
Solving Linear Equations
Parameterized by Hamming Weight∗

V. Arvinda Johannes Köblerb Sebastian Kuhnertb Jacobo Toránc

a Institute of Mathematical Sciences, Chennai, India
arvind@imsc.res.in

b Institut für Informatik, Humboldt-Universität zu Berlin, Germany
{koebler,kuhnert}@informatik.hu-berlin.de

c Institut für Theoretische Informatik, Universität Ulm, Germany
jacobo.toran@uni-ulm.de

Abstract

Given a system of linear equations Ax = b over the binary field F2 and an integer t ≥ 1,
we study the following three algorithmic problems:

1. Does Ax = b have a solution of weight at most t?
2. Does Ax = b have a solution of weight exactly t?
3. Does Ax = b have a solution of weight at least t?

We investigate the parameterized complexity of these problems with t as parameter. A
special aspect of our study is to show how the maximum multiplicity k of variable occur-
rences in Ax = b influences the complexity of the problem. We show a sharp dichotomy:
for each k ≥ 3 the first two problems are W[1]-hard (which strengthens and simplifies a
result of Downey et al. [SIAM J. Comput. 29, 1999]). For k = 2, the problems turn out
to be intimately connected to well-studied matching problems and can be efficiently solved
using matching algorithms.

1 Introduction

There are well known efficient methods, like Gaussian elimination, to solve systems of linear
equations Ax = b over F2. The problem becomes harder when we are seeking for a solution u
with certain constraints placed on its Hamming weight wt(u). This problem has been exten-
sively studied in the context of error correcting codes as it is closely related to the minimum
weight codeword problem: given a linear code defined by Ax = 0, what is the minimum weight
of a non-zero codeword in it? This problem is known to be NP-hard [Var97a], and even hard to
approximate within any constant factor, assuming NP ̸= RP [DMS03]. There are three related
decision problems of interest for systems of linear equations Ax = b over F2:

∗An extended abstract of this article appears in the proceedings of IPEC 2014. This work was supported
by the Alexander von Humboldt Foundation in its research group linkage program. The third author was
supported by DFG grant KO 1053/7-2.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 96 (2014)

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

1. (A, b, t) ∈ LinEq≤ if Ax = b admits a solution u with 1 ≤ wt(u) ≤ t.
2. (A, b, t) ∈ LinEq= if Ax = b admits a solution u with wt(u) = t.
3. (A, b, t) ∈ LinEq≥ if Ax = b admits a solution u with wt(u) ≥ t.

Berlekamp et al. [BMT78] show that both LinEq≤ and LinEq= are NP-complete. When
b is the all zeros vector, LinEq≤ is the minimum weight codeword problem which is NP-hard
[Var97a], as already mentioned. Ntafos et al. [NH81] show that LinEq≥ is NP-complete (also
see [Var97b]). See [Joh05] for a nice discussion of these hardness results.

When the weight threshold t is considered as parameter, we denote the resulting parameter-
ized versions of these problems by LinEq≤,t, LinEq=,t and LinEq≤,t, respectively. Downey
et al. [DFV+99] studied special cases of LinEq≤,t and LinEq=,t: when the vector b is either
the all zeros vector or b is the all ones vector. These two special cases are called Even and Odd,
respectively, for the weight at most t version. As argued in Remark 2.1 below, all other cases
for vector b are in fact equivalent to either one of them. Observe that in the Even case, setting
all variables to zero is always a solution; this is why LinEq≤,t and Even ask for solutions of
weight at least 1. For the weight exactly t version, the problems are called Exact Even and
Exact Odd. It turns out via a complicated proof in [DFV+99], that Odd, Exact Odd and
Exact Even are W[1]-hard. Whether Even is also W[1]-hard remains open. The problem
LinEq≥,t, to our knowledge, has not been studied in the parameterized setting before. We
show in Section 6 that in contrast to the other two, this problem is in FPT.

Our main contribution is the study of LinEq≤,t and LinEq=,t in the light of some additional
parameters: the maximum number k of occurrences of a variable in the system and the maxi-
mum size s of an equation. When k and s are restricted or used as an additional parameter, we
denote this by an additional subscript to the respective problem. For example, k is treated as
an additional parameter (besides t) in LinEq≤,t,k, and bounded by kmax in LinEq≤,t,k≤kmax

.
Concerning parameter k, we show a sharp dichotomy in the complexity of the problem. We

prove that LinEq≤,t,k≤kmax
and LinEq=,t,k≤kmax

are fpt tractable for kmax ≤ 2, whereas for
each kmax ≥ 3, both problems are W[1]-hard. For the weight exactly t version, the hardness
also holds for b = 0, while this case remains open for the weight at most t version.

Our hardness proof is a direct reduction from the parameterized clique problem. It strength-
ens and is much simpler than the proofs in [DF99, DFV+99] that (for unbounded occurrence
multiplicity of the variables) go over a series of reductions running into nearly 10 pages. Fur-
thermore, it gives alternative proofs of hardness for their results for Exact Even, Odd and
Exact Odd.

For kmax = 2, we establish a connection between the equation systems and graph matching
problems. We show that LinEq≤,k≤2 and LinEq≥,k≤2 are solvable in polynomial time, while
LinEq=,k≤2 is solvable in randomized NC (RNC). The latter result follows from an interesting
connection between LinEq=,k≤2 and Red-Blue Perfect Matching [PY82] (also known as
Exact Matching), which is known to be solvable in RNC [MVV87] but not known to be in P.
We show in Section 4 that both problems are equivalent under logarithmic space reductions.
Hence, proving that LinEq=,k=2 is in P would imply that Red-Blue Perfect Matching is
also in P, solving a long standing open question. Further we show that LinEq=,t,k≤2 is fixed
parameter tractable.

