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Abstract

We consider the following problem: estimate the size of a nonempty set S ⊆ [N ], given
both quantum queries to a membership oracle for S, and a device that generates equal super-
positions |S〉 over S elements. We show that, if |S| is neither too large nor too small, then
approximate counting with these resources is still quantumly hard. More precisely, any quan-

tum algorithm needs either Ω
(√

N/ |S|
)

queries or else Ω
(

min
{
|S|1/4 ,

√
N/ |S|

})
copies of

|S〉. This means that, in the black-box setting, quantum sampling does not imply approximate
counting. The proof uses a novel generalization of the polynomial method of Beals et al. to
Laurent polynomials, which can have negative exponents.

1 Introduction

The quantum query complexity of approximate counting was one of the first topics studied in quan-
tum algorithms. Given a nonempty finite set S ⊆ [N ] (here and throughout, [N ] = {1, . . . , N}),
suppose we want to estimate its cardinality, |S|, to within some multiplicative accuracy ε. This is
a fundamental task in theoretical computer science, used as a subroutine for countless other tasks.

As is standard in quantum algorithms, we work in the so-called black-box model (see [10]), where
we assume only that we’re given a membership oracle for S: an oracle that, for any i ∈ [N ], tells us
whether i ∈ S. We can, however, query the oracle in quantum superposition. How many queries
must a quantum computer make, as a function of both N and |S|, to solve this problem with high
probability?

For classical randomized algorithms, one can show that Θ
(

N
|S|

)
membership queries are neces-

sary and sufficient, for approximate counting to within some constant accuracy ε > 0. Moreover,
any accuracy ε is achievable at the cost of a O

(
1
ε2

)
multiplicative overhead. Intuitively, in the

worst case, we might need Θ
(

N
|S|

)
queries just to find any S elements, but once we do, estimat-

ing their frequency is just a standard statistics problem. Furthermore, for the O
(

N
|S|

)
estimation

strategy to work, we don’t need to suppose (circularly) that |S| is approximately known in advance,
but can decide when to halt dynamically, depending on when the first S elements are found.

In the quantum case, Brassard, Høyer, and Tapp [9] gave an algorithm for approximate counting

that makes only O
(√

N
|S|

)
queries, for any constant ε > 0. Moreover, they showed how to achieve
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any accuracy ε with O
(

1
ε

)
multiplicative overhead. To do so, one uses amplitude amplification,

the basic primitive of Grover’s search algorithm [14]. The original algorithm of Brassard et al. [9]
also used quantum phase estimation, in effect combining Grover’s algorithm with Shor’s period-
finding algorithm. However, it’s a folklore fact that one can remove the phase estimation, and
adapt Grover search with an unknown number of marked items, to get an approximate count of
the number of marked items as well.

On the lower bound side, it follows immediately from the optimality of Grover’s algorithm (i.e.,

the BBBV Theorem [7]) that even with a quantum computer, in the black-box setting, Ω
(√

N
|S|

)
queries are needed for approximate counting to any constant accuracy.

In practice, when trying to estimate the size of a set S ⊆ [N ], often we can do more than make
membership queries to S. At the least, often we can efficiently generate nearly-uniform samples
from S, for instance by using Markov Chain Monte Carlo techniques. To give two examples, if S
is the set of perfect matchings in a bipartite graph, or the set of grid points in a high-dimensional
convex body, then we can efficiently sample S using the seminal algorithms of Jerrum, Sinclair,
and Vigoda [15] or of Dyer, Frieze, and Kannan [11], respectively.

Sometimes we can even “QSample” S—a term coined in 2003 by Aharonov and Ta-Shma [5],
and which simply means that we can approximately prepare the uniform superposition

|S〉 :=
1√
|S|

∑
i∈S
|i〉

via a polynomial-time quantum algorithm (where “polynomial” here means (logN)O(1)). Because
we need to uncompute any garbage, the ability to prepare |S〉 as a coherent superposition is a more
stringent requirement than the ability to sample S. Indeed, as Aharonov and Ta-Shma [5] pointed
out, the quantum lower bound for finding collisions [1, 4] has the corollary that, in the black-box
setting, there are classes of sets S that can be efficiently sampled but not efficiently QSampled.

