
Trading Time and Space in Catalytic Branching
Programs

James Cook Ian Mertz
Amazon1 University of Toronto

February 17, 2022

Abstract

An m-catalytic branching program (Girard, Koucky, McKenzie 2015)
is a set of m distinct branching programs for f which are permitted
to share internal (i.e. non-source non-sink) nodes. While originally
introduced as a non-uniform analogue to catalytic space, this also
gives a natural notion of amortized non-uniform space complexity
for f , namely the smallest value |G|/m for an m-catalytic branching
program G for f (Potechin 2017).

Potechin (2017) showed that every function f has amortized size
O(n), witnessed by an m-catalytic branching program where m =
22n−1. We recreate this result by defining a catalytic algorithm for
evaluating polynomials using a large amount of space but O(n) time.
This allows us to balance this with previously known algorithms
which are efficient with respect to space at the cost of time (Cook,
Mertz 2020, 2021). We show that for any ε ≥ 2n−1, every function
f has an m-catalytic branching program of size Oε(mn), where
m = 22εn . We similarly recreate an improved result due to Robere
and Zuiddam (2021), and show that for d ≤ n and ε ≥ 2d−1, the
same result holds form = 2(n

≤εd) as long as f is a degree-d polynomial
over F2. We also show that for certain classes of functions, m can
be reduced to 2polyn while still maintaining linear or quasi-linear
amortized size.

In the other direction, we bound the necessary length, and by
extension the amortized size, of any permutation branching program
for an arbitrary function between 3n and 4n− 4.

1Work done before joining Amazon.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 26 (2022)

1 Introduction

In computational complexity, there is often a focus on analyzing the worst-
case scenario for a given computation model C and a given function f ,
but there are other natural cases to consider. One such case is amortized
computation, where our C algorithm computes many copies of f in such a
way that the average cost per copy may be much less than the worst-case
cost of computing f a single time.

Amortized analysis has typically been used in the context of (time-
bounded) Turing Machines, but studying the amortized complexity of
syntactic—and in particular non-uniform—computation models goes back
just as far, such as Uhlig’s results on circuits computing f on m different
inputs. The study of amortized analysis for branching programs, a model
corresponding to non-uniform space-bounded complexity, was initiated by
Potechin [Pot17] and later standardized by Robere and Zuiddam [RZ21] for
branching programs and other syntactic models.

The amortized model was introduced by [GKM15] in a different context,
namely as a non-uniform version of catalytic space, originally introduced in
the uniform setting by Buhrman et al. [BCK+14] as a new type of space-
bounded complexity class. In a catalytic Turing Machine, there are four
tapes: as in a traditional space-bounded Turing Machine there is a read-only
input tape of length n, a write-only output tape of length 1, and a read-write
work tape of length s(n), but additionally we have a read-write catalytic
tape of length 2O(s(n)). Ordinarily a tape of this length would allow us to
capture SPACE(2O(s(n))) rather than SPACE(s(n)), but the catalytic tape
comes with a catch: the entire tape is initialized to an arbitrary string
τ , and at the end of the computation it must contain that same string
τ . Since the algorithm must work for every string τ (so, for example, τ
cannot be compressed), it seems as if we should get no additional power over
SPACE(s(n)). Buhrman et al. defied this intuition, showing that when
s(n) = O(logn), the catalytic tape allows us to compute any function in TC1,
a class which as far as we know is larger even than NL = NSPACE(s(n)).

Going to the non-uniform setting, an m-catalytic branching program
for f [GKM15] is defined as having m start nodes, m 1-end nodes, and
m 0-end nodes, where if we restrict to any particular start node we get
an ordinary branching program for f with a single start, 1-end, and 0-end
node, all of which are distinct for each different choice of the start node. To
see the connection to catalytic space, we can think of each start node as
corresponding to a different setting of a logm-length catalytic tape, where
the “restoration” of the catalytic tape is captured by the fact that the two

1

end nodes corresponding to any start node are unique to that start node.
After defining this model and showing multiple results extending the uniform
arguments in [BCK+14], Girard, Koucký, and McKenzie [GKM15] left open
the question of how large of an m-catalytic branching program is required to
compute an arbitrary function f .

As observed by Potechin [Pot17], this definition is also a natural inter-
pretation of branching programs in the amortized world, as our m-catalytic
branching program can be thought of as computing the function f m times.
Thus in approaching the question left open by [GKM15], they also settled
the question of the amortized space required for an arbitrary function f ;
they showed that every function f has an m-catalytic branching program
of size O(mn), or in other words amortized size O(n). The only catch is
that the number of copies is doubly exponential; specifically, there exists a
(layered) m-catalytic branching program of width 2m and length 4n, where
m = 22n−1. The branching program also has the nice property of reading
each input variable exactly 4 times, and thus this also has implications for
read-k branching programs for k = O(1).

In terms of amortized size, the result of [Pot17] is clearly optimal up to
constant factors, and so following [GKM15] the central open question they
posed is to understand whether or not m can be improved while maintaining
linear amortized size, and what the implications of this result may be. Taking
up this challenge, Robere and Zuiddam [RZ21] showed that any function
f can be computed by an m-catalytic branching program with the same
parameters as [Pot17] even when m = 2(n≤d)−1, where d is the degree of
f as an F2 polynomial. Unfortunately this doesn’t allow us to go beyond
[Pot17] for most functions, but it provides a much sharper analysis for many
functions that still appear quite difficult. The proof uses properties of F2
polynomials under permutations of the input variables.

1.1 Our results

While the m-catalytic branching programs of [Pot17, RZ21] can be viewed as
catalytic algorithms by definition, our initial aim is to restate these algorithms
using the basic catalytic tools derived in [BCK+14] and follow-up works. In
particular we reprove their results using the natural non-uniform variant
of register programs, which were defined by Ben-Or and Cleve [BoC92] as
space-bounded machines for computing simple arithmetic operations and
were also the model used in [BCK+14] for their results. Our non-uniform
register program follows by extending previous work on catalytic algorithms
for the tree evaluation problem [CM20, CM21], by adapting their register

2

program to optimize time rather than space.
More importantly, as a result of this connection, we can also exploit

a trade-off between space and time—here corresponding to m and length,
respectively—in order to strongly break the 22n−1 barrier for arbitrary
functions. We show that for any function f and any ε ≥ 2n−1, there exists
an m-catalytic branching program of width 2m and length 21/ε · 2εn where
m = 2n+ 1

ε
·2εn . Focusing on the case when ε = Ω(1), this gives us a read-O(1)

m-catalytic branching program with m significantly less than 22n−1. We also
improve on the sharper result of [RZ21], by showing that the same result
holds with length 21/ε · 2n and m = 2n+ 1

ε (n
≤εd), again for d being the F2

degree of f and any ε ≥ 2d−1.
As a bonus, this interpretation also allows us to show significant im-

provements on m (while still maintaining linear amortized size) for some
functions not covered by [RZ21], in particular all functions in TC0, the class
of functions computable by low-depth threshold circuits of polynomial size.
By allowing the amortized size to increase to quasilinear, we can capture the
much larger class VP, which is the class of all polynomials computable by
poly-size arithmetic circuits.

We also study whether tradeoffs can be made in the other direction,
namely whether length 4n is optimal for m-catalytic branching programs of
width O(m). We show that a few modifications can bring the length down
to 4n − 4 even for the original parameter m = 22n−1. As with the results
of [Pot17, RZ21] and our improvements, this program is not only layered
with optimal width 2m, but in fact can be made a permutation branching
program, meaning that each layer has exactly 2m nodes and the transition
between layers is restricted to be a permutation. For such restricted programs,
we show that for any m, even the AND function cannot be computed by
permutation programs of length less than 3n once n ≥ 4. This leaves three
questions: 1) what, between 3n and 4n − 4, is the shortest length of a
permutation branching program for an arbitrary function?; 2) can m can be
improved for programs of length 3n—or in general any fixed length?; and 3)
can we get any improvements by moving to more general programs?

2 Preliminaries

We introduce two space-bounded models of computation. Our first model
is a variation of branching programs, which are the standard syntactic (i.e.
non-uniform) notion of space-bounded computation (see [CMW+12]).

3

Definition 1 (m-catalytic branching program [GKM15]). Let n ∈ N and
let f : {0, 1}n → {0, 1} be an arbitrary function. An m-catalytic branching
program is a directed acyclic graph G with the following properties:

• There are m source nodes and 2m sink nodes.

• Every non-sink node is labeled with an input variable xi for i ∈ [n],
and has two outgoing edges labeled 0 and 1.

• For every source node v there is one sink node labeled with (v, 0) and
one sink node labeled with (v, 1).

We say that G computes f if for every x ∈ {0, 1}n and source node v, the
path defined by starting at v and following the edges labeled by the value of
the xi labeling each node ends at the sink labeled by (v, f(x)). The size of
G is the number of non-sink nodes2 in G.