If the maximum equation size s is an additional parameter then, as we show in Section 5, all
three problems are fixed parameter tractable. In particular, if s ≤ 2 then even the parameter-
free versions of all three problems are solvable in logarithmic space. A summary of the results
is given in Table 1.

2

Solving Linear Equations Parameterized by Hamming Weight

Table 1: Summary of results.

parameter/restriction list α

Problem t t, k ≤ 3 t, k ≤ 2 k ≤ 2 s, t s ≤ 2

LinEq≤,α W[1]-hard W[1]-hard FPT P FPT L-complete
[DFV+99] Thm. 3.1 Thm. 4.1 Thm. 4.1 Thm. 5.1 Thm. 5.5

LinEq=,α W[1]-harda W[1]-harda FPT RNC FPT L-complete
[DFV+99] Thm. 3.1 Thm. 4.6 Cor. 4.4 Thm. 5.4 Thm. 5.5

LinEq≥,α FPT FPT FPT P FPT L-complete
Thm. 6.1 Thm. 6.1 Thm. 6.1 Thm. 4.2 Thm. 6.1 Thm. 5.5

a Remains W[1]-hard for b = 0.

Our fpt algorithms involve standard techniques like color coding (Theorems 4.6 and 5.4),
depth-bounded search trees (Theorem 5.1), and reduction to problem kernels (Theorem 6.1).

2 Basic transformations

In this section we describe some basic transformations between various linear equation system
problems. We first remark that while there is a trivial disjunctive reduction from LinEq≤
to LinEq= that maps (A, b, t) 7→

{
(A, b, t′) : 1 ≤ t′ ≤ t

}
, there is no trivial reduction for

the converse direction. Indeed, there can be many solutions of different weights, and thus
(A, b, t) ∈ LinEq= does not imply (A, b, t− 1) /∈ LinEq≤.

We now turn to the different possibilities for the vector b. The following remark shows that
(Exact) Even fpt reduces to (Exact) Odd, taking the focus away from the “mixed” case.

Remark 2.1. A system of linear equations Ax = b over F2 can be easily transformed into an
equivalent system A′x′ = 1: Add a new variable x0 and equation x0 = 1. Convert each 0-
equation into an equivalent 1-equation by adding x0 to it. Then Ax = b has a weight t solution
if and only if A′x′ = b′ has a weight t+ 1 solution.

In the non-parameterized setting, the “mixed” case is also reducible to Even.

Remark 2.2. A system Ax = b over F2 with n variables can be transformed into a system
A′x′ = 0 such that Ax = b has a weight t solution if and only if A′x′ = 0 has a weight t+n+1
solution: add a new variable x0 and a new equation x0 = 1. Convert each 1-equation into an
equivalent 0-equation by adding x0 to it. Introduce n new variables y1, . . . , yn and replace the
x0 = 1 equation by the equations x0 + yi = 0 for i = 1, . . . , n.

The following lemma shows that any instance (A, b, t) can be easily transformed into an
equivalent instance of the form (A′, b′, kt) where each variable occurs at most three times. The
idea is to introduce k copies of each variable, to replace each occurrence with a different copy,
and to force the copies to take equal values using additional equations.

Lemma 2.3. Let Ax = b be a system of linear equations and let k be the maximum number
of occurrences of any variable in it. Then an equivalent system A′y = b′ with at most three
occurrences of each variable can be constructed in polynomial time, where equivalent means that

3

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

a weight t solution for Ax = b induces a weight kt solution for A′y = b′ and any weight t′

solution for A′y = b′ induces a weight t′/k solution for Ax = b.

Proof. For each variable xi in Ax = b, include k variables yi,1, . . . , yi,k in the constructed system
A′y = b′, and force them to take the same value by adding the equations yi,j ⊕ yi,j+1 = 0 for
1 ≤ j < k. Additionally, modify Ax = b by replacing the jth occurrence of xi by yi,j and add
the resulting equations to A′y = b′.

Any solution x of weight t for Ax = b induces a solution y of weight kt for A′y = b′; this
solution is defined by yi,j = xi. Conversely, in any solution y of A′y = b′ the newly added
equations enforce yi,j = yi,j′ . Thus y has weight kt for some t, and x defined by xi = yi,1 is a
solution of weight t for Ax = b.

As a consequence of Lemma 2.3 we can reduce all linear equation problems to the case k ≤ 3.
For example, it follows that LinEq≤,t,k is fpt reducible to LinEq≤,t,k≤3 and that LinEq= is
polynomial-time reducible to LinEq=,k≤3.

To facilitate the presentation of some of our proofs, it is convenient to consider a more general
problem in which each variable xi occurring in Ax = b has a positive integer weight wi (encoded
in unary). The weight t of a solution is the sum of the weights of the variables assigned value 1.
The next lemma shows that the weighted case is polynomial-time reducible to the unweighted
case (where all variables have weight 1).

Lemma 2.4. Let Ax = b be a system of linear equations with variable weights given in unary.
Then an equivalent unweighted system A′y = b′ can be constructed in polynomial time, where
equivalent means that a weight t solution for Ax = b induces a weight t solution for A′y = b′

and vice versa. Moreover,
(i) if all variables of Ax = b occur in exactly 2 equations then all variables of A′y = b′ occur

in exactly 2 equations.
(ii) if all variables of Ax = b occur in exactly 3 equations and have odd weight, then all

variables of A′y = b′ occur in exactly 3 equations.

