
A Simpler Proof of the Worst-Case to Average-Case Reduction for

Polynomial Hierarchy via Symmetry of Information

Halley Goldberg∗ Valentine Kabanets†

January 13, 2022

Abstract

We give a simplified proof of Hirahara’s result showing that DistPH ⊆ AvgP would imply
PH ⊆ DTIME[2O(n/ logn)] [Hir21a]. The argument relies on a proof of the new result: Symmetry
of Information for time-bounded Kolmogorov complexity under the assumption that NP is
easy on average, which is interesting in its own right and generalizes the “weak” Symmetry of
Information theorem from the original [Hir21a].

1 Introduction

What kind of worst-case consequences do we get if we assume that NP is easy on average? It
was shown by [Ben+92] that this would imply that NE = E. Later, [BFP03] strengthened this
result by showing that for every NE language with a polynomial-time verifier V (x, y) (where y,
|y| ≤ 2O(|x|), is a candidate witness for x being a member of L) has a deterministic algorithm that,
given x ∈ {0, 1}n, will find some witness y such that V (x, y) accepts, in time 2O(n), if x ∈ L.

These results imply that NP ⊆ E under the assumption that DistNP ⊆ AvgP. But is it possible
to strengthen the upper bound for NP, ideally showing that NP = P under some average-case
easiness assumption? Recently, Hirahara [Hir21a] showed that if ΣP

2 is easy on average, then
NP ⊆ TIME[2O(n/ logn)]. Note that the conclusion is stronger than that of [Ben+92; BFP03], but
also the assumption is stronger: we assume DistΣP

2 ⊆ AvgP rather than DistNP ⊆ AvgP.
The proof of [Hir21a] uses a combination of ideas from pseudorandomness and time-bounded

Kolmogorov complexity. Essentially, it shows that, if DistΣP
2 ⊆ AvgP, then for every language

L ∈ NP, with a polynomial-time verifier V (x, y) (for candidate witnesses y, |y| ≤ poly(|x|)), the
lexicographically first witness yx for x ∈ L is compressible to O(n/ log n) bits, so that it can be
reconstructed (decompressed) from its compressed image of sizeO(n/ log n), and a given x ∈ {0, 1}n,
in deterministic time 2O(n/ logn) (i.e., the conditional time-bounded Kolmogorov complexity of yx,

given x, is small: K2O(n/ logn)
(yx | x) ≤ O(n/ log n)). Then, by trying all possible compressed images,

and checking if any one of them decompresses to a valid witness y such that V (x, y) accepts, one
gets a deterministic algorithm for L, with the running time 2O(n/ logn).1

∗Simon Fraser University; halley goldberg@sfu.ca
†Simon Fraser University; kabanets@sfu.ca
1Since finding the lexicographically first witness yx for a given input x so that a polytime verifier V (x, yx) accepts

is PNP-hard [Kre88], it follows that PNP ⊆ TIME[2O(n/ logn)] under the same assumption that DistΣP
2 ⊆ AvgP.
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In this paper, we give a simple self-contained proof of this result by Hirahara and some gener-
alizations. Our proof argument follows in three steps.

Step 1: The main new ingredient behind our simplified proof is the Symmetry of Information
result (see Lemma 10 below), proved under the assumption that DistNP ⊆ AvgP. Roughly, it says
that there exists a constant c ≥ 1, such that, for any binary strings x and y, and for any sufficiently
large parameter t,

Kt
c
(y | x) ≤ Kt(x, y)− Kt

c
(x) +O(log t).

Step 2: The next step is to show, under the assumption that DistΣP
2 ⊆ AvgP, that for every

language L ∈ NP, there is a constant d ≥ 1 such that

Kt(x, yx) ≤ Kt
1/d

(x) +O(log t),

where yx is the lexicographically first L-witness of a given x ∈ L, and t is any sufficiently large
parameter; see Lemma 11.

Step 3: Combining Steps 1 and 2, we get for any given language L ∈ NP that

Kt
c
(yx | x) ≤ Kt

1/d
(x)− Kt

c
(x) +O(log t),

for any sufficiently large time bound t. The difference between two polynomially related time-
bounded Kolmogorov complexity measures of a given string x ∈ {0, 1}n (the computational depth
of x) can be as large as n in the worst case. However, via a simple averaging argument (as in
[Hir21a]), one can show that, for every x ∈ {0, 1}n and constants c, d ≥ 1, there must exist a time
bound t ≤ 2O(n/ logn) such that

Kt
1/d

(x)− Kt
c
(x) ≤ O(n/ log n);

see Lemma 12. This implies the promised upper bound on the Kolmogorov complexity of yx:

K2O(n/ logn)
(yx | x) ≤ O(n/ log n).

Recently, in independent work, Hirahara [Hir21b] also proved the Symmetry of Information
result (Lemma 10), and used it to give a simplified proof of his original result from [Hir21a] along
the similar lines as our proof sketch above.