On the other hand, Aharonov and Ta-Shma [5], and Grover and Rudolph [13], observed that
many interesting sets S can be QSampled as well. In particular, this holds for all sets S such
that we can approximately count not only S itself, but also the restrictions of S obtained by fixing
bits of its elements. Or, what’s known to be equivalent [21], it holds for all sets S such that we
can efficiently sample not only the uniform distribution over S elements, but also the conditional
distributions obtained by fixing bits. So in particular, the set of perfect matchings in a bipartite
graph, and the set of grid points in a convex body, can both be efficiently QSampled. There are
other sets that can be QSampled but not because of this reduction. A simple example would be a
set S such that |S| ≥ N

polylogN : in that case we can efficiently prepare |S〉 using postselection, but
approximately counting S’s restrictions might be hard.

Recently Paul Burchard (personal communication) posed the following question to us: are there
any sets that can be QSampled even though they can’t be approximately counted? Or, better:
do QSampling and membership testing, together, imply approximate counting? I.e., if we have
polynomial-time quantum algorithms to prepare the state |S〉, and also to decide membership in
S, is that enough to let us approximately count S?

Our main result is that, in the black-box setting, the answer to this question is no. More
precisely, we show that any quantum algorithm to decide whether |S| = w or |S| = 2w, promised
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that one of those is the case, must either make Ω

(√
N
w

)
membership queries to S, or else use

Ω

(
min

{
w1/4,

√
N
w

})
copies of |S〉. So if (for example) we set w := N2/3, then any quantum

algorithm must either query S or prepare the state |S〉 at least Ω
(
N1/6

)
times. This means that

there’s at most a quadratic speedup compared to classical approximate counting.
In Section 3, we discuss the prospects for improving this lower bound. We conjecture that

the bound could be improved, at least to involve Ω
(
w1/3

)
rather than Ω

(
w1/4

)
, by using stronger

results from approximation theory; indeed, a user on MathOverflow already proved one of the
requisite results about polynomial degree. However, we also observe that our lower bound cannot
be improved to involve ω

(
w1/3

)
without going beyond the polynomial method. While we do not

do that in this paper, we give a viable approach: using a hybrid argument, inspired by recent work
of Zhandry [23], we show that better lower bounds for our problem would follow from better lower
bounds purely on the number of copies of |S〉 (ignoring the number of queries).

Our lower bounds are within a polynomial factor of the best known quantum upper bounds
for approximate counting. As mentioned before, Brassard et al. [9] gave a quantum algorithm to

solve the problem using O

(√
N
w

)
queries (and no copies of |S〉). At the opposite extreme, it’s

easy to solve the problem using O (
√
w) copies of |S〉 (and no queries), by simply measuring each

copy of |S〉 in the computational basis and then searching for birthday collisions. Alternatively,
one can solve the problem using O

(
N
w

)
copies of |S〉 (and again, no queries), by projecting each

copy onto the state 1√
N

(|1〉+ · · ·+ |N〉) and then counting how many of the projections succeed.

We’re not aware of any quantum algorithm for approximate counting that combines membership
queries with QSampling in an interesting way, though neither can we rule such an algorithm out.
Of course, our main result limits the advantage that any such algorithm could achieve.

In our view, at least as interesting as our main result is the technique used to achieve it. In
1998, Beals et al. [6] famously observed that, if a quantum algorithm Q makes T queries to an
input X, then Q’s acceptance probability can be written as a real multilinear polynomial in the
bits of X, of degree at most 2T . And thus, crucially, if we want to rule out a fast quantum
algorithm to compute some function f (X), then it suffices to show that any real polynomial p that
approximates f pointwise must have high degree. This general transformation, from questions
about quantum algorithms to questions about polynomials, has been used to prove many results
that were not known otherwise at the time, including the quantum lower bound for the collision
problem [1, 4] and the first direct product theorems for quantum search [2, 16].

In our case, the difficulty is that the quantum algorithm starts with many copies of the state
|S〉. As a consequence of this—and specifically, of the 1√

|S|
normalizing factor in |S〉—when we

write the average acceptance probability of our algorithm as a function of |S|, we find that we get
a Laurent polynomial : a polynomial that can contain both positive and negative integer powers of
|S|. The degree of this polynomial (the highest power of |S|) encodes the sum of the number of
queries and the number of copies of |S〉, while the “anti-degree” (the highest power of 1

|S|) encodes

the number of copies of |S〉. We’re thus faced with the task of lower-bounding the degree and
the anti-degree of a Laurent polynomial that’s bounded at integer points and that encodes the
approximate counting problem.

