisfying S2T max{S, T} ≥ N3, there exists an algorithm that solves
SFI with success probability 1 using O(S log2N) bits of preprocessing and O(T log2N) queries.

As mentioned above, this improves on Fiat and Naor’s tradeoff in the important setting where
S < T . On the other hand, when S ≥ T our algorithm is essentially just Fiat and Naor’s algorithm.
However, even in this case, we believe that our presentation and analysis is significantly simpler,
which we view as an additional contribution. Some (though certainly not all) of this simplicity is
because of our choice to optimize only for T and S and not for additional complexity measures like
the running time of the online algorithm (see Section 1.4) or the use of shared randomness (which
we show is essentially without loss of generality in Section 6). Fiat and Naor made careful use of
k-wise independent hash functions in order to optimize these parameters.

Below, we present an algorithm which succeeds with probability 1−O(1/N). By Corollary 6.3,
this implies the result.

3.1 The algorithm

Let K := max{S, T}, and let α := 2K⌈logN⌉. Let z1, . . . , zα ∼ [N ] be uniformly random and
independent elements generated using the shared randomness. Let L := {(zi, f(zi)) : i ∈ [α]}.
Intuitively, we think of L as a list of inverses for “heavy hitters,” that is, elements y in the image
of f that have many preimages. Let L̂ := {y : (x, y) ∈ L}, and let D := {x ∈ [N ] : f(x) /∈ L̂} be
the domain elements whose images are not trivially inverted by lookup in L. Finally, let N ′ := |D|.

We will show a subroutine (P ′,A′) that takes L as input and, provided that L̂ contains all points
with at least N/K preimages, inverts any challenge y ∈ f(D) with small but decent probability. It
uses parameters m := ⌊N/3T ⌋ and t := ⌊N ′/3S⌋. The subroutine works by constructing m chains
of length t as in Figure 1.

At a high level, the full algorithm (P,A) then works by constructing L, and running (P ′,A′)
many times to boost the success probability. More precisely, let ℓ := ⌈100ST log(N)/N⌉, and let
r1, . . . , rℓ be independent random strings derived from shared randomness. On input a function f ,
the preprocessing algorithm P first constructs L as described above, then for i ∈ [ℓ], it runs sti ←
P ′(L, f, ri). If S ≥ T , P outputs σ := (L, st1, . . . , stℓ). Otherwise, it just outputs σ := (st1, . . . , stℓ).
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xj x∗ g(y) ht(xj)

y

f f f

. . .

. . .

g gg

h h hh h

using (xj , h
t(xj))

Figure 1: The picture captures the basic workings of chain-based algorithms, including Hellman’s
algorithm, Fiat and Naor’s algorithm, and our improvement. Here h = g ◦ f , where g is randomly
sampled from some appropriate distribution. Preprocessing constructs the green chain C(xj) by
sampling a random point xj and iterating h. It stores the pair (xj , h

t(xj)). On challenge y, online
assumes y is a blue point, and follows the red arrows. That is, it proceeds by computing g(y), then
iterating h until it reaches the stored endpoint ht(xj). Once there, it jumps back to xj and iterates
h until x∗ ∈ f−1(y) is found.

On input a challenge y and preprocessed advice σ, the online algorithm A first recovers L as
follows. If S ≥ T , A just reads L from σ. Otherwise, it queries f on the points z1, . . . , zα to
recover L. Then A checks if y ∈ L̂; if so, it returns the corresponding inverse. If not, for i ∈ [ℓ], it
runs oi ← A′f (L, sti, y, ri). If any run i returns oi ̸= ⊥, A outputs oi. Otherwise, it outputs ⊥.

3.1.1 The subroutine

It remains to describe the subroutine (A′,P ′). The subroutine receives L as input, but we will view
it as receiving g as input instead, where g : [N ]→ [D] is a uniformly random function, constructed
using L as follows. Let J := ⌈N/N ′ · 2 logN⌉, and let g′ : [N ] × [J ] → [N ] be a random function
sampled independently using the shared randomness of P ′ and A′. We say that g′ is bad if there
exists an i ∈ [N ] such that g′(i, j) /∈ D for all j ∈ [J ]. If g′ is bad, our subroutine will simply
fail. But, it is easy to see that for our choice of J this happens with probability at most 2/N .
We will therefore assume below that g′ is not bad, which will cost us at most an additive factor
of 2/N in the success probability of our subroutine. Now, define g(y) := g′(y, k), where k ∈ [J ] is
minimal such that g′(y, k) ∈ D. Notice that g is a uniformly random function g : [N ] → D, and
that, given L, g(y) can be computed using at most J queries to f by finding the minimal i such
that f(g′(y, i)) /∈ L̂. 7

Finally, let h := g ◦ f , and for each x ∈ [N ] and s ≥ 1, define the chain Cs(x) :=
{x, h(x), . . . , hs(x)}. (Here and below, we use the notation hq to represent h composed with itself
q times.) See Figure 1.

Preprocessing: Stores (xi, h
t(xi)) for independent x1, . . . , xm ∼ D. The ht(xi) will be called

endpoints.

7Indeed, this is the whole purpose of this rather subtle construction of g (which is only a slight variant of the
construction in Fiat and Naor [FN91])—to provide P ′ and A′ with access to a shared random function from [N ] to
D without requiring A′ to make too many queries. Notice that this is non-trivial because the set D is not known to
A′ and might not have a succinct description. (A′ instead only knows the image L̂ of [N ]−D under f .)
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Online: On challenge y ∈ f(D) (recall that f(D) = f([N ]) − L̂), online computes Cy :=
Ct−1(g(y)) and checks if there is a unique i ∈ [m] such that ht(xi) ∈ Cy.

8 If not, it gives up.
Then it computes Ct−1(xi) and checks whether any x∗ ∈ Ct−1(xi) satisfies f(x∗) = y. If so, it
returns x∗; else it returns ⊥.

3.2 Analysis

First we analyze the resource costs. It is clear that the sub-algorithm stores at most 2m⌈logN⌉
bits of advice, and makes at most 2t · J queries to f . Hence the data structures st1, . . . , stℓ have
total bitlength at most

ℓ · 2m⌈logN⌉ =
⌈100ST logN

N

⌉
· (2m⌈logN⌉) ≤ 300ST log2N

N

N

3T
= 100S log2N.

If S > T , storing the list L, which consists of α = 2S⌈logN⌉ pairs of elements of [N ], requires
at most an additional 10S log2N bits. So (P,A) uses at most 110S⌈logN⌉2 bits of preprocessing.
And the total number of queries to f made by A is at most

ℓ · (2tJ) ≤ ℓ · 5t(N/N ′) logN =
⌈100ST logN

N

⌉
· 5
⌊N ′
3S

⌋
· N logN

N ′
≤ 200T log2N .

To analyze the success probability, we first observe that

Lemma 3.2. Except with probability 2/N , all x ∈ D satisfy |f−1(f(x))| ≤ N/K.

Proof. The condition above is equivalent to the list L̂ containing all u ∈ [N ] with |f−1(u)| ≥ N/K.
But since α := 2K⌈logN⌉, we have N/K ≥ 2 logN ·N/α, and so for any u with |f−1(u)| ≥ N/K,
there exists i ∈ [α] with f(zi) = u (which implies u ∈ L̂) except with probability 2/N2. The lemma
then follows by union bound.

