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Abstract

The isomorphism problem for groups given by their multiplication tables (GpI) has long
been known to be solvable in nO(logn) time, but until the last few years little progress towards
a polynomial-time algorithm had been achieved. Recently, Babai et al. (ICALP 2012) gave a
polynomial-time algorithm for groups with no abelian normal subgroups. Thus, at present it is
crucial to understand groups with abelian normal subgroups to develop no(logn)-time algorithms.

Towards this goal we advocate a strategy via the extension theory of groups, which is con-
cerned with how a normal subgroup N is related via G to the quotient group G/N . This strategy
“splits” GpI into two subproblems: one related to group actions on other groups, and one re-
lated to group cohomology. Special cases of these problems reduce to GpI, and GpI reduces to
a simultaneous solution of the two problems. Previous works on GpI are naturally connected
to this viewpoint; in particular, most previous results in the Cayley table model have focused
on the group action aspect. However, by the aforementioned reductions the group cohomology
aspect is necessary to tackle the general case. In particular, for p-groups of class 2—believed to
be the hardest case of GpI—group cohomology is necessary to decide isomorphism.

With an eye towards making progress on the group cohomology aspect of GpI, we consider
groups with central radicals, proposed in Babai et al. (SODA 2011): the class of groups whose
solvable normal subgroups are contained in the center. Recall that Babai et al. (ICALP 2012)
consider the class of groups with no solvable normal subgroups. Following the above approach,
we exhibit an nO(log logn)-time algorithm for isomorphism of groups with central radicals, and
polynomial-time algorithms for several prominent sub-classes of groups with central radicals. We
also exhibit an nO(log logn)-time algorithm for isomorphism of groups with elementary abelian,
but not necessarily central, radicals. Prior to this work, nothing better than the trivial nO(logn)-
time algorithm was known, even for groups with a central radical of constant size, such as Z(G) =
Z2. To develop these algorithms we utilize several mathematical results on the detailed structure
of cohomology classes, as well as algorithmic results for code equivalence, coset intersection and
cyclicity test of modules over finite-dimensional associative algebras.

Additionally, the cohomological strategy helps to explain in a unified way the recent successes
on other group classes such as coprime extensions, quotients of generalized Heisenberg groups,
and groups with no solvable normal subgroups. It also suggests several promising directions for
future work.

∗The introduction may serve as an extended abstract: §1.1 contains an informal exposition of §2, §3 and §4; §1.4
gives a brief overview of §5, §6 and §7.
†Department of Computer Science, The University of Toronto. jgrochow@cs.toronto.edu
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1 Introduction

The group isomorphism problem GpI is to determine whether two finite groups, given by their
multiplication tables (“Cayley tables”), are isomorphic. For groups of order n, the easy nlogn+O(1)-
time algorithm [FN70, Mil78]1 for the general case of GpI has barely been improved over the past
four decades (it was improved recently to n0.5 logn+o(logn) by Rosenbaum [Ros13a]). The past few
years have witnessed a resurgence of activity on this problem [LG09, CTW10, BCGQ11, QST11,
Wag11, BQ12, BCQ12, Ros13b, Ros13a]. Before introducing these works and our results, we recall
why GpI is an intriguing problem from the complexity-theoretic perspective.

As GpI reduces to graph isomorphism (GraphI) (see, e. g.[KST93]), GpI currently has an
intermediate status: it is not NP-complete unless PH collapses [BHZ87, BM88], and is not known
to be in P. In addition to its intrinsic interest, resolving the exact complexity of GpI is a tantalizing
question. Further, there is a surprising connection between GpI and the Geometric Complexity
Theory program (see, e. g., [Mul11] and references therein): techniques from GpI were used to solve
cases of Lie algebra isomorphism that have applications in Geometric Complexity Theory [Gro12].

In a survey article [Bab95] in 1995, after enumerating several isomorphism-type problems in-
cluding GraphI and GpI, Babai expressed the belief that GpI might be the only one expected
to be in P.2 Indeed, in many ways GpI seems easier than GraphI: there is a simple nlogn+O(1)-
time algorithm for GpI, whereas the best known algorithm (see [BL83]) for GraphI takes time

2Õ(
√
n) and is quite complicated. There is a polynomial-time reduction from GpI to GraphI, yet

there is provably no AC0 reduction in the opposite direction [CTW10]. Further, GraphI is as
hard as its counting version, whereas no such counting-to-decision reduction is known for GpI.
Finally, whereas the smallest standard complexity class known to contain GraphI is NP ∩ coAM,
Arvind and Torán [AT11] showed that GpI for solvable groups3 is in NP ∩ coNP under a plausible
assumption, weaker than that needed to show GraphI ∈ coNP.

Despite this situation and considerable attention to GpI, prior to 2009 the actual developments
towards polynomial-time algorithms for GpI essentially stopped at abelian groups. For abelian
groups, Kavitha exhibited an O(n)-time algorithm [Kav07], improving Savage’s O(n2) [Sav80] and
Vikas’s O(n log n) [Vik96]. The next natural group class after abelian groups—class 2 nilpotent
groups4—turns out to be formidable. On the other hand, there is a large body of work in the area
referred to as computational group theory (CGT) on practical algorithms for group isomorphism
testing. That line of research typically works on inputs much more succinct than the full Cayley
table, while the algorithms are often heuristic. In the main text, we mostly restrict our attention
to works explicitly on the Cayley table model with worst-case analysis. See Appendix F for a
discussion of the relationship between these two lines of research, as well as works in CGT related
to our results.

Beginning in 2009 there were several advances, starting with Le Gall [LG09]. In [BCQ12],
following [BCGQ11], Babai et al. developed a polynomial-time algorithm for groups with no abelian

1Miller [Mil78] attributes this algorithm to Tarjan.
2The exact quotation from Babai’s 1995 survey [Bab95] is: “None of the problems mentioned in this section,

with the possible exception of isomorphism of groups given by a Cayley table, is expected to have polynomial time
solution.”

3A group is solvable if all its composition factors are abelian. Certain solvable groups are widely believed to be
the hardest cases of GpI.

4A group G is nilpotent of class 2 if the quotient G/Z(G) is abelian, where Z(G) is the center of G.
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normal subgroups. This suggests the presence of abelian normal subgroups as a bottleneck.5 With
this in mind, Babai and Qiao [BQ12] developed a polynomial-time algorithm for a special class of
non-nilpotent solvable groups, building on [LG09, QST11]. In 2013, Rosenbaum [Ros13b] exhibited
a deterministic n0.5 logn+o(logn)-time algorithm for solvable groups, developing ideas of Wagner
[Wag11]. Very recently, Rosenbaum developed a general algorithmic technique that brings the
time complexity of GpI to n0.5 logn+o(logn). To summarize, at present it is crucial to understand
indecomposable5 groups with abelian normal subgroups to develop no(logn)-time algorithms.

Our contributions in this paper are twofold: (1) we propose a general strategy for group
isomorphism; and (2) using that strategy, we develop an nO(log logn)-time algorithm for a group
class proposed in [BCGQ11], and polynomial-time algorithms for some prominent subclasses.
Our strategy also helps to explain in a unified way the recent successes on other group classes
[LG09, QST11, BQ12, BCGQ11, BCQ12, LW12], which can be viewed as adding class-specific
tactics to the strategy outlined here.

1.1 A strategy via group extensions and cohomology

In this paper we use the theory of group extensions (see, e. g., [Rob96, Chapter 11] and [Rot94,
Chapter 7]) to show that the group isomorphism problem “splits” into two subproblems—one
coming from actions of groups on other groups (Action Compatibility), and the other coming
from group extensions and cohomology (Cohomology Class Isomorphism), which we explain
below. We note that in [BE99] Besche and Eick have proposed this splitting in a slightly different
setting, under the name “strong isomorphism.” In the abstract theory of finite groups this splitting
is standard material; the contribution here is the observation that this standard material can be
made algorithmically effective, and that doing so is useful and even formally necessary to resolve the
complexity of GpI. For the converse direction, we observe that special cases of these subproblems
reduce to GpI under polynomial-time reductions (§4.3). We summarize these results in:

Facts 4.1, 4.2, and Lemms 3.2, 3.12 (“Splitting” GpI into actions and cohomology).

• For coprime extensions Action Compatibility ≡pm GpI.

• For p-groups of class 2, when p > 2, Cohomology Class Isomorphism ≡pm GpI.

• GpI reduces to simultaneously solving6 Action Compatibility and Cohomology Class
Isomorphism.

Most previous complexity-theoretic results on GpI have focused on some combination of al-
gorithmic techniques and Action Compatibility. In this paper, for the first time from the
worst-case complexity perspective, we make progress on Cohomology Class Isomorphism.

We now explain this “splitting” and the problems mentioned above informally. Consider the
following natural strategy for testing whether G is isomorphic to H. If G is simple, then isomor-
phism can be tested in polynomial time as G is generated by at most two elements (Fact 5.1). If G
is not simple, then it has some normal subgroup N�G, and we may try to use a divide-and-conquer

5 Abelian direct factors, as in H ×Zn are not a bottleneck however: Kayal and Nezhmetdinov [KN09] and Wilson
[Wil10] gave polynomial-time algorithms to decompose a direct product into its direct factors. For polynomial-time
algorithms, one may thus assume that the groups under consideration are directly indecomposable: they cannot be
written as a direct product of two nontrivial groups.

6See §1.4 and Lemma 3.2 for the exact meaning of “simultaneously solving.”
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strategy by first solving the isomorphism problem for N and G/N . However, even if we find M�H
such that N ∼= M and G/N ∼= H/M , this is typically not sufficient to conclude that G ∼= H (e. g.,
Z4 and Z2 × Z2). We must then understand how the groups N and G/N “glue” back together
to get G. G is called an extension of N by G/N ;7 given N and Q, understanding the collection
of groups G which are extensions of N by Q—that is, where N � G and G/N ∼= Q—is known
as the extension problem. The extension problem is considered quite difficult in general, but the
theory of group cohomology exactly captures this problem and provides useful tools for its study,
including connections with other cohomology theories such as in algebraic topology. One of the
main technical achievements of the present paper is to make some aspects of group cohomology
effective in the setting of worst-case complexity.

When N is abelian the extension theory is conceptually easier and technically cleaner. Coin-
cidentally, due to the polynomial-time algorithm for semisimple groups [BCQ12], abelian normal
subgroups are exactly the subject of interest at present. So for the rest of this subsection, we
assume N is abelian; the theory for the general case is similar, and is covered in Section 3.3.

The extensions of N by Q are governed by two pieces of data: (1) an action of Q on N and (2)
a cohomology class. We explain each of these in turn.

The action. If G is an extension of N by Q, then N �G, so G acts on N by conjugation, giving
a homomorphism θ′ : G → Aut(N). As we have assumed N is abelian, N lies in the kernel of θ′,
so the conjugation action of G on N induces an action θ of G/N ∼= Q on N . Two such actions are
compatible if they become equal after applying some element of Aut(N) × Aut(Q), giving rise to
the first problem Action Compatibility.

The cohomology class. Informally speaking, the simplest examples of extensions are when Q
can be “lifted” to a subgroup of G that is compatible with the isomorphism G/N ∼= Q. However, it
is possible to have an extension G of N by Q in which this cannot happen. For example, consider
the additive group of real numbers R, and its normal subgroup 2πZ.8 The quotient R/2πZ is
isomorphic to the “circle group” S1 of unit complex numbers under multiplication, yet S1 is not
even a subgroup of R, let alone “liftable to R.” Contrast with the group G = 2πZ×S1, which also
has 2πZ�G and G/2πZ ∼= S1, yet S1 is a subgroup of G. Note that as both R and G are abelian
the conjugation action of R or G on any normal subgroup is trivial. So the actions cannot explain
the fact that S1 is not a subgroup of R; instead, it is group cohomology that exactly captures this
phenomenon.

Specifically, if G is an extension of N by Q, the failure of Q to be “liftable” to G is measured
by a cohomology class as follows. Consider any set map s : Q→ G such that s(q) is in the coset of
N corresponding to q under the identification G/N ∼= Q. Q is “liftable” if and only if s is a group
homomorphism. The failure of s to be a homomorphism is measured by the function fs(q, p) :=
s(q)s(p)s(qp)−1: s is a homomorphism if and only if fs(q, p) = 1 for all p, q ∈ Q. The cohomology
class corresponding to G, viewed as an extension of N by Q, is then {fs|s : Q→ G as above}. Two
cohomology classes are isomorphic if they become equal after applying some element of Aut(N)×
Aut(Q), giving rise to the second problem Cohomology Class Isomorphism.

7Some authors use the opposite nomenclature and call this an extension of G/N by N .
8There are similar examples in finite groups, but we believe this example has more intuitive appeal. For readers

familiar with group extensions, the goal here is to exhibit a nonsplit extension; {0, 2}� Z4 is a familiar example.
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Towards a formal strategy. Having introduced the action and the cohomology class, let us see
how they can be useful in isomorphism testing. We refer to the pair (θ, f) of the corresponding
action and (a representative of) a cohomology class as the extension data of the extension. Suppose
we are given two groups G1 and G2. We cleverly choose some N1 �G1 and N2 �G2, and (somehow
we are lucky to find that) N1

∼= N2 and G1/N1
∼= G2/N2. Viewing Gi as extensions of Ni by Gi/Ni,

we extract the action θi and cohomology classes fi, for i = 1, 2. If there is a simultaneous solution
(one single (α, β) ∈ Aut(N)×Aut(G/N)) to Action Compatibility for θ1, θ2 and Cohomology
Class Isomorphism for f1, f2, we say the extension data are pseudo-congruent.9

If the extension data are pseudo-congruent, then G1
∼= G2 and we are done. However, it is

possible that G1
∼= G2 but the extension data are not pseudo-congruent (we thank Naik [Nai10] for

providing Example E.2). The difficulty is that G may contain two normal subgroups M,M ′ � G
such that M ∼= M ′ and G/M ∼= G/M ′, but no automorphism of G sends M to M ′. To resolve this
problem, our Main Lemma 3.2 shows that it is enough to take N1 and N2 to be the center or the
radical, or more generally any characteristic subgroups that are preserved under isomorphisms.10

Now we state the Main Lemma informally.

Lemma (Main Lemma 3.2, informal). Given two groups G1 and G2, let Ai be the abelian char-
acteristic subgroup of Gi of a particular type (e. g., the center), θi the action of Gi/Ai on Ai, and
fi the cohomology class of the extension of Ai by Gi/Ai. Suppose A1

∼= A2 (identified as A) and
G1/A1

∼= G2/A2 (identified as Q).
Then G1

∼= G2 if and only if θ1 ≡ θ2, and f1 ≡ f2 up to the action of Aut(A)×Aut(Q).

As evidence of the usefulness of the Main Lemma beyond this paper, we note that the polynomial-
time algorithms for a special class of solvable groups in [LG09, QST11, BQ12] follow this strategy:
they use a theorem of Taunt [Tau55] to reduce isomorphism testing to a problem about linear
representations of finite groups (see Problem 1 in [QST11]), and solve that problem with additional
tactics. In retrospect, Taunt’s Theorem is a special case of the Main Lemma11, and Problem 1
in [QST11] is essentially Action Compatibility. Similarly, in retrospect the polynomial-time
algorithm for semisimple groups [BCGQ11, BCQ12] can be viewed as taking advantage of the
nonabelian Main Lemma 3.12. We cover these examples in more detail in Section 4.2.

Due to the structure of the group classes considered in [LG09, QST11, BQ12], group Coho-
mology Class Isomorphism does not appear in these works. On the other hand, for p-groups
of class 2 (currently believed the bottleneck), Cohomology Class Isomorphism is well-known
to be necessary (see Fact 4.2). We thus turn to study the Cohomology Class Isomorphism
problem in the following. As far as we know, this is the first time group cohomology has been used
for GpI in the Cayley table model.

9 We take this terminology from Naik [Nai12], who gives a different definition of pseudo-congruence of extensions
that is more standard from the group-theoretic point of view, but less well-adapted to the computational setting.
We give the other definition and show that the two are formally equivalent in §3.2. Robinson [Rob96] uses the term
“isomorphism” for this notion; we prefer “pseudo-congruence” to avoid confusion with the several other notions of
isomorphism floating around. Theoretical investigations of some aspects of this concept can be found in Robinson
[Rob82, Sec. 4].

10In the practical setting, Besche and Eick [BE99] got around the pitfall by introducing the related concept of
“strong isomorphism,” which is more natural for their purpose, namely the construction of finite groups.

11Taunt’s Theorem applies regardless whether the normal subgroup N is abelian or not. The works [LG09, QST11,
BQ12] only used the case when N is abelian. The general Main Lemma 3.12 additionally covers the nonabelian case
of Taunt’s Theorem.
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1.2 Motivation for the classes of groups considered

The classes of groups we consider are natural extensions of the class of groups considered in
[BCGQ11, BCQ12], and are additionally motivated by the Babai–Beals filtration [BB99], and
the Cannon–Holt approach to group isomorphism in the practical setting [CH03]. We go into the
details of the Babai–Beals filtration and the Cannon–Holt approach in §8. Here we merely give
enough of a flavor to help motivate the classes of groups we consider.

Important in both the Babai–Beals filtration and the Cannon–Holt approach is the solvable
radical. Recall that a group is solvable if it has a series of subgroups 1 = G0 �G1 � · · ·�Gk = G
such that each Gi is normal in the next and Gi/Gi−1 is abelian for all i. The solvable radical
Rad(G) of a group G is the unique maximum solvable normal subgroup of G. Note that the center
Z(G), as an abelian normal subgroup, is contained in Rad(G). G/Rad(G) contains no solvable
normal subgroups, side-stepping the currently intractible obstacle of solvable groups. Babai et
al. [BCQ12] give a polynomial-time algorithm for isomorphism of groups with no solvable normal
subgroups; following them, we call such groups “semisimple.”12

We mainly consider the class of groups whose solvable radical coincides with its center, that
is, Rad(G) = Z(G) (in Section 6.2 we also consider groups whose solvable radical is abelian, but
need not be contained in the center). This class, which we refer to as groups with central radicals
or central-radical groups, is a natural extension of the class of semisimple groups and a natural
stepping stone towards general groups. Note that for such groups the solvable radical is necessarily
abelian. Besides the motivations mentioned above, central-radical groups also cover a class of
groups that is well-studied in finite group theory (see §1.3 and Appendix D). In the theory of Lie
groups, central-radical groups correspond to the well-studied and important class of reductive Lie
groups, which are important mainly because of their nice representation-theoretic properties.