We address this using a switching argument that, as far as we know, is new in quantum query
complexity. Writing our Laurent polynomial as q (|S|) = u (|S|)+v( 1

|S|), where u and v are ordinary
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polynomials, we show that, if u and v both have low enough degree (namely, deg (u) = o

(√
N
w

)
and

deg (v) = o
(
w1/4

)
), then we get “unbounded growth” in their values. That is: for approximation

theory reasons, either u or v must attain large values, far outside of [0, 1], at some integer values of
|S|. But that means that, for q itself to be bounded in [0, 1] (and thus represent a probability), the
other polynomial must also attain large values. And that, in turn, will force the first polynomial
to attain even larger values, and so on forever—thereby proving that these polynomials could not
have existed.

We observe that, if we considered the broader class of rational functions, then there are rational
functions of low degree that represent approximate counting. This follows, for example, from
the connection between rational functions and postselected quantum algorithms [17], together with
Aaronson’s PostBQP = PP theorem [3]. Thus, our proof relies on the fact that Laurent polynomials
are an extremely special kind of rational function.

2 Result

Define x ∈ {0, 1}N , the “characteristic string” of the set S ⊆ [N ], by xi = 1 if i ∈ S and xi = 0
otherwise.

Our starting point is the well-known symmetrization lemma of Minsky and Papert [18] (see also
Beals et al. [6] for its application to quantum query complexity), by which we can often reduce
questions about multivariate polynomials to questions about univariate ones.

Lemma 1 (Symmetrization Lemma, Minsky and Papert [18]) Let p : {0, 1}N → R be a
real multilinear polynomial of degree d, and let

q (k) := E|X|=k [p (X)] .

Then q can be written as a real polynomial in k of degree at most d.

By using Lemma 1, we now prove the key fact that relates quantum algorithms, of the type
we’re considering, to real Laurent polynomials in one variable. The following lemma generalizes
the connection between quantum algorithms and real polynomials established by Beals et al. [6].

Lemma 2 Let Q be a quantum algorithm that receives R copies of |S〉 and makes T queries to OS.
Let

q (k) := E|S|=k

[
Pr
[
QOS

(
|S〉⊗R

)
accepts

]]
.

Then q : R→ R is a univariate Laurent polynomial, with maximum exponent at most 2T +R and
minimum exponent at least −R.

Proof. Let |ψt〉 be Q’s state immediately after the tth query. Then we can write Q’s initial state
as

|ψ0〉 = |S〉⊗R =
1

|S|R/2

∑
i1,...,iR∈[N ]

xi1 · · ·xiR |i1, . . . , iR〉 .

Thus, each amplitude is a complex multilinear polynomial in X = (x1, . . . , xN ) of degree R, divided

by |S|R/2.
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Like Beals et al. [6], we now consider how amplitudes change as Q progresses. Each query,
to an index i ∈ [N ], multiplies the amplitude of the associated basis state by 1 − 2xi, increasing
the amplitude’s degree as a polynomial by 1. Meanwhile, between the tth and (t+ 1)st queries,
Q can apply an arbitrary unitary transformation Ut, which does not depend on X and hence does
not increase degree. Since x2

i = xi for all i, we can also maintain multilinearity without loss of
generality.

It follows that Q’s final state has the form

UT |ψT 〉 =
∑

αz (X) |z〉 ,

where each αz (X) is a complex multilinear polynomial in X of degree at most R+T , again divided

by |S|R/2. Since X itself is real-valued, it follows that the real and imaginary parts of αz (X),
considered individually, are real multilinear polynomials in X of degree at most R + T divided by
|S|R/2.

Hence, if we let

p (X) := Pr
[
QOS

(
|S〉⊗R

)
accepts

]
,

then
p (X) =

∑
accepting z

|αz (X)|2 =
∑

accepting z

(
Re2 αz (X) + Im2 αz (X)

)
is a real multilinear polynomial in X of degree at most 2 (R+ T ), divided through (in every mono-
mial) by |S|R = |X|R.

Now consider
q (k) := E|X|=k [p (X)] .

By Lemma 1, this is a real univariate polynomial in |X| of degree at most 2 (R+ T ), divided
through (in every monomial) by |S|R = |X|R. Or said another way, it’s a real Laurent polynomial
in |X|, with maximum exponent at most R+ 2T and minimum exponent at least −R.