2 Preliminaries

Definition 1. (Time-bounded Kolmogorov-complexity) Fix an efficient universal Turing Machine
U . For strings x, y ∈ {0, 1}∗, an oracle A ⊆ {0, 1}∗, and a time bound t ∈ N ∪ {∞} such that
t ≥ max{|x|, |y|}, the A-oracle t-time-bounded Kolmogorov-complexity of x given y is defined as

Kt,A(x | y) = min{s ∈ N | for some d ∈ {0, 1}s, UA(d, y) outputs x in time t}.

We omit “| y” if y is the empty string, the superscript “A” if A = ∅, and the superscript “t” if
t =∞.
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Definition 2. (Time-Bounded Computational Depth) For a string x ∈ {0, 1}∗ and a time bound
t ∈ N ∪ {∞} such that t ≥ |x|, the (s, t)-time-bounded computational depth of x is defined as

cds,t(x) = Ks(x)− Kt(x).

Definition 3. A distributional problem (L,D) is in average-case polynomial-time, denoted AvgP,
if there exists an algorithm A that decides L correctly on all inputs in the support of D and a
constant ε > 0 such that, for all n ∈ N, Ex∼Dn [tA(x)ε] ≤ nO(1), where tA(x) is an upper bound on
the running time of A on input x.

Definition 4. A distributional problem (L,D) admits a one-sided-error heuristic algorithm with
failure probability δ : N → (0, 1) if there exists an algorithm A such that for all n ∈ N, for
all x ∈ supp(Dn) with L(x) = 1, A(x, 1n) = 1, and moreover, Prx∼Dn [A(x, 1n) 6= L(x)] < δ(n).
Denote the class of problems admitting polynomial-time one-sided-error heuristic algorithms Avg1

δP.

Lemma 5. For a complexity class C, if DistC ⊆ AvgP, then for any constant c ∈ N, DistC ⊆
Avg1

n−cP.

Proof. Assume DistC ⊆ AvgP, and let c ∈ N be given. Let L ∈ C, and let D = {Dn}n∈N be a
polytime samplable distribution, so (L,D) ∈ DistC. Let A be the algorithm from the definition of
AvgP; that is, A(x, 1n) = L(x) for all x ∈ supp(D), and there exist constants ε and d such that for
all n ∈ N, Ex∼Dn [tA(x)ε] ≤ nd.

Let A′ be the following polytime algorithm. On input (x, 1n), run A(x) for nb steps, where
b := (c+d)/ε. If A halts and returns an output within that period, return that output. Otherwise,
output 1.

By correctness of A, whenever L(x) = 1, it holds that A′(x, 1n) = 1. We claim that the
probability of A′ erring on no-instances of L is also small. In particular, by Markov’s Inequality,

Pr
x∼Dn

[tA(x) > nb] = Pr
x∼Dn

[tA(x)ε > nbε]

≤ Ex∼Dn [tA(x)ε] · n−bε

≤ nd−bε

= n−c,

as required.

Lemma 6 ([BFP03]). If DistNP ⊆ AvgP, then there is a PRG G such that, for every ε > 0 and
all sufficiently large n ∈ N, G : {0, 1}` → {0, 1}n ε-fools circuits of size n, using the seed size
` = O(log(n/ε)), and an n-bit output of G on a given seed is computable in time poly(n/ε). In
particular, BPP = P.

Definition 7. For n, k ∈ N, the k-wise direct product generator DPk : {0, 1}n × {0, 1}nk →
{0, 1}nk+k is the function defined by

DPk(x; z1, ..., zk) = (z1, ..., zk; 〈x, z1〉, ..., 〈x, zk〉),

where 〈−,−〉 denotes the inner product 〈x, y〉 =
(∑|x|

i=1 xiyi

)
mod 2.
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Lemma 8 (Goldreich-Levin Local List-Decoding [GL89; GSR95]). There is a probabilistic algo-
rithm A with the following property. For an arbitrary x ∈ {0, 1}n, let f : {0, 1}n → {0, 1} be such
that Pry[f(y) = 〈x, y〉] ≥ 1/2 + ε for some ε > 0. Then, given oracle access to f and inputs 1/ε
and n, A outputs x in time poly(n/ε), with probability at least Ω(ε2).2

Lemma 9 (DPk Reconstruction [Hir21a]). Suppose there exists a pseudorandom generator as de-
scribed in Lemma 6. Let D be a randomized circuit of size s that ε-distinguishes DPk(x;Unk) and
the uniform distribution Unk+k, where x ∈ {0, 1}n and k ≤ poly(n). Then there is a deterministic
algorithm that, given oracle access to D and an advice string of length at most k + O(log(ns/ε)),
outputs x in time pDP(ns/ε), where pDP is a fixed polynomial independent of D. In particular,

KpDP(ns/ε)(x | D) ≤ k + log pDP(ns/ε).

