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Abstract

We prove a new derandomization of H̊astad’s switching lemma, showing how to efficiently
generate restrictions satisfying the switching lemma for DNF or CNF formulas of size m using
only Õ(logm) random bits. Derandomizations of the switching lemma have been useful in
many works as a key building-block for constructing objects which are in some way provably-
pseudorandom with respect to AC0-circuits (e.g., [AW85, TX13, GW14, SS16, AS17, ST17,
ST19, BDSG+18, DHH19, Tel19]).

Here, we use our new derandomization to give an improved analysis of the pseudorandom
generator of Trevisan and Xue for AC0-circuits (CCC’13): we show that the generator ε-fools

size-m, depth-D circuits with n-bit inputs using only Õ(log(m/ε)D · log n) random bits. In

particular, we obtain (modulo the log log-factors hidden in the Õ-notation) a dependence on
m/ε which is best-possible with respect to currently-known AC0-circuit lower bounds.

1 Introduction

The switching lemma (originally proved by H̊astad [H̊as86]) is an important and well-known
tool used to analyze low-depth boolean circuits. It says if F : {0, 1}n → {0, 1} is a DNF
(or CNF) formula, with terms (or clauses) of width at most w, then if we randomly fix,
or “restrict”, all but (roughly) a 1

w
-fraction of inputs to F , then with high probability the

resulting function on the remaining n
w

bits can be represented as a low-depth decision tree.
Since a decision tree of depth d can be expressed either as a width-d DNF or a width-d CNF,
this shows that random restrictions be used to “switch” e.g. a bounded-width DNF into
a bounded-width CNF. Using this fact, one can argue that iteratively applying D random
restrictions to a depth-D AC0-circuit will likely cause the entire circuit to collapse to a
small-depth decision tree.
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The switching lemma lies at the heart of all strong unconditional hardness and pseudoran-
domness1 results known for the circuit class AC0.

• The lemma is used to derive strong correlation bounds for the parity function against
AC0-functions, and plugging this average-case hard function into the Nisan-Wigderson
framework yields a pseudorandom generator with seedlength O(log2D+6m) for depth-D
AC0 circuits of size m [Nis91].

• One can obtain tight bounds on certain Fourier-analytic properties of AC0-functions
using the switching lemma [LMN93, Tal17]. These Fourier-analytic bounds are crucial
in the works of Bazzi [Baz09] and Braverman [Bra08] (which were subsequently im-
proved by [Raz09, DETT10, Tal17, HS19]) that show that AC0-functions are fooled
by log(m)O(D)-wise independent distributions.

• The flexible polarizing-walk framework introduced in [CHHL19] can also utilize these
Fourier-analytic bounds to give a generator with seedlength O(log2Dm).

The current best pseudorandom generators for AC0, which obtain seedlength logD+O(1) m
([TX13, ST19]), stem from the work of Trevisan and Xue, whose pseudorandom construction
relies on the switching lemma in the most direct way of all.

Restrictions and Selections. Before we continue, we define some notation for restrictions.
A restriction is a vector ρ ∈ {0, 1, ∗}n, which intuitively corresponds to a partial n-bit input,
with stars in the locations which are left unspecified. Two restrictions ρ and τ can be
composed to form a new restriction ρ ◦ τ , defined so that in each coordinate, (ρ ◦ τ)i = τi
if ρi = ∗ and (ρ ◦ τ)i = ρi otherwise. Given a boolean function F : {0, 1}n → {0, 1}, the
restricted function Fρ is defined via Fρ(x) := F (ρ◦x). Often, we wish to imagine the process
of choosing a restriction ρ ∈ {0, 1, ∗}n as first choosing a set on which to place the stars,
and then deciding how to set the bits in the non-star coordinates using some independent
process. For this purpose, for T ∈ {0, 1}n and ρ, τ ∈ {0, 1, ∗}n, we introduce the selection
notation T [ρ, τ ], which is defined so that

T [ρ, τ ]i :=

{
ρi, if Ti = 0
τi, if Ti = 1

}
.

A p-random restriction is defined by ρ := T [U, ?], where T ∈ {0, 1}n is a p-random string
(that is, Ti = 1 with probability p, independently in every coordinate), and U is a uniformly
random vector in {0, 1}n, and ? := ∗n is the vector of all stars.

1 A pseudorandom generator (PRG) is an explicit, efficiently computable mapping G : {0, 1}` → {0, 1}n
that stretches `-bit truly-random seeds into n-bit inputs which are indistinguishable from random to some
function class. The corresponding pseudorandom distribution D is the uniform distribution over the (multi-)
set G({0, 1}`). We say that D ε-fools a function F if |E[F (D)] − E[F (U)]| ≤ ε, where U is the uniform
distribution over {0, 1}n. Sometimes we simply say that D fools F without specifying an error parameter –
by this we mean that D ε-fools F for some ε ≤ 1/3.
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The Trevisan-Xue Construction. In [TX13], Trevisan and Xue employ the generic “it-
erated pseudorandom restriction” approach to construct their pseudorandom generator for
AC0. This approach, which as first introduced by Ajtai and Wigderson [AW85], begins by
constructing a pseudorandom restriction τ , which is drawn randomly from some small, effi-
ciently sampleable set of restrictions. Then, one proceeds to compose multiple independent
copies of τ , and then the output of the generator is G = τ (1) ◦ τ (2) ◦ · · · ◦ τ (r), where r is
chosen large enough so that it is highly likely that all the bits are set. The advantage of
this approach is that, in order to show that E[F (G)] ≈ E[F (U)]± ε for functions F in some
function-class C that is closed under restriction, it suffices (by a simple hybrid argument) to
show, for all F ∈ C, that E[F (τ ◦U)] ≈ E[F (U)]± ε/r for a single pseudorandom restriction
τ . This task can be considerably easier than trying to “set all the bits pseudorandomly in
one shot”. The seedlength of G then is r times the number of random bits needed to generate
each independent copy of τ .

For size-m depth-D AC0-circuits, Trevisan and Xue construct their pseudorandom restriction
τ by composing roughly D independent copies of a more basic pseudorandom restriction.
Specifically (in terms of the selection notation introduced above), they define

τ := T 1 ∧ T 2 ∧ · · · ∧ TD−1[?,X].

Here, X ∈ {0, 1}n is chosen to be some basic pseudorandom distribution that fools small-
depth decision trees, and each T j ∈ {0, 1}n is a pseudorandomly-chosen string such that
P(Ti = 1) ≈ 1/ log(m) in every coordinate, and the “∧” operation is a bitwise AND.

After applying a simple hybrid argument, the key to successfully analyzing this restriction is
to choose the selection vectors T in such a way that applying a single restriction ρ := T [U, ?]
to a DNF or CNF2 formula F is highly likely to cause the restricted function F (ρ ◦ x) to
collapse to a low-depth decision tree. That is, if one can show that ρ = T [U, ?], where the
star-selection vector T is pseudorandom and the non-star inputs U are uniformly random,
satisfies the switching lemma, then it can be argued that an application of ρ to a circuit of
depth D will cause it to collapse to depth D − 1 by switching all of the depth-2 circuits at
the input layer. For this purpose, Trevisan and Xue prove the following lemma which is the
main technical contribution of their work3. Below, the notation DT(F ) stands for the depth
of the smallest-depth decision tree that represents the boolean function F , and we use 1(E)
to denote the indicator-random-variable of an event E.