We also consider m-catalytic branching programs with standard restric-
tions:

• layered branching programs: for some ` ∈ N, there exists a function
σ : G→ [`+ 1] such that for all u ∈ G, the outgoing edges of u go to
nodes v, w such that σ(v) = σ(w) = σ(u) + 1; we call the set of nodes
{v ∈ σ−1(j)} the jth layer. Furthermore for each j ∈ [`] there exists
an input variable xji which is the variable labeling every v ∈ σ−1(j).3
The width of G is maxj∈[`] |σ−1(j)| and the length of G is `. Note that
the size of G is at most the product of the length and width of G.

• read-k branching programs: for any start node v and any input x, each
variable xi is read at most k times during the computation starting at
v. We note that for layered branching programs, this corresponds to
each variable xj labeling at most k layers.

• permutation branching programs: consider a layered branching program
of width 2m with 2m source nodes S = {s1 . . . s2m} and 2m sink nodes
T = {t1 . . . t2m}, and let P (x) : [2m]→ [2m] be the function such that
P (x)(i) = i′ where the computation path starting from si on input x

2This is somewhat non-standard, but when talking about layered branching programs
this simplifies things by defining the length as the number of times we read variables, which
will in turn be connected to the number of instructions in our register program model.
This choice does not affect the asymptotics of any results.

3By construction layer `+ 1 will contain exactly the sink nodes of G. See the previous
footnote for an explanation of this somewhat non-standard convention.

4

1

(1, 0)

(1, 1)
2

(2, 0)

(2, 1)
3

(3, 0)

(3, 1)
4

(4, 0)

(4, 1)

Sources

Sinks

1

(1, 0)

(1, 1)
2

(2, 0)

(2, 1)
3

(3, 0)

(3, 1)
4

(4, 0)

(4, 1)

Sources

Sinks

Figure 1: The computation of an m-catalytic branching program starting at
source node i ends at sink node (i, 0) if f(x) = 0 (left) or (i, 1) if f(x) = 1
(right). In these diagrams, m = 4.

goes to ti′ . Then there exists a permutation σ∗ : [2m] → [2m] such
that P (x) is the identity function when f(x) = 0 and P (x) = σ∗ when
f(x) = 1. This is not an m-catalytic branching program in the strict
sense, and we will address this model more precisely in Section 4.

Our second model comes from a line of work starting with [BoC92], more
recently fleshed out in [BCK+14] and used in many follow-up works on
catalytic computation [CM20, CM21].

Definition 2 (Transparent register program). Let R be a ring and f ∈
{0, 1}n → {0, 1} a function. A register program P is defined by a set of
registers S = {R1 . . . Rs, R

out}, each storing a value in R, plus an ordered
list of t instructions where for every j ∈ [t] the jth instruction is R ←
R+pj(xi,S\{R}) for some i ∈ [n], R ∈ S, and polynomial pj ∈ R[x, y0 . . . ys].

We say that P computes f if for every x ∈ {0, 1}n, after initializing R = 0
for all registers R and then executing all instructions in order, the value
stored in Rout is f(x). We say that P transparently computes f if instead
of initializing all R to 0, each R begins in an arbitrary initial state τi, and
at the end of the program we have Rout = τout + f(x) and Ri = τi for all
i. The size of P is the number of registers s + 1 and the time of P is the
number of instructions t.

We use register programs as an abstraction for understanding m-catalytic
branching programs, which will be the model our main results will refer
to. The two models are connected through the following observation (see
Figure 2 for an example of our construction).

5

Observation 1. Let fn : {0, 1}n → {0, 1} be a family of functions and let Pn
be a family of register programs over a family of rings Rn with size s(n) + 1
and time t(n) each transparently computing fn. Then fn can be computed by
a family of m-catalytic branching programs of width |Rn|m and length t(n),
where m = |Rn|s(n).

Proof. We will define a branching program with width |Rn|s(n)+1 and length
t(n). Each layer will represent a stage in the register program and each node
in a layer will represent a setting to the registers at that time. Since each
register program step only requires us to read one input variable, at layer k we
query the variable associated with step k in the register program and create
edges from each node in layer k to the nodes at layer k + 1 representing the
state of our memory after the step has completed. We label each input node
as τ for some distinct initial configuration τ = (τ1 . . . τs(n)) to all registers
except Rout, and we treat Rout as being initialized to 0. Then by the fact
that P transparently computes f , starting at node τ we are guaranteed to
reach a node (τ, f(x)). Since in each layer we have a node for every setting
of the s(n) + 1 registers, the width of our branching program is |Rn|s(n)+1,
and since each non-output layer corresponds to a unique instruction from
our register program, the length of our branching program is t(n).

Note 2.1. In our computation we often include instructions of the form
R← R + pj(R/{R}), i.e. instructions that do not require reading a variable
xi. By observing the above proof, it is clear that such instructions do not
add any length to the branching program, as they can be computed at the
same time as an adjacent instruction.

3 Saving Space

In this section we show that every function can be computed by an m-
catalytic branching program with size O(mn) for m� 22n−1 (improving on
[Pot17]) and m� 2(n≤d)−1 (improving on [RZ21]). We present our algorithm
in three steps:

• In Section 3.1 we show a simpler version of our algorithm which is suffi-
cient to reproduce—with a negligible loss in parameters—Potechin’s re-
sult [Pot17] that any function can be computed with a linear-amortized-
size m-catalytic branching program. Our program has length 4n and
width 2m, where m = 22n+n.

6

1: R1 ← R1 + x1
2: Rout ← Rout +R1x2
3: R1 ← R1 + x1
4: Rout ← Rout +R1x2

x1

0 0

x1

1 0

x2

0 0

x2

0 1

x2

1 0

x2

1 1

x1

0 0

x1

0 1

x1

1 0

x1

1 1

x2

0 0

x2

0 1

x2

1 0

x2

1 1

0 0

0 1

1 0

1 1

R1 = 1
Rout = 0

x1 = 0
x1 = 1

2

1

(2, 0)

(2, 1)

(1, 0)

(1, 1)

Figure 2: A transparent register program computing AND(x1, x2), and its
realization as a 2-catalytic branching program using Observation 1. Each
node is annotated (above, in boxes) with the register values it stores, and
each non-sink node is labelled (inside the circle) with the input to be read.
Dashed lines are transitions taken when that input is zero, and solid lines
are taken when the input is one. Finally, the source nodes are assigned the
numbers 1 and 2 (since m = 2), and the sink nodes are assigned pairs of
numbers, so that like in the more abstract Figure 1, a computation starting at
source node v will end at end at sink node (v, f(x)). Note that nodes/edges
that appear in gray are unreachable from the start states and thus would
not appear in the final branching program; they appear only for reference as
to how the register program translates to a branching program.

7

• In Section 3.2 we show how to trade off between m and amortized size,
yielding for every k ∈ [d] an m-catalytic branching program of length
2k · 4dn/ke and width 2m, where m = 2k·2dn/ke+n.

• In Section 3.3 we show a simple modification of our first algorithm
which reproduces—again with a negligible loss—the result of Robere
and Zuiddam [RZ21] that m can be made as small as 2(n≤d)−1, where d
is the degree of f as an F2 polynomial, with no cost to the length. Our
program has length 4n and width 2m, where m = 2(n≤d)+n. We then
show that the tradeoff algorithm gives us an m-catalytic branching
program of length 2k · 2n and width 2m, where m = 2k·(

n
≤dd/ke)+n.4

In Sections 3.2–3.3, our register programs will all operate over the field
of two elements: Rn = F2 for all n. In Section 3.4 we show our results for
restricted models using somewhat different techniques over different fields.

3.1 Basic Algorithm

In this section, we will prove:

Theorem 1. For any function f : {0, 1}n → {0, 1} there is an m-catalytic
branching program with length 4n and width 2m that computes f , where
m = 2n+2n.

This is proved by Algorithm 1 below. This nearly reproduces Potechin’s
Theorem 3.1 [Pot17], but with a worse value m = 2n+2n instead of 22n−1.
Nonetheless, we will find it a useful starting point for our algorithm that
trades space for time in Section 3.2.

Proof. We will design a program that uses n + 2n work registers plus one
output register Rout, which is sufficient by Observation 1. First, we have n
registers Rin

1 , . . . , R
in
n , corresponding to the n input bits. This correspondence

is given by the following subroutine:
1: procedure ToggleInput
2: for i = 1, . . . , n do
3: Rin

i ← Rin
i + xi

4: end for
4While the program of [RZ21] matches or beats [Pot17] for all d, our improved version

of [RZ21] is worse than our improved version of [Pot17] when d = Ω(n) (although still an
improvement over the original results of both papers), and thus we state and prove both
results separately rather than subsuming our improved version of [Pot17].

8

5: end procedure
After ToggleInput runs, the registers have values Rin

i = τ in
i +xi, where τ in

i

stands for the initial value of Rin
i . If we run it a second time, the registers

are restored to their original values: Rin
i = τ in

i . Since we query all n variables
once, ToggleInput requires time n to run once.