Besides , We’ll need several results from approximation theory, each of which has previously
been used (in some form) in other applications of the polynomial method to quantum lower bounds.
We start with the basic inequality of Markov.

Lemma 3 (Markov) Let p be a real polynomial, and suppose that

max
x,y∈[a,b]

|p (x)− p (y)| ≤ H.

Then ∣∣p′ (x)
∣∣ ≤ H

b− a
deg (p)2

for all x ∈ [a, b].

We’ll also need a bound that was explicitly stated by Paturi [19], and which amounts to the
folklore fact that, among all degree-d polynomials that are bounded within a given range, the
Chebyshev polynomials have the fastest growth outside that range.

Lemma 4 (Paturi) Let p be a real polynomial, and suppose that |p (x)| ≤ 1 for all |x| ≤ 1. Then
for all x ≤ 1 + µ, we have

|p (x)| ≤ exp
(

2 deg (p)
√

2µ+ µ2
)
.
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We now state a useful corollary of Lemma 4, which says (in effect) that slightly shrinking the
domain of a low-degree real polynomial can only modestly shrink its range.

Corollary 5 Let p be a real polynomial of degree d, and suppose that

max
x,y∈[a,b]

|p (x)− p (y)| ≥ H.

Let ε ≤ 1
100d2

and a′ := a+ ε (b− a). Then

max
x,y∈[a′,b]

|p (x)− p (y)| ≥ H

2
.

Proof. Suppose by contradiction that

|p (x)− p (y)| < H

2

for all x, y ∈ [a′, b]. By affine shifts, we can assume without loss of generality that |p (x)| < H
4 for

all x ∈ [a′, b]. Then by Lemma 4, for all x ∈ [a, b] we have

|p (x)| < H

4
· exp

2d

√
2

(
1

1− ε
− 1

)
+

(
1

1− ε
− 1

)2
 ≤ H

2
.

But this violates the hypothesis.
Finally, we’ll need a bound that relates the range of a low-degree polynomial on a discrete set

of points to its range on a continuous interval. The following lemma generalizes a result due to
Ehlich and Zeller [12] and Rivlin and Cheney [20], who were interested only in the case where the
discrete points are evenly spaced.

Lemma 6 Let p be a real polynomial of degree at most
√
N , and let 0 = z1 < · · · < zM = N be

a list of points such that zi+1 − zi ≤ 1 for all i (the simplest example being the integers 0, . . . , N).
Suppose that

max
x,y∈[0,N ]

|p (x)− p (y)| ≥ H.

Then

max
i,j
|p (zi)− p (zj)| ≥

H

2
.

Proof. Suppose by contradiction that

|p (zi)− p (zj)| <
H

2

for all i, j. By affine shifts, we can assume without loss of generality that |p (zi)| < H
4 for all i.

Let

c := max
x∈[0,N ]

|p (x)|
H/4

.
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If c ≤ 1, then the hypothesis clearly fails, so assume c > 1. Suppose that the maximum, |p (x)| =
cH
4 , is achieved between zi and zi+1. Then by basic calculus, there exists an x∗ ∈ [zi, zi+1] such

that ∣∣p′ (x∗)∣∣ > 2 (c− 1)

zi+1 − zi
· H

4
≥ (c− 1)H

2
.

So by Lemma 3,
(c− 1)H

2
<
cH/4

N
deg (p)2 .

Solving for c, we find

c <
2N

2N − deg (p)2 ≤ 2.

But if c < 2, then maxx∈[0,N ] |p (x)| < H
2 , which violates the hypothesis.

We’re now ready to prove the main result of this paper.

Theorem 7 Let Q be a quantum algorithm that receives R copies of |S〉, makes T queries to OS,
and decides whether |S| = w or |S| = 2w with success probability at least 2/3, promised that one of

those is the case. Then either T = Ω

(√
N
w

)
or

R = Ω

(
min

{
w1/4,

√
N

w

})
.

Proof. Let
q (k) := E|S|=k

[
Pr
[
QOS

(
|S〉⊗R

)
accepts

]]
.