2 Since a CNF formula is functionally equivalent to the negation of a DNF, and since the negation of
a decision tree of depth d is also a decision tree of depth d, we can without loss of generality restrict our
attention to DNFs in statements and proofs of the switching lemma, and the corresponding corollaries for
CNFs follows easily.

3 Actually, Trevisan and Xue prove a more general statement that allows the construction of restrictions
ρ = T [Y, ?] where both T and Y are pseudorandom, rather than just the selection vector T . This extension
is important for some applications of their derandomized switching lemma given by later works, but (due to
the use of a hybrid argument which we have discussed above) this extension is not needed in their original
setting of derandomizing AC0 via the iterated-restriction construction.
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Lemma 1.1 ([TX13], Implicit in Lemma 7 and its proof). Fix a DNF F (x) =
∨m
i=1Ai(x) of

width w, and let ρ = T [y, ?] with T, y ∈ {0, 1}n. Then there is a function By(T ), depending
on F and y, such that

1(DT(Fρ) ≥ d) ≤ By(T ) :=
K∑
i=1

f yi (T ),

where

• K ≤ (4wm)d,

• each f yi is a CNF with at most 2wm clauses,

and furthermore, if y is chosen uniformly randomly from {0, 1}n and T is a truly p-random
string, then

• Ey ET By(T ) ≤ 2d+w(5pw)d.

By plugging in state-of-the-art pseudorandom generators for CNFs (see [Tal17]), it is there-
fore possible to generate pseudorandom selection vectors T satisfying the following deran-
domized switching lemma.

Corollary 1.2. For any p ∈ [2−n, 1] that is a power of a half, there is an efficiently-
computable pseudorandom distribution over vectors T ∈ {0, 1}n, which can be sampled using
only

O (log n+ (d log(m) + log(1/ε)) · log(m) · log logm)

random bits, with the following property. If ρ := T [U, ?] is a random restriction defined by
pseudorandom selection T and uniformly random assignment U ∈ {0, 1}n, and F is any
DNF with m terms and width w ≤ O(logm), then

P(DT(Fρ) ≥ d) ≤ mO(1) · (10pw)d + ε.

Furthermore, the probability that Ti = 1 is at least p− ε in every coordinate.

Our Contribution. Since d must be chosen to be at least Ω(logm) for the this to be useful
(in the standard setting where p = Θ(1/w)), we can summarize the above as achieving

a pseudorandom restriction with seedlength Õ(log3m) that satisfies the switching lemma
on DNFs of size m. The main result of this paper is an improved derandomization of the
switching lemma – we show how to generate restrictions satisfying the switching lemma using
only Õ(logm) random bits.
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Theorem 1.3. For any p ∈ [2−n, 1] which is a power of a half, there is an efficiently
computable pseudorandom distribution over vectors T ∈ {0, 1}n, which can be sampled using
only

O(log n+ (w + d) · logw + log(1/ε))

random bits, with the following property. If ρ := T [U, ?] is a random restriction defined by
pseudorandom selection T and uniformly random assignment U ∈ {0, 1}n, and F is any
DNF of width at most w, then

P(DT(Fρ) ≥ d) ≤ O(pw)d + ε.

Furthermore, the probability that Ti = 1 is at least p− ε in every coordinate.

By combining this with the well-known (and easily derandomizable) observation that ran-
domly restricting a constant-fraction of inputs to a size-m DNF will likely cause it collapse
to a DNF of width at most O(logm), we recover the corresponding statement for size-m
DNFs with unbounded width.

Corollary 1.4. There is an efficiently computable pseudorandom distribution over vectors
T ∈ {0, 1}n, with seedlength

O(log n+ (d+ log(m/ε)) · log log(m/ε)),

such that for any DNF F with m terms, the restriction ρ := T [U, ?] satisfies

P(DT(Fρ) ≥ d) ≤ O(p log(m/ε))d + ε.

Furthermore, the probability that Ti = 1 is at least p− ε in every coordinate.

In fact, we show that in order to satisfy the switching lemma, the pseudorandom selection
vector T must merely possess the following weak pseudorandomness property we call p-
boundedness; this simple, “one-sided” property is much coarser than the requirement that T
fool CNFs, or even certain more basic pseudorandom properties such as k-wise independence
or δ-bias (see Section 2), which still require fine, “two-sided” control on the behavior on small
sets of coordinates.

Definition 1.5. Say that a distribution over vectors T ∈ {0, 1}n is k-wise p-bounded if, for
every set S ⊆ [n] of size s ≤ k, we have

E
T

[∏
i∈S

Ti

]
≤ ps.

Theorem 1.6. Suppose that T is a (w+ d)-wise p-bounded distribution over {0, 1}n, and U
is uniform over {0, 1}n. If p ≤ 1

16w
, then for any DNF F of width at most w, the restriction

ρ := T [U, ?] satisfies
P(DT(Fρ) ≥ d) ≤ 2 · (8pw)d.
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1.1 Proof Technique

When we imagine the task of derandomization with respect to a particular application, the
setting is typically as follows. We have some bad event B, depending on some random choices
x ∈ {0, 1}n, and we must show (say, in order to show that some randomized algorithm is
likely to succeed) that the probability of B occurring is small. Suppose we have a proof
which does indeed establish such a bound. Now, identify the event B with its own indicator
function B : {0, 1}n → {0, 1}. To derandomize this statement, we can try to peer into our
proof and see how B(x) depends on the choices x. If the dependence is simple enough – for
instance maybe the proof is just a union-bound over some local events involving at most k
variables at a time – we are in luck and we can instead draw x from some merely k-wise
independent distribution and inherit the same probability-of-success guarantee. However, if
the proof is not simple enough, then it seems that we would need to look for some other,
simpler way to bound the probability of B, which is unfortunate since we potentially miss
out on the power of more sophisticated proof techniques.

The crucial observation of Trevisan and Xue is that this need not be the case. Indeed, if one
can show that the event B can be expressed as a simple function (e.g. a sum of CNFs as
in Lemma 1.1) that can fooled by some pseudorandom distribution X, then we can bound
E[B(X)] in two distinct steps: first, show that E[B(X)] ≈ E[B(U)] by some “simple” argu-
ment, and only then show that E[B(U)] is small via some separate “complicated” argument.
This is especially important for derandomizing the switching lemma because both of the
well-known proofs of the switching lemma (i.e. H̊astad’s original conditioning-based proof
[H̊as86] as well as Razborov’s alternative encoding-based proof4 [Raz95]) seem hopelessly
sophisticated and extremely fragile from a direct-derandomization point-of-view.

Of course, the drawback of this abstract approach is that we can not hope to obtain from it
pseudorandom restrictions with seedlength any better than our best PRGs for CNFs. As we
discuss further in Section 1.2, obtaining a PRG with seedlength Õ(logm/ε) for size-m CNFs
(which is what would be required to obtain an “ideal” derandomization of the switching
lemma) would require a major breakthrough in circuit-complexity. Here, we sidestep this
barrier by analyzing (a suitable modification of) a recent new proof of the switching lemma
(which we would describe as “coupling-based”) due to Rossman [Ros19]. We show by a
careful analysis that it is (in our opinion, just barely) amenable to direct-derandomization.