Proof. Let D be a randomized circuit of size s satisfying

Pr
z,r

[D(DPk(x; z), r) = 1]− Pr
w,r

[D(w, r) = 1] ≥ ε,

where r denotes the internal randomness of D. Let Gs be the pseudorandom generator from Lemma
6 that (ε/4)-fools every circuit of size s. It follows that

Pr
z,σ

[D(DPk(x; z), Gs(σ)) = 1]− Pr
w,σ

[D(w,Gs(σ)) = 1] ≥ ε/2.

We define a function Dσ : {0, 1}nk+k → {0, 1} so that Dσ(w) = D(w,Gs(σ)) and note that there
must exist a “good” seed σ ∈ {0, 1}O(log(s/ε)) such that

Pr
z

[Dσ(DPk(x; z)) = 1]− Pr
w

[Dσ(w) = 1] ≥ ε/2.

That is,

Pr
z

[Dσ(z1, ..., zk; 〈x, z1〉, ..., 〈x, zk〉) = 1]− Pr
z,b

[Dσ(z1, ..., zk; b1, ..., bk) = 1] ≥ ε/2,

where z = (z1, ..., zk) ∼ ({0, 1}n)k and b = (b1, ..., bk) ∼ {0, 1}k.
Let PDσ be the following next-bit-predictor algorithm: on input

u = (z; 〈x, z1〉, ..., 〈x, zi−1〉, bi, bi+1, ..., bk),

output bi if Dσ(u) = 1 and 1 − bi otherwise. By a standard hybrid argument (see for example
[Vad12] Proposition 7.16),

Pr
zi

[PDσ(z; 〈x, z1〉, ..., 〈x, zi−1〉, bi, bi+1, ..., bk) = 〈x, zi〉] ≥ 1

2
+

ε

4k
, (1)

with probability at least ε/4k over the random choice of i ∈ [k], z[k]\{i} and b.
Now we define a randomized reconstruction procedure RDσ , which takes randomness r′ of

length poly(n/ε) along with an advice string α ∈ {0, 1}k. This procedure interprets r′ as containing

2The GL algorithm runs in time O(n2ε−4 logn), makes O(nε−4 logn) oracle queries to f , and outputs a list L of
O(ε−2) candidate n-bit strings such that, with probability at least 1/2, the list L contains x. Outputting a uniformly
random element of L yields x with probability at least 1/(2|L|).
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random choices of i, z, b, and some r0 ∼ {0, 1}poly(n/ε). Given r′ and α, it defines a function
f : {0, 1}n → {0, 1} as

f(y) = PDσ(z1, ..., zi−1, y, zi+1, ..., zk;α)

for y ∈ {0, 1}n, and then it runs the list-decoding algorithm of Lemma 8 on f using randomness r0.
Define an advice function A : {0, 1}n × {0, 1}poly(n/ε) → {0, 1}k as

A(x, r′) = (〈x, z1〉, ..., 〈x, zi−1〉, bi, ..., bk),

where i, z, and b are as specified in r′. Note that A is computable by a circuit of size poly(n/ε). By
equation (1), Pry[f(y) = 〈x, y〉] ≥ 1

2 + ε
4k with probability at least ε/4k over i, z, and b. When this

occurs, the list-decoding algorithm will output x with probability at least Ω(k2/ε2) ≥ 1/poly(n/ε)
over r0. Therefore, given the correct advice α = A(x, r′),

Pr
r′

[RDσ(α, r′) = x] ≥ ε

4k
· 1

poly(n/ε)
=

1

poly(n/ε)
=: ε′.

Observe that the condition RDσ(A(x, r′), r′) = x can be checked by a circuit of size s′ ∈
poly(ns/ε) given r′ as input. Thus, applying the pseudorandom generator Gs′ of Lemma 6 that
(ε′/2)-fools all circuits of size s′, we have that

Pr
σ′

[RDσ(A(x,Gs′(σ
′)), Gs′(σ

′)) = x] ≥ ε′/2,

and hence there is a good seed σ′ ∈ {0, 1}O(log(s′/ε′)) such that RDσ(A(x,Gs′(σ
′)), Gs′(σ

′)) = x.
We are now in a position to describe a deterministic algorithm M that outputs x. Given

an advice string α = A(x,Gs′(σ
′)) ∈ {0, 1}k along with the seeds σ ∈ {0, 1}O(log(s/ε)) and σ′ ∈

{0, 1}O(log(s′/ε′)) defined above, M computes and outputs RDσ(α,Gs′(σ
′)) in time poly(ns/ε). Ob-

serve that the total advice required is of length k +O(log(ns/ε)).

3 Main proof ingredients

3.1 Symmetry of information

The following lemma generalizes the “weak” symmetry of information result of [Hir21a, Theorem
5.2]. The same lemma was also independently proved by Hirahara [Hir21b]. For some previous
work on time-bounded symmetry of information, see [LW95; LR05].

Lemma 10 (Symmetry of Information). If DistNP ⊆ AvgP, then there exist polynomials p and p0

such that for all sufficiently large x, y ∈ {0, 1}∗ and every t ≥ p0(|x|+ |y|),

Kt(x, y) > Kp(t)(x) + Kp(t)(y | x)− log p(t).