We claim that the subalgorithm satisfies the following guarantee:

Theorem 3.3. Let f : [N ] → [N ] for some N ≥ 1. Let U ≥ 1, and suppose that for all x ∈ D,
|f−1(f(x))| ≤ U . Let y ∈ f(D). Then the sub-algorithm with parameters 0 ≤ m, t ≤ N finds an
inverse of y with probability at least

(1− 6mt2U/N ′) · (1− t2U/N ′) · |f−1(y)| ·mt/N ′ − 2/N .

In particular, if N is sufficiently large, the bound U = N/K from Lemma 3.2 holds, and the
parameter settings are m = ⌊N/3T ⌋, t = ⌊N ′/3S⌋ as above, the probability is at least

mt/(2N ′) ≥ N/(100ST ).

Using Theorem 3.3, it is straightforward to show Theorem 3.1.

Proof of Theorem 3.1 assuming Theorem 3.3.
Lemma 3.2 states that all x ∈ D satisfy |f−1(f(x))| ≤ U except with probability 2/N over the
random choices of z1, . . . , zα. Assuming this holds, Theorem 3.3 says that for all y ∈ f(D) (i.e.,

8The requirement of uniqueness substantially simplifies the analysis. However, it is possible to use a weaker
condition.
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all y /∈ L̂), the subalgorithm (P ′,A′) inverts y with probability at least N/(100ST ). Thus, for all
y /∈ L̂, except with probability O(1/N), at least one of the ℓ = ⌈100 logN · (ST/N)⌉ iterations of
(P ′,A′) inverts y. Of course, the points y ∈ L̂ are trivially inverted by lookup in L. Hence for all
y ∈ f([N ]), (P,A) inverts y except with probability O(1/N). By Corollary 6.3, this implies the
result.

It remains to prove Theorem 3.3.

Proof of Theorem 3.3. The particular statement easily follows from the general statement. Indeed,

mt2U/N ′ ≤ (N/3T ) · (N ′/3S)2 · (N/K)/N ′

≤ N2N ′/(27S2TK) ≤ N3/(27S2TK) ≤ 1/27.

And for sufficiently large N , it follows that

(1− 6mt2U/N ′) · (1− t2U/N ′) · |f−1(y)| ·mt/N ′ − 2/N

≥ (1− 7mt2U/N ′) ·mt/N ′ − 2/N

≥ (1− 7/27) ·mt/N ′ − 2/N

≥ 1/2 · (mt/N ′)

≥ (N/3T ) · (N ′/3S)/(2N ′)
≥ N/(18ST ).

We now prove the general statement of Theorem 3.3. Fix f, U , and y as in the theorem
statement. In what follows, we will assume that g′ is not bad (so that g is a random function
from [N ] to [D]), at the cost of an additive 2/N in the success probability. By inspection, the
subalgorithm inverts y if and only if the following event Ei occurs for some i ∈ [m]: (1) y is
contained in f(Ct−1(xi)) (which implies ht(xi) ∈ Cy), and (2), for all j ̸= i, ht(xj) /∈ Cy. Moreover,
these events Ei are disjoint and symmetric. So the probability that the subalgorithm inverts y is
exactly mPr[E1].

Let E1
1 be the event that ht(xj) /∈ Cy for all j ̸= 1, and let E2

1 be the event that y ∈ f(Ct−1(x1));
then E1 = E1

1 ∩ E2
1 . To lower bound Pr[E1], we will first lower bound Pr[E2

1 ], then lower bound
Pr[E1

1 | E2
1 ].

We claim that

Lemma 3.4.

Pr[E2
1 ] := Pr[y ∈ f(Ct−1(x1))] ≥ (1− t2U/N ′) · |f−1(y)| · t/N ′.

For convenience, define

(Z1, . . . , Zt) := (x1, h(x1), . . . , h
t−1(x1)) = Ct−1(x1) .

Let A0 be the universal event (i.e., Pr[A0] = 1) and for 1 ≤ i ≤ t−1, let Ai be the event that (1)
Ai−1 holds, (2) Zi /∈ f−1(y), and (3) f(Zi) /∈ f({Z1, . . . , Zi−1}). More explicitly, for 1 ≤ i ≤ t− 1,
Ai is the event that (1) Z1, Z2 . . . , Zi /∈ f−1(y), and (2) the values f(Z1), f(Z2), . . . , f(Zi) are all
distinct.

It is not hard to see that for all 1 ≤ i ≤ t, conditioned on Ai−1, Zi is uniformly random and
independent of (Z1, . . . , Zi−1). (Here the probability is over x1, . . . , xm and the random function
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g.) Indeed, the claim is trivial for i = 1. For i > 1, observe that conditioned on Ai−1, it holds that
f(Zi−1) /∈ f({Z1, . . . , Zi−2}), so Zi = g(f(Zi−1)) is a fresh uniform sample from D, independent of
(Z1, . . . , Zi−1).

For 1 ≤ i ≤ t, let Bi be the event that (1) Ai−1 holds, and (2) Zi ∈ f−1(y). That is,
Bi is the event that (1) Zi ∈ f−1(y), (2) Zj /∈ f−1(y) for all j < i, and (3), the values
f(Z1), f(Z2), . . . , f(Zi−1) are all distinct. By construction, the events Bi are mutually exclusive.
So,

Pr[y ∈ f(Ct−1(x1))] ≥ Pr
[ t⋃
i=1

Bi

]
=

t∑
i=1

Pr[Bi] ≥
t−1∑
i=0

Pr[Ai] Pr[Bi+1 | Ai] .

First we obtain a lower bound on Pr[Ai].

Pr[Ai+1 | Ai] = Pr[Zi+1 /∈ f−1(y) and f(Zi+1) /∈ f({Z1, . . . , Zi}) | Ai]

= Pr[Zi+1 /∈
(
f−1(y) ∪ f−1(f(Z1)) ∪ · · · ∪ f−1(f(Zi))

)
| Ai]

= 1− |f−1(y) ∪ f−1(f(Z1)) ∪ · · · ∪ f−1(f(Zi))|/N ′

≥ 1− ((i+ 1)U)/N ′

≥ 1− tU/N ′.

It follows that for all 0 ≤ i ≤ t− 1,

Pr[Ai] ≥ (1− tU/N ′)t ≥ 1− t2U/N ′.

By a similar calculation, for all 0 ≤ i ≤ t− 1,

Pr[Bi+1 | Ai] = Pr[Zi+1 ∈ f−1(y) | Ai] = |f−1(y)|/N ′ .

Putting everything together, we have the desired lower bound:

Pr[E2
1 ] := Pr[y ∈ f(Ct−1(x1))] ≥ (1− t2U/N ′) · |f−1(y)| · t/N ′ .

Next we turn to lower bounding Pr[E1
1 | E2

1 ]. We claim that

Lemma 3.5.
Pr[E1

1 | E2
1 ] ≥ 1− 6mt2U/N ′ .

It suffices to prove this claim. Indeed, combining it with Lemma 3.4 gives

Pr[I] ≥ mPr[E1] ≥ mPr[E2
1 ] · Pr[E1

1 | E2
1 ]

≥ m(1− 6mt2U/N ′) · (1− t2U/N ′) · |f−1(y)| · t/N ′ .