Originally, the purpose of Rossman’s alternative approach was to prove the switching lemma
directly for size-m DNFs with unbounded width. This is in contrast to the more standard
two-step argument, where one first shows that randomly restricting a constant-fraction of
the inputs causes the DNF to collapse to width w ≤ O(logm), and then argues (via the proof
of H̊astad or Razborov) that further restricting this width-w DNF with a Θ(1/w)-random
restriction will cause it to collapse to a small-depth decision tree. Rossman’s argument gives
a better bound (for a certain range of parameters) than this two-step argument. Rossman
describes his own proof as “entropy-based”, because the calculations which are required in

4 See also the expositions by [Juk12, Tha09].
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order to handle DNFs of unbounded width resemble the calculations one would make to
prove the bound

∑m
i=1 πi · log(1/πi) ≤ log(m) for arbitrary probability distributions π ∈ Rm.

Here, we use the approach of Rossman for a completely different purpose, in a completely dif-
ferent setting. Specifically, we apply the approach in the setting of width-w DNFs that have
unbounded size. We do not use any of the calculations which Rossman describes as “entropy-
based”, and so we describe the core of the remaining argument, a key re-randomization and
coupling step, as “coupling-based”. It is our understanding that, prior to our work, it was
not known that Rossman’s proof offered any advantage over the earlier proofs of H̊astad
or Razborov in the setting of bounded-width DNFs. An important message of our work
is that the coupling-based approach indeed has a substantial advantage in the context of
derandomization (and, as we discuss further in Section 1.3, we believe this advantage could
be relevant to applications beyond the switching lemma).

The coupling-based approach leads to a proof of the switching lemma that is in many ways
more “explicit” in how the bad event depends on the restriction ρ than earlier proofs. Un-
fortunately, this explicitness comes at the price of some fairly elaborate notation. So, for
the benefit of the reader, we include a section explaining how the coupling-based approach
can be used to prove (and derandomize) the fact that a p-random restriction applied to a
width-w DNF will cause the DNF to become identically equal to a constant, except with
probability O(pw) – this fact is sometimes referred to as the “baby” switching lemma. This
section (Section 3) can be freely skipped as it is not critical to any of our results. How-
ever we advise against this, as understanding the derandomization in this simpler setting is
enough to grasp the key aspects of the technique; in particular, is sufficient to understand
why direct-derandomization can succeed here while it has failed before.

1.2 Applications

Various works that construct objects which are in some way pseudorandom with respect to
AC0-circuits often rely on some kind of derandomization of the switching lemma. Examples
of such constructions include the pseudorandom generators of [AW85, TX13, ST19, AS17,
DHH19], the quantified derandomizations of [GW14, Tel19], the stochastic list-decodable
codes of [SS16], and the non-malleable codes of [BDSG+18].

However, the type of guarantee given by the derandomized switching lemma proved in this
work does not universally suffice for all of these applications; in particular, some applications
require restrictions ρ = T [Y, ?], where both T and Y are generated pseudorandomly, while we
construct pseudorandom-selection distributions T such that the restriction ρ = T [U, ?] sat-
isfies the switching lemma when U is uniformly random. We discuss two applications where
this type of derandomization is sufficient, and explain how our improved derandomization
leads to more efficient solutions than were previously known.
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Pseudorandom Generators for AC0-Circuits. In their paper, Trevisan and Xue showed
that the construction outlined in Section 1 gives a PRG that ε-fools size-m, depth-D AC0-
circuits and has seedlength Õ(log(m/ε)D+3 ·log(n/ε)). In [Tal17], Tal gives an improved anal-
ysis, showing that (a minor alteration of) the Trevisan-Xue construction achieves seedlength

Õ(log(m/ε)D+1 · log n). Plugging our improved derandomization of the switching lemma into
the construction yields the following.

Theorem 1.7. There is an explicit pseudorandom generator that ε-fools size-m, depth-D
AC0-circuits5, and has seedlength Õ(log(m/ε)D · log n). More specifically, the seedlength is

O(log(m/ε))D · log(n) · (log log(m/ε))3.

Obtaining this specific seedlength is somewhat of a landmark, as it can be shown (by an easy
argument sometimes referred to as the “discriminator lemma”) that achieving a seedlength
of, say,

O(log(m/ε))D−0.01 · log(n)O(1),

would imply a stronger worst-case lower bound against depth-(D+1) circuits than is currently

known for any explicit hard function6. Thus, modulo the log log-factors hidden in the Õ-
notation, the seedlength we obtain is best-possible without improving upon AC0-circuit
lower-bounds which have remained best-known for over 30 years.

Deterministic Search for CNF Satisfying Assignments. Suppose you have a CNF
formula7 for which it is known that at least a fraction ε = 0.01 of all possible inputs are
satisfying, and you are tasked with finding some specific satisfying assignment. It is easy to
give a randomized solution: just try random strings x ∈ {0, 1}n until you find a satisfying
assignment. However, it is nontrivial to give a deterministic solution to this problem.

Perhaps the most natural approach is to use a pseudorandom generator that (say) ε/2-fools
polynomially-sized CNFs – then, one of the possible outputs of the generator is guaranteed
to be satisfying. Since the best-known generators for poly(n)-sized CNFs have seedlength

Õ(log2(n)), this approach yields a deterministic search algorithm running in time nÕ(logn).

In [ST17], Servedio and Tan improve upon this by combining together two ingredients into
a clever “decision-to-search reduction”-type solution to this problem. The first ingredient is
a deterministic approximate-counting algorithm due to [GMR13] that, given a poly(n)-sized
CNF, reports the fraction of satisfying assignments to the CNF (up to an approximation
error ±γ), and runs in time (

n

γ

)Õ(log logn+log(1/γ))

.

5 Here we assume we are in the standard setting where m ≥ n, where the circuit is large enough to at
least read all of the input bits.

6 See [TX13] for further discussion of this barrier.
7 For simplicity, we will in this section restrict our attention to CNFs of size at most nO(1).
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The second ingredient, which is also due to [GMR13], is a particular derandomization of the
switching lemma that uses O(log(n) · log log n) random bits to restrict roughly a p-fraction
of the inputs to a poly(n)-sized CNF in a way that, on average, approximately preserves the
fraction of satisfying assignments, where

p ≈ 1

log(n)log logn
.

We observe that by using our new derandomization of the switching lemma, we can do the
same, but with the improved parameter p ≈ 1/ log(n).

Theorem 1.8. There is an efficiently computable pseudorandom distribution over vectors
T,X ∈ {0, 1}n, with total seedlength

O(log n+ log(m/γ) · log log(m/γ)),

such that for any DNF or CNF F of size m, the restriction ρ := T [?,X] satisfies∣∣∣∣Eρ EU F (ρ ◦ U)− E
U
F (U)

∣∣∣∣ ≤ γ,

where U is uniformly distributed over {0, 1}n. Furthermore, the probability that Ti = 1 is at
least Ω(1/ log(m)) in every coordinate i ∈ [n].