Proof. For each variable xi occurring in the input system Ax = b of weight wi > 1, we include
wi new variables yi,1, . . . , yi,wi for the system A′y = b′. Pick the first equation of Ax = b
containing variable xi and substitute xi by yi,wi in it. Substitute the remaining occurrences
of xi in Ax = b by yi,1. Additionally, for 1 ≤ j < wi include a new equation yi,j ⊕ yi,j+1 = 0.

This set of equations defines A′y = b′. The definition ensures that in any solution to A′y = b′,
for each i the variables yi,1, . . . , yi,wi all take the same value. Thus, if any yi,j takes the value 1
then the entire set of these variables make a net contribution of weight wi and are thus equivalent
to the original weighted variable xi in Ax = b.

Part (i) follows directly since each new variable appears exactly twice in this case. For
Part (ii), we modify the reduction and additionally include the equation yi,2 ⊕ . . . ⊕ yi,wi = 0.
This enforces every variable to appear exactly three times. Moreover since wi − 1 is even, the
additional equation is implied by the other equations and hence does not affect the overall
feasibility.

We close this section by giving a useful graph theoretical interpretation of the linear equation
problems.

Remark 2.5. We will consider systems Ax = b with m variables and n equations, that is,
A is an n × m matrix over F2. It will be convenient to interpret A as the incidence matrix

4

Solving Linear Equations Parameterized by Hamming Weight

of a hypergraph. With this interpretation each equation becomes a vertex and each variable
becomes a hyperedge that consists of all vertices (equations) in which it occurs. Note that
this might give a multi-hypergraph since different variables might occur in exactly the same
equations.

A vertex vj will be called even if bj = 0, and odd if bj = 1. A solution of weight t is a selection
of t hyperedges that covers each even vertex with an even number of hyperedges and each odd
vertex with an odd number of hyperedges. Observe that in the case that every variable appears
exactly twice in the equation system we get a standard multi-graph in which each edge connects
two vertices.

3 At most three occurrences of each variable

This section is devoted to our main result showing that LinEq≤,t,k≤kmax
and LinEq=,t,k≤kmax

are W[1]-hard for each kmax ≥ 3.

Theorem 3.1. LinEq≤,t,k≤3 and LinEq=,t,k≤3 are W[1]-hard. The hardness even holds for
the case that each variable occurs exactly three times.

To prove Theorem 3.1 we make use of the hypergraph interpretation of a linear system of
equations as explained in Remark 2.5. The key step is the design of a selector gadget, which
can be used to select a specified number of vertices from a given vertex set V = {v1, . . . , vn}.
Besides the vertices in V , the gadget contains a special start vertex a and a set U of internal
vertices, i.e., the vertex set is V ∪ U ∪ {a}. We say that a set S of hyperedges activates a
vertex if S covers it an odd number of times. Further, we call S admissible if it activates the
start vertex a but no internal vertex in U . Using this notation we will construct the hyperedge
set E of the gadget Selak,V in such a way that the minimal admissible subsets S of E activate
besides a exactly the k-element subsets of V .

The construction of Selak,V is illustrated in Figure 1. The set of internal vertices is

U = {uℓ,i : 1 < ℓ < k ∧ ℓ ≤ i ≤ n− k + ℓ}.

The intended semantics is that if a minimal admissible subset S covers the vertex uℓ,i, then vi is
the ℓth smallest of the activated vertices from V . The hyperedge set of Selak,V is E =

∪k−1
ℓ=1 Ek,

where

E1 =
{
{a, vi, u2,i′} : 1 < i < i′ ≤ n− k + 2

}
,

Eℓ =
{
{uℓ,i, vi, uℓ+1,i′} : ℓ ≤ i < i′ ≤ n− k + ℓ+ 1

}
for ℓ = 2, . . . , k − 2,

Ek−1 =
{
{uk−1,i, vi, vi′} : n− k ≤ i < i′ ≤ n− 1

}
,

and the hyperedges in Eℓ are called level ℓ hyperedges for ℓ = 1, . . . , k − 1. In the weighted
version Sela,wk,V of the gadget, all its hyperedges have weight w.

Lemma 3.2. Let V = {v1, . . . , vn} and let k and w be positive integers. For any subset W ⊆ V
of size k, there is an admissible set S ⊆ E of weight (k− 1)w for the selector gadget Sela,wk,V that
activates exactly a and the vertices in W. Moreover, any admissible set S ⊆ E of weight less
than (k+1)w for Sela,wk,V has weight exactly (k− 1)w and activates exactly k of the vertices in V.

5

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

Proof. For W = {vi1 , . . . , vik} with i1 < · · · < ik, consider the set that consists of the hyper-
edge {a, vi1 , u2,i2}, the hyperedges {uℓ,iℓ , viℓ , uℓ+1,iℓ+1

} for 1 < ℓ < k − 1, and the hyperedge
{uk−1,ik−1

, vik−1
, vik}. This set is admissible, has weight (k − 1)w and activates exactly the

vertex a and the vertices in W .
To prove the moreover part, a straight-forward induction over ℓ = 1, . . . , k − 1 shows that

any admissible set S of hyperedges must contain an odd number of level ℓ hyperedges. Thus
any such set S of weight less than (k + 1)w contains exactly one hyperedge from each level,
implying that S has weight (k− 1)w. For ℓ = 1, . . . , k− 2 let viℓ be the vertex in V covered by
the level ℓ hyperedge of S and let vik−1

and vik be the two vertices in V covered by the level
k − 1 hyperedge of S. The construction of the gadget ensures that i1 < i2 < · · · < ik. Hence,
S activates exactly k vertices from V .