Next we prove Lemma 3.5. By union bound and symmetry,

Pr[E1
1 | E2

1 ] := Pr[∀j ̸= 1, ht(xj) /∈ Cy | E2
1 ]

≥ 1−m · Pr[ht(x2) ∈ Cy | y ∈ f(Ct−1(x1))] . (6)

Thus, our goal is to upper bound Pr[ht(x2) ∈ Cy | y ∈ f(Ct−1(x1))]. We reason similarly to the
proof of Lemma 3.4.
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Notice that, if y ∈ f(Ct−1(x1)), then g(y) ∈ Ct(x1), and so Cy := Ct−1(g(y)) ⊆ C2t(x1). It
follows that

Pr[ht(x2) ∈ Cy | y ∈ f(Ct−1(x1))] ≤ Pr[ht(x2) ∈ C2t(x1) | y ∈ f(Ct−1(x1))] .

This is convenient, since we have combined two events that would otherwise need to be considered
separately; namely, the event that the chain Ct(x2) starting at x2 intersects Cy, and the event that
Ct(x2) intersects C

t−1(x1). Next, we reason as follows.

Pr[ht(x2) ∈ C2t(x1) | y ∈ f(Ct−1(x1))]

≤ Pr[f(ht(x2)) ∈ f(C2t(x1)) | y ∈ f(Ct−1(x1))]

≤ Pr[

t∨
j=0

f(hj(x2)) ∈ f(C2t(x1)) | y ∈ f(Ct−1(x1))]

≤
t∑

j=0

Pr[f(hj(x2)) ∈ f(C2t(x1)) |

∀k < j, f(hk(x2)) /∈ f(C2t(x1)), y ∈ f(Ct−1(x1))] .

Intuitively, the j-th term in the sum corresponds to the chain starting at x2 intersecting the chain
starting at x1 after j steps, but not before. We write

COND1,j := ∀k < j, f(hk(x2)) /∈ f(C2t(x1)) and COND2 := y ∈ f(Ct−1(x1))

We claim that for all 0 ≤ j ≤ t, the j-th term satisfies the following bound:

Pr[f(hj(x2)) ∈ f(C2t(x1)) | COND1,j ,COND2] ≤ |f−1(f(C2t(x1)))|/N ′ .

Notice that if j = 0, then COND1,j is vacuous, hj(x2) = x2 is a fresh independent uniform sample
from D, and the claimed bound holds with equality.

For j ≥ 1, consider the event COND3,j that, for some k < j − 1, f(hj−1(x2)) = f(hk(x2)). It is
not hard to see that

Pr[f(hj(x2)) ∈ f(C2t(x1)) | COND1,j ,COND2,COND3,j ] = 0 .

Indeed, applying f ◦g to both sides of COND3,j gives f(h
j(x2)) = f(hk+1(x2)), but COND1,j implies

f(hk+1(x2)) /∈ f(C2t(x1)).
On the other hand, if we condition on ¬COND3,j (and COND1,j and COND2), we know that

vj := f(hj−1(x2)) is distinct from the values f(hk(x2)) for 0 ≤ k < j−1. By COND1,j and COND2,
vj is also distinct from the values f(hi(x1)) for 0 ≤ i ≤ 2t. In other words, vj is not in the set Vj

defined by
Vj := {f(hk(x2)) | 0 ≤ k < j − 1} ∪ {f(hi(x1)) | 0 ≤ i ≤ 2t}.

But it is not difficult to verify that the events COND1,j ,COND2, and COND3,j can be expressed
solely in terms of x1, x2, and the random variables g(x) for x ∈ Vj . (As a sanity check, it is helpful
to note that hj−1(x2) = g(f(hj−2(x2))) only depends on the random variables g(f(hk(x2))) for
k < j−1.) In particular, these events are independent of g(vj). It follows that, even conditional on
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COND1,j ,COND2, and ¬COND3,j , h
j(x2) = g(vj) is a fresh uniform sample from D, independent

of the random variables in the conditional. So we have

Pr[f(hj(x2)) ∈ f(C2t(x1)) | COND1,j ,COND2,¬COND3,j ]

= |f−1(f(C2t(x1)))|/N ′ ,

and we have established the claimed bound on the terms of the sum. Plugging the bound in, we
see

Pr[ht(x2) ∈ C2t(x1) | y ∈ f(Ct−1(x1))]

≤
t∑

j=0

|f−1(f(C2t(x1)))|/N ′

≤
t∑

i=0

U · (2t+ 1)/N ′

≤ U · (t+ 1) · (2t+ 1)/N ′ ≤ 6t2U/N ′ .

(The last line only holds if t > 0, but otherwise Lemma 3.5 is trivial.) Combining this with
Eq. (6) concludes the proof of Lemma 3.5 and hence the proof of Theorem 3.3.

4 A lower bound against guess-and-check non-adaptive algorithms

In this section, we prove our lower bound against guess-and-check non-adaptive algorithms. The
precise statement is as follows.

Theorem 4.1. Any guess-and-check algorithm that solves SFI for permutations with success prob-
ability at least 3/4 using S bits of preprocessing and T queries must have S ≥ (N/2) log (N/6T )−4.

Following De et al. [DTT10] and Dodis et al. [DGK17], we will consider randomized encoding
and decoding procedures for a set of functions, and rely on the following lemma which lower bounds
the encoding length.

Lemma 4.2. ([DTT10, DGK17]) Suppose there exist randomized encoding and decoding procedures
(Enc,Dec) for a set F . We say such an encoding has recovery probability δ if for all f ∈ F ,

Pr
r∼{0,1}ℓ

[Dec(Enc(f, r), r) = f ] ≥ δ .

The encoding length of (Enc,Dec), defined to be maxf,r{|Enc(f, r)|}, is at least log |F| − log 1/δ.

Our main lemma gives a randomized encoding for the family of permutations given a guess-
and-check inversion algorithm.

Lemma 4.3. Suppose that there exists a guess-and-check algorithm (P,A) that solves SFI for
permutations with success probability 3/4 using S bits of preprocessing and T queries. Then there
exists a randomized encoding for the set of all permutations from [N ] to [N ], with recovery probability
at least 1/2 and encoding length at most

S + ⌈N/2⌉ · log T + log
N !

⌈N/2⌉!
+ 3 .
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We first observe that Theorem 4.1 follows immediately from the above lemmas. Indeed, com-
bining the two lemmas and recalling that there are N ! permutations from [N ] to [N ], we have

S + ⌈N/2⌉ · log T + log
N !

⌈N/2⌉!
+ 3 ≥ logN !− log 2 .

Hence,

S ≥ log ⌈N/2⌉!− ⌈N/2⌉ · log T − 4 ≥ N

2
log

N

6T
− 4 ,

where the second inequality is due to the factm! ≥ (m/e)m ≥ (m/3)m (by Stirling’s approximation)
and ⌈N/2⌉ ≥ N/2.

Proof. Fix an arbitrary permutation f : [N ]→ [N ]. We encode f as follows. Given f and random-
ness r, the encoder simulates (P,A) on every y ∈ [N ]. Let st be the output of P(f, r) and G be
the set of y such that Af (st, y, r) = f−1(y). By an averaging argument,

Pr
r∼{0,1}ℓ

[ Pr
y∼[N ]

[Af (st, y, r) = f−1(y)] ≥ 1

2
] ≥ 1

2
.