Servedio and Tan proceed to iterate the following until all input-bits are fixed (and thus a
satisfying assignment has been found):

Given a CNF F : {0, 1}n → {0, 1} of size m ≤ nO(1):

• Generate all nO(log logn) restrictions ρ ∈ {0, 1, ∗}n from the pseudorandom distribution
described by [GMR13].

• For each ρ, use the approximate-counting algorithm of [GMR13] to estimate the number
of satisfying assignments to Fρ(x).

• Pick the ρ which resulted in the largest estimate, set all input bits that are not yet set
according the the restriction ρ, and continue on the restricted CNF Fρ.

In order to fix all the input-bits, this process must be iterated r ≈ log(n)/p times, and
since the approximation-error accumulates from every iteration, the approximate-counting
algorithm must be run with parameter γ := ε/r ≈ εp/ log(n). Thus, using the pseudorandom
restriction distribution from [GMR13], Servedio and Tan set γ ≈ ε · 2−(log logn)2 and obtain a
deterministic search algorithm that runs in time(n

ε

)Õ(log logn+log(1/ε))2

.
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If we instead plug in the pseudorandom restriction distribution given by Theorem 1.8, we
can afford to set γ ≈ ε/ log(n)2, and we obtain an improved deterministic search algorithm
running in time (n

ε

)Õ(log logn+log(1/ε))

,

thus bringing the time required to solve this task in line with the time required by the
best-known algorithms for approximate-counting.

Theorem 1.9. There is a deterministic algorithm that, given any CNF F : {0, 1}n → {0, 1}
of size m ≤ nO(1) for which at least an ε-fraction of all inputs x ∈ {0, 1}n are satisfying,
finds such an input in time (n

ε

)Õ(log logn+log(1/ε))

.

1.3 Open Problems

For future work, we ask whether the approach in this paper can be used to give high-
quality direct-derandomizations in other cases where this previously seemed impossible. In
particular, we highlight the multi-switching lemma of [H̊as14], the robust-sunflower lemma
of [ALWZ20], and the work on DNF compression due to [LWZ20] as potential candidates.

The multi-switching lemma. The multi-switching lemma, which is also due to H̊astad
[H̊as14], is a more refined statement concerning the “common-decision-tree complexity” of
a sequence of DNFs that are all hit by the same random restriction. In typical style, he
originally gave a H̊astad-type conditioning-based proof of this result. Alternative Razborov-
type encoding-based proofs were given by [Tal17] and [ST19] .

In [ST19], Servedio and Tan prove a Trevisan-Xue-style derandomization of the multi-
switching lemma, showing how to generate restrictions satisfying the lemma with log(m)O(1)

random bits. They use this derandomization to give a pseudorandom generator for AC0

with seedlength
log(m)D+O(1) log(1/ε),

which is incomparable to the seedlength obtained in this work due to its superior dependence
on ε. We leave it as an open question whether it is possible to use the approach of this
work to obtain a better derandomization of the multi-switching lemma, and whether such a
derandomization can lead to a pseudorandom generator for AC0 with the best qualities of
both works.

Robust-sunflowers, DNF compression, and the power of p-boundedness. The
celebrated robust-sunflower lemma due to Alweiss, Lovett, Wu, and Zhang [ALWZ20] is the
statement that DNFs with a certain structural property known as “spreadness” are highly
likely to be satisfied by a random input. Besides its important combinatorial applications,
the robust-sunflower lemma has recently been applied to obtain improved lifting theorems in
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communication complexity [LMZ20, MP20]. Lovett has suggested [personal communication]
that in order to push these lifting applications further, what is needed is an appropriate
derandomization of the robust-sunflower lemma. More specifically, what is desired is a
proof that the robust-sunflower lemma is true even for input-distributions which merely
possess some natural, “one-sided” weak pseudorandomness property similar in spirit to e.g.
spreadness or p-boundedness.

In [ALWZ20], the core of the proof of the robust-sunflower lemma is a key width-reduction
step which is proved using a Razborov-type encoding argument. We propose that a sen-
sible approach to obtaining an appropriately derandomized robust-sunflower lemma is the
following:

1. Give a Rossman-type coupling-based proof for this width-reduction step.

2. Derandomize this proof using the approach of this work.

However, we suggest to first start by derandomizing the following (simpler) related statement,
which is a key lemma due to Lovett, Wu, and Zhang in their work on decision-list compression
(for simplicity we state it here only for DNFs). This lemma is also proved by a Razborov-style
encoding argument.

Lemma 1.10. Let F (x) =
∨m
i=1Ai(x) be a DNF of width w, and let ρ ∈ {0, 1, ∗}n be a

p-random restriction. Say that a term Ai(x) is “useful” in F (x) if there is any input x such
that Ai(x) = 1 and Aj(x) = 0 for all j < i. We have the bound

E
ρ

m∑
i=1

1(Ai(ρ ◦ x) is useful in F (ρ ◦ x)) ≤
(

4

1− p

)w
.

We observe that we can carry out the first step of our suggested plan; namely, in Section 5 we
include an alternative Rossman-style coupling-based proof of this lemma (in fact, with the
improved constant 2 instead of 4). However, unlike the situation with the switching lemma,
we do not see how to derandomize this proof; although we believe it should be possible, it will
require new ideas. Concretely, we ask for a proof or refutation of the following conjecture.

Conjecture 1.11. Lemma 1.10 is true even for ρ = T [U, ?], where U is distributed uniformly
over {0, 1}n, and T is any w-wise p-bounded distribution over {0, 1}n.
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2 Preliminaries

Decision Lists. A decision list is, for the purpose of this paper, a mathematical operator
that takes two boolean vectors a, b ∈ {0, 1}m and produces a single boolean output defined
by the following process: find the smallest index i ∈ [m] such that ai = 1, and output bi. If
there is no such index i, the decision list returns a default value of 0. Thus, the value of a
decision list on (a, b) is given by the summation∑

i

ai · φi · bi,

where
φi :=

∏
j<i

(1− ai).

In order to clean up some expressions within this paper, we introduce the notational short-
hand

L
i

(ai → bi) :=
∑
i

ai · φi · bi.

Restrictions. We use the notation for restrictions introduced near the beginning of Section 1.

Small-Bias Distributions. We make use of δ-biased distributions, which are a basic
pseudorandomness primitive with efficient constructions due to [NN93] and [AGHP92]. A
distribution X over {0, 1}n is said to be δ-biased if, for every nonzero α ∈ {0, 1}n, X δ-fools
the parity function specified by the bits in α. That is,

|E
X

(−1)〈α,X〉| ≤ δ.

Standard constructions of δ-biased distributions have seedlength O(log n+log 1/δ). We make
use of the following simple properties of δ-biased distributions X.

Proposition 2.1. If f : {0, 1}n → {0, 1} is an AND of any k (logically-consistent) literals,
then

|E
X
f(X)−

(
1
2

)k | ≤ δ.

Proof. The function f(x) can be expressed in the form

f(x) =
(

1
2
± 1

2
(−1)xi1

) (
1
2
± 1

2
(−1)xi2

)
· · ·
(

1
2
± 1

2
(−1)xik

)
.