While this may seem only a slight extension, central-radical groups in fact differ significantly
from previous classes of groups with no(logn)-time isomorphism algorithms. In particular, previous
no(logn)-time algorithms for GpI of special group classes only consider one of the two main aspects
of GpI, namely actions.13 On the other hand, to work with groups with central radicals, we need
to focus on the other main aspect of the problem, namely cohomology (see §1.1). Our results also
suggest one more step towards a formal reduction from the general case to nilpotent groups of class
2 (see §8.3).

1.3 New algorithms using this strategy

We use the strategy outlined in §1.1 to achieve the following results. For groups with central
radicals, we give an nO(log logn)-time algorithm in general, and for several subclasses of groups with
central radicals we give polynomial-time algorithms. We also give similarly efficient algorithms for
groups with elementary abelian, but not necessarily central, radicals. Prior to this work, nothing
better than the trivial nlogn+O(1)-time algorithm was known, even for groups with a central radical
of constant size, such as Z(G) = Rad(G) = Z2.

Theorem 6.2. Isomorphism of central-radical groups of order n can be decided in time nc log logn+O(1),
for c = 1/ log2(60) ≈ 0.169.

12 If there is a solvable normal subgroup S �G, there is an abelian normal subgroup of G, namely the last term in
the derived series of S. Hence semisimple groups can be characterized either as having no solvable normal subgroups
or as having no abelian normal subgroups.

13In §4.2, we briefly indicate how actions are used in [LG09, QST11, BQ12, BCGQ11, BCQ12].
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The algorithm in the above theorem in fact runs in polynomial time when the order or structure
of the semisimple quotient G/Rad(G) is bounded as follows. Recall that a normal subgroup of G is
minimal if it is nontrivial and does not contain any smaller normal subgroups of G. The number of
minimal normal subgroups of G/Rad(G) is always at most log60 n; if it happens to be just slightly
smaller, then we have:

Theorem 6.3. Let G and H be central-radical groups of order n. If G/Rad(G) has O( logn
log logn)

minimal normal subgroups, isomorphism between G and H can be decided in polynomial time.

In particular, this includes groups G satisfying |G/Rad(G)| ≤ nO(1/ log logn), but also many
groups where G/Rad(G) is much larger. Both of these theorems are in fact corollaries of our more
general Theorem 6.1 together with previous results on semisimple groups [BCGQ11], but we defer
the statement of Theorem 6.1 until §7, as the above results make its significance clearer.

For groups with elementary abelian, but not necessarily central, radicals we get the same conclu-
sions. This requires us to simultaneously solve Action Compatibility and Cohomology Class
Isomorphism. We combine the above techniques with a novel reduction to known representation-
theoretic algorithms [CIK97] to get:

Theorems 6.11 and 6.12. Isomorphism of groups of order n with elementary abelian radicals can
be decided in time nc log logn+O(1), for c = 1/ log2(60) ≈ 0.169.

If furthermore G/Rad(G) has O( logn
log logn) minimal normal subgroups, isomorphism can be de-

cided in polynomial time.

We then consider central-radical groups with G/Rad(G) a direct product of nonabelian simple
groups. Although this may seem restrictive, this class of groups is quite natural. In group theory,
this class is closely related to the generalized Fitting subgroups (see, e. g., [Suz86, Ch. 6, §6] and
[Asc00, Ch. 11], as well as Appendix D). Also, within central-radical groups, this class has two
characterizations: (1) the last two of the four levels of the Babai–Beals filtration are trivial (see
§8.2); or (2) those groups that are equal to their generalized Fitting subgroup (see Appendix D).
We give polynomial-time algorithms for this group class when certain parameters are fixed. This

includes, for example, central extensions of ZΘ(logn)
p by A

Θ(logn)
5 , which do not satisfy the conditions

of Theorem 6.3 nor 6.12.
More importantly, we believe the techniques in Theorem 7.1 are worth noting: we rely on a de-

tailed analysis of the structure of the cohomology classes (see §1.1), specific to this group class and
traced back to Suzuki [Suz86], to allow for the application of known algorithmic techniques, includ-
ing singly-exponential-time algorithms for Linear Code Equivalence [Bab10] (see [BCGQ11,
Thm. 7.1]) and Coset Intersection [Bab83, Luk99] (see also [Bab08, BKL83]).

Theorem 7.1. Isomorphism of groups G1 and G2 with central radicals and Gi/Rad(Gi) a direct
product of nonabelian simple groups can be decided in polynomial time if either:

1. |Aut(Rad(G1))| is bounded by a polynomial; or

2. Rad(G1) is elementary abelian, and the simple direct factors of G1/Rad(G1) each have order
O(1).
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1.4 Overview of our algorithms

Here we give an overview of the structure of our algorithms, as well as some of the more salient
details. We first consider the case when the solvable radical is abelian, to see how the strategy in
the above section is applied. We then focus on central-radical groups to outline some key steps in
the algorithms.

Given groups G1, G2, we first compute their solvable radicals Ai = Rad(Gi) and the corre-
sponding semisimple quotients Qi = Gi/Rad(Gi). Then apply the algorithm from [Kav07] to A1

and A2, and the algorithm from [BCQ12] to Q1 and Q2. If either of them returns non-isomorphic,
G1 6∼= G2. If both algorithms return isomorphic, they also yield isomorphisms. Thus, without loss
of generality, for i = 1, 2, we use A to denote Rad(Gi) and Q to denote Gi/Rad(Gi), identifying
Gi as an extension of A by Q.

Next, we compute the corresponding actions θ1, θ2 and representatives f1, f2 of the correspond-
ing cohomology classes. As mentioned §1.1, our Main Lemma 3.2 says that G1 and G2 are isomor-
phic if and only if there is an element of Aut(A)× Aut(Q) which simultaneously turns θ1 into θ2,
and f1 into f2 (as cohomology classes).

For groups with central radicals, A = Z(Gi), so the actions θi are trivial, and we only need to
solve Cohomology Class Isomorphism. We denote the twist of fi by (α, β) ∈ Aut(A)×Aut(Q)

by f
(α,β)
i , and the task is to determine whether there exists α ∈ Aut(A), and β ∈ Aut(Q), such

that f1 and f
(α,β)
2 are in the same cohomology class. We now present some of the key ideas in our

algorithms.

For general central-radical groups. Babai et al. [BCGQ11] showed that all automorphisms of
a semisimple group can be enumerated in time nO(log logn). So if nO(log logn) time is allowed, we can
use that algorithm to enumerate β ∈ Aut(Q). Then for each such β, search for some α ∈ Aut(A)

such that f1 and f
(α,β)
2 are in the same cohomology class.

To tackle the latter problem, to ease the exposition let us assume A = Zkp. Then we shall
view any map f : Q × Q → A as a k × |Q|2-size matrix over Zp, with α ∈ Aut(A) acting on the
rows, Aut(Q) inducing an action on the columns. The main difficulty at this point has to do with
identifying which cohomology class f is in, preferably in a way that is Aut(A)×Aut(Q)-invariant.
Viewing f as a Zp-linear vector (of dimension k × |Q|2), by Proposition C.1 we can compute a
projection π in this vector space such that π(f) identifies the cohomology class of f—that is,
π(f) = π(f ′) if and only if f and f ′ are in the same cohomology class—and such that π commutes

with every α ∈ Aut(A). With fixed β, this allows us to compute π(f1) and π(f
(id,β)
2 ), and then

determine whether, as k × |Q|2-size matrices, their row spans are the same, which is a standard
task in linear algebra. Finally, to move from A = Zkp to general abelian A, we must consider the
automorphism group of an arbitrary abelian group in some detail, which we do in Section 6.1.1.

For central-radical groups with G/Rad(G) a direct product of nonabelian simple groups.
In this case Q =

∏
i∈[`] Ti, Ti nonabelian simple. To ease the exposition let us assume Ti’s are all

isomorphic to T and A = Zkp. For a function f : Q×Q→ A, a key fact is that the cohomology class
of f is completely determined by the restrictions of f to the direct factors Ti (Lemma 7.3). Several
group-theoretic facts lead to this cohomological proposition, including: (1) the direct product
decomposition of Q into nonabelian simple factors is unique (not just up to isomorphism); (2) if
Ui is the preimage of Ti under the projection G → G/Z(G), then uiuj = ujui whenever ui ∈ Ui,
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uj ∈ Uj , and i 6= j ([Suz86, Chapter 6, Proposition 6.5], see Proposition 7.2). Another useful fact
is the well-known description of Aut(Q) as Aut(T ) o S`.

When A is small enough that we can enumerate Aut(A) in polynomial time, this allows us, up
to a polynomial overhead, to focus on the multiset of cohomology classes of the Ui’s. This idea
leads to the algorithm for Theorem 7.1 (1).

When A is not small enough for the above tactic, instead of considering f : Q×Q→ A, we can
consider fi : Ti × Ti → A, i ∈ [`]; and instead of working with a k × |Q|2-size matrix, we can work
with a k×(

∑
i∈[`] |Ti|2)-size matrix. This difference between |Q|2 =

∏
i∈[`] |Ti|2 and

∑
i∈[`] |Ti|2 leads

to major savings. To find the pair (α, β) simultaneously, we combine algorithms for Linear Code
Equivalence and Coset Intersection. This is the basic idea for Theorem 7.1 (2). We need
several technical ingredients (including Lemma 7.4) to make the above procedure work though.

1.5 Organization of the paper

In §2 we collect basic concepts from extension theory. The strategy is developed in §3, which ex-
pands the ideas in §1.1 into a formal framework. Appendix E contains some further related concepts
and facts from extension theory. §5 contains preliminaries and previous algorithmic results to pre-
pare for the algorithms for central-radical groups. In §6 we describe the nO(log logn)-time algorithm
for the general central-radical groups (Theorem 6.2); this is also the algorithm for Theorem 6.3.
We also give the algorithms for groups with elementary abelian radicals that need not be central.
In §7, we describe the fixed-parameter polynomial-time algorithms for central-radical groups with
G/Rad(G) a direct product of nonabelian simple groups. Finally §8 contains future directions,
some of which are motivated by the Cannon–Holt approach and the Babai–Beals filtration.

2 Preliminaries for the strategy

General notations. For n ∈ N, [n] = {1, . . . , n}. In this paper, all groups are finite. We use
id to denote the identity element, or the group of order 1. For a group G, |G| denotes the order
of G. We write H ≤ G if H is a subgroup of G. The (right) coset of H in G containing g ∈ G
is Hg = {hg | h ∈ H}. Given two groups G1 and G2, Iso(G1, G2) denotes the set of G1 → G2

isomorphisms. Aut(G) = Iso(G,G) is the group of automorphisms of G. The set Iso(G1, G2) is
either empty or a coset of Aut(G1). For g ∈ G, conjugation by g is the automorphism θg : G→ G
defined by θg(x) := gxg−1. For g ∈ G, the maps θg are the inner automorphisms of G, and they
form a subgroup Inn(G) ≤ Aut(G). A subgroup N ≤ G is normal if it is invariant under all inner
automorphisms, and we write N � G. N ≤ G is a characteristic subgroup of G if it is invariant
under all automorphisms of G. Z(G) denotes the center of G. For K,L ≤ G, [K,L] denotes the
subgroup generated by all elements of the form [x, y] := x−1y−1xy, x ∈ K and y ∈ L. [G,G] is
called the commutator subgroup of G.

Group extension data. Given a finite group G and an abelian normal subgroup A�G, when

we consider G as an extension of A by Q := G/A, we denote this by A
ι
↪→ G

π
� Q, where ι

is an injective homomorphism and π a surjective homomorphism, such that Ker(π) = Im(ι). In
this paper, we mostly use the “inner” perspective, by identifying A with its image ι(A) � G. We
sometimes refer to G as the “total group” of the extension.
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We have already mentioned (§1.1) that extension data consists of an action of Q on A and (a
representative of) a cohomology class. Here we define the extension data more formally.

The action. Given g ∈ G, cg ∈ Aut(A) denotes the conjugation action cg(a) := gag−1, and
θ′ : G→ Aut(A) is the corresponding homomorphism θ′(g) := cg. As A is abelian, A ≤ Ker(θ′), so
that θ′ induces a homomorphism θ : Q→ Aut(A). We refer to this θ as the action of the extension
A ↪→ G� Q, and θp denotes the image of p ∈ Q in Aut(A).

The cohomology class. As A is abelian, we write the group operation in A additively,
despite the fact that when considering general elements of G we write the group operation in G
multiplicatively (this mixed notation is fairly standard in this setting). Even though A is a subgroup
of G, we tend to only use these notations in separate contexts and it should not cause confusion.

Let π : G → G/A ∼= Q be the natural projection; then any set map s : Q → G such that
π(s(q)) = q for all q ∈ Q is called a section of π. Any such section s gives rise to a function
fs : Q×Q→ A defined by fs(p, q) := s(p)s(q)s(pq)−1. To see that the image of fs in fact lies in A
and not merely in G, note that π(fs(p, q)) = π(s(p))π(s(q))π(s(pq)−1) = 1, so Im fs ⊆ Ker(π) = A.

We are free to choose s(1) = 1, and then fs(1, q) = fs(q, 1) = 0 for all q ∈ Q. Such f are called
normalized. In the following all sections are normalized unless stated otherwise.

The fact that the group operation in G is associative implies that for all p, q, r ∈ Q,

fs(p, q) + fs(pq, r) = θp(fs(q, r)) + fs(p, qr) (the 2-cocycle identity)

Any function f : Q × Q → A is called a 2-cochain; any 2-cochain satisfying the 2-cocycle identity
is a 2-cocycle. Given any homomorphism θ : Q → Aut(A), every 2-cocycle arises as fs for some
section s of some extension A ↪→ G� Q with action θ.

When do two 2-cocycles fs, fs′ correspond to the same extension? Suppose we know the two
sections s, s′ : Q → G. As s(q), s′(q) lie in the same coset of A, there is a function u : Q → A
such that s(q) = u(q)s′(q) for all q ∈ Q. Then fs(p, q) = fs′(p, q) + (u(p) + θp(u(q))− u(pq)).
A 2-coboundary is a function of the form fu(p, q) := u(p) + θp(u(q)) − u(pq) for any set map
u : Q→ A. Hence, if two 2-cocycles come from the same extension, they differ by a 2-coboundary.
Eilenberg and Maclane [EM47] proved the converse, for a suitable notion of two extensions being
“the same,” which we discuss in §3.2. Two 2-cocycles which differ by a 2-coboundary are said to
be cohomologous.

The 2-cochains form an abelian group C2(Q,A) defined by pointwise addition: (f + g)(p, q) :=
f(p, q)+g(p, q). It is readily visible that the 2-cocycle identity is Z-linear, and hence the 2-cocycles
form a subgroup of the 2-cochains, denoted by Z2(Q,A, θ). It is similarly verified that the 2-
coboundaries form a subgroup of the 2-cocycles, denoted B2(Q,A, θ).

A 2-cohomology class is a coset of B2(Q,A, θ) in Z2(Q,A, θ), and any element of this coset is a
representative of the cohomology class. If f ∈ Z2(Q,A, θ), we denote the corresponding cohomology
class by [f ]. The group of 2-cohomology classes is denoted H2(Q,A, θ) := Z2(Q,A, θ)/B2(Q,A, θ).
By the above discussion, each extension A ↪→ G � Q corresponds to a unique cohomology class
[f ] ∈ H2(Q,A, θ).

We thus arrive at one of the central notions in this paper:

Definition 2.1. For A an abelian group and Q any group, a pair (θ, f) of an action θ : Q→ Aut(A)
and a 2-cocycle f : Q × Q → A, f ∈ Z2(Q,A, θ) is an extension data. Given an extension A ↪→
G� Q, the extension data for this particular extension are the action θ as defined above, and any
2-cocycle fs for any section s : Q→ G.
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Note that extension data are non-unique, as we may choose any representative of the corre-
sponding 2-cohomology class. Two extension data for the pair (Q,A) are equivalent if they have
the exact same action and if the two 2-cocycles are cohomologous (differ by a coboundary).

Two important special cases of extension data (θ, f) are as follows.

f is trivial (as 2-cohomology class). This implies that there exists P ≤ G such that AP = G
and P ∩A = id. Such P is called the complement of A in G, and the extension is called a split
extension. In this case only Equation 1 is present in the pseudo-congruence test, equivalently,
Extension Data Pseudo-congruence becomes Action Compatibility.

θ is trivial. This implies that A ⊆ Z(G), and the extension is called central. In this case, we
only need to focus on Equation 2 in the pseudo-equivalence test, that is, Extension Data
Pseudo-congruence becomes Cohomology Class Isomorphism.

Remark 2.2. It is not difficult to test whether an input satisfies one of the above conditions: it is
trivial to test whether an extension is central; see Appendix A for an algorithm to test whether an
extension is split.

3 The main lemma

3.1 For abelian characteristic subgroups

Recall that a characteristic subgroup is a subgroup invariant under all automorphisms. The anal-
ogous notion for isomorphisms (rather than automorphisms) is a function S that assigns to each
group G a subgroup S(G) ≤ G such that any isomorphism ϕ : G1 → G2 restricts to an isomor-
phism ϕ|S(G1) : S(G1) → S(G2). In line with other works in group theory, we call such a function
a characteristic subgroup functor. Note that if G1 = G2, this says that S(G1) is sent to itself by
every automorphism of G1, that is, S(G1) is a characteristic subgroup of G1. Most natural charac-
teristic subgroups encountered are characteristic subgroup functors, for example the center Z(G),
the commutator subgroup [G,G], or the radical Rad(G).

Let S denote a fixed characteristic subgroup functor, and suppose we are given two groupsG1, G2

such that S(G1) and S(G2) are both abelian. We first examine the consequences of an isomorphism
G1
∼= G2. Let γ : G1 → G2 be an isomorphism. By the definition of characteristic subgroup

functor, γ(S(G1)) = S(G2), thus S(G1) ∼= S(G2) (identified as A) and G1/S(G1) ∼= G2/S(G2)
(identified as Q). Let (θi, fi) be the extension data of A ↪→ Gi � Q, where θi : Q → Aut(A) and
fi ∈ Z2(Q,A, θi). As we’ve identified A = S(G1) = S(G2) and Q = G1/S(G1) = G2/S(G2), γ
induces some α ∈ Aut(A) and β ∈ Aut(Q). We write θi,q as the shorthand for θi(q) for i = 1, 2 and
q ∈ Q. It can then be verified that for q ∈ Q and a ∈ A,

θ1(q)(a) = α−1(θ2,β(q)(α(a))) =: θ
(α,β)
2 (q)(a), (1)

and we record this as θ1 = θ
(α,β)
2 , where θ

(α,β)
2 is defined as above.