Before defining our other 2n registers, we introduce an algebraic view of
f , which will be our main focus. We can view f as a multilinear polynomial
pf ∈ F2[x1, . . . , xn] using basic interpolation:

Lemma 2. For any function f : {0, 1}n → {0, 1} there is a multilinear
polynomial pf ∈ F2[x1, . . . , xn] such that pf (#–x) = f(#–x) for all #–x ∈ {0, 1}n.

Proof. For any #–y ∈ {0, 1}n, we can algebraically define the indicator function
[#–x = #–y] as ∏n

i=1(xi + yi + 1) ∈ F2[x1, . . . , xn]. Then we can set

pf =
∑

#–y ∈{0,1}n:f(#–y)=1
[#–x = #–y]

Now define yi = τ in
i +xi; in other words, yi is the value of Rin

i after running
ToggleInput. Define qf (y1, . . . , yn, τ

in
1 , . . . , τ

in
n) = pf (y1− τ in

1 , . . . , yn− τ in
n)

to be the result of rewriting pf using the yi and τi variables.5 For S, S′ ⊆ [n],
let cS,S′ be the coefficient of

(∏
i∈S τ

in
i

)
(∏i∈S′ yi) in qf , so that

qf (
–

τ in, #–y) =
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)∏
i∈S′

yi

We now introduce our other registers: we have 2n registers RS indexed by
subsets S ⊆ [n]. Our next subroutine prepares us to use these registers to
compute qf :

1: procedure ToggleMonomials
2: ToggleInput
3: for S′ ⊆ [n] do
4: RS′ ← RS′ +

∏
i∈S′ R

in
i

5: end for
6: ToggleInput
7: end procedure

5For example, if f is the OR function f(x1, x2) = x1 ∨ x2, we have pf (x1, x2) =
x1 + x2 + x1x2 and qf (τ in

1 , τ
in
2 , y1, y2) = y1 + τ in

1 + y2 + τ in
2 + y1y2 + y1τ

in
2 + τ in

1 y2 + τ in
1 τ

in
2 ,

and both are equal to f(x1, x2) so long as #–y have the correct values.

9

After ToggleMonomials runs, we have RS = τS +∏i∈S yi for each S ⊆ [n],
where τS stands for the register’s initial value. The Rin registers have their
initial values Rin

i = τ in
i . We run ToggleInput twice and have 2n additional

instructions, but since the additional instructions do not query any x variables
they can be computed in the last x query of ToggleInput, for a total
runtime of 2n.

Our final algorithm for computing f is:

Algorithm 1 Transparently compute f in time 4n with n+ 2n + 1 registers.
1: ToggleMonomials
2: Rout ← Rout +∑

S,S′⊆[n] cS,S′
(∏

i∈S R
in
i

)
RS′

3: ToggleMonomials
4: Rout ← Rout −

∑
S,S′⊆[n] cS,S′

(∏
i∈S R

in
i

)
RS′

When Line 2 executes, we have RS′ = τS′ +
∏
i∈S′ yi, so after that line,

Rout = τout +
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)τS′ + ∏
i∈S′

yi

 .
Then when Line 4 executes, we have RS′ = τS′ , so the final value is

Rout = τout +
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)∏
i∈S′

yi

 = τout + f(x1, . . . , xn).

So Algorithm 1 correctly computes f . The space of the program is n+ 2n
by construction, and as before we can ignore the instructions on lines 2 and
4 since they do not use x, giving us a total runtime of 4n from the two calls
to ToggleMonomials.

3.2 Trading Space for Time

In this section, we will modify Algorithm 1 to make m dramatically smaller,
in exchange for making the branching program longer.

Theorem 3. For any k ∈ N and any function f : {0, 1}n → {0, 1} there is
an m-catalytic branching program with length 2k · 2dn/ke and width 2m that
computes f , where m = 2n+k·2dn/ke.

Before jumping into the proof of Theorem 3, we will address the main
innovation of our work, namely trading off time for space. Namely we begin

10

by building a register program that takes time n2n+1 but uses only the n+ 1
registers Rin

1 . . . R
in
n , R

out. This is similar to what Theorem 3 guarantees
when k = n.

As in Sections 3.1 and 3.3, let pf ∈ F2[x1, . . . , xn] be f as a polynomial,
let qf ∈ F2[τ in

1 , . . . , τ
in
n , y1, . . . , yn] be equal to pf so long as yi = τ in

i + xi for
all i, and let cS,S′ be the coefficient of

(∏
i∈S τ

in
i

)
(∏i∈S′ yi) in qf . We define

a small generalization of ToggleInput, where we can choose to toggle only
a subset of our inputs:

1: procedure ToggleSomeInputs(S’)
2: for i ∈ S′ do
3: Rin

i ← Rin
i + xi

4: end for
5: end procedure

Using ToggleSomeInputs(S’), we can replace the register RS′ in Algo-
rithm 1 with a separate set of instructions that computes the corresponding
term of qf :

Algorithm 2 A slow algorithm for computing qf .
1: for S′ ⊆ [n] do
2: ToggleSomeInputs(S’)
3: Rout ← Rout +∑

S⊆[n] cS,S′ ·
∏
i∈[n]R

in
i

4: ToggleSomeInputs(S’)
5: end for

Whenever Line 3 is executed, Rin
i = yi for i ∈ S′, and Rin

i = τ in
i for

i 6∈ S′. By construction of qf , S and S′ are disjoint whenever cS,S′ 6= 0, from
which it follows that Rin

i = τ in
i for i ∈ S. Thus the effect of Line 3 is to add∑

S⊆[n] cS,S′
(∏

i∈S τ
in
i

)
(∏i∈S′ yi) to Rout. Since this is run for every subset

S′, the overall effect of the program is to add

∑
S,S′⊆[n]

cS,S′

(∏
i∈S

τ in
i

)∏
i∈S′

yi

 = pf (x1 . . . xn)

to Rout.

Overview of full proof Our goal is to balance Algorithms 1 and 2 by
removing the registers RS corresponding to large subsets S and using slow
multiplication to build the polynomial qf from the remaining small subsets. In
particular, if we divide the input bits into k groups each of size dn/ke, and only

11

store all subsets within each group, then any monomial cS,S′
∏
i∈S τ

in
i

∏
i∈S′ yi

can be computed by multiplying together one subset from each group, namely
the restriction of S to the group. Instead of 2n registers for all subsets, we use
only k · 2dn/ke registers corresponding to subsets in the k groups, and we can
compute all the corresponding monomials into these registers in time 2n using
the first half of Algorithm 1. Then since we are only multiplying k monomials
together, we can compute qf using Algorithm 2 in time 2k · 2 · 2n, since
each call to ToggleSomeInputs is replaced with our 2n time execution of
Algorithm 1.

As a slight last speedup, we use a Gray code to order our subsets
in Algorithm 2, replacing two executions of ToggleSomeInputs with a
subroutine toggling a single group on or off and only spending 2dn/ke time
to do so. This allows us to compute qf in 2k · 2dn/ke time rather than 2k · 4n
time.

Proof of Theorem 3. For j ∈ [k] let bj = dnj/ke, and divide the range [n]
into k groups: G1 = {1, . . . , b1}, G2 = {b1 + 1, . . . , b2}, . . . , Gk = {bk−1 +
1, . . . , bn = n}. For each group Gj , we have 2|Gj | registers Rj,S indexed
by subsets S ⊆ Gj . As in all previous algorithms we also use n registers
Rin

1 , . . . , R
in
n , corresponding to the n input bits, for a total of n+∑k

j=1 2|Gj |
registers plus the output register Rout.

We’ll begin by rewriting the polynomial qf in a new form. Recall from
Section 3.1 that qf (

–

τ in, #–y) = f(x) so long as #–y = #–x +
–

τ in, and

qf (
–

τ in, #–y) =
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)∏
i∈S′

yi

Now, for every S′ ⊆ [n], define S′j := S′ ∩Gj . For each j ∈ [k] and S ⊆ Gj ,
let zj,S = τj,S +∏

i∈S yi, where τj,S is the initial value of register Rj,S . Now
for every monomial in qf , we split the term ∏

i∈S′ yi in the monomial into k
different products ∏i∈S′j

yi, each of which we can replace with zj,S′j − τj,S′j .
This gives us a new polynomial

rf (
–

τ in, #–τ , #–z) =
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)(
k∏
i=1

(zj,S′ − τj,S′)
)
.