In other words, with probability at least 1/2 the size of G is at least N ′ := ⌈N/2⌉ . Assuming
|G| ≥ N ′, we pick a set G′ ⊆ G with size exactly N ′ and encode f as follows,

1. Include st, and a description of G′. This requires S + ⌈log
(
N
N ′

)
⌉ bits.

2. For each y ∈ G′ (in lexicographic order), run Af (st, y, r) and include the index i such that
the answer to the ith oracle query is y. This requires ⌈N ′ · log T ⌉ bits in total.

3. Store the mapping from [N ]\f−1(G′) to [N ]\G′ corresponding to f restricted to [N ]\f−1(G′)
using ⌈log(N −N ′)!⌉ bits.

Given the shared randomness r, the decoder does the following:

1. Recover st and G′.

2. For each y ∈ G′, run A(st, y, r) to generate T non-adaptive queries x1, . . . , xT , recover the
index i and set f(xi) = y. We remark that this step heavily relies on the guess-and-check
property of A.

3. After the above two steps, the decoder reconstructs f−1(G′) and G′ (hence [N ] \ f−1(G′) and
[N ] \G′). Then the decoder recovers the values of [N ] \ f−1(G′) using the remainder of the
encoding.

Assuming |G| ≥ N/2, the decoding procedure recovers f . The encoding length is

S + ⌈log
(
N

N ′

)
⌉+ ⌈N ′ · log T ⌉+ ⌈log(N −N ′)!⌉ ≤ S +N ′ · log T + log

N !

N ′!
+ 3 ,

as claimed.
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5 Comparing variants of function inversion

In this section, we prove that different formulations of the function inversion problem are equivalent
(up to polylogarithmic factors in S and T ). First, we prove that the decision version of the
Function Inversion problem, that merely asks to check whether a query y is in the image of the
preprocessed function f , is as hard as the search version of the problem where the goal is to find
a preimage of y. We prove this equivalence for three different settings: for arbitrary (i.e., worst-
case) functions in Section 5.1, for random functions in Section 5.2, and for injective functions in
the full version [GGPS22].9 Also, [CK19, Lemma 21] proves that for worst-case functions and
M > N , inverting f : [N ] → [M ] is as hard as inverting f ′ : [N ] → [N ]. (Of course, for M < N ,
inverting worst-case functions f : [N ] → [M ] trivially reduces to inverting worst-case functions
f ′ : [N ]→ [N ].) In Appendix A, we show that this result can be extended to the setting of random
functions.

These equivalences suggest that the hardness of function inversion is specified by the domain
size and the class of functions (worst-case/injective/random), but not by the search/decision type
of the problem or the range size.

5.1 Search-to-decision reduction for arbitrary functions

In this section, we prove an essentially tight search-to-decision reduction for worst-case function
inversion. Namely, given an algorithm that solves DFI (for all functions; see Definition 2.3) in
query time T and preprocessing S, we design an algorithm that solves SFI (for all functions) in
query time T · poly(logN) and preprocessing S · poly(logN) (or even query time O(T · logN) and
preprocessing O(S · logN), see Remark 5.3).

First, in Lemma 5.1 we observe that, given an algorithm for DFI, one can solve SFI on all inputs
y that have unique preimages. Then, in Theorem 5.2 we use the Isolation Lemma [VV85, MVV87,
Ta-15] to reduce the general case of SFI to the case where y has a unique preimage.

Lemma 5.1. Let N = 2n and ε := ε(N) ∈ (0, 1/2]. Suppose there exists an algorithm
(P,A) that solves (N,M)-DFI with advantage ε using S bits of preprocessing and T queries.
Then there exists an algorithm (P ′,A′) that uses S′ ≤ O(Sn(log n)/ε2) bits of preprocessing and
T ′ ≤ O(Tn(log n)/ε2) queries with the following guarantees. For every f : [N ] → [M ] and every
y ∈ [M ] satisfying |{f−1(y)}| = 1,

Pr
r∼{0,1}ℓ′

[x′ ← (A′)f (P ′(f, r), y, r) : f(x′) = y] ≥ 1− 1/(10n2) .

Furthermore, for every f : [N ]→ [M ] and every y ∈ [M ],

Pr
r∼{0,1}ℓ′

[x′ ← (A′)f (P ′(f, r), y, r) : x′ ̸= ⊥ and f(x′) ̸= y] ≤ 1/(10n2) .10

Proof. By running (P,A) a total of k = O((log n)/ε2) times with fresh randomness and taking the
majority of the query answers, we may assume that (P,A) has failure probability at most 1/(20n3)

9We remark that the result for injective functions is very similar to [CK19, Theorem 8]. We simply include it for
completeness.

10One could reduce the latter probability of failure to 0 with an adaptive reduction, but we prefer to keep the
reduction non-adaptive with a small probability of error.
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(by the Chernoff bound in Lemma 2.9). Therefore, it suffices to show an algorithm (P ′,A′) that uses
O(Tn) queries and O(Sn) bits of preprocessed advice for the special case when ε = 1/2−1/(20n3).
For an x ∈ [N ], by xi we denote the ith bit in the binary representation of x. For inverting a
function f : [N ] → [M ], we first define the following 2n = 2 logN functions from [N ] to [M ]. For
i ∈ [n], let

g0i (x) =

{
f(x) if xi = 0 ,

M otherwise .
g1i (x) =

{
f(x) if xi = 1 ,

M otherwise .

Notice that an oracle query to gbi can be trivially simulated by making at most one oracle query to
f .

We now present the algorithms P ′ and A′. For each i ∈ [n] and b ∈ {0, 1}, rbi ∼ {0, 1}ℓ, P ′
runs σb

i ← P(gbi , rbi ), and outputs σ′ = (σ0
1, σ

1
1 . . . , σ

0
n, σ

1
n). Finally, P ′ outputs a preimage of M if

it exists: z ∈ f−1(M). This implies that S′ ≤ O(Sn+ n) = O(Sn).
Given a query y ∈ [M ], the algorithm A′ (with oracle access to f) proceeds as follows. If y = M ,

the algorithm just outputs the stored preimage z of M . For y ∈ [M − 1], the algorithm A′ for each
i ∈ [n] and b ∈ {0, 1}, computes dbi = Agbi (σb

i , y, r
b
i ).

Intuitively, we expect d0i = 1 if there exists a preimage of y with the ith bit 0, and d1i = 1 if
there exists a preimage of y with the ith bit 1. Now we check that y has a unique preimage as
follows. If for some i ∈ [n], d0i = d1i , then A′ outputs ⊥ and terminates. Otherwise, for each i, A′
sets x′i = b where b ∈ {0, 1} is such that dbi = 1 and d1−bi = 0. Finally, the algorithm A′ outputs
x′ = (x′1, . . . , x

′
n) ∈ [N ].

It is clear that the number of queries made by A′ is at most O(Tn), as needed. If y ∈ [M ] has
a unique preimage x under f , then all 2n queries to A are simultaneously answered correctly with
probability at least 1− 2n/(20n3) ≥ 1− 1/(10n2), which immediately implies

Pr
r∼{0,1}ℓ′

[x′ ← (A′)f (P ′(f, r), y, r) : x′ = x] ≥ 1− 1/(10n2) .