It can be similarly verified that [f1] = [f
(α,β)
2 ] as cohomology classes in H2(Q,A, θ1), where

f
(α,β)
2 (p, q) := α−1(f2(β(p), β(q))) for all p, q ∈ Q. In other words, we have:

f1(p, q) = α−1(f2(β(p), β(q))) + fu(p, q) (2)

for some 2-coboundary fu ∈ B2(Q,A, θ1). Note that Equation 1 ensures f
(α,β)
2 is a 2-cocycle in

Z2(Q,A, θ1). This discussion leads to the following definition:
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Definition 3.1. Let A be an abelian group and Q any group, and let (θ1, f1) and (θ2, f2) be
two extension data for A-by-Q. Then the extension data are pseudo-congruent9 if there exists

(α, β) ∈ Aut(A)× Aut(Q), such that θ1 = θ
(α,β)
2 and [f1] = [f

(α,β)
2 ], that is, Equations (1) and (2)

hold. In this case we write (θ1, f1) ∼= (θ2, f2).

Lemma 3.2 (Main Lemma). Let S be a characteristic subgroup functor. Given two finite groups
G1 and G2, suppose S(G1) and S(G2) are abelian. Then G1

∼= G2 if and only if both of the following
conditions hold:

1. S(G1) ∼= S(G2) (which we denote by A) and G1/S(G1) ∼= G2/S(G2) (which we denote by Q);

2. (θ1, f1) ∼= (θ2, f2), where (θi, fi) is the extension data of the extensions A ↪→ Gi � Q (by
(1)).

Proof. The above discussion shows the only if direction. For the other direction, suppose we are
given an abelian group A, a group Q, an action θ : Q → Aut(A), and a 2-cocyle f : Q × Q → A,
f ∈ Z2(Q,A, θ). We shall need the following procedure of Eilenberg and MacLane [EM47] that
takes A, Q, θ and f as input, and outputs a group H as an extension of A by Q with extension
data (θ, f). We refer to this as the standard reconstruction procedure. The set of group elements of
H is A×Q. For (a, p), (b, q) ∈ A×Q, the group operation ◦H is defined as

(a, p) ◦H (b, q) = (a+ θp(b) + f(p, q), pq).

A simple but tedious calculation verifies that A ↪→ H � Q is an extension with extension data
(θ, f).

Getting back to our problem, from (θ1, f1) ∼= (θ2, f2), we can choose appropriate sections

si : Q → Gi such that the corresponding 2-cocycles satisfy f1 = f
(α,β)
2 in Z2(Q,A, θ1). Note

that as θ1 = θ
(α,β)
2 , f

(α,β)
2 ∈ Z2(Q,A, θ1). Now apply the standard reconstruction procedure to

(θi, fi) to get Hi
∼= Gi. It is then straightforward to verify that the bijection γ : H1 → H2 defined

by γ((a, p)) = (α(a), β(p)) is in fact an isomorphism.

3.2 Pseudo-congruence of extensions and extension data

The standard concepts of pseudo-congruence and equivalence apply to group extensions themselves,
rather than extension data as in our definitions. We use our definitions because the standard
definitions seem to presuppose that the total groups are isomorphic, whereas in our setting the
whole goal is to determine whether this is the case. However, we show below that the definitions
are in fact equivalent (which is closely related to the Main Lemma 3.2). We present the standard
definition here as it has more intuitive appeal and we believe it makes our subsequent discussions
clearer, for example the proof of Theorem 7.1.

Definition 3.3. Two extensions A ↪→ Gi � Q (i = 1, 2) of A by Q are pseudo-congruent if there
is an isomorphism γ : G1 → G2 such that γ(A) = A. In particular, γ induces automorphisms
α ∈ Aut(A) and β ∈ Aut(Q).

Pictorially, G1 and G2 are pseudo-congruent as extensions if there exist α ∈ Aut(A), β ∈ Aut(Q)
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and γ ∈ Iso(G1, G2) such that the following diagram commutes:14

A �
� ι1 //

α∼=
��

G1
π1 // //

γ∼=
��

Q

β∼=
��

A �
� ι2 // G2

π2 // // Q

where ιi is the injective homomorphism from A to Gi and πi is the surjective homomorphism from
Gi to Q with Ker(πi) = Im(ιi). It is possible for the total groups G1 and G2 to be isomorphic
without the extensions being pseudo-congruent (see Example E.2).

Despite the fact that the usual Definition 3.3 seems to presuppose that the total groups are
isomorphic, in fact it is equivalent to our Definition 3.1. The isomorphism of the total groups
follows for free from pseudo-congruence of the extension data:

Lemma 3.4. Definitions 3.1 and 3.3 are equivalent. In detail: let A ↪→ Gi � Q (i = 1, 2) be
extensions of A by Q, and let (θi, fi) be the corresponding extension data. Then G1 and G2 are
pseudo-congruent as extensions of A by Q if and only if (θ1, f1) ∼= (θ2, f2).

Proof. Suppose that the extensions are pseudo-congruent (Definition 3.3), and let γ ∈ Iso(G1, G2),

α ∈ Aut(A), β ∈ Aut(Q) be as in Definition 3.3. It is readily verified that θ1 = θ
(α,β)
2 and

[f1] = [f
(α,β)
2 ], that is, that the extension data are pseudo-congruent under Definition 3.1.

Conversely, suppose the extension data are pseudo-congruent (Definition 3.1). Then the iso-
morphism γ constructed in the proof of the Main Lemma 3.2 satisfies the conditions of Defini-
tion 3.3.

Recall that two extension data are equivalent if they have the same action, and cohomologous
2-cocycles. Eilenberg and MacLane [EM47] showed that two extensions have equivalent extension
data if and only if the extensions satisfy a very strict form of pseudo-congruence:

Definition 3.5. Two extensions A ↪→ Gi � Q (i = 1, 2) are equivalent if there exists an isomor-
phism γ : G1 → G2, such that γ(A) = A, and γ induces the identity automorphism on both A and
Q.

Theorem 3.6 (Eilenberg-MacLane [EM47], see also [Rob96]). There is a bijection between equiv-
alence classes of extensions of A by Q with action θ, and elements of the group H2(Q,A, θ).

This theorem also shows that our definition of “equivalent extension data” is equivalent to
Definition 3.5.

3.3 The main lemma for nonabelian normal subgroups

Here we consider extensions N ↪→ G� Q where N need not be abelian, i. e., the general case. We
show that our Main Lemma 3.2 extends to the case when N comes from a characteristic subgroup
functor (not necessarily abelian), showing the usefulness of the extension theory perspective in its
full generality. The results of this section will only be needed in the next section, to show that
the polynomial-time algorithm for semisimple groups [BCQ12] fits into the framework of the Main

14Such a diagram commutes if for any two directed paths in the diagram from one group to another, the corre-
sponding compositions are equal as maps.

12



Lemma. Throughout the rest of the paper we only consider extensions where N is abelian. Suzuki’s
book [Suz86] contains a nice introduction to the extension theory in the nonabelian case, while our
contribution here is to adapt this theory explicitly to the setting of isomorphism testing.

The action. The first difference to notice when N is non-abelian is that the conjugation map
θ′ : G → Aut(N), defined by θ′(g) = cg where cg(n) = gng−1, no longer contains N in its kernel,
and hence no longer descends to a map Q → Aut(N). However, the action of N on itself by
conjugation is by inner automorphisms (by definition) so that we do get a well-defined map G/N →
Aut(N)/Inn(N), that is, Q→ Out(N). For ease of reference, we give a name to such maps:

Definition 3.7. An outer action of a group Q on a group N is a group homomorphism Q →
Out(N) = Aut(N)/Inn(N).

In computations, rather than represent an outer automorphism as a coset of Inn(N) in Aut(N),
we simply give it by a representative automorphism, and must remember when we may need to
multiply by an arbitrary element of Inn(N). Throughout this section we use T to denote an action
rather than θ, to remind the reader that the essential object here is the outer action represented
by T , despite the fact that we work directly with actions T : Q→ Aut(N).

Correspondingly, in the setting of general N , the problem Action Compatibility must
be generalized to Outer Action Compatibility, which is defined as follows. Two actions
T1, T2 : Q→ Aut(N) are said to be “outer equivalent” if there is a set map t′ : Q→ Inn(N) and an
automorphism α ∈ Aut(N) such that T1(q) = α−1 ◦ t′(q) ◦T2(q) ◦α for all q ∈ Q. The Outer Ac-
tion Compatibility problem is then: given two actions T1, T2 : Q→ Aut(N), determine whether
there an element β ∈ Aut(Q) such that T1 and T2 ◦ β are outer equivalent. Putting these two
definitions together, we see that Outer Action Compatibility is the question of whether there
exists (β, α, t′) ∈ Aut(Q)× (Aut(N) n Inn(N)Q) such that T1(q) = α−1 ◦ t′(β(q)) ◦ T2(β(q)) ◦ α for
all q ∈ Q.

Although this formulation of Outer Action Compatibility is more complicated than if we
had represented an outer automorphism as a full coset θInn(N), it will be useful when we formulate
Extension Data Pseudo-congruence below.

Note that when N is abelian there are no inner automorphisms, so Out(N) = Aut(N), the
only choice for t′ above is trivial, and Outer Action Compatibility then becomes Action
Compatibility.

Remark 3.8. We note that, unlike the case of N abelian, when N is nonabelian it is possible
that some outer actions θ : Q→ Out(N) may not be induced by any extension of N by Q. When
there is such an extension, the outer action θ is called extendible. Eilenberg and MacLane [EM47,
Sec. 7–9] characterize which outer actions are extendible in terms of the third cohomology group
H3(Q,Z(N)). As our interest is primarily in GpI, whenever it matters (e. g., in the definition of
Outer Action Compatibility) we happily restrict our attention to extendible outer actions.
Note that the characterization in terms of cohomology with coefficients in Z(N) allows one to use
linear algebra over the abelian group Z(N) to test in polynomial time whether a given outer action
is extendible.

The cohomology class. As in the case of N abelian, one may still choose a set-theoretic section
s : Q → G and get a 2-cocycle fs : Q × Q → N . This section s gives an action (not just outer
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action) Ts : Q → Aut(N) as above, namely Ts(q)(n) = s(q)ns(q)−1. Starting from associativity in
G, one may then work out, as in the abelian case, the 2-cocycle condition: fs(q1, q2)fs(q1q2, q3) =
Ts(q1)(fs(q2, q3))fs(q1, q2q3). However, this condition depends not just on the action Ts and the
2-cochain fs, but also on some relationship between Ts and fs (in this case, that they come from the
same section s). We would much prefer a condition that does not depend on the ambient extension
group G. To get this condition, note that the action satisfies Ts(q1)Ts(q2) = cfs(q1,q2)Ts(q1q2), where
cn : N → N denotes the inner automorphism given by conjugation by n ∈ N : cn(m) = nmn−1.
This leads us to our definition of extension data for general N :

Definition 3.9 (Extension data for general Q,N). Let Q and N be groups. We say that a pair
(T, f) of an action T : Q → Aut(N) and a set map f : Q × Q → N is extension data if, for all
qi ∈ Q,

T (q1)T (q2) = cf(q1,q2)T (q1q2) (3)

and
f(q1, q2)f(q1q2, q3) = T (q1) (f(q2, q3)) f(q1, q2q3). (4)

In this case, we refer to f as a 2-cocycle with respect to the action T .

Note that condition (3) very nearly determines f : it determines f(q1, q2) up to an element of
Z(N). In particular, when Z(N) = 1 condition (3) actually does determine f completely, a fact we
will take advantage of when discussing the polynomial-time algorithm for groups with no abelian
normal subgroups [BCQ12].

Another difference in the case of N nonabelian is that, although we might denote the set of
2-cocycles by Z2(Q,N, T ), this set will not in general be a group in any natural way, let alone an
abelian group. (Also note that it depends on the action T , whereas we know that the action is
not intrinsic to the extension but only the corresponding outer action is.) However, the difference
of two 2-cocycles with respect to the same action T will land in the center Z(N), allowing us to
reduce part of the question back to the case of N abelian. To see this, let f1, f2 be two 2-cocycles
with respect to an action T : Q→ Aut(N), and consider their difference f1(q1, q2)f2(q1, q2)−1:

cf1(q1,q2)f2(q1,q2)−1 = T (q1)T (q2)T (q1q2)−1T (q1q2)T (q2)−1T (q1) = idN .

As the center Z(N) consists exactly of those n ∈ N such that cn = idN , we find that f1(q1, q2)f2(q1, q2)−1 ∈
Z(N). So although there isn’t really a cohomology group “H2(Q,N, T ),” we will see that we can
nonetheless reduce to questions about cohomology classes in H2(Q,Z(N), T |Z(N)).

Equivalence. As in the case of N abelian, two extensions N ↪→ Gi � Q are said to be equivalent
if there is an isomorphism γ : G1 → G2 such that γ induces the identity map on both N and Q.
However, since Z2(Q,N, T ) is no longer a group and B2(Q,N, T ) no longer its subgroup, the notion
of equivalent extensions doesn’t translate so easily to a notion of equivalence for extension data.
Hence we derive this condition more or less from scratch. That is, we derive what it means for
two extension data to be equivalent by analyzing how two extension data coming from the same
extension may differ, when a different choice of section s : Q→ G is made.

Fix an extension N ↪→ G � Q and two sections s1, s2 : Q → G. Let t(q) := s1(q)s2(q)−1; as
the si are both sections, s1(q) and s2(q) are in the same coset of N , so that t(q) ∈ N for all q ∈ Q.
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Then the actions T1 = θs1 and T2 = θs2 differ by the inner automorphism ct(q): T1(q) = ct(q) ◦T2(q).
Recall that we set fi(q1, q2) := si(q1)si(q2)si(q1q2)−1. Then we have that

f1(q1, q2) = s1(q1)s1(q2)s1(q1q2)−1

= t(q1)s2(q1)t(q2)s2(q2)s2(q1q2)−1t(q1q2)−1

= t(q1)T2(q1)(t(q2))s2(q1)s2(q2)s2(q1q2)−1t(q1q2)−1

= t(q1)T2(q1)(t(q2))f2(q1, q2)t(q1q2)−1

= t(q1)T2(q1)(t(q2))cf2(q1,q2)(t(q1q2)−1)f2(q1, q2) =: f t2(q1, q2)

For future reference, we denote this final expression by f t2(q1, q2). Note that f t2 in fact also depends
on the action T2, but this action will always be clear from context.

Definition 3.10. Two extension data (Ti, fi) are equivalent if there is a map t : Q→ N such that
T1(q) = ct(q) ◦ T2(q) for all q ∈ q and f1 = f t2.

There are several aspects of this definition to take note of:

• By definition, two extension data can be equivalent only if T1(q) and T2(q) represent the same
outer automorphism of N , in accord with our discussion above.

• This definition agrees with the definition of equivalent extensions for N abelian. For when
N is abelian, ct(q) = idN and the condition f1 = f t2 exactly says that f1 and f2 differ by the
2-coboundary ft defined by t.

• T1 = T2 if and only if s1(q) and s2(q) differ by an element of the center Z(N), that is, t is a
map Q→ Z(N). In this case, let T = T1 = T2; then (T, f1) and (T, f2) are equivalent if and
only if f1 and f2 differ by the coboundary ft ∈ B2(Q,Z(N), T ). Again, this will be relevant
for our discussion below of the polynomial-time algorithm for semisimple groups [BCQ12].

Pseudo-congruence. As before, pseudo-congruence is defined as “equivalence up to twisting by
Aut(N)×Aut(Q):”

Definition 3.11 (Pseudo-congruence of extension data for general Q,N). Let Q and N be two
groups. Two extension data (Ti, fi) ∈ (Q → Aut(N), Q × Q → N) are pseudo-congruent if there

exists (α, β) ∈ Aut(N)×Aut(Q) such that (T1, f1) and (T
(α,β)
2 , f

(α,β)
2 ) are equivalent.

In more detail, the extension data are pseudo-congruent if there exists (α, β) ∈ Aut(N)×Aut(Q)
and t : Q→ N such that, for all q ∈ Q and all n ∈ N :

T1(q)(n) = (α−1 ◦ ct(β(q)) ◦ T2(β(q)) ◦ α)(n) (5)

and
f1(q1, q2) = α−1

[
f t2(β(q1), β(q2))

]
=: f

(α,β,t)
2 (q1, q2). (6)

Lemma 3.12 (Main Lemma for general Q,N). Let S be a characteristic subgroup functor. Given
two finite groups G1 and G2, G1

∼= G2 if and only if both of the following conditions hold:

1. S(G1) ∼= S(G2) (which we denote by N) and G1/S(G1) ∼= G2/S(G2) (which we denote by
Q);
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2. (T1, f1) ∼= (T2, f2), where (Ti, fi) is the extension data of the extensions N ↪→ Gi � Q (by
(1)).

Proof. First suppose that γ : G1 → G2 is an isomorphism. Since S is a characteristic subgroup
functor, γ restricts to an isomorphism between the copy S(G1) of N in G1 and the copy S(G2)
of N in G2, i. e., an automorphism α ∈ Aut(N). Consequently, γ induces an automorphism
β := γ ∈ Aut(Q). After twisting by these automorphisms, the discussion preceding Definition 3.10
shows that the extension data become equivalent.

Conversely, suppose (T1, f1) ∼= (T2, f2), via (α, β, t) ∈ Aut(N) × Aut(Q) × (Q → N). As in
the abelian case we have a standard reconstruction procedure; we construct groups Hi from (Ti, fi)
such that Hi

∼= Gi, and then we show how the pseudo-congruence of the extension data easily yields
an isomorphism H1

∼= H2.
The underlying set of Hi will be N ×Q, with multiplication defined by

(n, p) ◦Hi (m, q) = (nTi(p)(m)fi(p, q), pq).

Let si : Q→ Gi denote the sections used to construct the extension data (Ti, fi). Then it is readily

verified that the map (n, q) 7→ nsi(q) gives an isomorphism Hi
∼=→ Gi.