Then by Lemma 2, we can write q as a Laurent polynomial, like so:

q (k) = u (k) + v (1/k) ,

where u is a real polynomial in k with deg (u) ≤ 2T + R, and v is a real polynomial in 1/k with

deg (v) ≤ R. So to prove the theorem, it suffices to show that either deg (u) = Ω

(√
N
w

)
, or else

deg (v) = Ω
(
w1/4

)
. To do so, we’ll assume that deg (u) = o

(√
N
w

)
and deg (v) = o

(
w1/4

)
, and

derive a contradiction.
Our high-level strategy is as follows: we’ll observe that, if approximate counting is successfully

being solved, then either u or v must attain a large first derivative somewhere in its domain. By
the approximation theory lemmas that we proved earlier, this will force that polynomial to have a
large range—even on a subset of integer (or inverse-integer) points. But the sum, u (k) + v (1/k),
is bounded in [0, 1] for all k ∈ [N ]. So if one polynomial has a large range, then the other does
too. But this forces the other polynomial to have a large derivative somewhere in its domain, and
therefore (by approximation theory) to have an even larger range, forcing the first polynomial to
have an even larger range to compensate, and so on. As long as deg (u) and deg (v) are both small
enough, this endless switching will force both u and v to attain unboundedly large values—with the
fact that one polynomial is in k, and the other is in 1/k, crucial to achieving the desired “explosion.”
Since u and v are polynomials on compact sets, such unbounded growth is an obvious absurdity,
and this will give us the desired contradiction.
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In more detail, we will study the following quantities.

Gu := maxx,y∈[
√
w,2w] |u (x)− u (y)| Gv := maxx,y∈[ 1

N
, 1
w ] |v (x)− v (y)|

∆u := maxx∈[
√
w,2w] |u

′ (x)| ∆v := maxx∈[ 1
N
, 1
w ] |v

′ (x)|
Hu := maxx,y∈[

√
w,N] |u (x)− u (y)| Hv := max

x,y∈
[

1
N
, 1√

w

] |v (x)− v (y)|

Iu := maxx,y∈[w,N ] |u (x)− u (y)| Iv := max
x,y∈

[
1
2w

, 1√
w

] |v (x)− v (y)|

Lu := maxx,y∈{w,...,N} |u (x)− u (y)| Lv := maxx,y∈{√w,...,2w}
∣∣∣v ( 1

x

)
− v

(
1
y

)∣∣∣
We have 0 ≤ q (k) ≤ 1 for all k ∈ [N ], since in those cases q (k) represents a probability. Since

Q solves approximate counting, we also have q (w) ≤ 1
3 and q (2w) ≥ 2

3 . This means in particular
that either

(i) u (2w)− u (w) ≥ 1
6 , and hence Gu ≥ 1

6 , or else

(ii) v
(

1
2w

)
− v

(
1
w

)
≥ 1

6 , and hence Gv ≥ 1
6 .

We will show that either case leads to a contradiction.
We have the following inequalities regarding u:

Gu ≥ Lv − 1 by the boundedness of q

∆u ≥ Gu
2w by basic calculus

Hu ≥
∆u(N−

√
w)

deg(u)2
by Lemma 3

Iu ≥ Hu
2 by Corollary 5

Lu ≥ Iu
2 by Lemma 6

Here the fourth inequality uses the fact that, setting ε :=
√
w

N , we have deg (u) = o
(

1√
ε

)
(thereby

satisfying the hypothesis of Corollary 5), while the fifth inequality uses the fact that deg (u) =

o
(√

N
)

.

Meanwhile, we have the following inequalities regarding v:

Gv ≥ Lu − 1 by the boundedness of q
∆v ≥ Gvw by basic calculus

Hv ≥
∆v

(
1√
w
− 1

N

)
deg(v)2

by Lemma 3

Iv ≥ Hv
2 by Corollary 5

Lv ≥ Iv
2 by Lemma 6

Here the fourth inequality uses the fact that, setting ε := 1/2w
1/
√
w

= 1
2
√
w

, we have deg (v) = o
(

1√
ε

)
(thereby satisfying the hypothesis of Corollary 5). The fifth inequality uses the fact that, if we
set V (x) := v (x/w), then the situation satisfies the hypothesis of Lemma 6: we are interested in
the range of V on the interval

[
1
2 ,
√
w
]
, compared to its range on discrete points w√

w
, w√

w+1
, . . . , w

2w

that are spaced at most 1 apart from each other; and we also have deg (V ) = deg (v) = o
(
w1/4

)
.
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All that remains is to show that, if we insert either Gu ≥ 1
6 or Gv ≥ 1

6 into the coupled system
of inequalities above, then we get unbounded growth and the inequalities have no solution. Let us
collapse the two sets of inequalities to

Lu ≥
1

4

N −
√
w

deg (u)2

Gu

2w
= Ω

(
N

w deg (u)2Gu

)
,

Lv ≥
1

4

1√
w
− 1

N

deg (v)2 Gvw = Ω

( √
w

deg (v)2Gv

)
.