If y ∈ [M ] doesn’t have a preimage under f , then

Pr
r∼{0,1}ℓ′

[x′ ← (A′)f (P ′(f, r), y, r) : x′ = ⊥] ≥ Pr
r∼{0,1}ℓ′

[d01 = 0 and d11 = 0]

≥ 1− 1/(10n3) .

Finally, if y ∈ [M ] has at least two preimages that differ in ith bit, then

Pr
r∼{0,1}ℓ′

[x′ ← (A′)f (P ′(f, r), y, r) : x′ = ⊥] ≥ Pr
r∼{0,1}ℓ′

[d0i = 1 and d1i = 1]

≥ 1− 1/(10n3) .

The result follows.

We are now ready to prove the main result of this section. The main difference in the state-
ments of Lemma 5.1 and Theorem 5.2 is that the SFI algorithm in Lemma 5.1 is only guaranteed
to succeed on queries that have a unique preimage, while the SFI algorithm in Theorem 5.2 works
for all queries.
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Theorem 5.2. Let N = 2n, and let ε := ε(N) ∈ (0, 1/2]. Suppose there exists an algorithm
(P,A) that solves (N,M)-DFI with advantage ε using S bits of preprocessing and T queries.
Then there exists an algorithm (P ′′,A′′) that solves (N,M)-SFI with success probability 0.9,
S′′ ≤ O(Sn2(log n)/ε2) bits of preprocessing, and T ′′ ≤ O(Tn2(log n)/ε2) queries.

Proof. Let n = logN and k = 50. Using shared randomness, the algorithms P ′′ and A′′ define
kn sets Ui,j ⊆ [N ] for i ∈ [n] and j ∈ [k], where each each element x ∈ [N ] is placed in Ui,j

independently with probability 2−i−1.
In order to invert a function f : [N ]→ [M ], we first define the following kn functions from [N ]

to [M ]. For i ∈ [n] and j ∈ [k], let

gi,j(x) =

{
f(x) if x ∈ Ui,j ,

M otherwise .

Notice that an oracle query to gi,j can be trivially simulated by making at most one oracle query
to f .

The algorithm P ′′ runs the algorithm P ′ guaranteed in Lemma 5.1 for the kn functions gi,j .
That is, let r1,1, . . . , rn,k be independent random binary strings of length ℓ. For i ∈ [n] and j ∈ [k],
P ′′ runs σi,j ← P ′(gi,j , ri,j), and outputs σ′ = (σ1,1, . . . , σn,k). Finally, P ′′ outputs a preimage of
M if it exists: z = f−1(M). In particular, S′′ ≤ O(S′kn+ n) ≤ O(Sn2(log n)/ε2).

Given a query y ∈ [M ], the algorithm A′′ (with oracle access to f) proceeds as follows. If
y = M , then A′′ just outputs the stored preimage of M . If y < M , then for each i ∈ [n] and j ∈ [k],
A′′ computes xi,j = (A′)gi,j (σi,j , y, ri,j), where A′ is the algorithm guaranteed in Lemma 5.1. If for
all i ∈ [n] and j ∈ [k], xi,j = ⊥, then A′′ outputs ⊥, otherwise A′′ outputs any xi,j with xi,j ̸= ⊥.

It is immediate that A′′ makes at most T ′′ ≤ O(T ′nk) = O(Tn2(log n)/ε2) queries to f . By
Lemma 5.1, with probability at least 1− kn/(10n2) ≥ 0.99, all kn queries to the algorithms P ′ and
A′ are answered correctly. In particular, the algorithm (A′)gi,j returns xi,j satisfying f(xi,j) = y
for y ∈ [M − 1] having a unique preimage under gi,j , and returns ⊥ (or a correct preimage of y)
otherwise. Therefore, it suffices to prove that for every y ∈ f([N ]),

Pr
r∼{0,1}ℓ′

[∃i ∈ [n], j ∈ [k] : |g−1i,j (y)| = 1] ≥ 0.99 .

For a y ∈ f([N ]), let Sy = {x : f(x) = y}. Let i ∈ [n] be such that 2i−1 ≤ |Sx| ≤ 2i. For x ∈ Sy, let
p = Prr[x ∈ Ui,j ] = 2−i−1. We have that 1/4 ≤ p|Sy| ≤ 1/2. Then for each j ∈ [k],

Pr
r∼{0,1}ℓ′

[|g−1i,j (y)| = 1] = |Sy| · p · (1− p)|Sy |−1 ≥ 1/4 · e−2p|Sy | ≥ 1/(4e),

where we used 1− z ≥ e−2z for 0 ≤ z ≤ 1/2. From independence of Ui,j and k = 50,

Pr
r∼{0,1}ℓ′

[∃j ∈ [k] : |g−1i,j (y)| = 1] ≥ 1− (1− 1/(4e))k ≥ 0.99 ,

which finishes the proof.

Remark 5.3. A few extensions of Theorem 5.2 are in order.
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1. To simplify the proof of Theorem 5.2, we used shared randomness to gain access to the same
random sets Ui,j in the preprocessing and query algorithms. As always, shared randomness
can be removed using Corollary 6.3. Alternatively, one can avoid using shared randomness in
the proof of Theorem 5.2 by sampling O(n) functions from a family of pairwise independent
hash functions (see, e.g., [VV85]), and storing their descriptions using additional O(n2) bits
of advice.

2. We remark that the presented search-to-decision reduction is non-adaptive, so a non-adaptive
algorithm for DFI implies a non-adaptive algorithm for SFI (and an adaptive algorithm for
DFI implies an adaptive algorithm for SFI). See the full version [GGPS22].

3. In the proof of Lemma 5.1 in the full version [GGPS22], the log n factor in the advice length
and the number of queries comes from the amplification of the success probability of the as-
sumed DFI algorithm from 1/2 + ε to 1 − O(1/n3). We remark that one can get rid of this
log n factor by recovering the bits of C(x) rather than the bits of x for a good linear code C
(similarly to how it is done in the proof of Theorem 5.4). This modification will also improve
the parameters S′′ and T ′′ in Theorem 5.2 by a log n factor (though unfortunately it does not
preserve non-adaptivity).

4. Furthermore, in the proof of Theorem 5.2, one can define the functions gi,j : [N/2i] → [M ]
with domain of size N/2i. If the assumed DFI algorithm works for all (large enough) values
of N and has advice length and number of queries S(N) and T (N), then this modification
would give us S′′ ≤ O((S(N) + S(N/2) + · · ·+ S(N/2n))n) and T ′′ ≤ O((T (N) + T (N/2) +
· · · + T (N/2n))n). For the most interesting regime of S(N), T (N) = NΘ(1), this gives us
S′′ ≤ O(Sn) and T ′′ ≤ O(Tn).

5.2 Search-to-decision reduction for average-case functions

In this section, we show a different search-to-decision reduction for average-case function inversion.
(See Definition 2.4 for the formal definition of average-case SFI and Definition 2.5 for the formal
definition of average-case DFI.) The proof of Theorem 5.2 does not work for the case of average-
case functions as Lemma 5.1 heavily relies on the fact that the assumed DFI algorithm works
for all functions. Nevertheless, we can extend the techniques of the previous section to recover
bits of a certain encoding of x rather than the individual bits of x and prove an essentially tight
search-to-decision reduction for average-case function inversion in Theorem 5.4.