Expanding this product gives a convex-combination of parity functions.

Proposition 2.2. If f : {0, 1}n → {0, 1} depends on at most k variables, then8

|E
X
f(X)− E

U
f(U)| ≤ δ · 2k.

Proof. By considering its truth table, the function f(x) can be expressed as a sum of at most
2k ANDs of literals.

8 This error bound can be improved to δ ·2k/2 using a Fourier-analytic argument, but the simple argument
given here suffices for most applications.
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3 Proof of the Baby Switching Lemma

We begin this section by fixing a DNF F (x) =
∨m
i=1 Ai(x), where each term Ai is an AND

of at most w literals. For i ∈ [m], we let Vi ⊆ [n] be the set of variables contained in term
Ai. Also for each i, fix some vector σi ∈ {0, 1}n which satisfies Ai(σi) = 1, and define the
boolean functions

φi(x) :=
∏
j<i

(1− Aj(x)).

In this section we prove the following pseudorandom “baby” switching lemma.

Theorem 3.1. Let ρ := T [y, ?], where T is a w-wise p-bounded distribution over {0, 1}n and
y is uniformly random in {0, 1}n. If F is a DNF of width w, then

P(Fρ is non-constant) ≤ 4pw.

Proof. If Fρ(x) := F (ρ ◦ x) is not identically a constant, then there is some term Ai such
that

• Ai is the first term that is not falsified by ρ, and

• Ai is not satisfied by ρ.

Equivalently, we might say (more explicitly) that there is some index i and some integer
s ∈ [1, w] such that

• Ai(ρ ◦ σi) = 1,

• φi(ρ ◦ x) ≡ 1 as a function of x, and

• |Stars(ρ) ∩ Vi| = s.

This proves the inequality of random variables variables

1(Fρ is non-constant) ≤
w∑
s=1

m∑
i=1

Ai(ρ ◦ σi) · 1(φi(ρ) ≡ 1) · 1(|Stars(ρ) ∩ Vi| = s) .

Now, let’s fix an index i and a restriction ρ such that |Stars(ρ) ∩ Vi| = s ≥ 1. At this point
we want to consider what happens to the value Ai(ρ ◦σi) when we replace σi by a uniformly
random input x ∈ {0, 1}n. If ρ falsifies Ai, then the value remains unchanged. If instead ρ is
consistent with Ai, then Ai(ρ ◦ x) is functionally equivalent to an AND of s literals of x, so

E
x
Ai(ρ ◦ x) =

(
1
2

)s
.

13



Thus, in any case, we have the inequality Ai(ρ ◦ σi) ≤ 2s ExAi(ρ ◦ x). We conclude that

1(Fρ is non-constant) ≤
w∑
s=1

m∑
i=1

Ai(ρ ◦ σi) · 1(φi(ρ) ≡ 1) · 1(|Stars(ρ) ∩ Vi| = s)

≤
w∑
s=1

2sE
x

∑
i

Ai(ρ ◦ x) · 1(φi(ρ) ≡ 1) · 1(|Stars(ρ) ∩ Vi| = s)

≤
w∑
s=1

2sE
x

∑
i

Ai(ρ ◦ x) · φi(x) · 1(|Stars(ρ) ∩ Vi| = s)

=
w∑
s=1

2sE
x
L
i
Ai(ρ ◦ x)→ 1(|Stars(ρ) ∩ Vi| = s)

=
w∑
s=1

2sE
x
L
i
Ai(T [y, x])→ 1(|TVi | = s) ,

where x is a uniformly random vector in {0, 1}n which we introduce purely for the sake of
analysis. Averaging over ρ = T [y, ?] gives

P(Fρ is non-constant) ≤
w∑
s=1

2sE
T
E
y
E
x
L
i
Ai(T [y, x])→ 1(|TVi | = s) .

Here, we make the key observation that, for any fixed vector T , the distribution T [y, x] is
simply the uniform distribution over {0, 1}n, and in particular it does not depend on T . So,
the above expression if equivalent to

w∑
s=1

2sE
T
E
U
L
i
Ai(U)→ 1(|TVi| = s) =

w∑
s=1

2sE
T

∑
i

πi · 1(|TVi | = s)

=
∑
i

πi ·
w∑
r=1

2s · P(|TVi | = s) ,

where πi is the probability that, upon uniformly random input U ∈ {0, 1}n, Ai is the first
term with Ai(U) = 1. Note of course that

∑
i πi ≤ 1.

To conclude the calculation, we use the p-boundedness assumption on T to say that

P(|TVi | = s) ≤E
T

∑
S∈(Vi

s )

∏
j∈S

Tj ≤
(
w

s

)
· ps.

Finally, summing over all s gives

P(Fρ is non-constant) ≤
w∑
s=1

(
w

s

)
(2p)s = (1 + 2p)w − 1 ≤ e2pw − 1.

We assume that p ≤ 1
2w

, since otherwise the desired bound is trivial, and so we finish by
applying the estimate et ≤ 1 + 2t, which is valid for t ∈ [0, 1].
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4 Proof of the Full Switching Lemma

We begin this section by fixing a DNF F (x) =
∨m
i=1 Ai(x), where each term Ai is an AND

of at most w literals. For i ∈ [m], we let Vi ⊆ [n] be the set of variables contained in term
Ai. We will insist that these sets are presented in increasing order so that we can refer to
the “j-th entry of Vi”, which we denote Vi[j].

We recall the notion of the canonical decision tree for a DNF. We use the notation CDT(F, ρ)
to refer to the canonical decision tree of the restricted function F (ρ ◦ x). The canonical
decision tree is defined by the simple, greedy, recursive construction described below. For
Q ⊆ [n] and α ∈ {0, 1}|Q|, we let Q← α denote the restriction which sets the variables in Q
according to α in the natural way, and has stars elsewhere.

CDT(F, ρ):

• If F is empty, return 0.

• If A1 is satisfied by ρ, return 1.

• If A1 is falsified by ρ, return CDT(
∨m
i=2Ai(x), ρ)

• Otherwise, let Q = Stars(ρ) ∩ V1 be the set of free variables in A1, and query all of
them. That is, we construct a complete binary tree of depth |Q|, and to each path
α ∈ {0, 1}|Q|, we assign the value CDT(

∨m
i=2Ai, ρ ◦ (Q← α)).

We remark that in the context of the final bullet point above, the restrictions ρ ◦ (Q ← α)
and (Q ← α) ◦ ρ are in fact the same since Q ⊆ Stars(ρ). So we can equivalently say that
we recurse on “CDT(

∨m
i=2Ai, (Q← α) ◦ ρ)” – it will be preferable for us to instead imagine

composing the restrictions in this way.

We wish to unpack this recursive definition of the canonical decision tree so that we can
express the event that CDT(F, ρ) has depth ≥ d in terms of some more explicit conditions
depending on ρ. Unfortunately, this will require us to introduce quite a bit of additional
notation; to get started, for a set Q ∈

(
[w]
t

)
, a vector α ∈ {0, 1}t, and an index ` ∈ [m], we

define the restriction
Q←` α

so that for all j ∈ Q, j ≤ |V`|,
(Q←` α)V`[j] := αj,

and elsewhere we have (Q←` α)i := ∗. Thus, Q←` α corresponds to the restriction which
fixes a subset of the variables in V`, where the subset is specified by Q ⊆ [w], according to
α.