As we did with qf , for S, S′ ⊆ [n] and T ⊆ [k], let dS,S′,T be the coefficient
of (∏i∈S τ

in
i)(∏j∈T zj,S′j)(

∏
j∈[k]\T τj,S′j) in rf , so that

rf (
–

τ in, #–τ , #–z) =
∑
S⊆[n]

∑
S′⊆[n]

∑
T⊆[k]

dS,S′,T

(∏
i∈S

τ in
i

)∏
j∈T

zj,S′j

 ∏
j∈[k]\T

τj,S′j

12

which is equivalent to f(x1 . . . fn) as long as zj,S′j = τj,S′j +∏i∈S′j
(xi+τ in

i +1).
Following ToggleSomeInputs(S′), we define new versions of Tog-

gleInput and ToggleMonomials from Section 3.1 which focus on some
groups and not others. In fact we will only focus on a single group Gj rather
than a subset of the groups, as we will order our subsets S′ in such a way
that we will only ever need to toggle one group at a time:

1: procedure ToggleInputForGroup(j)
2: for i ∈ Gj do
3: Rin

i ← Rin
i + xi

4: end for
5: end procedure
1: procedure ToggleMonomialsForGroup(j)
2: ToggleInputForGroup(j)
3: for S ⊆ Gj do
4: Rj,S ← Rj,S +∏

i∈S R
in
i

5: end for
6: ToggleInputForGroup(j)
7: end procedure

We are now ready to assemble Algorithm 4, which completes the proof
of Theorem 3. To incorporate our improvement using Gray codes [Gra53],
let T0 = ∅, . . . , T2k−1 be an ordering of all subsets of [k] such that each
consecutive pair of sets T`, T`+1 mod 2k differs by exactly one element e` ∈ [k];
thus we will only need to toggle the group Ge` as claimed:

Algorithm 3 Transparently compute f in time 2k ·2dn/ke with n+k ·2dn/ke
registers.

1: for ` = 0, . . . , 2k − 1 do
2: Rout ← Rout +∑

S⊆[n]
∑
S′⊆[n] dS,S′,T`

(∏
i∈S R

in
i

) (∏k
j=1Rj,S′j

)
3: ToggleMonomialsForGroup(e`)
4: end for

Each time Line 2 is reached, we have Rj,S = τj,S +∏
i∈S yj for j ∈ T`,

and Rj,S = τj,S for j ∈ [k] \ T`. We also have Rin
i = τ in

i for each i ∈ [n]. So
the effect of the line is to add

∑
S⊆[n]

∑
S′⊆[n]

dS,S′,T`

(∏
i∈S

τ in
i

)∏
j∈T`

zj,S′j

 ∏
j∈[k]\T`

τj,S′j

to Rout. Summing this expression over all possible subsets T` ⊆ [k] gives

13

Rout = τout + rf (· · ·) = τout + f(x1, . . . , xn), and so our algorithm transpar-
ently computes f .

Note 3.1. It is not difficult to save k registers by removing R1,∅, . . . , Rk,∅,
as we simply add each value dS,∅,T (∏i∈S R

in
i) to our polynomial without

concerning ourselves with any xi (and by extension any yi or zi) variables.

3.3 Bounded-Degree Polynomials

Robere and Zuiddam [RZ21, Theorem 5.13] showed that if f is a polynomial
of degree d < n, it is possible to improve on Potechin’s theorem by decreasing
m = 22n−1 down to m = 2(n≤d)−1. Here we show how to adapt Algorithm 1
to get a similar result, and then at the end of the section we build a tradeoff
algorithm to improve it.

Theorem 4. For any function f : {0, 1}n → {0, 1} which is a degree-d
polynomial, there is an m-catalytic branching program with length 4n+ 1 and
width 2m that computes f , where m ≤ 2n+(n≤d).

Again, while this is slightly worse than Robere and Zuiddam’s original
result, we include it to show the flexibility of our approach and as a stepping
stone to our tradeoff result.

Proof. As before, let pf ∈ F2[x1, . . . , xn] be f as a polynomial. We make the
following change to Algorithm 1: for every S′ ∈ [n] such that cS,S′ = 0 for
all S, remove the register RS′ .

Formally, as before define F2 polynomials

pf (#–x) =
∑

#–y ∈{0,1}n:f(#–y)=1

n∏
i=1

(xi + yi + 1)

qf (
–

τ in, #–y) = pf (#–y −
–

τ in) =
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)∏
i∈S′

yi

LetMf ⊆ 2[n] be the set of all S′ such that there exists an S where cS,S′ 6= 0.
We define the following subroutine:

1: procedure ToggleUsefulMonomials
2: ToggleInput
3: for S ∈Mf do
4: RS ← RS +∏

i∈S R
in
i

5: end for

14

6: ToggleInput
7: end procedure

The only difference from ToggleMonomials is that we ignore subsets S
which are not in Mf (not “useful”). Our final algorithm is

Algorithm 4 Transparently compute a degree-d polynomial f in time 4n
with n+

(n
≤d
)

registers.
1: ToggleUsefulMonomials
2: Rout ← Rout +∑

S⊆[n]
∑
S′∈Mf

cS,S′
(∏

i∈S R
in
i

)
RS′

3: ToggleUsefulMonomials
4: Rout ← Rout −

∑
S⊆[n]

∑
S′∈Mf

cS,S′
(∏

i∈S R
in
i

)
RS′

To conclude the proof of Theorem 4, we need to show |Mf | ≤
(n
≤d
)
.

Indeed, since pf is a degree-d polynomial, qf also has degree d, which means
cS,S′ = 0 whenever |S|+ |S′| > d. So, Mf only contains sets S′ with size at
most d, of which there are

(n
≤d
)
.

Note 3.2. The original algorithms of [Pot17, RZ21] rely on the symmetries
of f as an F2 polynomial, in essence having each start state represent a
possible function g which can be obtained from f by negating input variables
or taking ⊕ with f itself. [Pot17] takes this set of functions to be the space
of all n-variable functions, while [RZ21] analyzes these rules and obtains a
more exact characterization. While this characterization is phrased in terms
of orbit closures, it can also be described in terms of polynomials as the span
of the set of all monomials appearing in f as an F2 polynomial along with all
submonomials of this set; this exactly coincides with our notion as ∏i∈S yi
generates all submonomials ∏i∈S′⊆S xi for yi := xi + τi, which leads to the
quantitative results being essentially the same despite taking two completely
different approaches.

Now we state our tradeoff algorithm, which goes much in the same way
as Theorem 3 but without breaking the variables into groups.

Theorem 5. For any k ∈ N and any function f : {0, 1}n → {0, 1} there
is an m-catalytic branching program with length 2k · 2n and width 2m that
computes f , where m = 2n+k·(n

≤dd/ke).

Proof. For any ∆ ∈ N, let M∆
f ⊆

(n
≤∆
)

be the set of all S′′ of size at most
∆ such that there exists an S ⊆ [n] and S′ ⊇ S′′ where cS,S′ 6= 0. We will
have k registers Rj,S′′ for every S′′ ∈Mdd/kef , as well as the usual registers

15

Rin
1 . . . R

in
n , R

out. Note that this gives us our target space, as |Mdd/kef | ≤(n
≤dd/ke

)
.

Following our proof of Theorem 3, let zj,S = τj,S +∏
i∈S yi, where τj,S is

the initial value of register Rj,S , and for every monomial in qf we split the
term ∏

i∈S′ yi in the monomial arbitrarily into k different products ∏i∈S′j
yi—

each of which we can replace with zj,S′j − τj,S′j—where S′j ∈ M
dd/ke
f and

∪j∈[k]S
′
j = S′. This is possible because each non-zero term in qf has degree

at most d, meaning that |S′| ≤ d and furthermore every subset of S′ of size
at most dd/ke appears in Mdd/kef by construction.6

Fixing some particular partition (S′j)j∈[k] for each S′, this gives us a new
polynomial

rf (
–

τ in, #–τ , #–z) =
∑
S⊆[n]

∑
S′⊆[n]

∑
T⊆[k]

dS,S′,T

(∏
i∈S

τ in
i

)∏
j∈T

zj,S′j

 ∏
j∈[k]\T

τj,S′j

which is equivalent to f(x1 . . . fn) as long as zj,S′j = τj,S′j +∏i∈S′j

(xi+τ in
i +1).

We define ToggleMonomialsForGroup as before, using ToggleInput
instead of ToggleInputForGroup since the variables are no longer split
into groups, and using a Gray code we get our final algorithm:

Algorithm 5 Transparently compute f in time 2k · 2n with n+ k ·
(n
≤dd/ke

)
registers.

1: for ` = 0, . . . , 2k − 1 do
2: Rout ← Rout +∑

S⊆[n]
∑
S′⊆[n] dS,S′,T`

(∏
i∈S R

in
i

) (∏k
j=1Rj,S′j

)
3: ToggleMonomialsForGroup(e`)
4: end for

The analysis is identical to that of Algorithm 4, except the runtime is
2k · 2n rather than 2k · 2dn/ke because we do not split the variables into
groups.

6Our use of j here is slightly different than in our previous proof; namely, j is not linked
to a specific block of variables, and rather we arbitrarily partitioned S′ into k sets and
assigned them each a distinct j. This will result in us having to spend time n to load the
monomials in, rather than time dn/ke as in the previous proof, but this is necessary as
we have no guarantee that there is a partition of the variables such that every monomial
of degree at most d is split into k monomials of degree at most dd/ke. Note that this is
where our algorithm performs worse than Algorithm 4 when d = Ω(n).