Proof. Let x ∈ {0, 1}n, y ∈ {0, 1}m, k, k′ ∈ N to be defined later. Observe that there exists a
polynomial p0 and a constant d ∈ N such that for any t ≥ p0(n+m) and any choice of z and z′,

K2t(DPk(x; z),DPk′(y; z′)) ≤ Kt(x, y) + |z|+ |z′|+ d log t. (2)

In particular, p0(n+m) reflects the time required to compute (DPk(x; z),DPk′(y; z′)) given xy,
z, z′, and d log t bits of information to delineate x from y. In what follows, we will give a lower
bound on K2t(DPk(x; z),DPk′(y; z′)) and thereby a lower bound on Kt(x, y).
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Define a language
L := {(u,w, 1t, 1s) | K2t(u,w) ≤ s},

and note that L ∈ NP. Define a distribution family D = {D〈n,m.k,k′,t,s〉}, each member of which

does the following: sample u ∼ {0, 1}nk+k and w ∼ {0, 1}mk′+k′ , and then output (u,w, 1t, 1s). By
assumption, (L,D) ∈ AvgP. Let B be a one-sided error heuristic algorithm for (L,D) with failure
probability at most 1/t.

Let t ≥ p0(n,m), and define s := |z| + k + |z′| + k′ − log t − 1. By a counting argument, for
randomly selected u and w,

Pr
u,w

[(u,w, 1t, 1s) ∈ L] ≤ 2s+1

2|z|+k+|z′|+k′ =
1

t
.

Then by definition of B,

Pr
u,w

[B(u,w, 1t, 1s) = 1] ≤ 2

t
. (3)

Next we show, using a hybrid argument, that B(−, 1t, 1s) cannot distinguish between the uni-
form distribution and the distribution (DPk(x; z),DPk′(y; z′)), for random independent z, z′, where
k ≈ KpDP(t)(x) and k′ ≈ KpDP(t)(y | x). This will imply that B(DPk(x; z),DPk′(y; z′)) = 0 for some
z, z′, yielding the desired lower bound on K2t(DPk(x; z),DPk′(y; z′)). We give the details of the
hybrid argument next.

Toward a contradiction, suppose Prz,w[B(DPk(x; z), w, 1t, 1s) = 1] > 1/2. In this case, com-
paring with Eq. (3), we get a randomized distinguisher for DPk(x;Unk) defined by sampling
w ∼ {0, 1}mk′+k′ and outputting B(−, w, 1t, 1s). By Lemma 9,

Kp
′(t)(x) ≤ k + log p′(t) (4)

for some polynomial p′ such that p′(t) ≥ pDP(3 · n · sB), where pDP is the polynomial from Lemma
9 and sB denotes the size of a circuit computing B(−, w, 1t, 1s).

We now choose k := Kp
′(t)(x)− log p′(t)− 1 so that Eq. (4) does not hold. Assume for now that

k > 0. Hence,
Pr
z,w

[B(DPk(x; z), w, 1t, 1s) = 1] ≤ 1/2. (5)

Again, toward a contradiction, suppose Prz,z′ [(DPk(x; z),DPk′(y; z′), 1t, 1s) ∈ L] = 1, which
implies that Prz,z′ [B(DPk(x; z),DPk′(y; z′)), 1t, 1s) = 1] = 1, since B never errs on yes-instances of
L. In this case, comparing with equation (5), we get a randomized distinguisher B′ for DPk′(y;Umk′)
defined by sampling z ∼ {0, 1}nk and outputting B(DPk(x; z),−, 1t, 1s). By Lemma 9,

Kp
′′(t)(y | x) ≤ k′ + log p′′(t) (6)

for some polynomial p′′ with p′′(t) ≥ pDP(2·m·sB′), where sB′ denotes the size of a circuit computing
B′.

We now choose k′ := Kp
′′(t)(y | x)− log p′′(t)− 1 so that Eq. (6) does not hold. Assume for now

that k′ > 0. Hence, there exist z and z′ such that

K2t(DPk(x; z),DPk′(y; z′)) > s.
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For these z, z′, by definition of s, K2t(DPk(x; z),DPk′(y; z′)) > |z|+k+|z′|+k′−log t−1. Combining
this inequality with Eq. (2), we get

Kt(x, y) ≥ K2t(DPk(x; z),DPk′(y; z′))− |z| − |z′| − d log t

> k + k′ − d log t− log t− 1

= Kp
′(t)(x) + Kp

′′(t)(y | x)− log p′(t)− log p′′(t)− d log t− log t− 3.

As desired, for the polynomial p(t) := 8 · (td+1) · p′(t) · p′′(t),

Kt(x, y) > Kp(t)(x) + Kp(t)(y | x)− log p(t).

Finally, consider the case that k ≤ 0 or k′ ≤ 0. If k ≤ 0, then Kp
′(t)(x) ≤ log p′(t) + 1,

implying that Kp(t)(x) < log p(t). But then the lemma simply follows from the fact that Kt(x, y) ≥
Kp(t)(y | x). Similarly, if k′ ≤ 0, then Kp(t)(y | x) < log p(t), and the lemma follows from the fact
that Kt(x, y) ≥ Kp(t)(x).