Finally, we claim that the map ϕ(n, p) := (α(n)t(β(p)), β(p)) is an isomorphism from H1 to H2.
The main fact to check is that this is even a homomorphism. Consider (n, p) and (m, q) ∈ H1. On
the one hand, we have

ϕ((n, p) ◦H1 (m, q)) = ϕ(nT1(p)(m)f1(p, q), pq)

= (α(nT1(p)(m)f1(p, q))t(β(pq)), β(pq))

= (α(n)α(T1(p)(m))α(f1(p, q))t(β(pq)), β(pq))

On the other hand, we have (here we’ll sometimes use square brackets [] to denote application of
an automorphism to help keep all the parentheses straight):

ϕ(n, p) ◦H2 ϕ(m, q) = (α(n)t(β(p)), β(p)) ◦H2 (α(m)t(β(q)), β(q))

= (α(n)t(β(p))T2(β(p)) [α(m)t(β(q))] f2(β(p), β(q)), β(p)β(q)

= (α(n)t(β(p))T2(β(p))[α(m)]T2(β(p))[t(β(q))]f2(β(p), β(q)), β(pq))

= (α(n)(ct(β(p)) ◦ T2(β(p)))[α(m)]t(β(p))T2(β(p))[t(β(q))]f2(β(p), β(q)), β(pq))

Let’s work through these two expressions bit by bit. We can dispense easily with the second
coordinate, as β(pq) = β(p)β(q) since β ∈ Aut(Q). Both of the first coordinates begin with α(n).
Next we have α(T1(p)(m)) on the one hand and (ct(β(p)) ◦ T2(β(p)))[α(m)] on the other. From the
definition of pseudo-congruence, we have that T1(p)(m) = α−1(ct(β(p) ◦ T2(β(p)))[α(m)]. Applying
α to both sides of this equation we see that these two terms are equal.

The remainder of the first coordinate is then α(f1(p, q))t(β(pq)) in the first case. From the
definition of pseudo-congruence we have:

α(f1(p, q))t(β(pq)) = f t2(β(p), β(q))t(β(pq))

= t(β(p))T2(β(p))[t(β(q))]f2(β(p), β(q))t(β(pq))−1t(β(pq))

= t(β(p))T2(β(p))[t(β(q))]f2(β(p), β(q),
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which is exactly the remainder of the first coordinate in the second case, as desired. Hence ϕ is a
homomorphism.

Finally, it suffices to show that ϕ is injective, for as |H1| = |N ||Q| = |H2|, it will then follow
that ϕ is bijective and hence an isomorphism. Consider the kernel of ϕ: ϕ(n, p) = (1, 1). As the
second coordinate is 1, we have β(p) = 1 and hence p = 1. As the first coordinate is 1, we have
α(n)t(β(p)) = α(n) = 1, so we also have n = 1. (In the first equality we use the fact that t(1) = 1,
which follows from Ti(1Q) = idN .) Hence ϕ is injective, and thus an isomorphism.

Extensions with trivial outer action. We did not define Cohomology Class Isomorphism
for general N and then proceed to pseudo-congruence, as in the abelian case, because it turns
out that when the outer action is trivial, Cohomology Class Isomorphism for action-trivial
extensions of N by Q reduces to Cohomology Class Isomorphism for extensions of Z(N) by
Q. To prove this we use one additional concept, that of a central product. A central product of two
groups G1 and G2 is essentially the direct product G1×G2 with some subgroup of Z(G1) identified
with an isomorphic subgroup of Z(G2). If ϕ : Y1 → Y2 is an isomorphism between subgroups
Yi ≤ Z(Gi), then the central product G1 ×Y G2 is defined to be the quotient of G1 × G2 by the
subgroup {(y−1, ϕ(y)) : y ∈ Y1}. Central products are characterized by the property that they
contain a copy of each Gi (these copies may overlap nontrivially, viz. Y ), and that these copies
commute with one another.

Lemma 3.13. Let N ↪→ G � Q be an extension of N by Q which induces the trivial outer
action θ(q) = idN Inn(N) for all q ∈ Q. Then there is an extension Z(N) ↪→ H � Q such that
G ∼= N ×Z(N) H (in fact, the two are even equivalent as extensions of N by Q). We denote the
extension H by G|Z(N).

Proof. There is a section s : Q → G such that cs(q) = idN for all q ∈ Q. Let f(p, q) = fs(p, q) =
s(p)s(q)s(pq)−1 be the 2-cocycle corresponding to s. As cs(q) = idN for all q ∈ Q, we also have
that cf(p,q) = idN for all p, q ∈ Q. As f(p, q) ∈ N , this implies that f(p, q) ∈ Z(N). Hence f is
a 2-cocycle in H2(Q,Z(N)) (for the trivial action of Q on Z(N)). The standard reconstruction
procedure (see the proof of the Main Lemma 3.2) then yields an extension Z(N) ↪→ G|Z(N) � Q
which is a subgroup of G that contains Z(N) and surjects onto Q.

The central productN×Z(N)G|Z(N) is readily seen to be an extension ofN byQ, asN∩G|Z(N) =
Z(N) in this group. Next, as G|Z(N) commutes with N in N ×Z(N) G|Z(N), the outer action of Q
on N induced by the extension N ↪→ N ×Z(N) G|Z(N) � Q is trivial. Finally, we have already seen
that the f from above is also a 2-cocycle corresponding to the extension N ↪→ N×Z(N)G|Z(N) � Q.
Hence the extension data for N ×Z(N) G|Z(N) is identical to that for G (not even just equivalent).
From the discussion of equivalence above, it follows that G is equivalent to N ×Z(N) G|Z(N) as
extensions of N by Q, and in particular that G ∼= N ×Z(N) G|Z(N).

Proposition 3.14. Let S be a polynomial-time computable characteristic subgroup functor. Sup-
pose that G1, G2 are two groups for which the induced outer action of Gi/S(Gi) on S(Gi) by
conjugation is trivial (equivalently: the induced action is by inner automorphisms of S(Gi)). Then
the group isomorphism problem for (G1, G2) Cook-reduces to the two instances of GpI given by
(S(G1),S(G2)) and (G1|Z(S(G1)), G2|Z(S(G2)).

In particular, group isomorphism for groups for which the outer action of G/Rad(G) on Rad(G)
is trivial reduces to isomorphism of central radical groups and isomorphism of solvable groups.
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Proof. If S(G1) ∼= S(G2), then Lemma 3.13 implies that G1
∼= G2 if and only if G1|Z(S(G1))

∼=
G2|Z(S(G2)), so all that remains to show is that Gi|Z(S(Gi) can be constructed in polynomial time.
We do this for G1, the proof for G2 being identical. Let N = S(Gi) and Q = G1/N . By assumption,
the subset N = S(Gi) can be identified from the Cayley table of G1 in polynomial time.

Next, choose any section s : Q → G. It may be that some s(q) acts nontrivially on N via
conjugation. However, by the assumption that the outer action is trivial, cs(q) must be some inner
automorphism of N , say cn(q) for some n(q) ∈ N . To find this n(q), we may search through N
exhaustively in at most O(|N |2) ≤ O(|G1|2) time: essentially |N | steps to check the action of a
given n on N by conjugation, and there are |N | possible n’s to check. Then let s′(q) = s(q)n(q)−1;
as n(q) ∈ N , s′ is another section, and by construction cs′(q) = idN for all N .

Finally, let f(p, q) = s′(p)s′(q)s′(pq)−1. Computing all the values of f takes essentiallyO(|Q|2) ≤
O(|G1|2) time, and then the standard reconstruction procedure lets us construct the Cayley table
of G1|Z(S(G1) in polynomial time.

Extensions of centerless groups. We have already mentioned a few useful properties of exten-
sions of centerless groups, that is, when Z(N) = 1. One that is implicit in what we’ve already said
is that every outer action Q→ Out(N) is extendible, that is, it is induced from some extension of
N by Q. These properties culminate in the following very useful theorem:

Theorem 3.15 (see, e. g., [Suz86, Thm. 2.7.11]). Let N be a centerless group, Q any group, and
G an extension of N by Q. Then G is determined up to isomorphism by the induced outer action
of Q on N .

Furthermore, every such extension is equivalent to a subgroup Γ ≤ Q × Aut(N) satisfying
Γ∩Aut(N) = Inn(N) and πQ(U) = Q, where πQ : Q×Aut(N)→ Q is the projection onto the first
factor.

In particular, if S is a characteristic subgroup functor computable in polynomial time, and C
is a class of groups for which S(G) is centerless for every G ∈ C, then isomorphism of groups in
C reduces to isomorphism of groups of the type G/S(G) for G ∈ C, groups of the type S(G) for
G ∈ C, and Outer Action Compatibility.

4 The strategy

Suppose we are given two groups G1 and G2 from some class of groups C. Our Main Lemma 3.12
suggests (and indeed was motivated by) a divide-and-conquer strategy to test isomorphism (Sec-
tion 4.1). This strategy highlights important structural features of GpI, which we show are formally
necessary in Section 4.3. It also naturally suggests new group classes for which polynomial-time
isomorphism tests might be within reach, and also suggests a priori many group classes for which
polynomial-time algorithms have previously been achieved. In Section 4.2 we show how essentially
all previous polynomial-time algorithms for special classes of groups (with the easy exceptions of
abelian groups and groups generated by O(1) elements, such as simple groups) can be viewed as
special cases of this strategy.

4.1 A recipe for group isomorphism

1. Choose wisely a polynomial-time computable characteristic subgroup functor S. Note that if
S(G) is always abelian, then the technically simpler abelian Main Lemma 3.2 can be applied.
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2. Test whether S(G1) ∼= S(G2) (which we henceforth refer to as N) and G1/S(G1) ∼= G2/S(G2)
(which we refer to as Q). If either of these fails, then G1 6∼= G2.

3. Extract the extension data (Ti, fi) from the extension N ↪→ Gi � Q for i = 1, 2 by picking
arbitrary sections s : Q→ Gi and computing the action and cohomology class.

4. Test pseudo-congruence of the two extension data. That is, find (α, β) ∈ Aut(N)× Aut(Q),

and a map t : Q → N such that T1(q) = ct(q) ◦ T
(α,β)
2 (q) and f1 = (f

(α,β)
2 )t. If the abelian

Main Lemma 3.2 applies, then t is unnecessary.

Some general remarks are due for each of these steps:

1. A seemingly obvious requirement would be that S(G) should not be trivial for any G ∈ C.
However, even if this is not the case, it may be fruitful to consider separately the class of
groups for which S(G) is trivial. For example, semisimple groups arise this way, as those
groups for which Rad(G) is trivial.

2. Due to the nature of the divide and conquer strategy, S(G) and G/S(G) should be from
group classes with known efficient isomorphism tests. Alternatively, if, say, S(G) is not from
such a class, it may be possible to use this strategy to reduce isomorphism of groups in C to
isomorphism of groups of the form S(G) for G ∈ C (or similarly for G/S(G)).

3. This step is easy in the Cayley table model. Based on the group class C the extension data
usually turn out to have nice mathematical structure;

4. This pseudo-congruence test is the main bottleneck. Choosing S so that this step can take
advantage of known cohomological results may be helpful. For example, if S(G) ≤ Z(G) then
Extension Data Pseudo-congruence simplifies to Cohomology Class Isomorphism;
at the opposite end of the spectrum, if G = S(G) o (G/S(G)) then Extension Data
Pseudo-congruence simplifies to Action Compatibility. As another example, if S(G)
is centerless, one may take advantage of Theorem 3.15, as in the case of semisimple groups
(see below).

4.2 Previous results from the point of view of the main lemma

As mentioned in the introduction, there have been polynomial-time algorithms for several group
classes: semisimple groups, generalized Heisenberg groups, groups with abelian Sylow towers, and
(in Section 7) no(logn)-time algorithms for central-radical groups. However, the definitions of these
group classes may at first seem obscure, and it is not a priori clear why we should have found
efficient algorithms for these particular classes of groups, as opposed to others. We believe that the
viewpoint of extensions and cohomology, especially in light of the Main Lemma, gives a unifying
perspective to these works which helps to explain the progress on these group classes.

In the following, we first summarize some basic information about these works, and then explain
in detail how previous works on GpI fit into the general strategy described as above.
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References Group class Characteristic sub-
group functor

Extension type

[BCGQ11, BCQ12] Semisimple groups Socle Extension of a center-
less group

[LW12] Quotients of gen-
eralized Heisenberg
groups

Center Special type of central
extension of Zkp by Z`p

[LG09, QST11, BQ12] Groups with abelian
Sylow towers

Normal Hall sub-
groups

Split extension of A
by Q with (|A|, |Q|) =
1

This work Central-radical
groups

Solvable radical Central extension of
abelian groups by
semisimple groups

Semisimple groups (groups with no abelian normal subgroups). In the polynomial-time
algorithm for semisimple groups [BCQ12] we take S = Soc, i. e., N = Soc(G), which is a polynomial-
time characteristic subgroup functor. Hence the general Main Lemma 3.12 applies and isomorphism
of semisimple groups reduces to Extension Data Pseudo-congruence. When G is semisimple,
its socle is a direct product of nonabelian simple groups, so Z(N) = 1. N being centerless simplifies
some of the results in the previous section (as captured in Theorem 3.15) and leads to the problems
considered by Babai et al. [BCGQ11, BCQ12].

Note that in the definition of pseudo-congruence for nonabelian N , after twisting by (α, β) ∈
Aut(N)×Aut(Q) to make the actions T1, T2 become equivalent as outer actions, the condition on
the 2-cocycles is simply that they differ by a 2-coboundary in B2(Q,Z(N), T ). In particular, when
N is centerless B2(Q,Z(N), T ) is trivial, so Extension Data Pseudo-congruence reduces to
Outer Action Compatibility.

In the case of semisimple groups, using the structure of these groups, one sees quickly that
Outer Action Compatibility reduces to the problem of twisted code equivalence (introduced
in [BCQ12]), where the “twisting” groups correspond to the action of Out(N) = Out(Soc(G))
in the definition of Outer Action Compatibility, and the choice of t : Q → N is handled by
considering codes whose codewords correspond to elements of G rather than just elements of Q.

Nilpotent groups, esp. quotients of generalized Heisenberg groups. For p-groups of class
2 and exponent p with odd p, Baer’s correspondence [Bae38] suggests considering the alternating
bilinear maps defined by the commutator bracket: isomorphism of p-groups corresponds to pseudo-
isometry of these bilinear maps. These bilinear maps are 2-cocycles, and two such cocycles are
isomorphic as cohomology classes if and only if the bilinear maps are pseudo-isometric, so we see
that this is a particular instance of Cohomology Class Isomorphism and Baer’s correspondence
can be viewed as a special case of the abelian Main Lemma 3.2.

Lewis and Wilson [LW12] studied a large class of p-groups—quotients of generalized Heisenberg
groups—which are indistinguishable to classical invariants but for which they nonetheless present
a polynomial-time isomorphism test. These groups can alternatively be characterized as those for
which the centroid of the above bilinear map is a field (see [LW12, Theorem 3.1]). Their polynomial-
time isomorphism test for these groups takes advantage of the special structure of the bilinear maps
corresponding to these groups ([LW12, Theorem 4.1]).
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Groups with abelian Sylow towers. Though claiming to solve GpI for the seemingly obscure
group class “groups with abelian Sylow towers”, the core of [BQ12] (following [LG09, QST11]) deals
with the case of coprime extensions, namely extension of an abelian A by Q where (|A|, |Q|) = 1.
The Schur–Zassenhaus Theorem guarantees that coprime extensions split, thus reducing Exten-
sion Data Pseudo-congruence to Action Compatibility for such groups. Assuming Aut(Q)
is known (via recursive divide-and-conquer), [BQ12] views the actions of Q on A as linear repre-
sentations and utilizes the completely reduciblility of these representation by Maschke’s Theorem.
Thus viewing the induced action of Aut(Q) on the irreducible constituents as a permutation group
action, [BQ12] develops some parameterized permutation group algorithm to finally solve Action
Compatibility in this case.

Central-radical groups. Similarly, by considering cohomology rather than actions we will see
in the following how to handle central-radical groups. An elementary way of manipulating the
2-cohomology classes yields an nO(log logn)-time algorithm for groups with central radicals. For a
subclass of groups with central radicals, a more detailed understanding of 2-cohomology classes
(Lemma 7.3) helps establish two polynomial-time algorithms under (natural) fixed parameters in
Theorem 7.1. In particular, singly exponential algorithms for Linear Code Equivalence and
for Coset Intersection enter inevitably in the algorithm for Theorem 7.1 (2).

4.3 Necessity of pseudo-congruence and cohomology

Lemma 3.2 suggests studying Extension Data Pseudo-congruence to make progress towards
GpI for groups with abelian normal subgroups. In this section, we shall see that pseudo-congruence
tests for certain classes of extension data are exactly isomorphism tests for certain interesting group
classes. While Lemma 3.2 almost implies so, a pitfall is that in the reconstruction procedure we
need the normal copy of A in H to be the image of a characteristic subgroup functor.15 This leads
us to look at some concrete classes of extension data, for which this property holds.

For split extensions, a well-known example is the case when |A| and |Q| are coprime, as ensured
by the Schur–Zassenhaus Theorem. In this case G is said to be a coprime extension of A by Q,
and A is a normal Hall subgroup in G.16 Noting that taking a normal Hall subgroup of a specific
order is a characteristic subgroup functor, with the standard reconstruction procedure we have:

Fact 4.1. There is a polynomial-time function r which takes any group action θ : G→ Aut(B) (for
any groups B,G) to a group r(θ) with the following property. When A is abelian, Q is a group of
order coprime to |A|, and θi : Q→ Aut(A) (i = 1, 2) are group actions, then (θ1, θ2) 7→ (r(θ1), r(θ2))
is a Karp reduction from these instances of Action Compatibility to GpI.

A polynomial-time algorithm for Action Compatibility for the case in Fact 4.1 was given
in [BQ12], yielding a polynomial-time time algorithm for “groups with abelian Sylow towers” as
phrased in [BQ12].

For central extensions, let p 6= 2 be a prime. For A = Zkp and Q = Z`p, a bilinear map
f : Q×Q→ A is a 2-cocycle, as the cocycle identity follows directly from bilinearity. Note that the

15In the setting of Lemma 3.2 the standard reconstruction procedure does return groups Hi with the copy of
A = S(Hi), but this is because of the conditions of that lemma.