16

3.4 Getting More for Restricted Models

To close our discussion of improved values of m for general functions, we
give a few examples of restricted classes of functions where m can be greatly
improved.

For the results in this section, we will need to switch from working over
F2 to more general fields. Observation 1 produces an m-catalytic branching
program of width |Rn|m. The following lemma shows how to reduce the
width to 3m when Rn is a finite field, at the cost of a factor of |Rn| increase
in m.

Lemma 6. Let Kn be a family of finite fields. Let fn : {0, 1}n → {0, 1} be a
family of functions and let Pn be a family of register programs over the fields
Kn with size s(n) + 1 and time t(n) each transparently computing fn. Then
fn can be computed by a family of m-catalytic branching programs of width
3m and length t(n), where m = |Kn|s(n)+1.

Proof. We will proceed as in Observation 1, except that instead of initializing
Rout to 0, we will allow it to take on any starting value (hence the factor-
of-|Kn| increase in m). In order to detect whether Rout has changed at the
end of the program, we store a minimal amount of information about the
starting value of Rout.

Let g : Kn → {0, 1, 2} be a function with the following property: for any
x ∈ K, g(x+ 1) 6= g(x). One way to construct g is as follows. Let p be the

characteristic of K, i.e.
p︷ ︸︸ ︷

1 + 1 + · · ·+ 1 = 0 in p. Then Kn can be viewed
as a field extension of Fp, and so Kn can be viewed as a vector space over
Fp. Let {e1, e2, . . . , ek} be a basis for Kn over Fp, where e1 = 1 ∈ Kn. For
any x ∈ Kn, let x1 ∈ Fp be its first coordinate under this basis. Then set
g(x) = 2 if x1 = p− 1 and for x1 ∈ {0, 1, . . . , p− 2} set g(x) = x1 mod 2.

Each node in our branching program, except the sink nodes, wil be labelled
with a tuple (a,Rout, R1, . . . , Rs(n)) ∈ {0, 1, 2} × F

s(n)+1
p , representing an

assignment of values to registers and one extra value a ∈ {0, 1, 2}.
Each intermediate (non-source non-sink) layer will have 3 · ps(n)+1 nodes,

representing all possible tuples. The source layer will have all tuples satisfying
the constraint a = g(Rout), for a total of m = ps(n)+1 nodes. In this way, the
program “remembers” g(τout) where τout is the initial value of Rout.

We proceed as in the proof of Observation 1: for each instruction of
the register program querying an input variable xi, we include a branching
program layer which reads that same input, and modifies the values of the
stored registers appropriately. These layers preserve the extra value a, so

17

that all the non-sink nodes reached by a computation have the same value
of a, which is equal to g(τout).

The final (sink) layer is constructed the same way, with two changes.
First, nodes where a 6∈ {g(Rout), g(Rout − 1} are removed. Because the
register program computes f(x) ∈ {0, 1}, the final value of Rout is guaran-
teed to be either τout or τout + 1, and so those removed nodes were not
reachable anyway. Second, we relabel each node (a,Rout, R1, . . . , Rs(n)) to
(a′, Rout, R1, . . . , Rs(n)) where a′ = 0 if a = g(Rout and a′ = 1 if a 6= g(Rout).
By the construction of g, a′ is guaranteed to be 0 when Rout = τout and 1
when Rout = τout + 1.

3.4.1 Constant depth circuits

A Boolean circuit is a rooted directed acyclic graph C where each leaf node
is labeled with a variable xi or its negation xi, and where each internal node
(which we refer to as a gate) is labeled with a Boolean function; the output
of C is the value of the root, where the value of a leaf is the value of the
input for the corresponding variable, and the value of a gate is the output of
the function evaluated on the values of its children. C computes f if their
outputs are the same on every input. The depth of C is length of the longest
directed path from the root of C to any leaf node, and the size of C is the
number of nodes in C.

The first result is fairly immediate from the main technical section of
[BCK+14].
Lemma 7. Let f be a function computed by a circuit C which has depth
d, size s, and consists only of MAJ gates. Then f can be computed by
an m-catalytic branching program of length 4d · n and width 3m, where
m = (2s)2s3.

Proof. Let ps be an arbitrary prime in the range (s, 2s]. Section 3.3 of
[BCK+14] gives a register program P simulating the computation of C,
which reads leaves of C at most 4d ·n times in total and uses s ·2ps ·s/2 ≤ 2s3

registers over Fps . Our result follows by Lemma 6.

Focusing on the case of TC0, defined as the set of all circuits of depth
O(1) and size poly(n) consisting only of MAJ gates, we get linear amortized
size with m only singly exponential in n. While such circuits are known to
have poly-size branching programs even for m = 1—following directly from
the fact that TC0 ⊆ L—no results for linear amortized size were previously
known. For example, even applying Theorem 5 to a single MAJ gate would
result in m being almost maximally large, as MAJ has degree n/2 over F2.

18

Corollary 8. Any function f ∈ TC0 can be computed by an m-catalytic
branching program of amortized size O(n), where m = 2poly(n).

3.4.2 Arithmetic circuits

Our next results will take us out of the realm of Boolean functions and into
the world of polynomials. Fix some field F for the rest of this section. An
arithmetic circuit is similar to a Boolean circuit as defined before, but now
the leaves will carry values in F and the gates will compute the functions +
and × over F. Clearly such a circuit computes a polynomial over F. Note
that a branching program computing the output of an arbitrary such circuit
would need to have |F| ·m output nodes, which would immediately rule out
any linear amortized size. To get around this, we will assume the circuit only
ever outputs 0 or 1.7

We will focus on arithmetic circuits of logarithmic depth. Our techniques
will be similar to the previous result, meaning that we will incur a cost that is
exponential in the depth, which will unfortunately take us out of the regime
of linear amortized size. Nevertheless, we will leverage the structure of VP
to substantially mitigate this loss and still achieve a highly improved value
of m.

Lemma 9. Let F be any finite8 field. Let f be a polynomial over F the
output of which is always 0 or 1, and let C be an arithmetic circuit over F
computing f which has depth d, size s, and consists of + gates of unbounded
fan-in and × gates of fan-in 2. Then for any k ≤ d, f can be computed by
an m-catalytic branching program of length 4dd/ke · n and width 3m, where
m = |F|(

s
≤2k)·s.

Proof. We will describe a register program which uses
(s
≤2k
)
·s registers which

each contain an element of F. Each register will be labeled with a unique
gate g from the circuit C—in fact we will only need registers for some of the
gates, but we will potentially overcount to keep things simpler—as well as a
subset S ⊆ [s] of size at most 2k, and we write the corresponding register as
Rg,S . We have

(s
≤2k
)
· s registers, so we get m = |F|(

s
≤2k)·s.

Our goal will be transparently compute, for L = 1 . . . bd/kc, d/k, the
value of every gate g at level Lk of the circuit into Rg,∅, inductively using
the fact that we can compute every gate appearing at level (L − 1)k. To

7This corresponds to the Boolean part of an arithmetic circuit class, which gives a
natural way of computing Boolean functions with arithmetic circuits (see [AGM17]).

8If F is not finite, the proof produces a branching program of infinite width.

19

start this procedure off, we observe that for L = 0, we can compute all leaf
nodes using n total input queries, namely by handling all leaves labeled xi
at the same time with one query to xi. Now we proceed inductively using
the following lemma:

Lemma 10. Let L ∈ [bd/kc], and let PL−1 be a register program which
transparently computes, for all g at level (L − 1)k, the value at g into
Rg,∅. Then there exists a register program PL making 4 calls to PL−1 which
transparently computes, for all g at level Lk, the value at g into Rg,∅.

Proof. Consider a single gate g at layer Lk, let g1 . . . gt be the gates at layer
(L− 1)k, and let

pg =
∑
S

cS
∏
i∈S

gi

be the polynomial over F computed at gate g with inputs g1 . . . gt. By
induction every layer ` ∈ [(L − 1)k..Lk] has degree at most 2`−(L−1)k in
g1 . . . gt, and thus g has degree at most 2k.

We now follow our proof of Theorem 4 exactly, except for two changes.
First, ToggleInput will be replaced with PL−1. Second, some calls to PL−1
or ToggleUsefulMonomialsg will be replaced with their inverses P−1

L−1 or
ToggleUsefulMonomialsg. Note that any transparent register program
P has an inverse P−1 of the same length such that PP−1 has no effect;
see for example [BCK+14]. In the previous sections this was not necessary
because the field had characteristic 2, and so each procedure was its own
inverse.