Proof of Theorem 3.1. We reduce from the W[1]-complete clique problem which asks whether
a given graph has a clique of size k, where k is treated as parameter. Let G = (V,E) and k be
the given instance. We will construct an equation system Ax = b with exactly one 1-equation
where each variable occurs exactly three times. Continuing with the hypergraph view, we will
use several instances of the selector gadget; each uses its own internal vertices. Besides the
internal vertices, the hypergraph contains one special start vertex a (which is the only odd
vertex), one vertex for each graph vertex in V , and one vertex for each graph edge in E. Let
w = k2 if k is odd, and w = k2+1 otherwise. Add the selector gadget Sela,wk,V to the constructed
hypergraph. For each graph vertex v ∈ V , let E(v) denote the set of edges incident to it,
and add the selector gadget Selv,1k−1,E(v). Its role is to ensure that if v is selected by Sela,wk,V ,
then v must be adjacent to all other selected vertices. See Fig. 2 for an illustration of this
construction. As the selector gadget has only hyperedges of size 3 and as w is odd, Lemma 2.4
implies that the weights can be removed while maintaining 3-uniformity.

We show that for t = (k− 1)w+ k(k− 2), the graph G has a clique of size k iff the equation
system described by the constructed hypergraph has a solution of weight at most t.

If G contains a k-clique C, choose the admissible hyperedge subset of Sela,wk,V that activates
exactly the vertices in C. Then, for each clique vertex v ∈ C, add the admissible hyperedge
subset for Selv,1k−1,E(v) that activates {e ∈ E(v) : e ⊆ C}. Combining these hyperedge sets
yields a solution of weight t.

Now consider any solution to the equation system of weight at most t. As (k + 1)w ≥
k3 + k2 > k3 − k − 1 ≥ t, Lemma 3.2 implies that this solution contains exactly (k − 1)
hyperedges from Sela,wk,V , which activate a set C of exactly k vertices in V . As these have to be
covered an even number of times, each has to be covered an odd number of times from within
its selector gadget. So for each v ∈ C, the solution must include at least k − 2 hyperedges of

a
i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

ℓ = 2

ℓ = 3

ℓ = 4

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 1: The vertices of the selector gadget Sela5,{v1,...,v9} and the minimal admissible subset of
hyperedges that leads to the activation of {v2, v4, v6, v7, v8}.

6

Solving Linear Equations Parameterized by Hamming Weight

the selector gadget Selv,1k−1,E(v). As this accounts for the remaining weight permitted by t, the
solution cannot include further hyperedges. In particular, all vertices from E that are covered
at all are graph edges that are incident to a vertex in C. As all vertices in E are even, these
edges have to be covered twice by the solution, implying that every vertex v ∈ C has k − 1
neighbors in C, thus C is a k-clique.

Finally, note that the constructed equation system admits a solution of weight at most t if
and only if it admits one of weight exactly t.

Using the construction of Remark 2.1, we obtain alternative proofs that Odd and Exact
Odd are W[1]-hard. To generalize it to Exact Even, we can multiply all weights by 2, add a
new hyperedge {a} of weight one, and ask for a solution of weight 2t+ 1.

4 At most two occurrences of each variable

We show that the three problems are easier when every variable appears at most twice in Ax = b.
It turns out that these problems can be solved using standard matching algorithms. LinEq≤,k≤2

and LinEq≥,k≤2 have deterministic polynomial-time algorithms, whereas LinEq=,k≤2 has a
randomized polynomial time algorithm (in fact a randomized NC algorithm).

Firstly, we note that we can easily transform the instance to the case when every variable
in the system Ax = b appears in exactly two equations without any change in the parameter t.
We include the new equation

∑n
i=1

∑n
j=1Aijxj =

∑n
i=1 bi (obtained by adding up all equations

in Ax = b) to obtain a new system A′x = b′. Note that Ax = b and A′x = b′ have identical
solutions. Furthermore, the new equation

∑n
i=1

∑n
j=1Aijxj =

∑n
i=1 bi has on its left-hand side

precisely the sum of all single occurrence variables of the system Ax = b. Hence every variable
in A′x = b′ occurs exactly twice.

As observed in Remark 2.5, when every variable appears exactly twice, the system can be
represented as an undirected multi-graph whose vertex set is the set of equations and edges are
the variables. Two vertices u and v are joined by an edge e iff the variable e occurs in both
equations u and v. We will use this interpretation to design the algorithms in this subsection.

Theorem 4.1. LinEq≤,k≤2 ∈ P.

Proof. Given an instance (A, b, t) of LinEq≤,k≤2, we construct the graph G associated with
Ax = b. The set of edges with value 1 in a solution to the system consists of an edge disjoint
set of paths connecting the odd vertices by pairs and possibly some edge disjoint cycles.

If there are odd vertices we do not need to consider the cycles, since we are searching for
a solution of minimum weight. Such a solution corresponds to a set of edge disjoint paths

a

v1 vi vj vn
Sela,wk,V

Selvi,1k−1,E(vi)
Sel

vj ,1

k−1,E(vj)

.
eij

Figure 2: Hypergraph view of the equation system that has a weight t solution if and only if the
underlying graph G has a k-clique. The gadgets Selvi,1k−1,E(vi)

and Sel
vj ,1

k−1,E(vj)
share

the vertex eij iff the graph edge eij connects the graph vertices vi and vj .

7

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

of minimum total length pairing the odd vertices. This can be obtained by computing the
minimum distance between all pairs of odd vertices in the graph. With this we can construct a
weighted clique in the following way: each vertex in the clique represents an odd vertex in the
graph. The edge between two clique vertices is weighted with the minimum distance between
the corresponding odd vertices in the original graph. We claim that a perfect matching with
minimum weight in the clique defines a solution of minimum weight in the system. To see this,
observe that if two edges {a1, a2} and {b1, b2} in the perfect matching of minimum weight would
correspond to paths that share at least one edge in G, then the total length of the shortest
paths between a1 and one of the b-vertices and a2 and the other b-vertex would be smaller than
d(a1, a2) + d(b1, b2) since the new paths would not contain the common edge. This implies
that a perfect matching of minimum weight corresponds to a minimum weight solution of the
system. Since minimum weight perfect matching can be solved in polynomial time, the result
follows.