Hence

Gu ≥ Lv − 1 = Ω

( √
w

deg (v)2Gv

)
− 1,

Gv ≥ Lu − 1 = Ω

(
N

w deg (u)2Gu

)
− 1.

By the assumption that deg (v) = o
(
w1/4

)
and deg (u) = o

(√
N
w

)
, we have

√
w

deg(v)2
� 1 and

N
w deg(u)2

� 1. Plugging in Gu ≥ 1
6 or Gv ≥ 1

6 , this is enough to give us unbounded growth.

3 Improvements

At our request, user “fedja” on MathOverflow kindly proved the following lemma in approximation
theory (see the link1 for the proof):

Lemma 8 (fedja) Let p be a real polynomial, and suppose that |p (1/k)| ≤ 1 for all k ∈ [2w], and
that p

(
1
w

)
≤ 1

3 while p
(

1
2w

)
≥ 2

3 . Then deg (p) = Ω
(
w1/3

)
.

Interestingly, Lemma 8 turns out to be tight. We give the construction for completeness:

Lemma 9 (fedja) For all w, there is a real polynomial p such that |p (1/k)| ≤ 1 for all k ∈ [2w],
and p

(
1
w

)
≤ 1

3 while p
(

1
2w

)
≥ 2

3 , and deg (p) = O
(
w1/3

)
.

Proof. Assuming for simplicity that w is a perfect cube, consider

u (x) := (1− x) (1− 2x) · · ·
(

1− w1/3x
)
.

Notice that deg (u) = w1/3 and u
(

1
k

)
= 0 for all k ∈

[
w1/3

]
. Furthermore, we have |u (x)| ≤ 1 for

all x ∈
[
0, 1

w1/3

]
, and also u (x) ∈

[
1−O

(
1

w1/3

)
, 1
]

for all x ∈
[
0, 1

w

]
. Now, let v be the Chebyshev

polynomial of degree w1/3, affinely adjusted so that |v (x)| ≤ 1 for all x ∈
[
0, 1

w1/3

]
rather than all

|x| ≤ 1, and with a large jump between 1
2w and 1

w . Then the product, p (x) := u (x) v (x), has

degree 2w1/3 and satisfies all the requirements.
It seems plausible that, by using Lemma 8, we could give a modest improvement to Theorem 7,

which would involve Ω
(
w1/3

)
rather than Ω

(
w1/4

)
. Unfortunately, there are technical difficulties

1See https://mathoverflow.net/questions/302113/real-polynomial-bounded-at-inverse-integer-points
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in doing so, since relaxing the assumption deg (v) = o
(
w1/4

)
to deg (v) = o

(
w1/3

)
breaks several

steps in the proof simultaneously. We leave the details to future work.
In any case, Lemma 9 presumably means that, to prove a lower bound involving Ω (

√
w), one

would need to go beyond the polynomial method. (We say “presumably” because we can’t rule
out the possibility of using the polynomial method in some way completely different from how it
was used in Theorem 7.)

In the remainder of this section, we give what we think is a viable path to going beyond the
polynomial method. Specifically, we observe that our problem—of lower-bounding the number
of copies of |S〉 and the number of queries to OS needed for approximate counting of S—can be
reduced to a pure problem of lower-bounding the number of copies of |S〉. To do so, we use a
hybrid argument, closely analogous to an argument recently given by Zhandry [23] in the context
of quantum money.

Given a subset S ⊆ [L], let |S〉 be a uniform superposition over S elements. Then let

ρL,w,k := ES⊆[L] : |S|=w

[
(|S〉 〈S|)⊗k

]
be the mixed state obtained by first choosing S uniformly at random subject to |S| = w, then taking
k copies of |S〉. Given two mixed states ρ and σ, recall also that the trace distance, ‖ρ− σ‖tr, is
the maximum bias with which ρ can be distinguished from σ by a single-shot measurement.

Theorem 10 Let 2w ≤ L ≤ N . Suppose ‖ρL,w,k − ρL,2w,k‖tr ≤
1
10 . Then any quantum algorithm

Q requires either Ω

(√
N
L

)
queries to OS or else Ω (k) copies of |S〉 to decide whether |S| = w or

|S| = 2w with success probability at least 2/3, promised that one of those is the case.