Let τi be the initial value in gi, let xi be the value computed into gi,
define yi = τi + xi, and let

qg(#–y , #–τ) =
∑
S,S′

cS,S′
∏
i∈S

τi
∏
i∈S′

yi

be equal to p(#–y − #–τ). Let Mg be the set of all non-empty monomials for
which cS,S′ 6= 0 for some S; note that |Mg| ≤ s2k by our degree upper bound.
For each S′ ∈ Mg, register Rg,S′ will correspond to the sum of monomials
with coefficients cS,S′ . Since ∅ 6∈ Mg, we can repurpose Rg,∅ as our output
register. Together, the following two procedures together compute qg as
before:

1: procedure ToggleUsefulMonomialsg
2: PL−1
3: for S ∈Mg do
4: Rg,S ← Rg,S +∏

i∈S Rgi,∅

20

5: end for
6: P−1

L−1
7: end procedure
1: procedure FinalComputeg
2: ToggleUsefulMonomialsg
3: Rg,∅ ← Rg,∅ +∑

S⊆[t] cS,∅ +∑
S′∈Mg

cS,S′
(∏

i∈S Rgi,∅
)
Rg,S′

4: ToggleUsefulMonomials−1
g

5: Rg,∅ ← Rg,∅ −
∑
S⊆[t] cS,∅ −

∑
S′∈Mg

cS,S′
(∏

i∈S Rgi,∅
)
Rg,S′

6: end procedure
The analysis is identical to Theorem 4 and so we leave it to the reader.
To compute all g at level Lk, we replace every basic instruction in both
ToggleUsefulMonomialsg and FinalComputeg with the same instruc-
tion looped over all g at level Lk; this does not add any recursive calls to
either program, and by the correctness of the original algorithm for one g
this new algorithm correctly computes all g. Thus level Lk requires four
calls to level (L− 1)k as claimed.

If k divides d, then P := Pd/k computes C correctly. Otherwise the
same argument gives a program P making four calls to Pbd/kc computing C
correctly. This gives a recursion of total height dd/ke where h(0) = n and
h(L) = 4h(L− 1), which gives us a program of length 4dd/ke · n as claimed.
Thus our result follows by Lemma 6.

One of the two most interesting classes of arithmetic circuits is VP ,
which corresponds to arithmetic circuits of depth O(logn) and size poly(n)
consisting of unbounded fan-in + gates and fan-in 2 × gates. As before let
ps be a prime in the range (s, 2s]. Using the fact that VP over Fps , Z, and Q
are all logspace-reducible to one another [AGM17], and fixing k = c/ε where
d = c log2 n, we obtain the following quasilinear result for VP.

Corollary 11. Let F ∈ {Fp∈[polyn],Z,Q}, and let ε > 0. Any polynomial
f ∈ VP can be computed by an m-catalytic branching program of amortized
size O(n1+ε), where m = 2polyε n.

4 Saving Time

In the previous section we took the length 4n branching programs of [Pot17,
RZ21] as a starting point to analyze whether m could be significantly reduced
while still maintaining a linear amortized size. In this section we investigate
the opposite question: namely, is 4n optimal? If we do not restrict the

21

amortized size of our program, then every function has a branching program
of length n even for m = 1. We will not only consider branching programs
of linear amortized size, but the stricter model of permutation branching
programs.

We focus on permutation branching programs in this section for two
reasons. First, all our algorithms in the previous section can be converted
to permutation branching programs. To see this, we revist our connection
between register programs and m-catalytic branching programs, as proven in
Observation 1. Our observation in fact says something stronger, which is that
fn can be computed by a family of permutation branching programs of width
2s(n)+1. This follows because we can choose to not fix Rout to be 0, and instead
have one source node corresponding to each initial configuration τ1 . . . τs, τ

out;
by Definition 2 this source reaches the sink node labeled τ1 . . . τs, τ

out + f(x),
which is the identity permutation when f(x) = 0 and a fixed set of 2s(n)

transpositions otherwise. Thus as a corollary of [Pot17, RZ21] we get the
following:

Theorem 12. Every function f can be computed by a read-4 permutation
branching program of width 22n−1 (or 2(n≤d)−1, where d is the F2-degree of
pf).

Given the strength of these results, only a factor of 4 away from the
best conceivable amortized size, there is no reason a priori to believe that
permutation branching programs are too weak to consider even better upper
bounds. Indeed we will show that improvements are possible.

This leads to our other reason for focusing on permutation branching
programs: lower bounds against general branching programs are notoriously
difficult. Besides the basic counting argument, the best known branching
program lower bounds for an explicit function are not even quadratic, using
techniques known to go no further [Nec66]. Considering the amortized
branching program size needed to compute any function f is always at
most the basic branching program size, and considering the upper bound
of 4n given by [Pot17], proving lower bounds for concrete functions seems
exceedingly difficult. Furthermore, even if we were to seek refuge in focusing
on non-constructive lower bounds, the basic counting argument fails to prove
any non-trivial lower bounds in the case of m ≥ 2n/n.

4.1 Notation and tools

Before going into our results, we formally define permutation branching
programs along with the notation we will use in the rest of this section.

22

x1

x1

x1

x1

x2

x2

x2

x2

x1

x1

x1

x1

x2

x2

x2

x2
x1 = 0
x1 = 1

Figure 3: A permutation branching program computing AND(x1, x2). It
is identical to the one from Figure 2, except that two more source nodes
have been added so that all layers have the same width. As before, each
non-sink nodes is labelled with the input to be read, dashed lines represent
transitions taken when that input is zero, and solid lines are taken when the
input is one. In the terminology of Definition 3, this program can be written
as 〈1, (12)(34)〉, 〈2, (13)〉, 〈1, (12)(34)〉, 〈2, (13)〉 (using cycle notation for the
permutations).

These programs will have a more specialzed form than when we introduced
them in Section 2, which we subsequently justify. We assume basic familiarity
with permutations, and we write σ1σ2 as a shorthand for σ2 ◦ σ1.

Definition 3. Let n,m, s ∈ N and let f : {0, 1}n → {0, 1} be a function
such that f(0 . . . 0) = 0. A permutation branching program is a sequence
P = π1 . . . π`, where each πj is a pair 〈ij , σj〉 where ij ∈ [0..n] and σj is a
permutation of [m]. We refer to each πj as an instruction of P . The width
of P is m and the length of P is `.

For any α ∈ {0, 1}n we define P (α) as follows: fix σ = id, and for every
j = 1 . . . s, we set σ to σσj if πj = 〈0, σj〉 or πj = 〈ij , σj〉 where αij = 1,
and leave σ unchanged otherwise (that is, if πj = 〈ij , σj〉 where αij = 0).
Our output is the final value of σ. We say that P computes f if there exists
a permutation σ∗ 6= α such that P (α) = id if f(α) = 0 and P (α) = σ∗ if
f(α) = 1.

We make three observations about our choices in Definition 3. First, the
restriction that f(0 . . . 0) = 0 will be a convenience; we can always compute
¬f instead if this condition does not hold, or change Definition 3 such that
P (α) = id if f(α) = 1 and vice versa.9 Second, in a layer 〈i, σj〉 reading
variable xi, we only fix a permutation in the case that xi is set to 1. This

9We also note that if P computes ¬f , we can compute f by appending the instruction

23

is without loss of generality, as adding a layer of the form 〈0, σ′j〉 before an
instruction can be thought of as choosing a permutation in the case that xi
is set to 0 (while the permutation for xi = 1 can be adjusted accordingly).

Before going on to our third observation, we state and prove four simple
lemmas which will allow us to conveniently restructure our programs P .

Lemma 13. Let P be a permutation branching program computing f and
let j be such that ij = ij+1. Then the program P ′ resulting from replacing
πj , πj+1 with π′j = 〈ij , σjσj+1〉 is also a valid program for computing f .

Proof. In both P and P ′, the permutations σj and σj+1 are both applied
when ij = 1 and neither are applied when ij = 0.

Lemma 14. Let P be a permutation branching program computing f and
let j be such that σjσj+1 = σj+1σj. Then the program P ′ resulting from
switching the order of πj and πj+1 is also a valid program for computing f .

Proof. Consider any assignment α to x. In the case that either αij or αij+1

is set to 0, these programs compute identical permutations as either σj or
σj+1 will not be applied. If both are set to 1, then

P ′(α) = Σ1σj+1σjΣ2 = Σ1σjσj+1Σ2 = P (α)

where Σ1,Σ2 are the permutations corresponding to the rest of the instruc-
tions on input α.

Lemma 15. Let P = π1 . . . πs be a permutation branching program comput-
ing f , let πj = 〈ij , σj〉 for all j, and let j∗ ∈ [`] be such that ij∗ = 0. Then
there exists a permutation branching program P ′ = π′1 . . . π

′
j∗−1π

′
j∗+1 . . . π

′
`πj∗

computing f , where π′j = 〈ij , σ′j〉 for some permutation σ′j.

Proof. For j < j∗ define σ′j = σj , and for j > j∗ define σ′j = σj∗σjσ
−1
j∗ .

Clearly because σ−1
j∗ and σj∗ cancel out for every adjacent pair of permutations

σ′j , P ′(α) contains exactly the same permutations as P (α) in the same order
regardless of the assignment α.10

〈0, (σ∗)−1〉 to P . We avoid taking this route because a later observation will allow us to
remove these fixed layers, but only when f(α) = 0, which would cause our logic to become
circular.