16The Schur–Zassenahus Theorem states that a coprime extension is split, regardless of whether A is abelian or
not. When A is abelian the proof is straightforward. The bulk of the proof of the Schur–Zassenhaus Theorem is
devoted to the case when A is nonabelian.

21



action of Aut(A)×Aut(Q) preserves bilinearity. The following proposition is known ([Bae38, Laz54],
see also [War76, Section 5] and [Wil09a]); the standard reconstruction procedure is altered to make
the image of A the commutator subgroup.

Fact 4.2. Given a prime p 6= 2, A = Zkp and Q = Z`p, let fi : Q × Q → A be an alternating
Zp-bilinear map. Then Cohomology Class Isomorphism for f1, f2 Karp-reduces to GpI.

Proof. Given fi for i = 1, 2, alter the standard construction as follows. For a, b ∈ A and q, q′ ∈ Q,
we define the group Gi with operation ◦ over the set A×Q as (a, q)◦(b, q′) = (a+b+ 1

2fi(q, q
′), q+q′).

It is known that Gi’s are p-groups of class 2, the copy of A in Gi is the commutator subgroup, and
f1
∼= f2 if and only if G1

∼= G2 [Wil09a].

Finally let us examine groups whose solvable radicals are abelian, a super-class of central-
radical groups. When Q is semisimple, the standard reconstruction procedure sends A to the
solvable radical. (A solvable normal subgroup N is the solvable radical if and only if G/N is
semisimple.) This hints at the fact that for central-radical groups, group isomorphism is equivalent
to Cohomology Class Isomorphism.

Fact 4.3. Let A be abelian and Q semisimple. For i = 1, 2, let θi : Q → Aut(A) be a homo-
morphism, and fi : Q ×Q → A be a 2-cocycle in Z2(Q,A, θi). Then Extension Data Pseudo-
congruence for (θ1, f1) and (θ2, f2) Karp-reduces to GpI.

5 Preliminaries for the algorithms

Some general notations are described at the beginning of §2.

Further notations and some group-theoretic facts. Given a finite set Ω, Sym(Ω) denotes
the symmetric group consisting of all permutations of Ω. A permutation group acting on Ω is a
subgroup of Sym(Ω). Given π ∈ Sym(Ω) and a ∈ Ω, the image of a under π is denoted by aπ. If
Ω = [n], n ∈ N, we use Sn to denote Sym(Ω), and An ≤ Sn consists of permutations of even signs.
For a vector space V over a field F, the general linear group GL(V ) consists of all non-singular
linear transformations of V . If V = Fnq , q is a prime power, we may write GL(n, q) for GL(V ).

By the Fundamental Theorem of Finite Abelian Groups, a finite abelian group is isomorphic
to a direct product of cyclic groups of prime power orders. Formally, let A be an abelian group,
then there exists a direct product decomposition of A as A = 〈e1〉 × 〈e2〉 × · · · × 〈en〉, where ei ∈ A
has order pkii , such that p1 ≤ p2 ≤ · · · ≤ pn, and if pi = pi+1, then ki ≤ ki+1, for all i. This
decomposition is called the primary decomposition of A, and the tuple (e1, . . . , en) forms a basis
of A. The elementary abelian groups are those groups of the form Znp for some prime p and any n.
Note that Aut(Znp ) ∼= GL(n, p).

A group G is simple if |G| > 1 and G has no proper nontrivial normal subgroups. The celebrated
Classification of Finite Simple Groups lists all finite simple groups explicitly [CCN+85]. The only
abelian simple groups are the cyclic groups of prime order. We use the following fact, which
(currently) depends on the Classification for its proof:

Fact 5.1 ([Ste62, AG84]). Every nonabelian simple group can be generated by 2 elements.
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Let T be a nonabelian simple group, it is easily shown that Aut(T k) ∼= Aut(T )oSk where o denotes
the wreath product. If a group G is a direct product of nonabelian simple groups, then this direct
product decomposition is unique, not just up to isomorphism: if G = T1× · · · ×Tk = S1× · · · ×S`,
Ti, Sj nonabelian simple, then k = ` and ∃σ ∈ Sk, ∀i ∈ [k], Ti = Siσ as subsets of G.

Useful algorithms. We shall need two known algorithmic results, which were also useful for
previous results on group isomorphism such as [BCGQ11, QST11]. Recall that in permutation
group algorithms (see [Luk91, Ser03]), a coset Pσ ⊆ Sn is represented by a set of generators for
P ≤ Sn and a coset representative σ. A particularly relevant problem on permutation groups is
the Coset Intersection problem: given two cosets of subgroups of Sym(A), find their intersec-
tion. GraphI can be Karp-reduced to Coset Intersection [Luk82]. The Coset Intersection
problem for permutation groups of degree n can be solved in exp(Õ(

√
n)) time [Bab83] (see also

[Bab08, BKL83]), while a relatively easier singly exponential (exp(O(n))) algorithm has been ob-
tained by Luks [Luk99]. Algorithms over finite-dimensional algebras have been considered in e. g.
[CIK97, BL08]. Over finite fields, polynomial-time algorithms for isomorphism testing and Module
Cyclicity are devised in [CIK97].

A linear code of length n is a linear subspace V ≤ Fn, represented by a d × n matrix where
d = dim(V ), and the rows form a linear basis of V . Sn acts on a linear code by permuting the
coordinates (that is the columns of the matrices). Two linear codes V,U ≤ Fn are equivalent if
there exists a permutation σ ∈ Sn such that V σ = U as linear subspaces. Such a σ is called an
equivalence between V and U , and the set of all equivalences, denoted as CodeEq(V,U) is either
empty or a coset in Sn. This problem is GraphI-hard in general [PR97] while Babai presents a
singly exponential time algorithm:

Theorem 5.2 (Babai, [Bab10], cf. [BCGQ11]). The set of equivalences of two linear codes of
length n (over any field) given by generator matrices can be found in (2 + o(1))n time, assuming
field operations at unit cost.

We will also need the following results of Babai et al. [BCGQ11]:

Theorem 5.3 ([BCGQ11, Thm. 1.1]). All isomorphisms between two semisimple groups Q1 and
Q2 of order n, can be listed in time nc log logn+O(1), where c = 1/ log(60) ≈ 0.16929.

It is also noted in [BCGQ11] that there exist semisimple groups G of order n with |Aut(G)| ≥
nc log logn, namely G = Ak5. Hence, for listing all isomorphims this result is essentially optimal.

The number of minimal normal subgroups of any group of order n is at most O(log n). If it
happens to be O(log n/ log logn), they show:

Theorem 5.4 ([BCGQ11, Cor. 4.4]). Suppose Q1 and Q2 are semisimple groups of order n with
at most O(log n/ log logn) minimal normal subgroups. Then all isomorphisms between Q1 and Q2

can be listed in polynomial time.

In §7 we extend both of these results to decision algorithms for isomorphism of groups with
central radicals, with the same time bounds as above.

We also mention a useful result for groups in the Cayley table model is by Kayal and Nezh-
metdinov [KN09], though it is not strictly required in the following. They show that decomposing
a group G into indecomposable direct factors can be done in polynomial time. Even in the stronger
setting of permutation groups Wilson showed [Wil10] that this task can be performed in polynomial
time.
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6 When enumerating Aut(Q) is allowed

Our main results in this section are nO(log logn)-time algorithms to test isomorphism of (1) groups
with central radicals (Corollary 6.2) and (2) groups with elementary abelian radicals (Corol-
lary 6.11). These follow from our more general Theorems 6.1 and 6.10, respectively, and a theorem
on semisimple groups from [BCGQ11] (reproduced above as Theorem 5.3).

6.1 For central extensions of general abelian groups

We first consider the case when both extensions G and H are central.

Theorem 6.1. Let S be a polynomial-time-computable characteristic subgroup functor. For two
groups G,H of order n, if (1) S(G) ≤ Z(G), and (2) Aut(G/S(G)) can be listed in time t(n), then
isomorphism of G and H can be decided in time t(n)nO(1).

Before proving Theorem 6.1, let us see how it is applied to groups with central radicals. Com-
bining Theorem 6.1 with Theorem 5.3, respectively Theorem 5.4 we have our first two main results:

Corollary 6.2. Isomorphism of central-radical groups of order n can be decided in time nc log logn+O(1),
for c = 1/ log2(60) ≈ 0.169.

Corollary 6.3. Let G and H be central-radical groups of order n. If G/Rad(G) has O(log n/ log logn)
minimal normal subgroups, isomorphism between G and H can be decided in polynomial time.

For the proof of Theorem 6.1, for clarity we first deal with the elementary abelian case, i. e.,
when A = Zkp; the general abelian case will be handled in Section 6.1.1.

Let us consider how to work with 2-cohomology classes in algorithms. Let G be a central
extension of A = Zkp by Q (thinking of A = S(G) and Q = G/S(G)). As the action is trivial
in central extensions, we drop it from the notation, as in Z2(Q,A), B2(Q,A) and H2(Q,A). By
choosing an arbitrary section, we get a 2-cocycle f : Q × Q → A. Let e1, . . . , ek be the standard
basis of Zkp. We may view f as a k × |Q|2-size Zp-matrix, which we denote by Mf . The rows are
indexed by the set [k] and the columns are indexed by Q × Q. For i ∈ [k] and (q, q′) ∈ Q × Q,
Mf [i, (q, q′)] is the ith coordinate of f(q, q′) relative to the basis {e1, . . . , ek}. Note that the actions
of Aut(A) and Aut(Q) commute,

Under the above identification, the set C2(Q,A) of 2-cochains is identified with the set of all
k × |Q|2 matrices over Zp. Then Z2(Q,A) is not just a subgroup, but also a Zp-linear subspace of
C2(Q,A), and similarly B2(Q,A) is a Zp-linear subspace of Z2(Q,A). Aut(A) ∼= GL(k, p) acts on
C2(Q,A) by left multiplication, and Aut(Q) acts on C2(Q,A) by permuting the columns according
to the diagonal action of Aut(Q) on Q×Q.

Proposition 6.4. A basis of B2(Q,Zp) can be computed in time O(|Q|3(log |Q|+ log p)).

Note that the running time here is O(|G|3 log |G|) in the larger context of GpI.

Proof. For q ∈ Q, q 6= id, let uq : Q → Zp be uq(q
′) = δ(q, q′) where δ is the Kronecker delta.

Let fq : Q × Q → Zp be the 2-coboundary based on uq. V := {fq | q ∈ Q} then forms a basis of
B2(Q,Zp). There are |Q| basis elements, each of which is constructed by computing its |Q|2 values;
each value can be computed by a constant number of additions in Zp (taking O(log p) steps) and
one table lookup to compute a single product in Q (taking O(log |Q|) steps).
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As we identified C2(Q,A) as k× |Q|2 matrices over Zp, let Ei,j , i ∈ [k], j ∈ Q×Q be a k× |Q|2
matrix such that Ei,j(i

′, j′) = 1 if i′ = i, j′ = j, and 0 otherwise. Then {Ei,j | i ∈ [k], j ∈ Q×Q} is a
basis of C2(Q,A). Let Ui be the subspace of C2(Q,A), spanned by {Ei,j | j ∈ Q×Q}, corresponding
to matrices whose only nonzero entries are in the i-th row. Then C2(Q,A) = ⊕i∈[k]Ui. The following
proposition says that not only does C2(Q,A) split as a direct sum over the rows, but B2(Q,A)
does as well. It follows directly from the fact that the condition to be a 2-coboundary in B2(Q,Zkp)
only depends on the columns (Q×Q) and not on the rows ([k]).

Proposition 6.5. Let V be the basis of B2(Q,Zp) from Proposition 6.4, and let Vi ≤ C2(Q,A) be
a copy of V in Ui. Then ti∈[k]Vi (disjoint union) is a basis of B2(Q,Zkp).

Given two 2-cocycles f1 and f2, let Mi be the matrix representation of fi, i = 1, 2, and Ri ⊆ Z|Q|
2

p

be the set of rows in Mi. Recall that α ∈ GL(k, p) acts on the rows of Mi.

Proposition 6.6. With notation as above, there exists α ∈ GL(k, p) such that f1 and fα2 are
cohomologous if and only if 〈R1, B

2(Q,Zp)〉 = 〈R2, B
2(Q,Zp)〉, where 〈·〉 denotes the linear span.

Proof. Let ri,j ∈ Z|Q|
2

p be the jth row in Mi, j ∈ [k], i = 1, 2. Let B denote B2(Q,Zp). Note that
Proposition 6.5 says that B2(Q,Zkp) = B ⊕B ⊕ · · · ⊕B (k summands).

(⇒) f1 and fα2 are cohomologous if and only if f1−fα2 ∈ B2(Q,Zkp). Let rα2,j be the jth row in the

matrix representation of fα2 . By Proposition 6.5, for every i ∈ [k], r1,i−rα2,i ∈ 〈Vi〉 = B2(Q,Zp) = B.
That is r1,i ∈ 〈R2, B〉 as rα2,j ∈ 〈R2〉 (note that the linear span of R2, i. e., the rowspan of M2, is
left unchanged by the action of α). Similarly we have r2,i ∈ 〈R1, B〉, ∀i ∈ [k]. This shows
〈R1, B〉 = 〈R2, B〉.

(⇐) For α ∈ GL(k, p), again let rα2,j be the jth row of fα2 . Given 〈R1, B〉 = 〈R2, B〉, we have

〈R1, B〉/B and 〈R2, B〉/B are the same as subspaces of Z|Q|
2

p /B. That means that we can choose
α ∈ GL(k, p) such that r1,i +B = rα2,i +B, ∀i ∈ [k]. This gives f1 − fα2 ∈ B2(Q,A).

Proof of Theorem 6.1 when S(G) is elementary abelian. We list Aut(Q) in time t(n). For i = 1, 2,
choose an arbitrary section of Q in Gi to get a 2-cocycle fi. By the Main Lemma 3.2, it is necessary

and sufficient to test whether there exists an (α, β) ∈ Aut(A)×Aut(Q) such that f1 and f
(α,β)
2 are

cohomologous.

For each β ∈ Aut(Q) we get f ′2 = f
(id,β)
2 . We first use Proposition 6.4 to get a basis V of

B2(Q,Zp). Let M1 be the matrix representation of f1, and M2 for f ′2. We now need to determine
whether there exists α such that f1 and f ′2 are cohomologous. By Proposition 6.6 it is enough to
decide whether the linear span of the rows of f1 with V , and the linear span of the rows of f2

with V , are the same. This is a standard task in linear algebra and can be determined in time
polynomial in |Q| and dimZp |A| = k.

The Main Lemma 3.2 implies that G1
∼= G2 if and only if the above test succeeds for some

β ∈ Aut(Q).

6.1.1 From elementary abelian to general abelian

The proof here follows the same steps as in the elementary abelian case. As each abelian group A
is the direct product of its Sylow p-subgroups Ap, we essentially treat the case of a single Sylow
p-subgroup, that is, when A is an abelian p-group Zpµ1 × · · · × Zpµk (not necessarily elementary).
We begin by extending Propositions 6.4–6.6 to the case of abelian p-groups.
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As such groups are no longer just vector spaces over Zp, we must speak of subgroups of A rather
than subspaces, and generating sets rather than Zp-bases. To emphasize the similarities, we use
the terminology “Z-basis” for “irredundant generating set.” Similarly for C2(Q,A), Z2(Q,A), and
B2(Q,A). We represent a 2-cochain f : Q×Q→ A by a k×|Q|2 integer matrix, where we consider
the entries in the i-th row modulo pµi , that is, as elements of Zpµi . As before, we use Ui to denote
the subgroup of C2(Q,A) consisting of matrices whose only nonzero entries are in the i-th row (in

particular, Ui ∼= Z|Q|
2

pµi ).
For these first two propositions, the proofs are the same as the analogous propositions above

for elementary abelian A.

Proposition 6.7. A Z-basis of B2(Q,Zpµ) can be computed in time O(|Q|3(log |Q|+ µ log p)).

Proposition 6.8. Let V (µ) denote the Z-basis of B2(Q,Zpµ) from Proposition 6.7, and let V
(µi)
i ≤

C2(Q,A) be a copy of V (µ) in Ui. Then ti∈[k]V
(µi)
i (disjoint union) is a Z-basis of B2(Q,Zpµ1 ×

· · · × Zpµk ).

Before giving the analog of Proposition 6.6 for general abelian A, we recall the structure of
Aut(A) (see, e. g., the exposition in [HR07]); it is only slightly more complicated than the fact that
Aut(Zkp) = GL(k, p). First, if Ap is the p-Sylow subgroup of A, then Aut(A) = Aut(Ap1×· · ·Apd) =
Aut(Ap1) × · · · × Aut(Apd) where p1, . . . , pd are the distinct primes dividing |A|. So we reduce to
the case where A is an abelian p-group Zpµ1 × · · · × Zpµk with 1 ≤ µ1 ≤ µ2 ≤ · · · ≤ µk. Think
of elements of A as integer column vectors of length k, where the i-th entry is considered modulo
pµi . As in the elementary abelian case (where µ1 = · · · = µk = 1), an automorphism may replace
each entry with a Z-linear combination of the entries, as follows. For i < j, the i-th coordinate can
contribute to the j-th coordinate by multiplying by pµj−µi—in other words, by using the unique
inclusion Zpµi ↪→ Zpµj . In the opposite direction, the j-th coordinate can contribute to the i-th
coordinate by taking the j-th coordinate modulo pµi—in other words, using the natural surjection
Zpµj � Zpµi . (Note that when µi = µj these two operations are the same, corresponding to the
identity map on Zpµi .)

More symbolically, we may consider each element of Aut(A) as an integer k × k matrix α such
that: (1) for i > j, pµj−µi divides the (i, j) entry, (2) the entries in row i are considered modulo
pµi , and (3) α is invertible when taken modulo p.

Finally, consider (row) subgroups R ≤ Z|Q|
2

pµi . In accord with the above description of the

automorphisms of A, for µ < µi let R(µ) denote the subgroup of Z|Q|
2

pµ that is given by taking R

modulo pµ; for µ > µi, let R(µ) denote the subgroup of Z|Q|
2

pµ that is given by multiplying every

element of R by pµ−µi . For any prime q, let R(q,µ) denote R(µ) if q = p and the trivial subgroup 0
otherwise.