3.2 Oracle elimination

Here we show how to bound the Kolmogorov complexity of the lexicographically first witness yx
for an input x, for any given efficient verifier V (x, y), using the search-to-decision reduction. For
a language L ∈ NP and x ∈ L, let yx be the lexicographically first witness for x being in L. It is
well-known that yx can be computed from x via an efficient search-to-decision reduction, given an
NP oracle. In other words, the time-bounded Kolmogorov complexity of (x, yx), given an NP oracle,
is essentially at most the oracle-free Kolmogorov complexity of x. The lemma below shows that,
under the assumption that PH is easy on average, the NP oracle can be eliminated : the oracle-free
time-bounded Kolmogorov complexity of (x, yx) (for a slightly bigger time bound) is essentially at
most that of x.

The next lemma is stated in a more general form so that it applies to any pair of (x, y) such
that the oracle Kolmogorov complexity of (x, y) is bounded (which is needed for our argument in
Corollary 18 below to handle the case of languages in PH; see also Lemma 16).

Lemma 11 (Oracle Elimination). Let ` ∈ N and suppose DistNPΣP
` ⊆ AvgP. Let x, y ∈ {0, 1}∗ be

arbitrary strings. Suppose, for some function t0 : N→ N, it holds for all t ≥ t0(|x|+ |y|) that

K2t,ΣP
` (x, y) ≤ Kt(x) +O(log t).

Then there exists a polynomial q such that for all t ≥ t0(|x|+ |y|),

Kq(t)(x, y) ≤ Kt(x) + log q(t).

Proof. Define a language

L′ := {(DPk(x, y; z), 1t, 1s) | K2t,ΣP
` (x, y) ≤ s and |x|+ |y| ≤ t},

for some k to be chosen later. Note that L′ ∈ NPΣP
` . Define a distribution family D = {D〈n,m,t,s〉},

each member of which samples w ∼ {0, 1}(n+m)k+k and outputs (w, 1t, 1s). By assumption,
(L′, D) ∈ AvgP. Let B be a one-sided error heuristic algorithm for (L′, D) with failure proba-
bility at most t−1, as in Lemma 5.
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Let x ∈ {0, 1}n and y ∈ {0, 1}m be such that, for some function t0 and d ∈ N, for all t ≥ t0(n+m),

K2t,ΣP
` (x, y) ≤ Kt(x) + d log t. Defining t ≥ t0(n+m) and s := Kt(x) + d log t, we have

Pr
z

[B(DPk(x, y; z), 1t, 1s) = 1] = 1, (7)

since B never errs on yes-instances of L′.
On the other hand, for w selected uniformly at random,

Pr
w

[(w, 1t, 1s) ∈ L′] = Pr
w

[∃u ∈ {0, 1}n+m,∃z ∈ {0, 1}(n+m)k, w = DPk(u; z) ∧ K2t,ΣP
` (u) ≤ s]

≤ 2s+1 · 2|z|

2|z|+k

= t−1,

where the second line follows from a union bound and a counting argument, and the third line by
defining k := s+ 1 + log t. Then

Pr
w

[B(w, 1t, 1s) = 1] ≤ Pr
w

[(w, 1t, 1s) ∈ L′] + Pr
w

[B(w, 1t, 1s) 6= L′(w, 1t, 1s)]

≤ 2 · t−1 ∈ o(1).

Comparing with Eq. (7), it is clear that B(−, 1t, 1s) distinguishes DPk(x, y;U|z|) from uniform.
Lemma 9 implies that

Kp
′(t)(x, y) ≤ k + log p′(t)

= s+ 1 + log t+ log p′(t)

= Kt(x) + d log t+ 1 + log t+ log p′(t),

for some polynomial p′ with p′(t) ≥ pDP(2 · (n+m) · sB), where pDP is the polynomial from Lemma
9 and sB denotes the size of a circuit computing B(−, 1t, 1s). It follows that that Kq(t)(x, y) ≤
Kt(x) + log q(t) for the polynomial q(t) = 2 · td+1 · p′(t).

3.3 Computational depth

Here we show how to bound the computational depth of any input string x.

Lemma 12 (Computational Depth). There is a constant d ≥ 0 such that the following holds. For
an arbitrary string x ∈ {0, 1}n, constants c ≥ 1 and 0 < ε ≤ 1, and functions m, I : N → N, there
exists a time bound t such that

• m(n)c
I(n)·(1−ε) ≤ t ≤ m(n)c

I(n)
, and

• cdt,t
c
(x) ≤ n+d

ε·I(n) .