When all vertices are even, we need to ensure that at least one variable is set to 1. In this
case, a minimum weight non-trivial solution is just a cycle in G with a minimum number of
edges. This also can be computed in polynomial time.

Using similar ideas we can show that the weight at least t version of the problem can also be
solved in polynomial time.

Theorem 4.2. LinEq≥,k≤2 ∈ P.

Proof. Given an instance (A, b, t) of LinEq≥,k≤2, we interpret Ax = b as a graph G = (V,E)
as in the previous result. W.l.o.g. we can suppose that all vertices have degree at least 2. For
v ∈ V let pd(v) be the parity of its degree and peq(v) be the parity of the corresponding
equation, i.e. peq(v) = 1 if v corresponds to an odd equation and peq(v) = 0 otherwise.

Let B be the set of vertices whose degree parity does not coincide with peq(v). That is,
B = {v ∈ V : pd(v) ̸= peq(v)}. If |B| is odd then there is no solution to the system. In
order to see this, observe that since every edge appears in exactly two equations the system
has a solution only if the set of vertices with peq(v) = 1 is even. We can partition the set of
vertices v with peq(v) = 1 into two sets, those having even degree and those having odd degree.
This means:∣∣{v ∈ V : peq(v) = 1 ∧ pd(v) = 1}

∣∣ ≡ ∣∣{v ∈ V : peq(v) = 1 ∧ pd(v) = 0}
∣∣ mod 2

Since in every graph the set of vertices with odd degree is even, we can again partition this set
into those vertices in odd equations and those in even equations and we get:∣∣{v ∈ V : pd(v) = 1 ∧ peq(v) = 1}

∣∣ ≡ ∣∣{v ∈ V : pd(v) = 1 ∧ peq(v) = 0}
∣∣ mod 2

Putting both congruences together we conclude that B is even.
The algorithm for finding a solution of maximum weight constructs a weighted clique with

the vertices of B in which every edge is weighted with the minimum distance in G between its
two endpoints and finds a minimum weight perfect matching in the clique, as in the previous
theorem. The paths in G corresponding to the edges in the minimum weight perfect matching
are removed. Let us call this set E′. We claim that the remaining edges, E \ E′, are a
maximum weight solution for the system. E \ E′ is a solution because after removing the
edges from the matching, the parity of the degree of each vertex coincides with the parity of
its equation. If there are no vertices of odd degree after removing the edges, then the graph is

8

Solving Linear Equations Parameterized by Hamming Weight

Eulerian and its edges form a solution. Otherwise a path starting in a vertex with odd degree
in G′ = (V,E \ E′) and continuing along its edges will eventually arrive to another vertex of
odd degree. Removing the edges along this path, this process can be continued until all vertices
have even degree. Observe that any solution must include an edge disjoint pairing in G of all
the vertices in B. This proves that the solution of the algorithm has maximum weight.

We show next that LinEq=,k=2 is equivalent to Red-Blue Perfect Matching (RBPM),
a problem introduced by Papadimitriou et al. [PY82]. This problem is defined in the following
way: Given a graph G with blue and red edges and a number t, is there a perfect matching in G
with exactly t red edges? RBPM can be solved in randomized NC [MVV87], but until now, no
deterministic polynomial time algorithm for it is known. In fact, not even the parameterized
version of this problem (with t as parameter) is known to lie in FPT.

Theorem 4.3. LinEq=,k≤2 and RBPM are many-one equivalent under logarithmic space re-
ductions. This also holds if b = 0 is required for the instances of LinEq=,k≤2.

Proof. Let Ax = b be a system of equations in which every variable appears exactly twice and
let G = (V,E) be its interpretation as a graph.

We first assume that b = 0. Let u be a solution of weight t. Since u selects for each vertex v an
even number of all edges incident to v, u corresponds to a union of edge disjoint cycles in G with
exactly t edges. Now consider the graph G′ = (V ′, E′) that is obtained from G by expanding
each vertex v ∈ V with degree dv into dv new vertices v1, . . . , vdv and connecting all pairs of
these vertices by red edges. The original edges incident with v in G are each connected to one
of the new vertices and are all colored blue (see Figure 3). Notice that in G′, u corresponds to a
union of vertex disjoint cycles with exactly 2t edges, where each cycle consists of alternating red
and blue edges. Hence, the t red edges on these cycles form a matching that can be extended
to a perfect matching of G′ by adding all blue edges that are not lying on any cycle of u.
Conversely, any perfect matching of G′ with t red edges yields a solution of weight t by taking
its symmetric difference with the set of all blue edges. This shows that Ax = b has a solution
of weight t if and only if G′ has a perfect matching with t red edges.

If G has r > 0 odd vertices, each solution u corresponds to a union of edge disjoint cycles
and paths with exactly t edges, where exactly the endpoints of the paths are odd vertices. We
construct G′ as before but expand each odd vertex into a red clique of size dv + 1 by adding a
special clique vertex v0 that is connected via red edges to the other dv clique vertices v1, . . . , vdv .
In this graph, each solution u corresponds to a union of edge disjoint cycles and paths with
exactly t blue and t+ r/2 red edges, where exactly the endpoints of the paths are special clique
vertices. Similarly to the even case, the t + r/2 red edges of u form a matching that can be
extended to a perfect matching of G′ by adding all blue edges that are not lying on any cycle
or path. Conversely, any perfect matching M in G′ has to match each special clique vertex via
a red edge, implying that an odd number of the blue edges connected to its clique does not

v v3

v2v1

v4

Figure 3: Expansion of a vertex v of degree 4. The dotted edges are red edges.