Now, return to A being an arbitrary abelian group. For a 2-cochain f1 ∈ C2(Q,A) with

corresponding k×|Q|2 matrix M with i-th row R1,i ≤ Z|Q|
2

p
µi
i

, let R
(p,µ)
1 denote the subgroup of Z|Q|

2

pµ

generated by all the R
(p,µ)
1,i ; we write R

(p,µ)
1 = 〈R(p,µ)

1,1 , . . . , R
(p,µ)
1,k 〉.

Proposition 6.9. Let A = Zpµ11 × · · ·Zpµkk be an arbitrary abelian group (the pi are primes, not

necessarily distinct). With other notation as above, there exists α ∈ Aut(A) such that f1 and fα2
are cohomologous if and only if 〈R(pi,µi)

1 , B2(Q,Zpµii )〉 = 〈R(pi,µi)
2 , B2(Q,Zpµii )〉 for each 1 ≤ i ≤ k,

where 〈·〉 denotes the Z-span (=group generated by).
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Proof. Let ri,j ∈ Z|Q|
2

p
µj
j

be the j-th row in Mi, j ∈ [k], i = 1, 2. Let B(p,µ) denote B2(Q,Zpµ). Note

that Proposition 6.5 says that B2(Q,Zpµ11
× · · ·Zpµkk ) = B(p1,µ1) ⊕ · · · ⊕B(pk,µk).

(⇒) f1 and fα2 are cohomologous if and only if f1 − fα2 ∈ B2(Q,A). Let rα2,j be the j-th row

in the matrix representation of fα2 . By Proposition 6.7, for every i ∈ [k], r1,i − rα2,i ∈ 〈V
(p,µi)
i 〉 =

B2(Q,Zpµii ) = B(pi,µi). That is r1,i ∈ 〈R(pi,µi)
2 , B(pi,µi)〉 as rα2,j ∈ 〈R

(pi,µi)
2 〉 (note that the subgroup

generated by of R
(pi,µi)
2 is, by definition, left unchanged by the action of α). Similarly we have

r2,i ∈ 〈R(pi,µi)
1 , B(pi,µi)〉, ∀i ∈ [k]. This shows 〈R(pi,µi)

1 , B(pi,µi)〉 = 〈R(pi,µi)
2 , B(pi,µi)〉 for each i.

(⇐) For α ∈ Aut(A), again let rα2,j be the jth row of fα2 . Given 〈R(pi,µi)
1 , B(pi,µi)〉 = 〈R(pi,µi)

2 , B(pi,µi)〉
for each i, we have 〈R(pi,µi)

1 , B(pi,µi)〉/B(pi,µi) and 〈R(pi,µi)
2 , B(pi,µi)〉/B(pi,µi) are the same as sub-

groups of Z|Q|
2

p
µi
i

/B(pi,µi). That means that we can choose α ∈ Aut(A) such that r1,i + B(pi,µi) =

rα2,i +B(pi,µi), ∀i ∈ [k]. This gives f1 − fα2 ∈ B2(Q,A).

Finally, we come to the proof of Theorem 6.1 for general abelian A:

Proof of Theorem 6.1 for general abelian S(G). The proof is the same as for the elementary abelian
case, but using Propositions 6.8 and 6.9 instead of Propositions 6.4 and 6.6, respectively. Checking
the condition of Proposition 6.9 amounts to solving a system of equations over the abelian group
A (“linear algebra over A”), which can be done in polynomial time (see, e. g., [GR02]).

6.2 For general extensions of elementary abelian groups

Theorem 6.10. Let S be a polynomial-time-computable characteristic subgroup functor. For two
groups G,H of order n, if S(G) ∼= Zkp and Aut(G/S(G)) can be listed in time t(n), then isomorphism

of G and H can be decided in time t(n)nO(1).

As before, let us first see how this is applied to groups with elementary abelian radicals. Com-
bining Theorem 6.10 with Theorem 5.3, respectively Theorem 5.4, we have:

Corollary 6.11. Isomorphism of elementary abelian radical groups of order n can be decided in
time nc log logn+O(1), for c = 1/ log2(60) ≈ 0.169.

Corollary 6.12. Let G and H be elementary abelian radical groups of order n. If G/Rad(G) has
O(log n/ log log n) minimal normal subgroups, isomorphism between G and H can be decided in
polynomial time.

The proof of Theorem 6.10 is a reduction to module cyclicity testing, for which a deterministic
polynomial-time algorithm over finite fields is provided by Chistov, Ivanyos and Karpinski [CIK97].
Before the reduction it might be helpful to see this problem in a special case, when the extensions
are split.

Remark 6.13. If the algorithm for cyclicity test of modules [CIK97] can be generalized to the
case when the underlying module is an abelian group (rather than a vector space), then the above
three results can be generalized to groups with arbitrary abelian radicals. See also Section 8.1.
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For split extensions: a.k.a. module isomorphism problem. Recall that G1 and G2 are
extensions of A = Zkp by Q. Furthermore suppose both extensions split. Then to test isomorphism
we are left with the Action Compatibility, that is, we extract the actions of Q on A in Gi as

θi : Q→ Aut(A) = GL(k, p), and the goal is to find (α, β) ∈ Aut(A)×Aut(Q) such that θ1 = θ
(α,β)
2 .

As Aut(Q) is enumerable, we fix a β and all that remains is to test whether there exists α ∈ GL(k, p)
such that ∀q ∈ Q θ1(q) = α−1θ2(q)α. In other words, viewing θi as linear representations of Q over
the field Fp, the problem is to test whether these two representations are equivalent. This can also
be formulated as finding a nonsingular matrix α such that αθ1(q) = θ2(q)α, ∀q ∈ Q, namely the
module isomorphism problem. Over finite fields this problem admits deterministic polynomial-time
algorithms [CIK97, BL08].

Now we present the reduction for the general case.
The general case: reduction to cyclicity test of modules. Let G1 and G2 be extensions

of A = Zkp by Q, and (θi, fi) the extension data of A ↪→ Gi � Q. It can be verified that if

(α, β) satisfies θ1 = θ
(α,β)
2 , then (α, β) sends Z2(Q,A, θ2) to Z2(Q,A, θ1) and sends B2(Q,A, θ2) to

B2(Q,A, θ1). As Aut(Q) is enumerable, the problem is to find α ∈ GL(k, p) such that (1) ∀q ∈ Q,
αθ1(q) = θ2(q)α; (2) αf1 = f2 as cohomology classes in Z2(Q,A, θ2) (that is [αf1] = [f2]).

This task can be reduced to cyclicity test of modules over finite-dimensional algebras, in almost
the same way as the reduction from module isomorphism problem to module cyclicity test [CIK97].
We include a sketch here for completeness. Let M(k, p) be the linear space of k × k matrices over
Zp. Consider a linear subspace of M(k, p), V = {α ∈M(k, p) | ∀q ∈ Q,αθ1(q) = θ2(q)α, and ∃a ∈
Zp, [αf1] = [af2]}. Also consider U = {γ ∈M(k, p) | ∀q ∈ Q, γθ2(q) = θ2(q)γ, and ∃a ∈ Zp, [γf2] =
[af2]}. It can be verified that U is an associative algebra over Zp with identity. Then V is a left
U -module: for α ∈ V , γ ∈ U and q ∈ Q, γαθ1(q) = γθ2(q)α = θ2(q)γα. To show that [γαf1] = [af2]
is a little subtle, and for this we need to recall the fact that, if γθ2(q) = θ2(q)γ for every q ∈ Q,
then γ preserves B2(Q,A, θ2). That is, αf1 = af2 + g for some a ∈ Zp and g ∈ B2(Q,A, θ2),
and γαf1 = γ(af2 + g) = aγf2 + γg = a′f2 + g′ + g′′ where a′ ∈ Zp, γf2 = f2 + b′ and γb = b′′.
Now we claim that if V contains invertible elements, then (1) it is cyclic, and (2) every generator
is invertible. To show (1), let α′ ∈ V be invertible, and form φ : U → V by sending γ → γα′.
Then φ is an U -module isomorphism between U and V , whose inverse is V → U by α → αα′−1;
αα′−1 ∈ U again follows from that α and α′ can be shown to send B2(Q,A, θ2) to B2(Q,A, θ1) as
a consequence of αθ1(q) = θ2(q)α. For (2), if α′′ generates V , then α′′α′−1 generates U as a left
U -module, and thus α′′α′−1 is invertible, showing that α′′ is invertible. Finally we note that if some
invertible α′ ∈ V sends [f1] to [af2] for some a ∈ Zp, then a−1α′ ∈ V is also invertible and sends
[f1] to [f2].

Given the above reduction, here is an algorithm for the general case: we still represent 2-
cocycles by k × |Q|2 matrices over Zp. We first compute a Zp-basis of B2(Q,A, θ2) using the
following functions from Q → A: for q ∈ Q, i ∈ [k], uq,i(q

′) = δ(q, q′)ei where δ is the Kronecker
delta and ei is the ith standard basis. Using these 2-cocycles we can represent V and U as solution
spaces of homogeneous linear equations. Finally we apply the module cyclicity test algorithm from
[CIK97], either to get that V is not cyclic, thus does not contain invertible elements, or to get a
generator α′ ∈ V . In the latter case we conclude based on whether α′ is invertible or not.
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7 When Aut(Q) is too big

In this section we present polynomial-time algorithms for certain central-radical groups even when
Aut(Q) cannot be enumerated in polynomial time. In particular, we present two fixed-parameter
polynomial-time algorithms for central radical groups with G/Rad(G) a direct product of non-
abelian simple groups:

Theorem 7.1. Isomorphism of groups G1 and G2 with central radicals and Gi/Rad(Gi) a direct
product of nonabelian simple groups can be decided in polynomial time if either:

1. |Aut(Rad(G1))| is bounded by a polynomial; or

2. Rad(G1) is elementary abelian, and the simple direct factors of G1/Rad(G1) each have order
O(1).

Note that Theorem 7.1 yields polynomial-time algorithms for the following concrete cases: (1)
covers the case when |Rad(G)| ≤ 2

√
logn; (2) covers groups G with Rad(G) = Z(G) ∼= Zk5 and

G/Z(G) ∼= Ak5. We remind the reader that, singly exponential algorithms for Linear Code
Equivalence and Coset Intersection play an important role in Theorem 7.1 (2).

For Theorem 7.1 (1), we also give the proof for the case when A = Z(G) = Rad(G) is the
elementary abelian p-group Zkp; the general case of Z(G) = Rad(G) can be obtained following the
idea in Appendix 6.1.1.

For Theorem 7.1 (2), currently we can only work with elementary abelian groups; an open
problem posed in [BCGQ11, Section 7.7], namely the group code equivalence problem, seems to be
the current obstacle.

As remarked before, for Theorem 7.1 we need more detailed (while not difficult) understanding
of central extensions in this special group class.

7.1 Preparations from cohomology

Let A be an abelian group, and T1, . . . , T` be nonabelian simple groups. For an extension G of A
by Q =

∏
i∈[`] Ti, let Ui be the inverse image of Ti in G under the natural projection from G to

Q. The following proposition adapted from from Suzuki [Suz86] is crucial; cf. Appendix B for its
proof.

Proposition 7.2 (Cf. [Suz86, Chapter 6, Proposition 6.5]). Let notations be as above. For i, j ∈ [`],
i 6= j, [Ui, Uj ] = 1. That is, ∀x ∈ Ui, ∀y ∈ Uj, xy = yx.

We now consider the Ui not just as subgroups of G, but as extensions A ↪→ Ui � Ti. As
Proposition 7.2 shows that [Ui, Uj ] = id for i 6= j, these extensions determine the extension G as
follows.

Lemma 7.3. Given two central extensions A ↪→ Gj � Q (j = 1, 2) with A = Z(Gi) and Q =∏`
i=1 Ti, let Uj,i be the inverse image of Ti under the natural projection Gj → Gj/A. The extensions

A ↪→ Gj � Q (j = 1, 2) are equivalent if and only if for every i ∈ [`], the extensions A ↪→ Uj,i � Ti
(j = 1, 2) are equivalent.
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Proof. The only if direction is trivial. For the other direction, for j = 1, 2 and i ∈ [`], let fj,i be the
2-cocycle of the extension A ↪→ Uj,i � Ti induced by some section sj,i : Ti → Ui. By Eilenberg–
MacLane, as U1,i and U2,i are equivalent extensions for each i, f1,i − f2,i is some 2-coboundary
bi ∈ B2(Ti, A). Again by Eilenberg–MacLane, to show the equivalence of A ↪→ Gj �

∏
i∈[`] Ti, we

only need to exhibit two 2-cocycles fj for A ↪→ Gj � Q that differ by a 2-coboundary.
As Q is decomposed uniquely as

∏
i Ti, we can identify elements in Q as from

∏
i Ti without

ambiguity. Let (p1, . . . , p`) and (q1, . . . , q`) be two elements in Q, pi, qi ∈ Ti for i ∈ [`]. Then define
b : Q×Q→ A as

b((p1, . . . , p`), (q1, . . . , q`)) =
∑
i∈[`]

bi(pi, qi). (7)

It can be verified that b is a 2-coboundary in B2(Q,A).
Recall that the 2-cocycle fj,i is induced by the section sj,i : Ti → Ui. We define a section

sj : Q→ Gj , as sj((p1, . . . , p`)) = sj,1(p1) . . . sj,`(p`). Let fj be the 2-cocycle induced by sj , then—
noting that for i1 6= i2, sj,i1(pi1) and sj,i2(pi2) commute by Proposition 7.2—it can be verified
that

fj((p1, . . . , p`), (q1, . . . , q`)) =
∑
i∈[`]

fj,i(pi, qi). (8)

Thus f1 − f2 = b ∈ B2(Q,A), finishing the proof.

For convenience, in the following we shall call Uj,i the restriction of Gj to Ti and use Gj |Ti to
denote it. The next lemma concerns the direct product structure of the normal part; its proof is
put in Appendix B for completeness.

Lemma 7.4. Let A′ ×A′′ ↪→ G� Q be a central extension of A′ ×A′′ by Q. Let pA′ : A
′ ×A′′ →

A′ be the projection onto A′ along A′′. If there is a 2-cocycle f : Q × Q → A′ × A′′ such that
pA′ ◦f : Q×Q→ A′ is a 2-coboundary, then G is isomorphic (even equivalent) to the direct product
A′ × (G/A′).

Furthermore, given the Cayley table of G, A′ can be computed in polynomial time using linear
algebra over abelian groups.

Using general algorithms for decomposing direct products [KN09, Wil10], we could compute A′

in polynomial time without the “furthermore.” However, in the setting of Lemma 7.4, we give a
much simpler algorithm to compute A′ using linear algebra over abelian groups.

7.2 Proof of Theorem 7.1

Proof of Theorem 7.1. For Gj , j = 1, 2, we decompose it as an extension of A = Zkp by Q =∏
i∈[`] Ti, where Ti is a nonabelian simple group. To decompose Q into Ti’s is straightforward by

[BCGQ11, Proposition 2.1]. As Ti’s can be generated by 2 elements, we classify Ti’s according
to their isomorphism types and group them together, identifying Q =

∏
i∈[r]Q

`i
i , where r is the

number of isomorphism types in Ti’s, each Qi is isomorphic to some Ti, and the Qi’s are pairwise
nonisomorphic. Then Aut(Q) ∼=

∏
i∈[r] Aut(Qi) o S`i ∼=

∏
i∈[r](Aut(Qi)

`i o S`i). A diagonal of

Aut(Q) is an element in
∏
i∈[r] Aut(Qi)

`i . All diagonals are enumerable in polynomial time by the

n# generators technique; note that |
∏
i∈[r] Aut(Qi)

`i | ≤ (
∏
i∈[r] |Qi|2)`i) ≤ |Gj |2, by Fact 5.1.

By Lemma 3.2, G1
∼= G2 if and only if they are pseudo-congruent extensions of A by Q.

The extensions are pseudo-congruent if and only if there is an element of Aut(A) × Aut(Q) such
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that, after twisting by this element, the resulting extensions are equivalent. Once an element
of Aut(A) × Aut(Q) is fixed, by Lemma 7.3, the latter problem is reduced to determining the
equivalence of G1|Ti and G2|Ti for each i ∈ [`].

(1) Note that the equivalence type of Gj |Ti can be computed by Theorem 6.1 as each Ti is
generated by 2 elements so Aut(Ti) can be listed in polynomial time. Then the algorithm works as
follows.

For every α ∈ Aut(A), and every diagonal
∏
i∈[`] δi of

∏
i∈[`] Aut(Ti), do the following. Apply

α−1 and δi to each restricted extension G2|Ti . Now compute the equivalence types of G2|Ti . If the
multiset of equivalence types coming from G1|Ti is equal to the multiset of equivalence types from
the (α,

∏
i δi)-twisted G2|Ti , then G1 and G2 are pseudo-congruent as extensions, and the algorithm

reports “isomorphic.” On the other hand, if the equivalence of multisets is not detected for any
(α,
∏
i δi) then the algorithm returns “not isomorphic.”

It is obvious that the above procedure runs in polynomial time in n and |Aut(A)|. We remark
that if Ti1 6∼= Ti2 then G1|Ti1 and the (α, δi2)-twisted G2|Ti2 cannot be equivalent. Thus the multiset
of equivalence types distinguishes the isomorphism types of Ti’s automatically. Finally, it is enough
to compare the multisets because we have full symmetric groups S`i acting on the isomorphic
factors.

(2) Before presenting the algorithm we need some consequences of Lemma 7.3. For Gj , j = 1, 2,
we say a 2-cocycle fj : Q × Q → A respects the direct factors if there exist fj,i : Ti × Ti → A,
i ∈ [`] such that Equation 8 holds. Let Z2

prod(Q,A) denote the set of 2-cocycles respecting the

direct factors. The proof of Lemma 7.3 shows that Z2
prod(Q,A) 6= ∅. Similarly we can define 2-

coboundaries that respect the direct factors B2
prod(Q,A) using Equation 7). For two cohomologous

2-cocycles from Z2
prod(Q,A), their difference is in B2

prod(Q,A). Recall that Mfj denotes the matrix
representation of fj with row index set [k] and column index set Q × Q. As fj is completely
determined by the direct factors, we can focus on Mfj with row indices from ∪i∈[`]Ti × Ti. Thus
for fj ∈ Z2

prod(Q,A) the size of Mfj is assumed to be k × (
∑

i∈[`] |Ti|2).

We will need the following analogue of Proposition 6.6. Let M̃fj denote the matrix with
(
∑

i∈[`] |Ti|2 columns, and whose first rows are just Mfj . The remaining rows will be the union

of bases for B2(Ti,Zp) for each i (see Proposition 6.4).