Given some sets Qi ∈
(

[w]
si

)
, vectors αi ∈ {0, 1}si , and indices `i ∈ [m], we denote the

corresponding restrictions by
α̃i := Qi ←`i αi.
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Lastly, given some sets Q1, Q2, . . . , Qr ⊆ [w] and a tuple of indices ` = (`1, `2, . . . , `r), define

Q̃(`) := {Vi[j] : i ∈ [r], j ∈ Qi, j ≤ |Vi|},

that is, Q̃(`) ⊆
⋃r
i=1 Vi is a set of variables which is selected based on the subsets Qi ⊆ [w].

Lemma 4.1. Suppose CDT(F, ρ) has a path α ∈ {0, 1}d−1 that fails to reach a leaf of the
decision tree. Then there exist

• integers r ∈ [d], s ∈ [d, d+ w − 1], and s1, . . . sr ≥ 1 with s1 + · · ·+ sr = s,

• indices 1 ≤ `1 < . . . < `r ≤ m,

• sets Qi ∈
(

[w]
si

)
for all i ∈ [r], and vectors αi ∈ {0, 1}si for all i ∈ [r − 1],

such that

1. For each i ∈ [r], A`i is the first term in F that is not falsified by α̃1 ◦ · · · ◦ α̃i−1 ◦ ρ,

2. Stars(ρ) ∩ (
⋃r
i=1 V`i) = Q̃(`).

Proof. We simply unpack the recursive definition of CDT(F, ρ), following along the path in
the decision tree defined by the bits in α. For each i,

• We record the index `i of the first term in F that is not falsified by α̃1 ◦ · · · ◦ α̃i−1 ◦ ρ.

• We record the variables queried while processing A`i (encoded as Qi ⊆ [w]), and set
si := |Qi|,

• If
∑

j≤i si ≥ d, we set r := i and s :=
∑

j≤r si and terminate.

• Otherwise, we use the next si bits of α to determine αi and continue.

In the first item above, it must be the case that such a term exists, and is not satisfied by
α̃1 ◦ · · · ◦ α̃i−1 ◦ ρ, or else we have reached the end of the path in the decision tree defined
by α before reaching depth d. Thus, si ≥ 1 for all i. Since we terminate as soon as possible
after reaching depth d, and the terms all have width at most w, we are guaranteed r ≤ d
and s ≤ d+ w − 1.

Lemma 4.1 suggests the following approach for bounding the probability that F , randomly
restricted by ρ, has a canonical decision tree of depth at least d: first, fix some data
r, s, `i, Qi, αi; then, bound the probability that items (1.) and (2.) occur for a particular
fixing of the data, and finally sum over all possibilities for that data to get an overall bound.
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Towards this end, given data ` = (`1, . . . , `r), α = (α1, . . . , αr−1), and Q = (Q1, . . . , Qr),
define the functions

fQ,α` (x) :=
r∏
i=1

Ai(α̃1 ◦ · · · ◦ α̃i−1 ◦ x).

We now come to a key trick needed for our proof: we can apply the function fQ,α` to a
random completion of ρ in order to detect whether it satisfies the conditions described in (1.)
of Lemma 4.1. Indeed, fix a restriction ρ and suppose that |Stars(ρ) ∩ (

⋃r
i=1 V`i)| = s. Then,

as a function of x, fα,Q` (ρ ◦ x) is either (a) identically zero (in the case that α̃1 ◦ · · · ◦ α̃i−1 ◦ ρ
falsifies Ai for some i – in this case say that ρ is “miss”), or (b) functionally equivalent to
an AND of s literals (in the complement case that ρ is “hit”). Thus, in any case we have

1(ρ is a “hit” w.r.t. `,Q, α) ≤ 2s E
x
fQ,α` (ρ ◦ x),

where x is a uniformly random vector in {0, 1}n which we introduce purely for the sake of
our analysis.

Our next step will be to simplify the event (1.) in Lemma 4.1 by refactoring quantifiers.

Proposition 4.2. The event (1.) in Lemma 4.1 is equivalent to the following event:

1’. ` = (`1, . . . `r) is the first (with respect to the lexicographic ordering on increasing tuples
in [m]r) tuple such that for all i ∈ [r], A`i is not falsified by α̃1 ◦ · · · ◦ α̃i−1 ◦ ρ.

Proof. Fix a restriction ρ and some data r,Q, α. For k ∈ [m], We introduce a notational
shorthand Ei(k) to refer the the event that Ak is not falsified by α̃1 ◦ · · · ◦ α̃i−1 ◦ ρ.

We consider two different methods for generating an increasing tuple of indices. First, we
define ` = (`1, . . . , `r) by letting `1 be the first index such that E1(`1), and, for i > 1, letting
`i be the first index larger than `i−1 such that Ei(`i). Second, we define `′ = (`′1, . . . , `

′
r) as

the lexicographically-first increasing tuple such that Ei(`i) for all i.

In the case that either of these tuples are well-defined (i.e. there is at least one increasing
tuple satisfying the conditions), we show that they are the same. Seeking contradiction,
suppose ` 6= `′, and let j be the first coordinate in which they differ. If `j < `′j then we
could get a lexicographically-smaller increasing tuple `′ that still satisfies the conditions by
replacing `′j with `j. On the other hand, `j > `′j would clearly contradict our procedure for
defining `.

In order to check that a tuple is indeed the first tuple “hit” by ρ, we introduce the function

φα,Q` (x) :=
∏
`′<`

(1− fQ,α`′ (x)),

17



where the product is taken over all increasing tuples `′ ∈ [m]r which are lexicographically
smaller than `. Recalling our discussion from earlier, we have that, as a function of x, the
restricted function φQ,α` (ρ ◦ x) is identically 1 if ρ is a “miss” with respect to `′, Q, α for all
`′ < `.

Using Lemma 4.1, Proposition 4.2, and the recent discussion, we have that for fixed data
r, s,Q, α,

1(ρ satisfies events (1.) and (2.) w.r.t. Q,α)

≤
∑
`

1(ρ is a “hit” w.r.t. `,Q, α) · 1(ρ is a “miss” for `′ < `) · 1

(
Stars(ρ) ∩

(
r⋃
i=1

V`i

)
= Q̃(`)

)

≤
∑
`

2sE
x
fQ,α` (ρ ◦ x) · φQ,α` (ρ ◦ x) · 1

(
Stars(ρ) ∩

(
r⋃
i=1

V`i

)
= Q̃(`)

)
≤
∑
`

2sE
x
fQ,α` (ρ ◦ x) · φQ,α` (ρ ◦ x) · 1

(
Stars(ρ) ⊇ Q̃(`)

)
= 2sE

x
L̀ fQ,α` (ρ ◦ x)→ 1

(
Stars(ρ) ⊇ Q̃(`)

)
,

where the sum is over all increasing tuples ` ∈ [m]r. Thus, we have proved the main technical
lemma of this section (which can be compared with Lemma 1.1):

Lemma 4.3. Let F (x) =
∨m
i=1Ai(x) by a DNF of width w. Then for any restriction ρ ∈

{0, 1, ∗}n,

1(CDT(F, ρ) has depth ≥ d) ≤ Bd(ρ) :=
d+w−1∑
s=d

d∑
r=1

∑
Q,α

2sE
x
L̀ fQ,α` (ρ◦x)→ 1

(
Stars(ρ) ⊇ Q̃(`)

)
,

where the inner summation is over all Q = (Q1, . . . Qr) ⊆
(

[w]
s1

)
× · · · ×

(
[w]
sr

)
and all α =

(α1, . . . , αr−1) ∈ {0, 1}s1×. . . {0, 1}sr−1, for all choices of s1, . . . sr ≥ 1 such that s1+· · ·+sr =
s. The decision list is indexed over the set of all increasing tuples ` ∈ [m]r, which is ordered
lexicographically.