Proof. Choose a subset S ⊆ [N ] uniformly at random, subject to |S| = w or |S| = 2w, and
consider S to be fixed. Then suppose we choose U ⊆ [N ] uniformly at random, subject to both
|U | = L and S ⊆ U . Consider the hybrid in which Q is still given R copies of the state |S〉, but

now gets oracle access to OU rather than OS . Then so long as Q makes o

(√
N
L

)
queries to its

oracle, we claim that Q cannot distinguish this hybrid from the “true” situation (i.e., the one where
Q queries OS) with Ω (1) bias. This claim follows almost immediately from the BBBV Theorem
[7]. In effect, Q is searching the set [N ] \ S for any elements of U \ S (the “marked items,” in this
context), of which there are L− |S| scattered uniformly at random. In such a case, we know that

Ω
(√

N−|S|
L−|S|

)
= Ω

(√
N
L

)
quantum queries are needed to detect the marked items with constant

bias.
Next suppose we first choose U ⊆ [N ] uniformly at random, subject to |U | = L, and consider

U to be fixed. We then choose S ⊆ U uniformly at random, subject to |S| = w or |S| = 2w.
Note that this produces a distribution over (S,U) pairs identical to the distribution that we had
above. In this case, however, since U is fixed, queries to OU are no longer relevant. The only way
to decide whether |S| = w or |S| = 2w is by using our copies of |S〉—of which, by assumption, we
need Ω (k) to succeed with constant bias, even after having fixed U .

One might think that Theorem 10 would lead to immediate improvements to our lower bound.
In practice, however, the best lower bounds that we currently have, even purely on the number of
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copies of |S〉, come from the Laurent polynomial method (Theorem 7)! Having said that, we are
optimistic that one could obtain a lower bound that beat Theorem 7 at least when w is small, by
combining Theorem 10 with a brute-force computation of trace distance.

4 Discussion and Open Problems

In Theorem 7, can the bound min

{
w1/4,

√
N
w

}
be tightened to min

{√
w, Nw

}
, matching the upper

bounds that come from the birthday paradox and projective measurements? If so, then how far
can one go toward proving this using the (Laurent) polynomial method, and where does one start
to need new techniques?

Also, suppose our task was to distinguish the case |S| = w from the case |S| = (1 + ε)w, rather
than merely w from 2w. Then what is the optimal dependence on ε? As we said in Section 1, it’s

known that O

(
1
ε

√
N
w

)
quantum queries to OS suffice to solve this problem. One can also show

without too much difficulty that

O

(
min

{√
w

ε
,
N

ε2w

})
copies of |S〉 suffice. On the lower bound side, what generalizations of Theorem 7 can we prove
that incorporate ε? We note that our current argument doesn’t automatically generalize; one
would need to modify something to continue getting growth in the polynomials u and v after the
first iteration.

Is there any interesting real-world example of a class of sets for which QSampling and mem-
bership testing are both efficient, but approximate counting is not? (I.e., the behavior that this
paper showed can occur in the black-box setting?)

Finally, our favorite open problem in this area: can we show that there’s no black-box QMA
protocol for approximate counting? In other words: that there’s no (logN)O(1)-qubit quantum

state that Merlin can send to Arthur, so that Arthur becomes convinced after (logN)O(1) queries
that |S| is 2w rather than w (promised that one of those is the case)? Arthur’s task is “easier”
than the task considered in this paper, in that Merlin can send him an arbitrary witness state |ψS〉,
rather than just the specific state |S〉; but also “harder,” in that Merlin can cheat and send the
wrong state. We thus obtain a problem that’s formally incomparable to the one solved here, yet
which seems very closely related.

Ruling out a black-box QMA protocol for approximate counting is equivalent to asking for an
oracle relative to which SBP 6⊂ QMA, where SBP (Small Bounded-Error Polynomial-Time), defined
by Böhler et al. [8], is the complexity class that captures the power of approximate counting. We
note that MA ⊆ SBP ⊆ AM, and that an oracle relative to which AM 6⊂ QMA already follows from
the work of Vereshchagin [22]. We also note that, under strong derandomization assumptions,
we’d have NP = MA = SBP = AM, and hence SBP ⊆ QMA in the unrelativized world.
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