Proposition 7.5. Suppose that M̃fj has full rank for j = 1, 2. Fix some diagonal δ ∈
∏
i Aut(Ti)

and let M̃f1

′
= M̃f1

(id,δ,id)
. Then the intersection CodeEq(M̃f1

′
, M̃f2) ∩

∏
i S`i is non-empty if and

only if there exists (α, σ) ∈ Aut(A) ×
∏
i S`i such that (α, δ, σ) is an isomorphism of f1 and f2 as

cohomology classes.

Proof. Let N be the number of rows of M̃fj , and let b = N − k be the number of rows of M̃fj that

were added to M̃fj compared to Mfj .

(⇒) Suppose CodeEq(M̃f1

′
, M̃f2) ∩

∏
i S`i is non-empty. Then there is some permutation σ ∈∏

i S`i and some Λ ∈ GL(N, p) such that ΛM̃f1

(δ,σ)
= M̃f2 . As the last b rows of M̃f1 and M̃f2 have

the same rowspan (namely, B2
prod(Q,A)) and this rowspan is preserved by all permutations of the
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columns, we may assume without loss of generality that Λ has the following block form:

Λ =

(
α γ
0 η

)
.

In other words, to make the row spans of the bottom b rows equal, it is never necessary to add any
multiples of the top k rows to the bottom b rows, as the bottom b rows already have equal row
spans that are preserved by all permutations.

The sub-matrix γ contributes by adding elements of B2
prod(Q,A) to Mf1 , so that

(
id γ
0 η

)
Mf1

corresponds to a cocycle that is cohomologous to f1. Finally, the contribution of the sub-matrix
α is to send f1 to a pseudo-congruent cocycle, since α ∈ Aut(A). Therefore we have shown that
(α, δ, σ) is an isomorphism of the cohomology classes f1, f2.

(⇐) Suppose that f
(α,δ,σ)
1 is cohomologous to f2 for some α ∈ Aut(A) and σ ∈

∏
S`i . Then

some matrix Λ′ =

(
α γ
0 id

)
will make the first k rows of Λ′M̃f1

(δ,σ)
equal to the first k rows

of M̃f2 . The last b rows of Λ′M̃f1

(δ,σ)
and M̃f2 have the same row span, so there is some η such

that Λ =

(
α γ
0 η

)
makes the two matrices equal. (In fact, η will be a block-permutation matrix,

which permutes the blocks in the same way that δ permutes the factors.) In particular, this shows

that σ is a code equivalence, and hence that CodeEq(M̃f1

′
, M̃f2) ∩

∏
i S`i is nonempty.

To finish the proof of Theorem 7.1(2), we proceed as follows. First, find a direct decomposition
of Gj [KN09]. If any direct factor is contained in Z(Gj), set this direct factor aside. Then by
Lemma 7.4, the matrices Mfj will be full rank, even after modding out by coboundaries. The latter

fact implies that the rank of M̃fj is then the rank of Mfj plus the dimension of B2
prod(Q,A), in

other words, the M̃fj are also of full rank.

Finally, we compute the coset of equivalences CodeEq(M̃1, M̃2) ⊆ Sm using Theorem 5.2. On
the other hand

∏
i S`i induces an action on [m], which contains the permutations we want. Thus we

need to intersect CodeEq(M1,M2) with
∏
i S`i . By Proposition 7.5, if this intersection is nonempty,

the algorithm returns “isomorphic.” If the intersection is empty for all diagonals δ, the algorithm
returns “non-isomorphic.”

To analyze the running time, the outer loop depending on the diagonals is polynomially related
to n. Both the applications of the Linear Code Equivalence algorithm (Theorem 5.2), and the
singly-exponential time algorithm for Coset Intersection ([Luk99]), take time cm ≤ c`D

2
for

some absolute constant c, where D ≤ log60 |Q| is the maximum size of any of the Ti.

Remark 7.6. Some parts of the results here can be generalized as follows. Consider the class of
perfect groups; recall that a group G is perfect if G = [G,G]. By Grün’s lemma, G/Z(G) is center-
less, thus its direct product decomposition is unique. Suppose G/Z(G) = G1/Z(G)×· · ·×G`/Z(G),
where Gi/Z(G) is indecomposable with respect to direct product, and Gi is the full preimage of
Gi/Z(G) in G → G/Z(G). Lemma 7.3 can be generalized to show that [Gi, Gj ] = 1. This implies
that if we have efficient algorithms to test isomorphism of indecomposable and centerless perfect
groups, then following the same strategy for central radical groups with G/Rad(G) a direct product
of nonabelian simple groups we can handle general perfect groups. (For central radical groups with

32



G/Rad(G) a direct product of nonabelian simple groups the correspondents of “indecomposable
and centerless perfect groups” are nonabelian simple groups, which can be handled by Fact 5.1.)

8 Future directions

In this paper we made significant progress on group isomorphism for groups with central radicals,
extending the results of [BCQ12] and beginning to resolve an open problem from [BCGQ11]. We
achieved an nO(log logn) algorithm for this class of groups, and polynomial-time algorithms for several
prominent subclasses. The difficult cases seem to be when the radical Rad(G) and the semisimple
quotient G/Rad(G) are roughly of the same size—say both are of order

√
n—and G/Rad(G) is

complicated (without this last condition, we handle such groups in Theorem 7.1). Although the
general case of central radicals remains open, we propose three directions for extending our work
which we believe may now be within reach.

8.1 Abelian radical

A natural next step is to combine the essentially cohomological algorithms of our paper with
algorithms to determine Action Compatibility. The simplest such open case is the case of
abelian radicals (which need not be central).

Open Problem 8.1. Extend Theorems 6.1 and 7.1 to groups whose solvable radicals Rad(G) are
abelian, but not necessarily central. Ultimately, decide isomorphism of groups with abelian radicals
in polynomial time.

Note that the previous results that solve Action Compatibility, such as for groups with
abelian Sylow towers [BQ12] (which subsumes [LG09, QST11]), only seem to work when the corre-
sponding representations are completely reducible. However, when |Rad(G)| and |G/Rad(G)| are
not coprime, the representation of G/Rad(G) on Rad(G) need not be completely reducible.

Chistov–Ivanyos–Karpinski [CIK97] and Brooksbank–Luks [BL08] have solved a closely related
problem in algorithmic representation theory, even for representations that are not completely
reducible. In Theorem 6.10 we have already taken the first step by combining these algorithms with
the techniques of our paper to solve Problem 8.1 in nO(log logn) time when the radical is elementary
abelian. After that, we believe that a key step towards resolving Problem 8.1 in full will be to
extend the algorithms of Chistov–Ivanyos–Karpinski and Brooksbank–Luks from representations
over fields to actions on finite abelian groups (which might be thought of as, by abuse of terminology,
“finite representations over Z”).

8.2 The Babai–Beals filtration

The Babai–Beals filtration was defined and used in the context of algorithms for matrix groups
[BB99, BBS09]—where the groups are given by a generating set of matrices, and the goal is algo-
rithms which run in time polynomial in the input size, which can be polylogarithmic in |G|. In the
context of GpI, it has also been used successfully in the polynomial-time algorithm for semisimple
groups [BCGQ11, BCQ12].

The Babai–Beals filtration is the following chain of characteristic subgroups:

1 ≤ Rad(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G, (9)
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where Rad(G) is the solvable radical ofG and Soc∗(G) is the subgroup such that Soc∗(G)/Rad(G) =
Soc(G/Rad(G)). Note that the socle of the semisimple group G/Rad(G) is a direct product of
non-abelian simple groups. G then acts on this direct product by, amongst other things, permuting
the factors. The final subgroup in the Babai–Beals filtration, Pker(G), consists of those g ∈ G
which do not permute the direct factors of Soc∗(G)/Rad(G).

In Theorem 7.1 we make progress on the case of groups G with central radical which further
satisfy G = Soc∗(G). It is then natural to consider groups with the next step of the Babai–Beals
filtration, G = Pker(G). As a polynomial-time algorithm for isomorphism of semisimple groups G
satisfying G = Pker(G) [BCGQ11] was significantly simpler than the polynomial-time algorithm
for general semisimple groups [BCQ12], we have hope that the following is achievable:

Open Problem 8.2. Extend Theorem 7.1 to groups with central radical which satisfy G =
Pker(G).

8.3 The Cannon–Holt strategy

Cannon and Holt [CH03] suggest the following strategy for computing Aut(G) for a finite group G,
as well as for isomorphism testing. They consider the following chain of characteristic subgroups:

1 = Nr �Nr−1 � · · ·�N1 = Rad(G) �G, (10)

where the Ni refine the derived series of Rad(G) and each Ni/Ni+1 is elementary abelian. The algo-
rithm proceeds by first computing Aut(G/N1) = Aut(G/Rad(G)), and then iteratively computing
Aut(G/Ni+1) from Aut(G/Ni).

This chain is convenient for describing known results in the Cayley table model: the case when
Rad(G) = 1 (equivalently r = 1) corresponds to the semisimple case, which can be solved in
polynomial time [BCQ12]. When G = Rad(G) and r = 2, the case of |N2| and |N1/N2| being
coprime can be solved in polynomial time [BQ12]. When |N2| and |N1/N2| are not coprime, this
includes the notorious case of p-groups of class 2. Finally, the present work considers a special case
of r = 2, namely when Rad(G) = Z(G).

In light of [BCQ12], in the Cayley table model the second step in the Cannon–Holt strategy—
to compute Aut(G/N2) from Aut(G/Rad(G))—is equivalent to the special case of Problem 8.1 in
which Rad(G) is elementary abelian, which we have solved in nO(log logn) time in Theorem 6.10.

However, even before Problem 8.1 is completely resolved, it may be possible to give a reduction
from the third step of the Cannon–Holt strategy to listing isomorphisms of two-step solvable groups.
This is headed in the direction of a formal reduction from general group isomorphism to the solvable
case. In a related vein, in Proposition 3.14 we showed how isomorphism of groups whose outer action
on Rad(G) is trivial reduces to isomorphism of central-radical groups and isomorphism of solvable
groups.

Open Problem 8.3. Extend Theorems 6.1 and 7.1 to groups whose radicals are two-step solvable,
allowing access to an oracle for listing Aut(Rad(G)).
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[BCQ12] László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test
for groups with no abelian normal subgroups - (extended abstract). In ICALP, pages
51–62, 2012.

[BE99] Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symb. Comput.,
27(4):387–404, 1999.

[BEO02] Hans Ulrich Besche, Bettina Eick, and E.A. O’Brien. A millennium project: Construct-
ing small groups. Intern. J. Alg. and Comput, 12:623–644, 2002.

[BHZ87] Ravi Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Inform. Process. Lett., 25:27–32, 1987.

[BJP97] W. Bosma, J. J. Cannon, and C. Playoust. The Magma algebra system I: the user
language. J. Symb. Comput., pages 235–265, 1997.
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A An algorithm to decide whether an extension splits

The following method is straightforward and well-known, but we could not find a description in
the Cayley table model, so include a sketch here. Cf. [HEO05, Section 7.6.2] for an algorithm in
practical setting.

Proposition A.1. There is a polynomial-time algorithm that takes the Cayley table of a finite group
G and an abelian normal subgroup A�G as the input, and decides whether there is a complement
of A in G. If there exists, it computes one such complement.

Proof. Let n = |G|, m = |A| and ` = n/m. Take a set of coset representatives S = {s1, . . . , s`} of
A in G, then every set of coset representatives can be expressed as {a1s1, . . . , a`s`}, where ai ∈ A.

The question then is whether there exists (a1, . . . , a`) ∈ A` such that T = {t1, . . . , t`} where
ti = aisi forms a subgroup of G. This can be reduced to solving a system of linear Diophantine
equations as follows.

Note that T can be endowed with the group operation of G/A. Thus if AtiAtj = Atk, for T to
be a subgroup we need titj = tk. Expand titj = tk as aisiajsj = aksk, which yields

ai + θsi(aj) + bijk = ak,

where θsi denotes the conjugation action of si, bijk := sisjs
−1
k ∈ A, and we use + for the case as

the summands are from A.
Now take a direct product decomposition of the abelian group A = Zq1 × . . .Zqd , where qi is a

prime power. Given this basis the conjugation action of si can be written as a d × d matrix, and
we set ai = (xi1, . . . , xid) where xij is an indeterminant over Zqj . Then ai + asij + bijk = ak yields d
linear equations, possibly modulo different integers. Collect all such linear equations arising from
the group operation of G/A; then A has a complement if and only if this system of linear equations
has a solution. To solve this system, use the standard trick to reduce this system of linear equations
with different modulo numbers, to a system of linear Diophantine equations. The solvability of a
system of linear Diophantine equations, as well as a solution if there exists, can be computed in
time polynomial in the number of variables (` · d), the number of equations (`2 · d) and logN
where N is the largest coefficient (≤ logm). If there are no solutions the algorithm returns “no
complement.” Otherwise the solution gives an assignment a′i to the ai’s, such that {a′1s1, . . . , a

′
`s`}

is a complement.

B Cohomological lemmas

Suppose T1, . . . , T` are nonabelian simple groups. Let A be an abelian group, and Q =
∏
i∈[`] Ti.

Let G be a group with Z(G) = A and G/Z(G) = Q. Denote Ui = ATi.
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Proposition 7.2, restated. Let notations be as above. For i, j ∈ [`], i 6= j, [Ui, Uj ] = 1.

Proof. Let π : G→ G/Z(G) be the natural projection. Note that Q = G/Z(G) and Ti’s are direct
factors of Q. For i ∈ [`], define Vi to be the smallest normal subgroup of G s.t. π(Vi) = Ti. Then
Ui = ViZ(G), and for i 6= j, [Ui, Uj ] = id if and only if [Vi, Vj ] = id.

As Ti is nonabelian simple, π([Vi, Vi]) = π(Vi). Because of minimality of Vi, Vi = [Vi, Vi]. For
i 6= j, Ti ∩Tj = id, thus [π(Vi), π(Vj)] = [Ti, Tj ] = id in Q, which implies that [Vi, Vj ] ⊆ Z(G). Now
we have: (1) [[Vi, Vj ], Vj ] ⊆ [Z(G), Vj ] = id; (2) [[Vj , Vi], Vj ] = id as [Vi, Vj ] = [Vj , Vi]. Then Hall’s
three subgroup lemma [Suz86, Chapter 4, Proposition 1.9] gives that [[Vj , Vj ], Vi] = id. Finally
noting that Vj = [Vj , Vj ] we have [Vj , Vi] = id.

Lemma 7.4. Let A′ ×A′′ ↪→ G� Q be a central extension of A′ ×A′′ by Q. Let pA′ : A
′ ×A′′ →

A′ be the projection onto A′ along A′′. If there is a 2-cocycle f : Q × Q → A′ × A′′ such that
pA′ ◦f : Q×Q→ A′ is a 2-coboundary, then G is isomorphic (even congruent) to the direct product
A′ × (G/A′).

Furthermore, given the Cayley table of G, A′ can be computed in polynomial time using linear
algebra over abelian groups.

Proof. We prove directly that A′ � G, exhibit a complement of A′ in G and show that this com-
plement is normal. At the end we show how to compute A′ using linear algebra.

We may assume without loss of generality that the image of f lies entirely within A′′. For
if not, then we may add the 2-coboundary pA′ ◦ f : Q × Q → A′ ↪→ A′ × A′′ to f to get an
equivalent 2-cocycle satisfying this condition. Similarly, we may assume that f is normalized so
that f(1, q) = f(q, 1) = 0 for all q ∈ Q.

We construct a group congruent to G from the cocycle f in the usual way: the elements are
A′ ×A′′ ×Q as a set, with multiplication given by (writing A′ and A′′ additively):

(a1, a
′
1, q1)(a2, a

′
2, q2) = (a1 + a2, a

′
1 + a′2 + f(q1, q2), q1q2)

since the image of f lies entirely in A′′. We also have (a, a′, q)−1 = (−a,−a′ − f(q, q−1), q−1).
A′ is normal:

(a, a′, q)−1(a0, 1, 1)(a, a′, q) = (−a,−a′ − f(q, q−1), q−1)(a0 + a, a′, q) (since f(1, q) = 0)

= (−a+ a0 + a,−a′ − f(q, q−1) + a′ + f(q, q−1, qq−1)

= (a0, 0, idQ).

A′ has a normal complement: as the image of f lies entirely in A′′, it is readily verified
that elements of the form (0, a′, q) are closed under product, hence form a subgroup of G which
is isomorphic to G/A′ and intersects A′ only in the identity. Moreover, this subgroup is nor-
mal. For consider conjugating one of its elements by an arbitrary element of G: (−a,−a′ −
f(q, q−1), q−1)(0, a′0, q0)(a, a′, q). From the multiplication rule above, it is clear that the first co-
ordinate of this product is just the sum of the first coordinates of the three factors—namely,
zero—whatever the second and third coordinates are.

Finally, we show how to compute A′ from the Cayley table for G using linear algebra over
abelian groups. We give the proof in the case that Z(G) = Zkp is elementary abelian; the general
case uses the same ideas as in Section 6.1.1. First compute Z(G) (which is A′ ×A′′, but we do not
yet know this decomposition of Z(G), we are only promised it exists) and Q = G/Z(G). Choose
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any set-theoretic setction s : Q → G and compute the corresponding cocycle f := fs. Let Mf be
the k × |Q|2 Zp-matrix corresponding to f as in §7. We may view Mf as a Zp-linear map from

Z(G) = Zkp to ZQ×Qp . As in §7, we may compute a basis of B2(Q,Z(G)) that is a direct sum of
bases for B2(Q,Zp), one copy for each row of Mf . The maximal A′ satisfying the conditions of the
theorem is then the inverse image of B2(Q,Zp) under this map. Computing the inverse image of

B2(Q,Zp) under the map MT
f : Z(G)→ ZQ×Qp is then just linear algebra over Zp.

C Alternative proofs for Theorem 6.1 and Theorem 7.1 (2)

C.1 Proof of Theorem 6.1

Proposition C.1. For A = Zkp and a group Q, let n = |A| · |Q|. In time O(n2 log n) one can
compute: a complement W of B2(Q,A) in C2(Q,A), and Zp-linear projection π from C2(Q,A) to
W . Furthermore, W is an invariant subspace of α, and for any α ∈ Aut(A), απ = πα as linear
maps on C2(Q,A).