The important features of the bounding expression Bd are summarized by the next two
claims.

Proposition 4.4. The expression Bd(ρ) from Lemma 4.3 is the sum of at most (8w)d+w

functions of the form

E
x
L
i
fi(ρ ◦ x)→ 1(Stars(ρ) ⊇ Si) ,

where x is a uniformly random vector in {0, 1}n, each Si is a set of size at most d+w, and
each fi is an AND of at most wd literals.
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Proof. For each s, we count the number of choices for the data r,Q, α, and also account for
the scaling factor 2s. There are at most 2s choices for r, s1, . . . sr such that s1 + · · ·+ sr = s.
Finally, There are at most 2s choices for α, and at most ws1 · · ·wsr = ws choices for Q.
Summing over s, we get

d+w−1∑
s=d

(8w)s ≤ (8w)d+w.

The claims about the form of Si and fi correspond the the facts that by construction, Q̃(`)
is a set of size s ≤ d+ w, and fQ,α` is a product of (restrictions of) r ≤ d terms from F .

Proposition 4.5. Suppose ρ ∈ {0, 1, ∗}n is a p-random restriction with p ≤ 1
16w

. Then

E
ρ
Bd(ρ) ≤ 2 · (8pw)d

Proof. We first argue for a single function of the form Ex Li fi(ρ◦x)→ 1(Stars(ρ) ⊇ Si) such
that |Si| = s for all i, and then sum.

We imagine sampling ρ by first making a random selection to determine the locations of the
stars, and then randomly setting the non-star coordinates to 0 or 1 using a separate random
process. That is, let ρ = T [y, ?], where T is a p-random string in {0, 1}n and y is a uniformly
random vector in {0, 1}n. Averaging over ρ gives

E
ρ
E
x
L
i
fi(ρ ◦ x)→ 1(Stars(ρ) ⊇ Si) = E

T
E
y
E
x
L
i
fi(T [y, x])→

∏
j∈Si

Tj.

At this point, we make the key observation that for any fixed vector T , the distribution
T [y, x] is simply the uniform distribution over {0, 1}n. In particular, it does not depend on
T . So, letting U be a uniformly random vector in {0, 1}n, the above is equivalent to

E
T
E
U
L
i
fi(U)→

∏
j∈Si

Tj = E
T

∑
i

πi
∏
j∈Si

Tj =
∑
i

πiE
T

∏
j∈Si

Tj,

where πi is the probability, that upon random input U , i is the first index such that fi(U) = 1.
We conclude this estimate by noting that ET

∏
j∈Si

Tj = ps, and so
∑

i πip
s ≤ ps.

Summing this bound over all summands in the expression Bd(ρ) gives

E
ρ
Bd(ρ) ≤

d+w−1∑
s=d

(8w)s · ps ≤ (8pw)d
∞∑
i=0

(8pw)−i =
(8pw)d

1− 8pw
.

We observe that the argument above is robust to the use of less-than-perfect random selection
procedures.
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Theorem 4.6. Let F (x) =
∨m
i=1Ai(x) by a DNF of width w. Suppose T is a (d + w)-wise

p-bounded distribution over {0, 1}n, and y is a random vector in {0, 1}n. If p ≤ 1
16w

, Then
the random restriction ρ = T [y, ?] satisfies

P(CDT(F, ρ) has depth ≥ d) ≤ E
ρ
Bd(ρ) ≤ 2 · (8pw)d.

Proof. We follow the proof of Proposition 4.5 exactly, except that we use the p-boundedness
assumption to say that

E
T

∏
j∈S

Tj ≤ ps

whenever S is a set of size |S| = s ≤ d+ w.

5 Further Proofs

Proof of Theorem 1.3

Proof. Let t := log(1/p). We first generate Y ∈ ({0, 1}t)n ∼= {0, 1}tn according to a δ-biased
distribution. We define the selection vector T in every coordinate via Ti := Yi,1∧Yi,2∧· · ·∧Yi,t.

Now, we follow the proof of Proposition 4.5 exactly, except that we use the δ-bias assumption
to say that

E
T

∏
j∈S

Tj ≤ ps + δ

whenever S is a set of size s. For the restriction ρ := T [U, ?], this yields

P(CDT(F, ρ) has depth ≥ d) ≤ 2 · (8pw)d + δ · (8w)d+w.

Setting δ = ε/(8w)d+w results in the desired seedlength

O(log(nt) + log(1/δ)) = O(log n+ (w + d) · logw + log(1/ε)).

Proof of Corollary 1.4

Proof. We first restrict according to a selection vector T 1 ∈ {0, 1}n which we draw directly
from a δ-biased distribution. Let ρ1 = T 1[U, ?]. By a simple union bound over all terms, the
probability that F (ρ1 ◦ x) has a surviving term of width at least w is at most

((3/4)w + δ)m.

We then compose with a restriction ρ2 that satisfies the switching lemma on DNFs of width w
as given by Theorem 1.3. The overall restriction is ρ := ρ1◦ρ2 = T 1∧T 2[U, ?]. and the overall
selection vector is T := T 1 ∧ T 2. By picking parameters δ = Θ(ε/m) and w = Θ(log(m/ε)),
we can obtain overall error ε and obtain the overall desired seedlength.
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Proof of Theorem 1.7

Proof Sketch. The construction of the pseudorandom generator is essentially the construction
we outline in Section 1. Specifically, the output of the generator is given by

Gr(Z) := τ (1) ◦ τ (2) ◦ · · · ◦ τ (r) ◦ Z,

where Z is a δ-biased distribution and each τ (i) is an independent copy of a pseudorandom
restriction defined as follows. We set

ρ0 := X and ρj := T j[?, ρj−1],

and τ := ρD = T 1 ∧ · · · ∧ TD[?,X], where T 1 and X are (independently) drawn from a
δ-biased distribution, and for j ≥ 2 we (independently) generate each T j according to a
δ-biased distribution Y ∈ ({0, 1}t)n in the manner described in the proof of Theorem 1.3.

Fix a size-m, depth-D AC0-function F : {0, 1}n → {0, 1}, where we assume m ≥ n. We also
assume D ≥ 2, as the D = 1 case simply corresponds to ANDs and ORs of literals, which is
easy.