Theorem 5.4. Let N = 2n. Suppose there exists an algorithm (P,A) that solves average-case
(2N,M)-DFI with advantage ε ≥ 1/2 − exp (−2N/M − 2N/M2)/4, using S bits of preprocessing
and T queries. Then for any constant δ ∈ (0, 1/4), there exists an algorithm (P ′,A′) that solves
average-case (N,M)-SFI with success probability exp (−2N/M − 2N/M2) − (1/2 − ε)/(1/4 − δ)
using S′ ≤ Oδ(nS) bits of preprocessing and T ′ ≤ Oδ(nT ) queries.

Proof. Let C := Cn+1,δ be a code as guaranteed by Theorem 2.11, with generator matrix C :=

Cn+1,δ ∈ Fm×(n+1)
2 withm ≤ Oδ(n) and efficient decoding algorithm Dec. Recall that for 1 ≤ i ≤ m,

we write Ci := {c ∈ C : ci = 0} and that we may assume without loss of generality that
|Ci| = |C|/2 = 2n = N . Notice that Xi := {z : Cz ∈ Ci} is an n-dimensional subspace of Fn+1

2 ,

and let Bi ∈ F(n+1)×n
2 be a basis for Xi. (Bi can be computed efficiently, given C and i.) Finally,
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we define fi : [N ] → [M ] by fi(x) := f(Bix), where here we interpret x ∈ [N ] as an n-bit vector
x ∈ Fn

2 by writing x in binary.
Given the setup above, our algorithms P ′ andA′ are relatively simple. On input f ∼ {g : [2N ]→

[M ]} and r ∼ {0, 1}ℓ, P ′ runs σi ← P(fi, r) for i = 1, . . . ,m and outputs σ′ := (σ1, . . . , σm).11 In
particular S′ ≤ mS ≤ Oδ(nS), as claimed.

The algorithm A′ (with oracle access to f) behaves as follows on input σ′ = (σ1, . . . , σm),
y := f(x), and r. For i = 1, . . . ,m, it computes di := 1 − Afi(σi, y, r), which can be done using
at most T queries to f . (Intuitively, “di = 0 means that there is likely to be a preimage of y
in Xi.”) Finally, the algorithm outputs x′ := Dec(d) ∈ [2N ] (where we interpret the (n + 1)-bit
string returned by Dec as the binary representation of an element of [2N ]). In particular, the total
number of oracle queries made by A′ is T ′ ≤ mT ≤ Oδ(nT ), as claimed.

Let c := Cx ∈ Fm
2 , where x ∈ Fn+1

2 is the bit string corresponding to the binary representation
of x ∈ [2N ]. Let e := c⊕d ∈ Fm

2 . Notice that x′ = x if ∥e∥H ≤ (1/4− δ)m. So, it suffices to argue
that ∥e∥H ≤ (1/4− δ)m with the claimed probability.

Let Eu be the event that |{x∗ : f(x∗) = y}| = 1, i.e., the event that x is the unique preimage
of y under f . Let e′i = 1 if and only if “Afi(σi, y, r) fails,” i.e., e′i = 1 if either di = 0 but there is a
preimage of y in Xi or di = 1 but there is a preimage of y in Xi. Notice that Pr[e′i = 1] ≤ (1/2− ε)
by assumption, so that E[∥e′∥H ] ≤ (1/2−ε)m. (Here, we are using the fact that (1) fi is a uniformly
random function; (2) conditioned on y being in the image of fi, y is distributed identically to fi(x

∗)
for uniformly random x∗ ∼ [N ]; and (3) conditioned on y not being in the image of fi, y is uniformly
random in [M ] \ fi([N ]).) Notice that, if Eu holds, then e = e′. Therefore,

Pr[f(x′) = y] ≥ Pr
[
∥e∥H ≤ (1/4− δ)m and Eu

]
= Pr

[
∥e′∥H ≤ (1/4− δ)m and Eu

]
≥ Pr[Eu]− Pr

[
∥e′∥H > (1/4− δ)m

]
.

Finally, by Lemma 2.10, we have Pr[Eu] ≥ e−2N/M−2N/M2
, and by Markov’s inequality, we have

Pr
[
∥e′∥H > (1/4− δ)m

]
≤ E[∥e′∥H ]

(1/4− δ)m
≤ 1/2− ε

1/4− δ
.

The result follows.

Remark 5.5.

1. Similarly to the reduction in Theorem 5.2, the search-to-decision reduction of Theorem 5.4 is
non-adaptive.

2. For simplicity of presentation, in the proof of Theorem 5.4 we only invert queries that have
a unique preimage. For the standard setting of M ≥ Ω(N) this already gives relatively high
constant probability of success. One can amplify this probability to an arbitrarily large constant
by using the Isolation Lemma (see the proof of Theorem 5.2) to invert points with more than
one preimage, too.

11We really can run P with the same random bit string r in each of these calls, as our proof will not require
independence of the randomness used by the m evaluations of P.
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3. A drawback of Theorem 5.4 is that it requires the DFI algorithm to have very large advan-
tage ε. This is because we actually need the DFI algorithm to have non-negligible advantage
in distinguishing between (1) uniformly random y that is not in the image of f ; and (2) uni-
formly random y with |f−1(y)| = 1 (i.e., a random image that has a unique preimage). (This
is true even if we use the Isolation Lemma idea described above.) We could have worked
directly with this assumption on the DFI algorithm, but we prefer the simpler (but strictly
stronger) assumption in Theorem 5.4.

6 Removing shared randomness

In this section, we adapt to our setting Newman’s technique for converting public-coin protocols
to private-coin protocols [New91] in the context of communication complexity. We first define a
general notion of a computational problem with preprocessing to which our technique will apply.

Definition 6.1. Let F be a set of functions f : D → R, and let Y, X be sets. A preprocessing-
queries tradeoff problem is a function g : F × Y → 2X , where 2X denotes the powerset of X . Let
(P,A) be a pair of randomized algorithms. We say that

1. (P,A) solves g with success probability δ ∈ (0, 1] if for all f ∈ F and y ∈ Y,

Pr
r∼{0,1}l

[Af (P(f, r), y, r) ∈ g(f, y)] ≥ δ.

2. (P,A) solves g without shared randomness with success probability δ ∈ (0, 1] if for all f ∈ F
and y ∈ Y,

Pr
r1,r2∼{0,1}l′

[Af (P(f, r1), y, r2) ∈ g(f, y)] ≥ δ.

Our generic lemma for removing shared randomness is as follows.

Lemma 6.2. Suppose there exists an algorithm that solves a preprocessing-queries tradeoff problem
g : F×Y → 2X with success probability 1−ε using preprocessing S and T . Then there exists another
algorithm that solves g without shared randomness, with success probability 1 − 2ε, preprocessing
S+ log(K/ε2)+O(1), and T queries, where K = log |F ×Y|. If the first algorithm is non-adaptive
(resp. guess-and-check) then so is the second. Moreover, the success probability can be increased to
1 at the cost of an additional 4ε|Y|⌈log |Y|⌉ bits of preprocessing.

Proof. The proof is adapted from the proof of Newman’s technique given in [RY20]. Sample
k = O(2K/ε2) independent random strings r1, . . . , rk ∈ {0, 1}l.