9

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

belong to M . Hence, if M has t + r/2 red edges, taking the symmetric difference of M with
the set of all blue edges yields again a solution of weight t.

We reduce now the RBPM problem to a system of equations in which every variable appears
twice. Given a graph G = (V,E) with n vertices and m red and blue edges, and an integer
t ≤ m we can construct a system Ax = b with n odd equations, each of them corresponding to
a vertex and having the incident edges as its variables. A perfect matching in G corresponds
to a solution of weight n

2 that assigns exactly one variable of each equation the value 1. Let G′

be the graph that is obtained from G by assigning weight n2 to each red edge. Then G has a
perfect matching with t red edges if and only if the weighted system corresponding to G′ has
a solution of weight exactly n

2 + t(n2 − 1). By Lemma 2.4, the weights can be removed while
maintaining the property that each variable appears exactly twice.

The reduction can be adapted to a system of equations being all even by adding a new
weighted variable with weight n3 to each of the original equations and setting all the equations
to zero. Now there is a perfect matching with t red edges in G if an only if there is a solution
of weight n4 + t(n2 − 1) + n

2 . Again by Lemma 2.4 the weighted variables can be transformed
into weight one variables.

Interestingly, whereas the forward reduction also works in the parameterized setting (with t
as parameter), this is not true for the converse reduction. Further, observe that the variants
of Red-Blue Perfect Matching in which we ask for a matching with at most or at least t
red edges are known to be in P. This provides alternative proofs for Theorems 4.1 and 4.2.

As RBPM is in randomized NC [MVV87] we obtain the following corollary.

Corollary 4.4. LinEq=,k≤2 ∈ RNC.

In the first part of the proof of the previous theorem, we identify a natural graph problem
as equivalent to RBPM: given an undirected graph G and an integer t, is there a set of edge
disjoint cycles in G containing exactly t edges? We call this problem Exact Undirected
Cycle Sum, in analogy to Exact Cycle Sum which asks the same question for a directed
graph G [PY82]. The latter problem can be solved in RNC [BR95], but to our knowledge this
was not previously known for the undirected version.

Corollary 4.5. Exact Undirected Cycle Sum is many-one equivalent to RBPM under
logspace reductions and therefore also in RNC.

We close this section by showing that in the parameterized setting, a solution of weight t can
be found in fpt time when each variable occurs at most twice.

Theorem 4.6. LinEq=,t,k≤2 ∈ FPT.

Proof. Let (A, b, t) be the input instance and let G = (V,E) be the corresponding graph. If
b = 0, let u0 be the empty solution. Otherwise, using the algorithm of Theorem 4.1, we compute
a solution u0 of minimum weight for Ax = b. If |u0| ≥ t, we are done. Otherwise, observe
that every solution of Ax = b can be written as a sum (modulo 2) of u0 and some edge-disjoint
cycles of G (that might overlap with u0). To find a suitable set of cycles, we use the color
coding method introduced in [AYZ95]. Each edge in u0 receives its own unique color (recall
that |u0| < t). Let Cu0 be the set of colors of the edges in u0. The remaining edges are colored
uniformly at random using t new different colors. In case that there is a solution of weight
exactly t, the probability that all the edges in the solution have different colors depends only

10

Solving Linear Equations Parameterized by Hamming Weight

on t and it is at least t!
tt . A color pattern for a cycle is a sequence of colors to be encountered

on the cycle. Now consider each possible set C of disjoint color patterns (their number only
depends on t). For any set of disjoint cycles that realizes C, the corresponding solution has
weight equal to the number of colors that appear in C or in Cu0 but not in both. If C leads to
solutions of weight t, it remains to check if each color pattern c1, . . . , ck in C can be realized
in G. The latter can be checked dynamically by computing sets Si(v), with v ∈ V and 0 ≤ i ≤ k,
such that u ∈ Si(v) if and only if there is a path from u to v that realizes c1, . . . , ci. Initially,
S0(v) = {v} for each v ∈ V . For i ∈ {1, . . . , k}, the set Si(v) is the union of all Si−1(u) for
which {u, v} is an edge of color ci. There is a cycle realizing c1, . . . , ck if and only if there is a
vertex v with v ∈ Sk(v).

The probabilistic part in the previous algorithm can be derandomized using a perfect hash
family as explained in [AYZ95].

5 Using the equation size as an additional parameter

In this section we show that the weight at most t and the weight exactly t versions of the
problem become fixed parameter tractable when we treat the maximum equation size s as an
additional parameter. For the weight at least t version we show in Section 6 that even LinEq≥,t

is in FPT.
We call a solution u ̸= 0 of a system Ax = b minimal if for any solution u′ ̸= 0 with u′i ≤ ui

for all i it holds that u′ = u.

Theorem 5.1. LinEq≤,t,s ∈ FPT. Moreover, for each instance, all minimal solutions of weight
at most t can be found in fpt time.

Proof. The algorithm traverses the following search tree to find all minimal solutions of weight
at most t. If b = 0, the first branch is to select a variable, set it to 1 and continue with the
resulting system over the remaining m − 1 variables. This m-way branching is only needed
once to avoid the trivial all zeroes solution. If b ̸= 0 and the number of variables set to 1
so far is smaller than t, we pick the first equation with bj = 1 and branch over all variables
that occur in this equation. In each branch, we set the chosen variable to 1 and continue with
the system over the remaining variables. As soon as all equations are satisfied by setting the
remaining variables to 0 (i.e., b = 0), we reach at a successful leaf providing a solution of weight
at most t. If already t variables have been set to 1 and b ̸= 0, the current node is declared to
be an unsuccessful leaf.