The probability that, as a function of X, the restricted function F (τ ◦U) cannot be expressed
as a depth-w decision tree is at most

γ1 := ((3/4)w + δ) ·m+ (D − 1) ·m · (2 · (8pw)w + δ · (8w)2w),

where p = 1/2t and w is a parameter we are free to choose. By choosing w ≥ Ω(log(m)) and
t = log(w) + 4, we can say that

γ1 ≤ 2−Ω(w) + δ · wO(w).

Now, it is easy to argue that X fools depth-w decision trees with error δ · 2w, since such
decision trees can be expressed as a sum over at most 2w ANDs of literals. So, overall, the
distribution τ ◦ U fools such functions F with error at most

γ2 := γ1 + δ · 2w ≤ 2−Ω(w) + δ · wO(w).

Now, we bound the overall error of the generator by a simple hybrid argument:

|EF (Gr(Z))− EF (U)| ≤ |EF (Gr(Z))− EF (Gr(U))|+
r−1∑
i=0

∣∣EF (Gi(ρ
(i+1) ◦ U))− EF (Gi(U))

∣∣
≤ |EF (Gr(Z))− EF (Gr(U))|+ r · γ2.

It remains to bound the error of the base of the hybrid argument, |EF (Gr(Z))− EF (Gr(U))|.
To do this, we set r large enough so that, as a function of Z, it is highly likely that F (Gr(Z))
depends only on a few bits of Z, say w. In this case, Z fools F (Gr(Z)) with error at most
δ ·2w. We can set r = Θ(log(n) log(w)/pD−1) and obtain the following claim, which is proved
using standard tail-bound arguments for δ-biased random variables.
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Claim 5.1.

P
(
|Stars(τ (1) ◦ τ (2) ◦ · · · ◦ τ (r))| ≥ w

)
≤ 2−Ω(w) + δΩ(1/D logw) · wO(Dw).

Given this claim, we can bound the overall error of the pseudorandom generator by

γ3 := 2−Ω(w) + δΩ(1/D logw) · wO(Dw) + r · γ2 = 2−Ω(w) + δΩ(1/D logw) · wO(Dw).

By choosing w := Θ(log(m/ε)) and log(1/δ) := Θ(D2 log(m/ε)(log log(m/ε))2), we get error
ε with an overall seedlength of

O(r ·D · log(1/δ)) ≤ O(log(m/ε))D · log(n) · (log log(m/ε))3.

Proof Sketch for Claim 5.1. We set up a matrix of boolean random variables W with r rows
and m columns, corresponding to Wij := 1

(
j ∈ Stars(τ (i))

)
. We note that each Wij is, as a

function of the underlying δ-biased variables used to generate selection vectors, a negation
of an AND of literals. As a result, the product of any subset of variables from W is in fact a
read-once CNF, and it is shown in [DETT10] that read-once CNFs with c clauses are fooled
by δ-biased distributions with error δ′ := δΩ(1/ log(c)). It can also be shown by an elementary
argument (i.e. just expand the product into 2c terms) that such products are also fooled with
error δ · 2c. We note that for each variable,∣∣E[Wij]− (1− pD−1/2)

∣∣ ≤ δ.

Define q := pD−1/2, and note for later that 1/q ≤ O(w)D. We set r := 4 log(n) log(w)/q.

Define n0 := n and

ni := |Stars(τ (1) ◦ τ (2) ◦ · · · ◦ τ (i))| =
n∑
j=1

∏
i′≤i

Wi′j.

We argue in two stages that nr/2 ≤ wO(D) with high probability, and then (conditioning on
this likely event) that nr ≤ w with high probability.

For the first stage, we use a standard bound on the k-th moment of a sum Z :=
∑n

j=1 Zj of
independent, mean-zero random variables Zi ∈ [−1,+1], (see e.g. the proof of theorem 4 in
[SSS95]): for even k we have EZk ≤ (kn)k/2. Now, if we consider the i-th row in W , and
set Zj := Wij − (1− q), then we obtain the k-th moment bound EZk ≤ (kn)k/2 + δ · 2k · nk.
Applying a Markov argument, we derive the probability bound

P(ni ≥ (1− q/2)ni−1) ≤
(

k

ni−1

4

q2

)k/2
+ δ · (4/q)k.

Observe that (1 − q/2)r/2 · n ≤ 1, and set k := Θ(w). By a simple union-bound argument,
we conclude that we must have nr/2 ≤ wO(D), except with probability at most

(r/2) · (2−Ω(w) + δ · wO(Dw)) ≤ 2−Ω(w) + δ · wO(Dw).
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Now for the second stage, we fix the first r/2 rows of W , and condition on the event that
nr/2 ≤ wO(D). We consider the chance that there is a set of w columns, among the nr/2
columns which are still live, such that W has all 1’s down each of these w columns. This
event can be expressed as a read-once CNF with c = w · r/2 ≤ wO(D) clauses. Thus the
chance that this event occurs (for a specific set of w columns) is at most

(1− q)w·r/2 + δΩ(1/ log(c)) ≤ e−w log(n) log(w) + δΩ(1/D logw).

We finish the estimate by union-bounding over all
(
nr/2

w

)
≤ wO(Dw) choices of w columns. .

Proof of Theorem 1.8

Proof. Use Theorem 1.4, with d = Θ(log(1/γ)) and p = Θ(1/ log(m)), to select T . We
generate X ∈ {0, 1}n using a δ-biased distribution. We exchange the order of expectations
and estimate

E
T
E
U

(
E
X
F (T [U,X])− E

U ′
F (T [U,U ′])

)
.

Let σ := T [U, ?]. Now, whenever Fσ successfully collapses to a depth-d decision tree, we
have ∣∣∣E

X
F (σ ◦X)− E

U ′
F (σ ◦ U ′)

∣∣∣ ≤ δ · 2s.

This is because any decision tree of depth d can be expressed as a sum of at most 2d ANDs of
literals (we get one AND for each path in the decision tree that reaches a leaf which outputs
1). Whenever Fσ fails to collapse, we instead bound this quantity trivially by 1. We can set
log(1/δ) := Θ(log(1/γ)) to get an overall error bound of γ.

Proof of Lemma 1.10

Proof. Let F (x) =
∨m
i=1Ai(x) be a width-w DNF, and let ρ be a p-random restriction. For

each i, define φi(x) :=
∏

j<i(1 − Ai(x)), and let σi ∈ {0, 1, ∗}n be the (unique) restriction
that sets all the variables in Ai so that Ai becomes satisfied, and does not set any other
variables.

We observe that

1(Ai(ρ) is useful in F (ρ)) = Ai(ρ ◦ σi) · 1(φi(ρ ◦ σi) 6≡ 0)

and, with some consideration, that

E
ρ
Ai(ρ ◦ σi) · 1(φi(ρ ◦ σi) 6≡ 0) ≤

(
2

1− p

)w
E
ρ
1(Ai(ρ) ≡ 1) · 1(φi(ρ) 6≡ 0) .

Thus, the average number of useful terms in F (ρ) is bounded by(
2

1− p

)w m∑
i=1

E
ρ
1(Ai(ρ) ≡ 1) · 1(φi(ρ) 6≡ 0) ≤

(
2

1− p

)w
,

since the events in the sum are disjoint.
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