10This argument actually allows us to move πj∗ to any spot in the program we want,
but we are content with just moving them to the end, for reasons which will become
immediately clear.

24

Our last observation is that the layers of the form 〈0, σj〉 are only a
convenience and are not necessary to our definition. Let P be our program for
f and let σ1 . . . σk be the permutations corresponding to instructions πj where
ij = 0. By our restriction that f(0 . . . 0) = 0 we get σ1 . . . σk = P (0 . . . 0) = id,
and by Lemma 15 we can move the instructions πj with ij = 0 to the end of
the program, in order, at which point we can simply remove them all using
Lemma 13 as they compose to the identity for any input α.

We can also generalize Lemma 15 for restrictions of the function f ,
meaning when we fix the values of some variables and consider the function
on the remaining variables. This is simply the observation that fixing variable
xi turns all instructions of the form 〈i, σj〉 into fixed layers 〈0, σj〉.

Corollary 16. Let ρ ∈ {0, 1, ∗}n and let fρ be the function f with xi fixed
to ρ(i) wherever ρ(i) 6= ∗. Let P = π1 . . . π` be a permutation branching
program computing f , let πj = 〈ij , σj〉 for all j, and let j∗ ∈ [s] be such that
ij∗ = 0 or ρ(ij∗) 6= ∗. Then there exists a permutation branching program
P ′ = π′1 . . . π

′
j∗−1π

′
j∗+1 . . . π

′
`πj∗ computing fρ, where π′j = 〈i′j , σ′j〉 for some

permutation σ′j and i′j = ij iff ρ(ij) = ∗ and 0 otherwise.

Proof. Let program P ′′ be the result of replacing ij with 0 in each instruction
πj ∈ P such that ρ(ij) 6= ∗. Clearly this program computes fρ, and so
applying Lemma 15 to P ′′ completes the proof.

Assuming that fρ(0 . . . 0) = 0, by our previous observation this allows us
to remove all layers that read variables fixed by ρ. We also note that the
other three lemmas hold for fρ with no changes.

4.2 Upper bounds

For our main upper bound, we modify our algorithm recreating the result
of [Pot17] (and analogously [RZ21]) to have length 4n − 4. In particular,
our program will read all but two variables four times, while the last two
variables will be read twice.

Theorem 17. For every function f , there is a read-4 permutation branching
program of width 22n−1 and length 4n− 4 computing f .

Proof. First, we make an easy change to Theorem 1 which allows us to
achieve 4n−3. Observe that in ToggleInput the order in which we add the
inputs is irrelevant, and so consider ToggleMonomials where we reverse
the order of toggling on Line 6. Then notice that the last query on Line 2
and the first query on Line 6 are both made to xn, and so we can merge

25

these two layers along with our entire for loop (which reads no variables)
into a single layer querying xn. Moving to Algorithm 1, this means we only
query xn twice, and furthermore the last query on Line 1 and the first query
on Line 3 are both made to x1, and so again by merging these two queries
along with Line 2 we only query x1 three times.

Now we will change our program so that x1 is only read twice. Con-
sider two new functions obtained by fixing the value of x1, namely f0 =
f(0, x2 . . . xn) and f1 = f(1, x2 . . . xn). Recall that we used the following
polynomial to compute f , where yi = τ in

i + xi:

qf =
∑

S,S′⊆[n]
cS,S′

(∏
i∈S

τ in
i

)∏
i∈S′

yi

If we choose b ∈ {0, 1} and fix τ in

1 = 0 and y1 = x1 = b, we get the following,
which can be used to compute (since it is equal to) f b:

qfb =
∑

S,S′⊆[2..n]
(cS,S′ + b · cS,S′∪{1})(

∏
i∈S

τ in
i)(

∏
i∈S′

yi)

We will use Algorithm 1 to compute qfb , where b = x1, by removing all
reference to x1 from ToggleInput and ToggleMonomials, and querying
x1 whenever we execute Lines 2 or 4 to determine whether to compute qf0 or
qf1 in place of qf . More specifically, ToggleInput will now only loop over
i = 2 . . . n, while ToggleMonomials will now only loop over S ⊆ [2..n].
Finally in Algorithm 1 we change Lines 2 and 4 to

Rout ← Rout ±
∑

S,S′⊆[2..n]
(cS,S′ + x1 · cS,S′∪{1})(

∏
i∈S

Rin
i)RS′

where Line 2 uses + and Line 4 uses −. Note that to execute these lines
correctly, we will query x1 and perform the corresponding instruction; thus
we no longer ignore these two lines in calculating our program length.

By our earlier definition of qfb , this exactly computes qfb for x1 = b as
claimed. As above we will reverse the order of the queries in ToggleInput
the second time it is called in ToggleMonomials, which allows us to read
xn only once per execution for a total of two reads. x1 will be queried in
Lines 2 and 4, and all other variables will be queried four times.

Note 4.1. This strategy also allows us to save an exponential number of
registers, as we only need a register RS for each S ⊆ [2..n]. While it may be
tempting to extend this trick to more variables, say by fixing the values of

26

both x1 and x2, the fact that Lines 2 and 4 depend on the value(s) of the
fixed variable(s) means that we will have to store at least one of these values
in a non-catalytic register, which will add to our width and take us out of
the realm of permutation programs. If we go back to m-catalytic branching
programs, this gives us another way to save over [Pot17, RZ21], but with
worse parameters; for any k ∈ [n] by fixing k values we can get a program of
length 2(k+ 1) + 4(n− k− 1) and amortized size 2k ·O(n) as before, but for
m = 22n−k−1 instead of 22n/k−1.

There are two known cases in which we can achieve better than read-4
for AND: n = 2, 3. The n = 2 case is unsurprising, as our argument allows
for two variables to be read twice; it has appeared in many previous works
(see c.f. [Bar89]). The case of n = 3 is more surprising, and suggests that
read-3 may be achievable in general. Note that because of the small values
of n involved, neither result gives a program smaller than length 4n− 4.

Lemma 18. There is a read-2 permutation branching program of width 3
computing AND(x1, x2).

Proof. Choose any two permutations σ1 and σ2 such that σ1σ2σ
−1
1 σ−1

2 6= id;
for example we can choose σ1 = (12) and σ2 = (23). Then consider the
following program:

〈1, σ1〉, 〈2, σ2〉, 〈1, σ−1
1 〉, 〈2, σ−1

2 〉

By definition of σ1 and σ2, P (1, 1) 6= id, and if either variable is set to 0
then the only permutations left are σj and σ−1

j for some j ∈ {1, 2}, and the
composition of these permutations is id.

Lemma 19. There is a read-3 permutation branching program of width 3
computing AND(x1, x2, x3).

Proof. We state the program and leave the reader to check correctness.11

Our permutations σj are given in cycle notation.

〈1, (23)〉, 〈2, (12)〉, 〈3, (123)〉,
〈1, (12)〉, 〈2, (13)〉, 〈3, (23)〉,
〈1, (132)〉, 〈2, (132)〉, 〈3, (13)〉

11It should be noted that we found this program through an automated search, and it
would be interesting to see what nice properties of the program—of which there are many
candidates—could be useful in searching for read-3 programs for higher n.

27

Note 4.2. We could also consider a stronger model of permutation branching
programs where we only require that P (α) 6= id whenever f(α) = 1, instead
of requiring P (α) always equal the same permuatation when f(α) = 1. This
is the model used by e.g. [Bar89]. In this case, it is not hard to show that for
any n, if we can compute AND(x1 . . . xn) in length `, we can also compute
any function f(x1 . . . xn) in length ` by “tensoring” the permutations in P
with themselves for each α ∈ f−1(1). Our lower bounds in the following
section will still hold against this model.

4.3 Lower bounds

In this section we show that if one tries to get a program of length less than
3n, one cannot beat Theorem 17.

Theorem 20. Any permutation branching program computing AND(x1, . . . ,
xn) which reads some variable at most twice must have length at least 4n− 4.

Proof. Let P = π1π2 . . . πs be any program computing AND(x1, . . . , xn). We
will write σji to refer to the permutation in the jth instruction in P that
reads variable xi; in other words, the instructions corresponding to xi will
be 〈i, σ1

i 〉 . . . 〈i, σki 〉 for some k. Since we are focusing on AND, which is
symmetric, we will assume without loss of generality that xi is read for the
first time before any xi′ is read for i′ > i. As usual let σ∗ 6= id refer to the
permutation resulting from P when all variables are set to 1.

Claim 21. Any program P computing AND of more than one variable must
read every variable at least twice

Proof. Assume that some variable xi is read only once in P . Then setting
xi′ = 0 for all i′ 6= i, we get σ1

i = P (0 . . . 0, 1, 0, . . . , 0) = id. Therefore P
acts identically whether xi is 0 or 1, which is a contradiction because AND
depends on x1.