Proof. Under the above identification, the set C2(Q,A) of 2-cochains is identified with the set of all
k × |Q|2 matrices over Zp. Then Z2(Q,A) is not just a subgroup, but also a Zp-linear subspace of
C2(Q,A), and similarly B2(Q,A) is a Zp-linear subspace of Z2(Q,A). Aut(A) ∼= GL(k, p) acts on
C2(Q,A) by left multiplication, and Aut(Q) acts on C2(Q,A) by permuting the columns according
to the diagonal action of Aut(Q) on Q×Q.

Let us then explicitly specify a basis of B2(Q,A). First for i ∈ [k] let Ui be the linear subspace of
C2(Q,A) where entries outside the ith row are all 0. For q ∈ Q, q 6= id, i ∈ [k], let uq,i : Q→ A be
uq,i(q

′) = δ(q, q′)ei where δ is the Kronecker delta. Let fq,i : Q×Q→ A be the 2-coboundary based
on uq,i. Then {fq,i|q ∈ Q, q 6= id, 1 ≤ i ≤ n} is a basis for B2(Q,A). Let Vi = {fq,i | q ∈ Q, q 6= id},
then Vi ≤ Ui and B2(Q,A) = ⊕i∈[k]Vi. In fact, when restricted to the subspace of the ith row, the
Vi’s are the same.

Now let us choose complements of Wi of Vi in Ui for i ∈ [k], s.t. Wi = Wj for every i, j ∈ [k];
let πi be the projection to Wi along Vi in Ui. πi’s collectively define a projection π to ⊕iWi along
⊕iVi in ⊕iUi = C2(Q,A).

Given this π, it is not hard to identify the 2-cohomology class of f ∈ Z2(Q,A) ≤ C2(Q,A):
f, g ∈ Z2(Q,A) are cohomologous, if and only if π(f) = π(g). Furthermore, it is easy to see, but
important to note that for any α ∈ Aut(A), απ = πα. Also the above procedure involves only
standard linear algebra tasks, and such π can be constructed in time O(n2 log n).

To summarize, consider α ∈ Aut(A), β ∈ Aut(Q), and π just introduced. All of them can
be viewed as linear maps on C2(Q,A), while α, β are nonsingular. We then note: (1) α and β
commute; (2) α and π commute.

Proof of Theorem 6.1. We list Aut(Q) in time t(n). For i = 1, 2, choose an arbitrary section of
Q in Gi to get a 2-cocycle fi. Use Proposition C.1 to get the projection π : C2(Q,A) → W
for some complement W of B2(Q,A) such that W is invariant under α and απ = πα for every
α ∈ Aut(A). By the main Lemma 3.2, it is necessary and sufficient to test whether there exists

an (α, β) ∈ Aut(A) × Aut(Q) s.t. π(f1) = π(f
(α,β)
2 ). As every α commutes with both π and β,

this condition is equivalent to π(f1) = (π(f
(id,β)
2 ))(α,id). In other words, we may leave α unspecified

until the final step.
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For each β ∈ Aut(Q), we compute f ′1 = π(f1), and f ′2 = π(f
(id,β)
2 ). Note that f ′i are in

W ≤ C2(Q,A). The task then reduces to compute α ∈ Aut(A) s.t. f ′1 = α−1(f ′2). This is because

απ = πα allows us to apply π to f
(id,β)
2 first, and leave α to be determined later. f ′1 = α−1f ′2 for

some α ∈ Aut(A), if and only if the row spans of Mf ′1
and Mf ′2

are the same in Z|Q|
2

p . The latter

task is standard in linear algebra and can be checked in time O(|Q|6).
The main Lemma 3.2 implies that G1

∼= G2 if and only if the above test succeeds for some
β ∈ Aut(Q).

C.2 Proof of Theorem 7.1 (2)

Proof. Before presenting the algorithm we need some consequences of Lemma 7.3. For Gj , j = 1, 2,
we say a 2-cocycle fj : Q×Q→ A respects the direct factors if there exist fj,i : Ti×Ti → A, i ∈ [`]
s.t. Equation 8 holds. Let Z2

prod(Q,A) denote the set of 2-cocycles respecting the direct factors.

The proof of Lemma 7.3 suggests that Z2
prod(Q,A) 6= ∅. Similarly we can define 2-coboundaries that

respect the direct factors (cf. Equation 7), and B2
prod(Q,A). For two 2-cocycles from Z2

prod(Q,A),

their difference is in B2
prod(Q,A). Recall that Mfj denotes the matrix representation of fj with row

index set [k] and column index set Q×Q. As fj is completely determined by the direct factors, we
can focus on Mfj with row indices from ∪i∈[`]Ti × Ti. Thus for fj ∈ Z2

prod(Q,A) the size of Mfj is

assumed to be k × (
∑

i∈[`] |Ti|2).

As every β ∈ Aut(Q) can be represented as (δ, σ) ∈ (
∏
i Aut(Q)`i)× (

∏
i S`i), thus Z2

prod(Q,A)

(resp. B2
prod(Q,A)) is an invariant subset in Z2(Q,A) under the actions of Aut(A) and Aut(Q).

Following the proof of Proposition C.1, we can get a projection π : C2(Q,A) → W for some
W ≤ C2(Q,A) s.t. (1) W is a complement of B2

prod(Q,A) in C2(Q,A); (2) W is an invariant
subspace of α and σ; (3) απ = πα for α ∈ Aut(A), and σπ = πσ for σ ∈

∏
i S`i . The relation with

σ is ensured if for isomorphic factors Ti ∼= Tj we choose the same complement for B2(Ti, A) and
B2(Tj , A) (in C2(Ti, A) and C2(Tj , A), respectively). The question then is to decide the existence

of (α, δ, σ) ∈ Aut(A)× (
∏
i Aut(Q)`i)× (

∏
i S`i), making π(f1) = π(f

(id,δ,id)
2 )(α,id,σ).

Note that π(f1) ∈ W ≤ Z2
prod(Q,A) can be expressed as a k × (

∑
i∈[`] |Ti|2)-size matrix over

Zp. Let M1 = Mπ(f1). By Lemma 7.4, wlog we assume M1 is of rank k. Otherwise Lemma 7.4
splits a direct factor out of the center as A′ ×Gj/A′.17 By the Remak-Krull-Schmidt theorem, we
are reduced to test isomorphism between G1/A

′ and G2/A
′, where the desired condition holds. To

compute such A′ ∈ Z(Gj) s.t. A′ is a direct factor is straightforward as discussed in Lemma 7.4.
By assumption we have |Ti| ≤ D for some constant D. Given these preparations the algorithm
works as follows.

For every diagonal
∏
j∈[`] αj of

∏
j Tj , do the following. Compute π(f1) and π(f

(id,δ,id)
2 ), and

let M1 = Mπ(f1) and M2 = M
π(f

(id,δ,id)
2 )

. Recall that Mj is the matrix of size k × (
∑

i∈[`] |Ti|2)

corresponding to fj as described in §7. Let m :=
∑

i |Ti|2 ≤ `·D2. Viewing Mj as two linear codes of
dimension k in Zmp , we compute the coset of equivalences CodeEq(M1,M2) ⊆ Sm using Theorem 5.2.
On the other hand

∏
i S`i induces an action on [m], which consists the permutations we want. Thus

we need to intersect CodeEq(M1,M2) with
∏
i S`i . If the intersection is nonempty, the algorithm

reports “isomorphic.” On the other hand, if for all (α,
∏
i δi) we get empty intersection, then the

algorithm returns “not isomorphic.”

17Lemma 7.4 is concerned with general Z2(Q,A) and B2(Q,A) while it can be adapted easily to deal with
Z2

prod(Q,A) and B2
prod(Q,A).
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To analyze the running time, the outer loop depending on the diagonals is polynomially related
to n. Both the applications of the Linear Code Equivalence algorithm (Theorem 5.2), and the
singly-exponential time algorithm for Coset Intersection ([Luk99]), take time c`·D

2
for some

absolute constant c.

D Generalized Fitting subgroups of groups with central radical

Definition D.1. A group G is quasisimple if G = [G,G] and G/Z(G) is a nonabelian simple group.
G is m-quasisimple if G = [G,G] and G/Z(G) is a direct product of nonabelian simple groups.

Our m-quasisimple groups are Suzuki’s “semisimple groups” [Suz86, Page 446]; we cannot use
Suzuki’s terminology as we have used “semisimple” for groups with no abelian normal subgroups.
Note that central-radical groups with G/Z(G) a direct product of nonabelian simple groups need
not be m-quasisimple groups, as the former need not be perfect. However, the difference is not
much:

Proposition D.2 ([Suz86, Ch. 6, corollary to Theorem 6.4]). Let G be a group such that G/Z(G) is
a direct product of nonabelian simple groups. Then G = Z(G)[G,G], and [G,G] is an m-quasisimple
group.

M-quasisimple groups are crucial for defining the generalized Fitting subgroups.

Proposition D.3 ([Suz86]). Let H and K be m-quasisimple normal subgroups of G, then HK is
m-quasisimple.

This motivates the following definition. Recall that the Fitting subgroup F (G) of G is the
maximal nilpotent normal subgroup of G.

Definition D.4. Let G be a group. The layer E(G) of a group G, is the maximal m-quasisimple
normal subgroup of G. The generalized Fitting subgroup F ∗(G) of G is E(G)F (G).

Proposition D.5. Let G be a group with central radical. Soc∗(G) = F ∗(G).

Proof. As Rad(G) = Z(G), F (G) = Z(G). Let D = [Soc∗(G), Soc∗(G)]. So D is m-quasisimple
and Soc∗(G) = Z(G)D = F (G)D ([Suz86, Ch. 6, corollary to Theorem 6.4]). Thus D ⊆ E(G) and
Soc∗(G) ⊆ F ∗(G).

To show Soc∗(G) ⊇ F ∗(G), for the purpose of contradiction, suppose Z(G)D = Soc∗(G) (
F ∗(G) = Z(G)E(G). Consider the decomposition of E(G) into quasisimple groups ([Suz86, Ch. 6,
Definition 6.8]) as Q1 · . . . ·Qd, where · denotes central product, and Qi is subnormal in G. Wlog as-
sume Z(G)Q1 6⊆ Z(G)D. As Q1 is subnormal in G, G/Z(G) necessarily has Q1Z(G)/Z(G) as a sub-
normal group, contained in some minimal normal group N/Z(G)�G/Z(G) ([Isa08, Lemma 9.17]).
By assumption, Q1Z(G)/Z(G) is not contained in DZ(G)/Z(G) = Soc∗(G)/Z(G) = Soc(G/Z(G)),
so N/Z(G) is a minimal normal subgroup not contained in Soc(G/Z(G)), contradicting the defini-
tion of the socle.
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E Discussion of pseudo-congruence and its variants

Recall that two groups G1 and G2 as extensions of A by Q are equivalent if there exists an isomor-
phism γ : G1 → G2 s.t. the following diagram commutes:

A �
� ι1 // G1

π1 // //

γ∼=
��

Q

A �
� ι2 // G2

π2 // // Q

It is possible for two extensions Gi of N by Q to be isomorphic as groups without being
congruent, as the next example shows:

Example E.1 (Isomorphic groups from non-equivalent extensions). Z9 can be viewed as an ex-
tension of Z3 by Z3 in two ways. Firstly Z3 ↪→ Z9 by sending 1 to 3. Then define πi(1) = i for
i ∈ [2]. To see π1 and π2 yield non-equivalent extensions, consider φ ∈ Aut(Z9), suppose φ(1) = k,
k ∈ {1, 2, 4, 5, 7, 8}. φ induces identity on 〈3〉, thus 3 = φ(3) = 3φ(1) = 3k mod 9, thus k = 1
mod 3. On the other hand, 1 = π1(1) = π2(φ(1)) = π2(k) = 2k mod 3, that is k = 2 mod 3. We
then arrive at a contradiction.

Recall that two extensions A ↪→ Gj � Q, j = 1, 2 are pseudo-congruent if there exist α ∈
Aut(A), β ∈ Aut(Q) and γ ∈ Iso(G1, G2) such that the following diagram commute:

A �
� ι1 //

α∼=
��

G1
π1 // //

γ∼=
��

Q

β∼=
��

A �
� ι2 // G2

π2 // // Q

That is, if there exists an isomorphism γ : G1 → G2 such that γ(A) = A and it induces α on A
and β on Q. Also recall that if γ induces the identity maps on A and Q the extensions are called
equivalent.

It is also possible for two extensions G1, G2 of N by Q to have isomorphic total groups but not
even be pseudo-congruent. The following example was provided by Vipul Naik [Nai10]:

Example E.2 (Isomorphic groups from non-pseudo-congruent extensions). N = Zp2 × Zp × Zp,
Q = Zp2 × Zp, G = Zp3 × Zp2 × Zp × Zp. In one extension, ι1(a, b, c) = (pa, 0, b, c) and in the
other ι2(a, b, c) = (pa, pb, a (mod p), c). To see that there is no automorphism of G sending Im ι1
to Im ι2, note that Im ι1 contains elements that are p times an element of order p3 in G, but Im ι2
contains no such elements.

We describe two special cases of pseudo-congruence of extensions, explain the algorithmic prob-
lems corresponding to them, and indicate some of the solutions. The first one was discussed in
[Rob82]. Consider the following case when γ only induces the identity map on A as follows:

A �
� ι1 //

α∼=
��

G1
π1 // //

γ∼=
��

Q

A �
� ι2 // G2

π2 // // Q
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This corresponds to the algorithmic setting when enumerating Aut(Q) is allowed, as after fixing
some β ∈ Aut(Q) we are reduced to looking for α such that G1 and G2 are pseudo-congruent
by (α, β). If the extension is split and A ∈ Zkp is elementary abelian, this problem reduces to the
module isomorphism problem: the action of each q ∈ Q can be expressed as a nonsingular matrix in
GL(k, p). So suppose Q = {q1, . . . , qs}, and in Gj the conjugation action of Q is written as {M(j, i) |
M(j, i) ∈ GL(k, p)} where M(j, i) denotes the action of qi on A in Gj . The problem of compatibility
of actions then reduces to determine whether there exists T ∈ GL(k, p) s.t. TM(1, i) = M(2, i)T for
every i ∈ [`]. This is a special case of the module isomorphism problem, which admits deterministic
polynomial-time algorithms by [CIK97, BL08, IKS10]. On the other extreme when the extension is
central, Theorem 6.1 solves the cohomology class isomorphism problem. At present it is not clear
to us how concatenate the two procedures to solve the pseudo-congruent problem as a whole.

On the other hand, if γ only induces the identity map on A:

A �
� ι1 // G1

π1 // //

γ∼=
��

Q

β∼=
��

A �
� ι2 // G2

π2 // // Q

This corresponds to the algorithmic setting when Aut(A) is enumerable, and our goal is to find
β such that G1 and G2 are pseudo-congruent. Note that Theorem 7.1 (1) falls into this setting.
Also in this setting is the important work by Brooksbank and Wilson [BW12]. They presented an
efficient algorithm to compute the isometry group of a Hermitian bilinear map in a model stronger
than Cayley table model; given the connections between p-groups of class 2 and exponent p and
alternating bilinear maps (cf. [Wil09a, Section 3.4]), this amounts to solve the problem of finding
β as above. It would be very interesting to see whether following the approach in [BW12] will shed
light on p-groups of class 2.

F Relationship with results on practical algorithms

It is not surprising that the complexity-theoretic results and practical results from the computa-
tional group theory (CGT) community often leverage the same underlying structure of the groups.
Here we discuss the relationship between these two sets of results. A general reference for CGT
is the handbook [HEO05]; algorithms in CGT are often implemented in Magma [BJP97] and/or
GAP [GG13].

The goal in CGT is to get practical algorithms, so the groups are typically given as input by
generating sets of permutations or matrices, or by poly-cyclic presentations (for solvable groups).
In general, these encodings are of size poly-logarithmic in |G|, so for them even a provable worst-
case guaranteed running time of O(|G|) is usually impractical. However, in order to achieve better
running times, they frequently use heuristic methods without provable guarantees. In contrast, we
are interested in provable worst-case guarantees, but our input is the entire Cayley table and we
allow ourselves running time polynomial in |G|.

Regarding isomorphism testing algorithms in CGT, besides [CH03] mentioned above, some
notable works include [O’B94, BE99, LW12]. Very often isomorphism testing arises for them as
a subroutine for the construction of all finite groups up to a certain order (up to isomorphism),
as in [Tau55, BE99, BEO02]. Recently, Wilson et al. have produced several results related to
isomorphism of p-groups (sometimes reformulated in the context of Hermitian bilinear maps) in
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[Wil09a, Wil09b, LW12, BW12], some of which include worst-case guarantees. The structure they
are uncovering in p-groups is also notable from the Cayley table perspective, and there is likely
more to be discovered in this direction.

The two communities often leverage the same structure that is present in various classes of
groups, though the complexity results often require further structural results on the group classes
considered, in addition to further algorithmic results. For example, Besche and Eick had already
considered the group classes in Le Gall’s work [LG09] (the algorithm in Figure 4 in [BE99]), but Le
Gall’s work was the first to give a provably polynomial-time algorithm for groups of the form AoZp
with A abelian and p - |A|. A necessary ingredient in Le Gall’s work is a detailed understanding
of automorphism groups of abelian groups traced back to Ranum [Ran07], which was not needed
in the practical setting of Besche and Eick. Another example is the polynomial-time algorithm
for semisimple groups [BCQ12], where a similar situation is described at the end of that paper,
comparing it with the practical work of Cannon and Holt [CH03]. For example, the algorithm in
[BCQ12] required bounds on the orders of the transitive permutation groups other than Sn and
An.

Relations to the present work. As mentioned above, our choice to focus on groups with
central radicals is partially motivated by the strategy of Cannon and Holt [CH03]. Another work
of particular relevance is [BE99]. There Besche and Eick considered construction of finite groups,
and proposed three heuristics. To support one heuristic, they proposed the concept of “strong
isomorphism” of groups, which can be viewed as a special case of our Lemma 3.2 in their setting. We
use the same structural results to support the approach, but as we work in the Cayley table setting,
we have much more freedom to handle the 2-cohomology classes directly, as in Theorem 6.1; we
also need Lemma 7.3 which in turn allows us to apply algorithms for Linear Code Equivalence
and Coset Intersection as in Theorem 7.1. These ingredients are not present in [CH03] nor
[BE99], which is natural as in their setting these ingredients would not be practical.
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