Since for every minimal solution u of weight at most t there is a path that selects at each
node one more variable from u, the tree enumerates any such solution. Further, the tree can
be traversed in fpt time as its depth is bounded by t and the number of its leaves is bounded
by st−1m.

To solve the weight exactly t case, we will again design a color coding algorithm similar to
that in Theorem 4.6, where minimal solutions take the role of cycles. The following lemma
shows that any solution u ̸= 0 of a system Ax = 0 is the sum of disjoint minimal solutions.

Lemma 5.2. Any solution u ̸= 0 of a homogeneous system Ax = 0 over F2 is the sum of
disjoint minimal solutions.

11

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

Proof. Let u ̸= 0 be any solution. If it is not minimal, let u′ be a minimal solution that
selects a proper subset of the variables selected by u. Then u⊕ u′ is also a solution, is disjoint
from u′, and has smaller weight than u. So an inductive argument over the weight of u gives
the lemma.

Next, we observe the following colored variant of Theorem 5.1. When the variables are
colored, we say that a solution u respects a set C of colors if u contains exactly one variable of
each color in C, and no other variables.

Lemma 5.3. Given a system Ax = b over F2, a coloring of its variables and a set C of colors,
all minimal solutions that respect C can be found in fpt time when |C| and the maximum size s
of the equations are treated as parameters.

Proof. The algorithm proceeds as the one of Theorem 5.1 with the following modifications: At
each branching, it only considers variables that have a color in C that has not yet been used.
And at each leaf it additionally checks that for each color in C a variable has been selected.

Now, the following theorem can be proved along the same lines as Theorem 4.6.

Theorem 5.4. LinEq=,t,s ∈ FPT.

Proof. Let (A, b, t) be the given instance, and let u0 be a solution of minimum weight for
Ax = b, obtained using the algorithm of Theorem 5.1 (or by setting u0 = 0 in case b = 0).
If wt(u0) ≥ t, we are done. Otherwise we color each variable selected by u0 with a unique
color, and the remaining variables uniformly at random using t additional colors. Any solution
to Ax = b can be written as u0 ⊕ u1, where u1 is a solution to Ax = 0. By Lemma 5.2, we
can decompose each such u1 as u1 =

⊕
u∈U u, where U is a set of disjoint minimal solutions

to Ax = 0. Again, the probability that all variables in a solution to Ax = 0 receive distinct
colors depends only on t and is at least t!

tt . A color pattern is a set of colors. Iterating over
all sets C of color patterns (their number only depends on t), we check if there are exactly t
colors that occur in C or the variables selected by u0 but not both, and if each color pattern
in C is respected by some minimal solution to Ax = 0. The latter is possible by Lemma 5.3. It
remains to derandomize this algorithm using a perfect hash family as in [AYZ95].

We close this section by considering restrictions on the parameter s. In the case s ≤ 2 we
can assume that all equations contain exactly 2 variables. Let G be the graph that has one
vertex for each literal and an edge between each pair of literals that are forced to be equivalent
by some equation. If the system is satisfiable, the connected components of G can be grouped
into pairs of complementary equivalence classes. Define the size of an equivalence class as the
number of positive literals in it. By choosing the one of smaller/larger size from each pair of
complementary equivalence classes gives a minimum/maximum weight solution. Furthermore,
the weight exactly t version reduces to Unary Subset Sum: It suffices to check whether a
subset of the size differences of all pairs sums up to t minus the size of a minimum solution.
As both Undirected Connectivity and Unary Subset Sum can be solved in logarithmic
space [Rei08, EJT10], we have the upper bounds of the following theorem.

Theorem 5.5. LinEq≤,s≤2, LinEq=,s≤2, and LinEq≥,s≤2 are all L-complete.

The lower bounds follow from the fact that satisfiability of conjunctions of parities of size at
most 2 is hard for L [JLL76]. Indeed, let Ax = b be a system on n variables with s ≤ 2. For

12

Solving Linear Equations Parameterized by Hamming Weight

each variable xi, add a second variable x′i and the equation xi ⊕ x′i = 1. This transformation
preserves satisfiability, and every solution of the resulting system has weight n.

Complementing Theorem 5.5, the following lemma shows that the general case can be reduced
to the case s ≤ 3, implying that all three problems remain NP-hard under this restriction.

Lemma 5.6. Given a system of linear equations Ax = b and a number t we can construct a
new system A′y = b′ with equations of size at most 3 and a number t′ so that there is a solution
of weight t for the first system if and only if there is a solution of weight t′ for the second one.

Proof. An equation of size s, x1 ⊕ · · · ⊕ xs = b for b ∈ {0, 1} can be split adding two new
variables y1 and y2, into the three equations x1⊕x2⊕ y1 = 0, y2⊕· · ·⊕xk = b and y1⊕ y2 = 1,
of sizes 3, k−1, and 2, respectively. Since in any solution exactly one of the variables y1 and y2
is set to 1, the weight of a solution in the new system increases by one. The splitting step
can be repeated until all equations have size at most three, increasing the weight for the new
solutions accordingly.

Corollary 5.7. LinEq≤,s≤3, LinEq=,s≤3, and LinEq≥,s≤3 are all NP-hard.

6 The weight at least t version

In this section we give an fpt algorithm finding solutions of weight at least t.

Theorem 6.1. LinEq≥,t ∈ FPT.