Proof. Let m := m(n) and I := I(n). For p(n) := nc, consider the following telescoping sum:

Kp(m)(x)− Kp
I+1(m)(x) =

(
Kp(m)(x)− Kp

2(m)(x)
)

+
(
Kp

2(m)(x)− Kp
3(m)(x)

)
+

...+
(
Kp

I(m)(x)− Kp
I+1(m)(x)

)
,
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where pi(m) denotes the composition of p with itself i times. For any choice of x ∈ {0, 1}n, p, and
m, Kp(m)(x) ≤ n+ d, for some universal constant d ≥ 0 (dependent on the choice of the universal
TM U in the definition of Kolmogorov complexity); hence, the above sum is at most n′ := n+d. By
averaging, for a uniformly randomly chosen index 1 ≤ i ≤ I, the expected value of the ith bracketed
difference is at most n′/I. By Markov’s inequality, the fraction of i’s where the ith difference is
greater than (1/ε) · n′/I is at most ε. We get that there is an index i0 such that (1− ε) · I ≤ i0 ≤ I
and

Kp
i0 (m)(x)− Kp

i0+1(m)(x) ≤ (1/ε) · n′/I. (8)

For this i0, define t := pi0(m). Then by (8), we get cdt,p(t)(x) ≤ n+d
ε·I . Since pi0(m) = mci0 , we also

get that

mcI·(1−ε) ≤ t ≤ mcI ,

as desired.

Corollary 13. For an arbitrary string x ∈ {0, 1}n (for large enough n ≥ 1), a constant c ≥ 1, and
a function t0 : N→ N such that n ≤ t0(n) ≤ 2bn

1−a
for some constants a, b > 0, there exists a time

bound t such that t0(n) ≤ t ≤ 2n/ logn and cdt,t
c
(x) ≤ O(n/ log n).

Proof. Apply Lemma 12 with m(n) = n, I = blogc(n/(log2 n)2)c and ε = a/3.

Corollary 14. For an arbitrary string x ∈ {0, 1}n (for large enough n ≥ 1), constants c ≥ 1 and
δ > 0, and a function t0 : N → N such that t0(n) ≥ n, there exists a time bound t such that
t0(n) ≤ t ≤ t0(n)O(1) and cdt,t

c
(x) ≤ δ · n.

Proof. Since d ≤ n for a sufficiently large n, it suffices to apply Lemma 12 for any parameters ε and
I such that (2n)/(εI) ≤ δn. Setting m(n) = t0(n), ε = 1, and I = d2/δe concludes the proof.

4 Putting everything together

4.1 Case of PH

We will give a simplified proof of a generalization of the following theorem.

Theorem 15 ([Hir21a]). If DistPH ⊆ AvgP, then PH ⊆ DTIME[2O(n/ logn)].

We shall use the following auxiliary lemma. For intuition, in the statement below, set ` = 1
and think of y as the lexicographically first witness for x ∈ L, for some L ∈ NP; this y can be
efficiently reconstructed from x, via search-to-decision, given an NP oracle, and hence Eq. (9) is
satisfied. Then Item 1 of the lemma immediately implies a special case of Theorem 15, concluding
that NP ⊆ DTIME[2O(n/ logn)]. However, in order to extend the argument to PH and to conclude
that PH ⊆ DTIME[2O(n/ logn)] (as we do in Corollary 18 below), it is important that we can apply
this lemma to any y satisfying Eq. (9).

Lemma 16 (implicit in [Hir21a]). Let ` ∈ N and suppose DistNPΣP
` ⊆ AvgP. Let x ∈ {0, 1}n and

y ∈ {0, 1}m. Let the function t0 : N → N be such that t0(n + m) ≤ 2O(n1−ε) for some constant
0 < ε < 1, and suppose that for all t ≥ t0(n+m),

K2t,ΣP
` (x, y) ≤ Kt(x) +O(log t). (9)

Then,

9



1. there exists a constant c > 0 such that

K2cn/ logn
(y | x) ≤ cn/ log n;

2. for every constant δ > 0, there exists a constant c > 0 such that

Kt0(n+m)c(y | x) ≤ δ · n.

Proof. Item 1. Let x ∈ {0, 1}n, y ∈ {0, 1}m, and t0 be as described above. Let p0, p and q be the
polynomials from Lemmas 10 and 11 respectively. By Corollary 13, there exists t ≤ 2n/ logn such
that t ≥ max{p0(n+m), t0(n+m)} and

Kt(x)− Kp(q(t))(x) ≤ O(n/ log n).

For such a t, by Lemma 11,
Kq(t)(x, y) ≤ Kt(x) + log q(t),

and by Lemma 10,

Kq(t)(x, y) > Kp(q(t))(x) + Kp(q(t))(y | x)− log p(q(t)).

Combining the previous three inequalities,

Kp(q(t))(y | x) < Kq(t)(x, y)− Kp(q(t))(x) + log p(q(t))

≤
(
Kt(x)− Kp(q(t))(x)

)
+ log p(q(t)) + log q(t)

≤ O(n/ log n).

Item 2. Argue as in Item 1 above, invoking Corollary 14 instead of Corollary 13.

Lemma 16 above shows that if PH is easy on average, every language in PH is verifiable with
arbitrarily small linear-length witnesses. More precisely, we have the following.