We claim that with probability at least 1 − 2−K , these random strings satisfy the following
property: For all functions f ∈ F and inputs y ∈ Y, we have

Pr
i∼[k]

[Af (P(f, ri), y, ri) ∈ g(f, y)] ≥ 1− 2ε. (7)

From the claim, it follows that k fixed strings r∗1, . . . , r
∗
k with this property must exist. Then the

algorithms (A′,P ′) are simple. On input f , P ′ first samples i ∼ [k], then simulates P to compute
st := P(f, r∗i ). It outputs advice (st, i). On input y, A′f simply returns Af (st, y, r∗i ). Clearly A′ is
non-adaptive (resp. guess-and-check) if A is.
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It remains to prove the claim. Fix a function f and an input y. For each independent random
string ri we have

Pr
ri
[Af (P(f, ri), y, ri) ∈ g(f, y)] ≥ 1− ε.

Hence by the Chernoff bound (Lemma 2.9), the probability that 2εk strings ri satisfy
Af (P(f, ri), y, ri) /∈ g(f, y) is at most 2Ω(ε2k) ≤ 2−2K . Since there are at most 2K possible pairs
(f, y), by union bound, the probability that this occurs for any f, y is at most 2−K , as claimed.

For the “Moreover”, fix a function f ∈ F . Notice that by an averaging argument, Eq. (7)
implies that for some i∗ ∈ [k], r∗i∗ satisfies

Pr
y∈Y

[Af (P(f, r∗i ), y, r∗i ) ∈ g(f, y)] ≥ 1− 2ε .

Thus there are only b = 2ε|Y| inputs y1, . . . , yb for which Af (P(f, r∗i∗), yj , r∗i∗) /∈ g(f, y). P ′ outputs
(st, i∗, E), where E := {(yj , xj)}j∈[b], and for each j ∈ [b], xj ∈ g(f, y). (Such an xj is guaranteed
to exist because the original algorithm (A,P) is assumed to have positive success probability on
all input-challenge pairs (f, y).) Given challenge y, A′f first checks if (y, x) ∈ E for some x ∈ X . If
so, it returns x. Otherwise, it returns Af (st, y, r∗i∗) as before. It is easy to see that (P ′,A′) always
succeeds, uses at most S+log(K/ε2)+4ε|Y|⌈log |Y|⌉+O(1) bits of preprocessing, and uses at most
T queries. And again, A′ is clearly non-adaptive (resp. guess-and-check) if A is.

It’s worth noting that while the proof uses the probabilistic method (and so is nonconstructive),
it is essentially constructive in the sense that choosing the required strings at random works with
very high probability. (Of course, choosing the strings at random will not allow us to obtain success
probability 1.) The following is an immediate corollary in our setting.

Corollary 6.3. Suppose that for some class F of functions f : [N ]→ [M ] there exists a function-
inversion algorithm that solves (N,M)-SFI (resp. solves (N,M)-DFI) for F with success probability
1− ε, using preprocessing S, and queries T . Then there exists a function-inversion algorithm that
solves (N,M)-SFI (resp. solves (N,M)-DFI) for F with success probability 1− 2ε without shared
randomness, using S + log(N/ε2) + log logM + O(1) bits of preprocessing and T queries. If the
first algorithm is non-adaptive (resp. guess-and-check) then so is the second. Moreover, the success
probability can be made 1 at the cost of an additional 4εN logN bits of preprocessing.

Proof. It is easy to check that each of these function-inversion problems is a preprocessing-queries
tradeoff problem, with Y = [M ]. Thus Lemma 6.2 applies. So it suffices to observe that

log(K/ε2) = logK − log ε2

= log log |F × Y| − log ε2

= log logMN+1 − log ε2

= log((N + 1) logM)− log ε2

= log(N + 1) + log logM − log ε2

= O(1) + logN − log ε2 + log logM

= O(1) + log(N/ε2) + log logM.
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A Reducing the range size

In this section, we prove that for worst-case and average-case function inversion, the size of the
range does not matter. The result of Lemma A.1 was already proven in [CK19, Lemma 21], and
the presented proof is similar to that of [CK19, Lemma 21]. We include it for completeness and to
simplify the presentation in Lemma A.2. Recall that we denote (N,N)-SFI by SFI.

Lemma A.1. Let 0 < ε, δ < 1 be constants, and let M ≥ N . Suppose there exists an algorithm
(P,A) that solves worst-case SFI with success probability ε using S bits of preprocessing and T
queries. Then there exists an algorithm (P ′,A′) that solves worst-case (N,M)-SFI with success
probability δ, S′ = O(S) bits of preprocessing, and T ′ = O(T ) queries.

Proof. Let k := ⌈log(1 − δ)/ log(1 − ε/e2)⌉. Using shared randomness, the algorithms P ′ and A′
define k independent random functions h1, . . . , hk : [M ]→ [N ].

In order to invert a function f : [N ] → [M ], we define the functions g1, . . . , gk : [N ] → [N ]
as gi(x) = hi(f(x)) for x ∈ [N ] and i ∈ [k]. Let r1, . . . , rk ∈ {0, 1}ℓ be independent random
binary strings of length ℓ. The algorithm P ′ runs σi ← P(gi, ri) for each i ∈ [k], and outputs
σ′ = (σ1, . . . , σk). In particular, S′ ≤ Sk = O(S).

The algorithm A′, given a query y ∈ [M ] proceeds as follows. For i ∈ [k], it computes x(i) ←
Agi(σi, hi(y), ri). Then A′ makes k additional queries to f , and outputs x(i) if f(x(i)) = y for an
i ∈ [k]. If for all i ∈ [k], f(x(i)) ̸= y, then A′ outputs ⊥. We have that the number of queries made
by A′ is T ′ ≤ Tk + k = O(T ).

Clearly, if A′ outputs x′ ̸= ⊥, then f(x′) = y. It remains to show that for each y ∈ f([N ]), the
algorithm A′ outputs x ∈ f−1(y) with probability at least δ. For every y ∈ f([N ]), let Ei

y be the
event that |{y′ ∈ [M ] : hi(y

′) = hi(y)}| = 1, i.e., the event that y is the unique preimage of hi(y)
under hi. Notice that if Ei

y holds, then every preimage of hi(y) under gi is also a preimage of y
under f . By Lemma 2.10 and M ≥ N ,

Pr
hi∼{h:[M ]→[N ]}

[Ei
y] ≥ e−N/M−N/M2 ≥ e−2 .

For every function f and every y ∈ f([N ]), if Ei
y holds, then A returns a correct preimage of y

under f with probability at least ε. By repeating this k = ⌈log(1−δ)/ log(1−ε/e2)⌉ times, we have
that for every f and every y ∈ [M ], the algorithm A′ finds a correct preimage of y with probability
at least δ.

Lemma A.2. Let δ := δ(N) ∈ (0, 1], n = logN , and let M be a multiple of N . Suppose there
exists an algorithm (P,A) that solves average-case SFI with success probability δ using S bits
of preprocessing and T queries. Then there exists an algorithm (P ′,A′) that solves average-case
(N,M)-SFI with success probability δ − 1/(10n2), S′ = O(S log n) bits of preprocessing, and T ′ =
O(T log n) queries.

Proof. Let k = ⌈4 log n + 6⌉. Using shared randomness, the algorithms P ′ and A′ define k inde-
pendent random bijective functions h1, . . . , hk : [M ]→ [M ].