Now consider when some variable xi is read exactly twice. Let j1 < j2
be the locations of the two instructions containing i, i.e. πj1 = 〈i, σj1〉 and
πj2 = 〈i, σj2〉, and let Π1 = πj1+1 . . . πj2−1. The following is our main claim.

Claim 22. Every variable besides xi is read at least once in Π1, and there
is at most one such variable xi′ which is not read at least twice in Π1.

Proof. First, assume for contradiction that there exists i′ 6= i such that xi′
does not appear in Π1. Then if we fix xi′′ = 1 for all i′′ 6= i, i′, we can apply
Corollary 16 to move all instructions querying variables other than xi and xi′

28

to the end of the program, and then apply Lemma 13 to get an equivalent
program of the following form which computes AND(xi, xi′):

〈i, σ′i
1〉, 〈i, σ′i

2〉, 〈i′, σ′〉, 〈0, σ∗〉

where σ′ and σ∗ are some permutations (σ∗ comes from all the instructions
πj∗ produced by Corollary 16). This contradicts Claim 21 as i′ is only read
once.

Next, assume for contradiction that there exist i′ 6= i′′ 6= i such that i′
and i′′ appear only once each in Π1. If we fix xi′′′ = 0 for all i′′′ 6= i, i′, i′′,
applying Lemmas 16 and 13, without loss of generality the following program
computes AND(xi, xi′):

〈i, σ′i
1〉, 〈i′, σi′〉, 〈i′′, σi′′〉, 〈i, σ′i

2〉,Σ

where σi′ and σi′′ are some permutations and Σ is a set of instructions reading
only the variables xi′ and xi′′ .

Define Σi′ to be the result of fixing xi′′ = 0 in Σ, and define Σi′′ to be
the result of fixing xi′ = 0 in Σ. Note that if only one remaining variable
is set to 1 then the program must output 0, so σ′i

2 = (σ′i
1)−1, Σi′ = (σi′)−1,

and Σi′′ = (σi′′)−1. Thus if we set xi′′ = 0 our resulting program is

〈i, σ′i
1〉, 〈i′, σi′〉, 〈i, (σ′i

1)−1〉, 〈i′, (σ1
i′)−1〉

and so setting xi = xi′ = 1 we get that σ′i
1σi′(σ′i

1)−1(σi′)−1 = id. Therefore
by Lemma 14 we can swap the order of these two instructions and get an
equivalent program for AND(xi, xi′ , xi′′) of the form

〈i′, σi′〉, 〈i, σ′i
1〉, 〈i′′, σi′′〉, 〈i, (σ′i

1)−1〉,Σ

and similarly by fixing xi′ = 0 we have σ′i
1σi′′(σ′i

1)−1(σi′′)−1 = id, which by
Lemma 14 leaves us with the program

〈i′, σi′〉, 〈i′′, σi′′〉, 〈i, σ′i
1〉, 〈i, (σ′i

1)−1〉,Σ

and applying Lemma 13 on our two layers reading i gives us a program which
never reads xi, which is a contradiction.

Define Π2 = πj2+1 . . . πs, π1 . . . πj1−1; to prove Claim 22 holds for Π2 as
well we will need one more observation. This is similar to our tools at the
start of the section, but specifically for AND.12

12If we used our stronger notion of permutation branching program from the upper
bounds section, it would apply to any f more generally, but this is unnecessary for our
proof.

29

Claim 23. Let P be a permutation branching program computing AND
whose first instruction is π1. Then the program P ′ resulting from removing
π1 from the beginning of P and adding it to the end of P is also a valid
program for computing f .

Proof. Let π1 = 〈i1, σ1〉 for some i1, and recall that σ∗ = P (1 . . . 1) 6=
id. Note that P ′ is equivalent to the program 〈i1, σ−1

1 〉P 〈i1, σ1〉. Thus
P ′(1, 1, . . . , 1) = σ−1

1 σ∗σ1 6= id, and for all α 6= 1, 1, . . . 1, P ′(α) will either
be σ−1

1 (id)σ1 = id or id.

Now we can prove the same statement for Π2.

Claim 24. Every variable besides xi is read at least once in Π2, and there
is at most one such variable xi′ which is not read at least twice in Π2.

Proof. Applying Claim 23 repeatedly to P , we can get an equivalent program
P ′ = π2Π2π1Π1, and apply Claim 22 to P ′.

By a simple analysis of Claims 22 and 24, one of two cases must occur for
the variables besides xi: either 1) one variable xi′ is read at least twice and
all other variables are read at least four times or 2) two variables xi′ , xi′′ are
read at least three times and all other variables are read at least four times.
This is because a read-2 variable can only be read at most once in each of
Π1 and Π2, while a read-3 variable will be read at most once in either Π1
or Π2. In either of these cases, our branching program must have length at
least 4(n− 2) + 2 · 2 = 4(n− 3) + 2 · 1 + 3 · 2 = 4n− 4.

Note 4.3. Besides the fact that our lower bound in Theorem 20 quanti-
tatively matches up with our upper bound in Theorem 17 in the case of
reading any variable twice, qualitatively both cases in the analysis at the end
of our lower bound proof match with a possible construction given by our
upper bound. After fixing a read-2 variable to condition f on, we get two
halves to our top level program, and in each of them we will merge two reads
of a variable in order to save a further layer. The choice of which variable
to merge the reads of is arbitrary, so consider our choices for the first and
second half. If we choose the same variable for both halves, it will be read
twice and all other variables will be read four times. If we choose different
variables in each half, both will be read three times and the rest will be read
four times.

30

5 Open Problems

The most obvious problem left open by our work is to figure out, for an
arbitrary function f , the optimal value of m under which we can still achieve
linear amortized size. In the upper bounds direction, any improved trans-
parent register program for computing the polynomial qf could potentially
give an upper bound of 22o(n) on m. In the other direction, nothing is known
besides the basic counting argument (m ≥ 2n/O(n)), and even getting a
lower bound of m ≥ 2n for some function f could shed some light on where
the correct answer should lie.

In terms of connecting uniform and non-uniform models of space, L/poly
is equivalent to the class of problems solvable by polyn-size branching
programs. However, this gets trickier for catalytic logspace (CL), as the
corresponding object for CL/ poly would be m-catalytic branching programs
of amortized size poly(n) for m = 2poly(n), which has exponential size and thus
cannot be written down in polynomial advice. It would be very interesting
to understand the connection between such m-catalytic branching programs
and CL/ poly, as this would immediately give lower bounds on m for random
functions.

Also of interest would be to study the same question for other restricted
classes of functions. For example, it is possible that our result for VP could
be extended to VNP, although such a result would presumably need to use
non-uniformity in a stronger way lest we accidentally prove that uniform
VNP is contained in CL—and by extension ZPP [BCK+14].

Finally, closing the gap between 3n and 4n− 4 on the upper and lower
bounds for the optimal length of permutation branching programs seems
within reach. For example, a cursory machine search gave no read-3 per-
mutation branching programs for AND on four variables, and if we could
formally verify this then it would immediately lead to fully closing the gap
at 4n− 4.

Acknowledgements The authors would like to thank Toniann Pitassi,
Robert Robere, Jeroen Zuiddam, and Aaron Potechin for many helpful
discussions. The second author was partially funded by NSERC.

References

[AGM17] Eric Allender, Anna Gál, and Ian Mertz. Dual VP classes.
Comput. Complex., 26(3):583–625, 2017.

31

[Bar89] David A Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in NC1. Journal of
Computer and System Sciences, 38(1):150–164, 1989.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Kouckỳ, Bruno Loff,
and Florian Speelman. Computing with a full memory: catalytic
space. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 857–866. ACM, 2014.

[BoC92] Michael Ben-or and Richard Cleve. Computing algebraic for-
mulas using a constant number of registers. SIAM J. Comput.,
21(1):54–58, February 1992.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree
evaluation problem. In Proceedings of the 52nd annual ACM
symposium on Theory of computing. ACM, 2020.

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation
problem. 2021.

[CMW+12] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman,
and Rahul Santhanam. Pebbles and branching programs for
tree evaluation. ACM Trans. Comput. Theory, 3(2):4:1–4:43,
January 2012.

[GKM15] Vincent Girard, Michal Koucky, and Pierre McKenzie. Nonuni-
form catalytic space and the direct sum for space. Electronic
Colloquium on Computational Complexity (ECCC), 138, 2015.

[Gra53] Frank Gray. Pulse code communication. https://patents.google.
com/patent/US2632058A/en, 1953. US Patent 2632058A.

[Nec66] E.I. Neciporuk. A boolean function. Dokl. Akad. Nauk SSSR,
169(4), 1966.

[Pot17] Aaron Potechin. A note on amortized branching program com-
plexity, 2017.

[RZ21] Robert Robere and Jeroen Zuiddam. Amortized circuit com-
plexity, formal complexity measures, and catalytic algorithms.
Electron. Colloquium Comput. Complex., 28:35, 2021.

32

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://patents.google.com/patent/US2632058A/en
https://patents.google.com/patent/US2632058A/en