Corollary 17. Let ` ∈ N and suppose DistNPΣP
` ⊆ AvgP. Then for every L ∈ ΣP

` and constant
ε > 0, there is a polytime relation R such that for every sufficiently large x ∈ {0, 1}n,

x ∈ L ⇔ ∃z1 ∀z2 . . . Qz` R(x, z1, . . . , z`),

where |zi| ≤ εn for all 1 ≤ i ≤ `.3

Proof Sketch. Suppose there is some polytime relation R0 such that

x ∈ L ⇔ ∃y1 ∀y2 . . . Qyl R0(x, y1, . . . , yl),

where the lengths of all witnesses yi are polynomial in n = |x|. Using a search-to-decision procedure
with a a ΣP

` -oracle, y1 may be obtained from x in time nb for some b > 0, which implies that for
all t ≥ nb,

K2t,ΣP
` (x, y1) ≤ Kt(x) +O(log t).

3Chen, Hirahara, and Vafa [CHV21] prove a version of this statement for ` = 1. In their terminology, our remark
states that for all ` ≥ 1 and ε > 0, if DistΣP

`+1 ⊆ AvgP, then ΣP
` ⊆ Σ`TIMEGUESS[poly(n), εn].

10



By Item 2 of Lemma 16, the first witness y1 can be compressed to a witness z1 of length εn, so
that the membership of x in L can be decided using the new polytime relation R1:

x ∈ L ⇔ ∃z1 ∀y2 . . . Qyl R1(x, z1, y2, . . . , yl),

where R1 first decodes y1 from z1 in polynomial time given x, and then computes R0(x, y1, . . . , yl).
This observation implies the required claim by induction.

We now prove the following is a generalization of Theorem 15.

Corollary 18 ([Hir21a]). For all ` ∈ N, if DistNPΣP
` ⊆ AvgP, then for any function τ(n) ≤ 2O(n1−ε)

for constant 0 < ε < 1, DTIMEΣP
` [τ(n)] ⊆ DTIME[2O(n/ logn)].4

Proof. We will give a proof by induction on `. The base case of ` = 0 is trivially true. Suppose the

claim holds for some `− 1 ∈ N. Let τ(n) be as described above, and let L ∈ Σ
τ(n)
` with verifier V

of complexity Π
τ(n)
`−1 . Let yx ∈ {0, 1}τ(n) be the lexicographically first L-witness for x under V . We

will show that this yx can be found in deterministic time 2O(n/ logn); this will imply the required
result as finding such a witness is known to be a DTIMEΣP

` [τ(n)]-hard problem [Kre88].
First, note that for all t ≥ t0(τ(n)),

K2t,ΣP
` (x, yx) ≤ Kt(x) +O(log t),

where the polynomial t0(τ(n)) reflects the time required to compute yx given x by a search-to-
decision procedure for L using a ΣP

` -oracle. Applying Item 2 of Lemma 16 to x and yx, we get that

Kτ(n)b(yx | x) ≤ n, for some constant b ∈ N. This implies a new verifier V ′ for L, of complexity

Π
poly(τ(n))
`−1 , such that

x ∈ Ln ⇔ ∃z (|z| ≤ 2n) V ′(x, z),

where V ′ decodes z ∈ {0, 1}n to y ∈ {0, 1}τ(n) in time τ(n)b, and then simulates V (x, y). Since
poly(τ(n)) ≤ 2O(n1−ε), we get by the inductive hypothesis that

{(x, z) | V ′(x, z)} ∈ Π
poly(τ(n))
`−1 ⊆ DTIME[2dn

′/ logn′ ]

for some constant d ∈ N and n′ = |x|+ |z| ≤ 2n.
Let z0 ∈ {0, 1}n be such that the universal TM on input (x, z0) outputs yx within τ(n)b steps.

While z0 may not be the lexicografically first n-bit string to satisfy V ′(x,−), it is still possible
to compute z0 from x efficiently, given oracle access to ΣP

` . Namely, first compute yx in time
t0(τ(n)) via search-to-decision, and then use NP-oracle queries to produce, via binary search, a
string z ∈ {0, 1}n such that the universal TM on input (x, z) outputs yx within τ(n)b steps. It
follows that

K2t,ΣP
` (x, z0) ≤ Kt(x) +O(log t)

for every t ≥ t′0(τ(n)), for some polynomial t′0. Applying Item 1 of Lemma 16 to x and z0, there
exists a constant c ∈ N such that

K2cn/ logn
(z0 | x) ≤ cn/ log n.