Proof. Let Ax = b be the given equation system and let t be the given weight threshold. Using
Gaussian elimination, we can decide whether Ax = b is feasible and compute the dimension d
of the solution space of Ax = 0 in polynomial time. If d exceeds t logm then there must be a
solution of weight at least t, since there can be only

t−1∑
i=0

(
m

i

)
< 2t logm

solutions of weight less than t. Otherwise, we compute a linearly independent spanning set
{v1, v2, . . . , vd} of at most t logm solutions for Ax = 0, along with a particular solution u of
Ax = b. Any solution to Ax = b is of the form u +

∑d
i=1 αivi, where αi ∈ F2. If one of the

solution vectors u and u+ vi for i = 1, . . . , d has support at least t, it witnesses that the input
is a positive instance. Otherwise all but t2 logm coordinates are always zero in any solution
vector. Hence, the number of relevant variables (that can take value 1 in any solution) is
bounded by t2 logm. Discarding the other variables, we now have a system of linear equations
with at most t2 logm variables. We can now brute-force search for all solutions of Hamming
weight at most t− 1. Note that the number S of such solutions is bounded by

t−1∑
i=0

(
t2 logm

i

)
< (t2 logm)t.

Keeping in mind the easily checked fact that (logm)O(t) = tO(t) poly(m), this search takes fpt
time. Finally, comparing S with the dimension d, if S = 2d, then all solutions have weight less
than t, otherwise there must be a solution of weight at least t.

13

V. Arvind, Johannes Köbler, Sebastian Kuhnert, Jacobo Torán

The previous algorithm may not always construct a solution of weight at least t if it exists.
For solving the search problem in fpt time, we can use self-reduction in a standard way. An
alternative randomized algorithm for constructing a solution can be obtained by modifying the
above procedure slightly. If the dimension of the solution space of Ax = 0 exceeds 2t logm then
we randomly sample a solution to obtain a solution of weight at least t with high probability.
On the other hand, if the dimension d of the solution space is bounded by 2t logm we proceed
as in the above proof to compute a spanning set {v1, v2, . . . , vd} of the solution space and keep
only the 2t2 logm many relevant variables (if the solutions u and u + vi for i = 1, . . . , d have
weight at most t − 1). Now, we can apply a simple branching algorithm, by branching on
the 2t2 logm many variables (on each branch we set the corresponding variable to 1). This
branching search tree will be of depth t and hence of size at most tO(t) poly(m). The system
of equations has a solution of weight at least t iff at some leaf of this depth-t tree the residual
system of linear equations is feasible, which means that the partial weight t assignment we have
can be extended to a solution.

References

[AYZ95] Noga Alon, Raphael Yuster and Uri Zwick, Color coding. Journal of the ACM 42(4),
844–856, 1995.

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece and Henk C.A. van Tilborg, On the inherent
intractability of certain coding problems. IEEE Trans. Inform. Theory 24, 384–386, 1978.

[BR95] Danilo Bruschi and F. Ravasio, Random parallel algorithms for finding exact branchings,
perfect matchings, and cycles. Algorithmica, 13(4), 346–356, 1995.

[DF99] Rod G. Downey and Michael R. Fellows, Parameterized Complexity. Springer, 1999.

[DFV+99] Rod G. Downey, Michael R. Fellows, Alexander Vardy and Geoff Whittle, The parametrized
complexity of some fundamental problems in coding theory. SIAM Journal on Computing
29(2): 545–570, 1999.

[DMS03] Ilya Dumer, Daniele Micciancio and Madhu Sudan, Hardness of approximating the mini-
mum distance of a linear code. IEEE Transactions on Information Theory, 49(1), 22–37,
2003.

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau, Logspace versions of the theorems of
Bodlaender and Courcelle. FOCS Conference, 143–152, 2010.

[JLL76] Neil D. Jones, Y. Edmund Lien, and William T. Laaser, New problems complete for
nondeterministic log space. Mathematical Systems Theory, 10(1), 1–17, 1976.

[Joh05] David S. Johnson, The NP-completeness column. ACM Transactions on Algorithms, 1(1),
160–176, 2005.

[NH81] Simeon C. Ntafos and S. Louis Hakimi, On the complexity of some coding problems. IEEE
Transactions on Information Theory, 27(6): 794-796, 1981.

[MVV87] Ketan Mulmuley, Umesh Vazirani and Vijay Vazirani, Matching is as easy as matrix
inversion. Combinatorica 7:105–113, 1987.

[PY82] Christos Papadimitriou and Mihalis Yannakakis, The complexity of restricted spanning
tree problems. Journal of the ACM 29:285–309, 1982.

14

http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1007/BF01293484
http://dx.doi.org/10.1007/BF01293484
http://dx.doi.org/10.1137/S0097539797323571
http://dx.doi.org/10.1137/S0097539797323571
http://dx.doi.org/10.1109/TIT.2002.806118
http://dx.doi.org/10.1109/TIT.2002.806118
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1007/BF01683259
http://dx.doi.org/10.1007/BF01683259
http://dx.doi.org/10.1145/1077464.1077476
http://dx.doi.org/10.1109/TIT.1981.1056419
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1145/322307.322309
http://dx.doi.org/10.1145/322307.322309

Solving Linear Equations Parameterized by Hamming Weight

[Rei08] Omer Reingold, Undirected connectivity in log-space. Journal of the ACM 55(4), 2008.

[Var97a] Alexander Vardy, The intractability of computing the minimum distance of a code. IEEE
Trans. Inform. Theory 43, 1757–1766, 1997.

[Var97b] Alexander Vardy, Algorithmic Complexity in Coding Theory and the Minimum Distance
Problem. Proc. 29th ACM Symposium on Theory of Computing, 92–109, 1997.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1109/18.641542
http://dx.doi.org/10.1145/258533.258559
http://dx.doi.org/10.1145/258533.258559