In order to invert a function f : [N ] → [M ], we define the functions g1, . . . , gk : [N ] → [N ] as
gi(x) = hi(f(x)) mod N for x ∈ [N ] and i ∈ [k]. Let r1, . . . , rk ∈ {0, 1}ℓ be independent random
binary strings of length ℓ. The algorithm P ′ runs σi ← P(gi, ri) for each i ∈ [k], and outputs
σ′ = (σ1, . . . , σk). In particular, S′ ≤ Sk = O(S log n).
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The algorithm A′, given a query y ∈ [M ] proceeds as follows. For i ∈ [k], it computes x(i) ←
Agi(σi, hi(y) mod N, ri). Then A′ makes k additional queries to f , and outputs x(i) if f(x(i)) = y
for an i ∈ [k]. If for all i ∈ [k], f(x(i)) ̸= y, then A′ outputs ⊥. We have that the number of queries
made by A′ is T ′ ≤ Tk + k = O(T log n).

For every a function f : [N ] → [M ] and x ∈ [N ], y = f(x), let Ei
x be the event that |{y′ ∈

f([N ]) : hi(y
′) ≡ hi(y) mod N}| = 1. Observe that if Ei

x holds, then every preimage of hi(y) mod N
under gi is also a preimage of y under f . Indeed, if Ei

x holds, then every x satisfying hi(y) ≡ gi(x) ≡
hi(f(x)) mod N must also satisfy y = f(x). Since h : [M ]→ [M ] is bijective, for every f and x,

Pr
h1

[E1
x] ≥

(
M −M/N

N − 1

)
/

(
M − 1

N − 1

)
≥

(
M −M/N − (N − 2)

M − (N − 1)

)N−1

≥
(
1− 1

N

)N−1
≥ 1/e .

From independence of h1, . . . , hk, for every x ∈ [N ] and every f : [N ]→ [M ] we have that

Pr
h1,...,hk

[∀i ∈ [k] : ¬Ei
x] = Pr

h1

[¬E1
x]

k ≤ (1− 1/e)k ≤ 1/(10n2) .

The success probability of the algorithm (P ′,A′) is at least

Pr
r∼{0,1}l

f :[N ]→[M ]
x∼[N ]; y=f(x)

[(A′)f (P(f, r), f(x), r) ∈ f−1(y)]

≥ Pr
r∼{0,1}l,f :[N ]→[M ],x∼[N ]

[∃i ∈ [k] : Ei
x and

(A)gi(P(gi, r), hi(x) mod N, r) ∈ g−1i (hi(x) mod N)]

≥ 1− 1/(10n2)− Pr
r∼{0,1}l

f :[N ]→[M ]
h:[M ]→[M ] bij.
g=(mod N)◦h◦f
x∼[N ]; y=g(x)

[Ag(P(g, r), g(x), r) ̸∈ g−1(y)]

≥ 1− 1/(10n2)− Pr
r∼{0,1}l
g:[N ]→[N ]

x∼[N ]; y=g(x)

[Ag(P(g, r), g(x), r) ̸∈ g−1(y)]

≥ 1− 1/(10n2)− (1− δ) = δ − 1/(10n2) ,

where the last inequality follows from the success guarantee of the algorithm (P,A).

B Search-to-decision reduction for injective functions

We observe that the reduction of Theorem 5.2 that preserves the domain and the range of the
functions cannot be extended to the case of injective function inversion. Indeed, if M = N , then
the injective DFI problem is trivial (the output to every query is one), while the injective SFI
problem is the permutation inversion problem that is known to require ST ≳ N [Yao90]. In
the following lemma we provide a search-to-decision reduction for injective function inversion that
increases the range by a factor of two. The main difference between the proofs of Lemma 5.1
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and Lemma B.1 is in the definitions of functions gbi . We define injective SFI and DFI problems
similarly to Definition 2.2 and Definition 2.3 with the only difference being that the algorithms are
guaranteed to work only for injective functions f .

We include the proof of Lemma B.1 for completeness. This proof closely follows the proof of
[CK19, Theorem 8] with the following minor differences. [CK19] reduces injective (N,M)-SFI to
(N,M)-DFI over an arbitrary function but average-case input y, while we reduce injective (N,M)-
SFI to injective (N,M +N)-DFI. It is easy to see that the functions that [CK19] constructs in the
proof are 2-to-1, so a straightforward modification of their reduction results in injective functions
(but with a larger range of size M +N).

Lemma B.1. Let ε := ε(N) ∈ (0, 1/2]. Suppose there exists an algorithm (P,A) that solves
injective (N,M+N)-DFI with advantage ε using S bits of preprocessing and T queries. Then there
exists an algorithm (P ′,A′) that solves injective (N,M)-SFI with success probability 1 − 1/(10n2)
using S′ ≤ O(Sn(log n)/ε2) bits of preprocessing and T ′ ≤ O(Tn(log n)/ε2) queries.

Proof. By running A and P k = O((log n)/ε2) times with fresh randomness and taking the majority
of the query answers, we may assume that A and P have failure probability at most 1/(20n3) (by
the Chernoff bound in Lemma 2.9). Therefore, it suffices to show an algorithm (P ′,A′) that uses
O(Tn) queries and O(Sn) bits of preprocessed advice for the special case when ε = 1/2−1/(20n3).

For inverting an injective function f : [N ]→ [M ], we define the following 2n injective functions
from [N ] to [M +N ]. For i ∈ [n], let

g0i (x) =

{
f(x) if xi = 0 ,

x+M otherwise .
g1i (x) =

{
f(x) if xi = 1 ,

x+M otherwise .

Notice that an oracle query to gbi can be trivially simulated by making at most one oracle query
to f .

For each i ∈ [n] and b ∈ {0, 1}, rbi ∼ {0, 1}ℓ, P ′ runs σb
i ← P(gbi , rbi ), and outputs σ′ =

(σ0
1, σ

1
1 . . . , σ

0
n, σ

1
n). In particular, S′ ≤ O(Sn).

Given a query y ∈ [M ], for each i ∈ [n] and b ∈ [k], A′ computes dbi = Agbi (σb
i , y, r

b
i ), which is

done using at most O(Tn) queries to f . Informally, d0i = 1 if there exists a preimage of y with the
ith bit 0, and d1i = 1 if there exists a preimage of y with the ith bit 1. If for some i ∈ [n], d0i = d1i ,
then A′ outputs ⊥. Otherwise, for each i, A′ sets x′i = b where b ∈ {0, 1} is such that dbi = 1 and
d1−bi = 0. Finally, the algorithm A′ outputs x′ = (x′1, . . . , x

′
n) ∈ [N ]. In particular, the number of

queries is T ′ ≤ O(Tn).
All 2n queries to A are answered correctly with probability at least 1−2n/(20n3) ≥ 1−1/(10n2).

If y ∈ [M ] has a (unique) preimage x under f , we have that Prr∼{0,1}ℓ′ [x
′ ← (A′)f (P ′(f, r), y, r) :

x′ = x] ≥ 1 − 1/(10n2). If y ∈ [M ] doesn’t have a preimage under f , then Prr∼{0,1}ℓ′ [x
′ ←

(A′)f (P ′(f, r), y, r) : x′ = ⊥] ≥ 1 − Prr∼{0,1}ℓ′ [d
0
1 = 1 or d11 = 1] ≥ 1 − 1/(10n3). The result

follows.
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