4In proving a version of this statement for super-polynomial time-bounds τ , the original [Hir21a] uses a padding
argument after first proving a version for polynomial time-bounds (see [Hir21a] Theorem 1.8). We could have taken
a similar approach here but have opted instead to present an alternative, which relies on the application of Markov’s
inequality in Lemma 12.
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Finally, to find the lexicographically first L-witness yx for x, we enumerate all strings α ∈
{0, 1}cn/ logn, running a universal TM on input (x, α) for 2cn/ logn steps to obtain some output zα.
For each of these strings zα, we run a universal TM on input (x, zα) for τ(n)b steps to obtain
some output yα. We then check if V ′(x, zα), using the 2O(n/ logn)-time deterministic algorithm for
V ′ shown to exist earlier. In the end, we return the lexicographically first yα obtained such that
V ′(x, zα) holds. Clearly, the returned yα is correct since z0 is among the zα’s. The total running
time of this procedure is at most 2cn/ logn · (2cn/ logn + τ(n)b + 2O(n/ logn)) ≤ 2O(n/ logn).

4.2 Case of UP

In this section we give a similarly simplified proof of another result from [Hir21a]: if DistNP ⊆ AvgP
then UP ⊆ DTIME[2O(n/ logn)]. The following Lemma is analogous to Lemma 11, here for the case
of unique witnesses.

Lemma 19. Suppose DistNP ⊆ AvgP. Let τ(n) ≤ 2O(n1−ε) for some constant 0 < ε < 1. Then for
every L ∈ UTIME[τ(n)], there exists a polynomial q such that for all sufficiently large n ∈ N, all
x ∈ Ln, and all t ≥ n+ τ(n),

Kq(t)(x, yx) ≤ Kt(x) + log q(t),

where yx ∈ {0, 1}τ(n) is the unique L-witness for x.

Proof. Let τ(n) be as described above. Let L ∈ UTIME[τ(n)] with verifier V running in determin-
istic time τ(n). Let

L′ := {(DPk(x, y; z), 1t, 1s) | Kt(x) ≤ s and V (x, y) = 1}

for some k to be defined later. Note that L′ ∈ NP. Define a distribution family D = {D〈n,t,s〉},
each member of which samples w ∼ {0, 1}(n+τ(n))k+k and outputs (w, 1t, 1s). By assumption,
(L′, D) ∈ AvgP. Let B be a one-sided error heuristic algorithm for (L′, D) with failure probability
at most t−c, as in Lemma 5.

Let x ∈ {0, 1}n be sufficiently large, and let yx ∈ {0, 1}τ(n) be the unique L-witness for x; that
is, yx is the only string y such that V (x, y) holds. Let t ≥ n+ τ(n) and s := Kt(x). Since B never
errs on yes-instances of L′,

Pr
z

[B(DPk(x, yx; z), 1t, 1s) = 1] = 1. (10)

On the other hand, for w selected uniformly at random,

Pr
w

[(w, 1t, 1s) ∈ L′] = Pr
w

[∃(x, y) ∈ {0, 1}n+τ(n), ∃z ∈ {0, 1}(n+τ(n))k,

w = DPk(u; z) ∧ Kt(x) ≤ s ∧ V (x, y) = 1]

≤ 2s+1 · 2|z|

2|z|+k

= t−1,

where the second line follows from a union bound and a counting argument, and the third line by
defining k := s + 1 + log t. Note in particular that for each x, there can only be one y such that
V (x, y). Then

Pr
w

[B(w, 1t, 1s) = 1] ≤ Pr
w

[(w, 1t, 1s) ∈ L′] + Pr
w

[B(w, 1t, 1s) 6= L′(w, 1t, 1s)]

≤ t−c + t−1 ∈ o(1).
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Comparing with Eq. (10), it is clear that B(−, 1t, 1s) is a distinguisher for DPk(x, yx;U|z|).
Lemma 9 implies that

Kp
′(t)(x, yx) ≤ k + log p′(t)

= s+ 1 + log t+ log p′(t)

= Kt(x) + 1 + log t+ log p′(t),

for some polynomial p′ with p′(t) ≥ pDP(2 · (n + τ(n)) · sB), where pDP is the polynomial from
Lemma 9 and sB denotes the size of a circuit computing B(−, 1t, 1s). It follows that Kq(t)(x, yx) ≤
Kt(x) + log q(t) for the polynomial q(t) := 2 · t · p′(t).

Corollary 20 (implicit in [Hir21a]). Suppose DistNP ⊆ AvgP. Then for every function τ(n) ≤
2O(n1−ε) for constant 0 < ε < 1,

UTIME[τ(n)] ⊆ DTIME[2O(n/ logn)].

Proof Sketch. Use Lemma 19 with Lemmas 12 and 10 as in the proof of Lemma 16, Item 1.

5 Open questions

Can one show that DistΣP
2 ⊆ AvgP implies NTIME[2O(n/ logn)] = DTIME[2O(n/ logn)]? The matching

time-bounds in the conclusion would make this analogous in some sense to the [Ben+92] result that
DistNP ⊆ AvgP implies NE = E, with the stronger assumption in the former case potentially allow-
ing for a stronger conclusion. [CHV21] provide a version of this statement for the fine-grained set-
ting; namely, DistΣ2TIME[n] ⊆ AvgTIME[Õ(n)] implies NTIME[2O(

√
n logn)] = DTIME[2O(

√
n logn)].
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