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Abstract

We prove the computational hardness of three k-clustering problems using an (almost) arbitrary
Bregman divergence as dissimilarity measure: (a) The Bregman k-center problem, where the objective is
to find a set of centers that minimizes the maximum dissimilarity of any input point towards its closest
center, and (b) the Bregman k-diameter problem, where the objective is to minimize the maximum
dissimilarity between pairs of points from the same cluster, and (c) the Bregman k-median problem,
where the objective is to find a set of centers that minimizes the average dissimilarity of any input
point towards its closest center. We show that solving these problems is NP-hard, and that it is even
NP-hard to approximate a solution of (a) and (b) within a factor of (a) 3.32 and (b) 3.87, respectively.
To obtain our results, we give a gap-preserving reduction from the Euclidean k-center (k-diameter, k-
means) problem to the Bregman k-center (k-diameter, k-median) problem. This reduction combines the
technique of Mahalanobis-similarity from Ackermann et al. (SODA ’08) with a reduction already used by
Chaudhuri and McGregor (COLT ’08) to show the non-approximability of the Kullback-Leibler k-center
problem, and a recent reduction given by Vattani to prove the NP-hardness of the Euclidean k-means
problem.

1 Introduction

Clustering is the problem of partitioning a set of data points into subsets (called clusters) such that points
in a common cluster are similar. The quality of a given clustering is measured using a well defined objective
function which may vary from application to application. Given an arbitrary dissimilarity function on the
data points, there are three objective functions that have proven to be useful in practice: k-center clustering,
where the objective is to find a set of centers that minimizes the maximum dissimilarity of any input point
towards its closest center; k-median clustering, where the objective is to find a set of centers that minimizes
the average dissimilarity of any input point towards its closest center; and k-diameter clustering, where the
objective is to minimize the maximum dissimilarity between pairs of points from the same cluster.

The problem of clustering by these objective functions has received a lot of attention if the dissimilarity
measure used is a metric (like the Euclidean distance) or at least the square of a metric. In particular, the
computational hardness of finding an optimal k-center (k-median, k-diameter) clustering has been proven
[10, 19, 21, 34, 15, 14, 26, 3, 31]. Additionally, in case of k-center or k-diameter clustering, it has also
been shown that a clustering arbitrary close to the optimal solution can not be found in polynomial time
if k ≥ 2 is part of the input, unless P = NP [35, 21, 23, 36, 16]. An overview of known hardness and
non-approximability results for Euclidean k-clustering problems can be found in Table 1.

However, relatively little is known about the computational complexity of these clustering problems if
the dissimilarity measure is neither a metric nor the square of a metric, or even asymmetric. Yet, there are a
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k ≥ 2 part of input, d constant d ≥ 2 part of input, k constant

Euclidean NP-hard for all d ≥ 2 [19], NP-hard for all k ≥ 2 [34]
k-center no 1.82-approx. in poly(n, k) [36, 16], (1 + ε)-approx. in poly(n, d) [6, 5]

2-approx. in poly(n, k) [21, 22, 16]

Euclidean NP-hard for all d ≥ 2 [21], NP-hard for all k ≥ 3 [10]
k-diameter no 1.96-approx. in poly(n, k) [16], 2-approx. in poly(n, d) [21, 23, 16]

2-approx. in poly(n, k) [21, 23, 16]

Euclidean NP-hard for all d ≥ 2 [31, 43], NP-hard for all k ≥ 2 [10, 15, 14, 26, 3]
k-means (9 + ε)-approx. in poly(n, k) [27] (1 + ε)-approx. in poly(n, d) [18, 29, 17, 12]

Kullback- NP-hard for all d ≥ 3 [11], O(max{logn, log d})-approx. in poly(n, d) [11]
Leibler no 3.32-approx. in poly(n, k) [11]
k-center O(logn)-approx. in poly(n, k) [11]

Table 1: Overview of known hardness and (non-)approximability results.

large number of applications where k-clustering problems with respect to a non-metric dissimilarity measure
are considered. For instance, in the spectral analysis of speech signals, k-median clustering by Itakura-Saito
divergence is used to quantize speech signals [25], and in image retrieval, k-center clustering with respect
to the Kullback-Leibler divergence (relative entropy) is used when indexing data bases [40]. Both of these
dissimilarity measures are neither a metric, nor a symmetric distance function. These examples are instances
of a broader class of dissimilarity measures that also includes well known symmetric distance functions such
as the squared Euclidean distance and the Mahalanobis distances: the class of Bregman divergences.

Clustering with Bregman divergences is a problem that arises in many different disciplines of computer
science, such as machine learning, data compression, data mining, speech processing, image analysis, or
pattern recognition. However, the theoretical study and analysis of general Bregman k-clustering problems
has only recently attained considerable attention in the theoretical computer science and machine learning
community. A number of results have been achieved; in particular, Lloyds famous k-means heuristic [30]
has been proven to be applicable to all Bregman k-median problems [7]. Furthermore, the use of adaptive
seeding (i.e., kmeans++ seeding [4]) has been adopted to improve the performance of Lloyd’s heuristic for
Bregman divergences [38, 41, 1]. Additionally, a fast approximation algorithm for the Bregman 1-center
problem has been developed [39]. The notion of Bregman Voronoi diagrams has been studied and it was
shown how to compute them efficiently [37]. Recently, a first PTAS (for constant k) applicable to Bregman
k-median problems has been given [2]. Also, the concept of coresets has been adopted to the Bregman
k-median problem [1].

On the other hand, the computational hardness of these Bregman k-clustering problems has always been
assumed. Yet, with the exception of the Euclidean case and a recent result considering the Kullback-Leibler
divergence [11], no proofs have been known. In this paper, we resolve this open problem by showing hardness
and non-approximability results for the Bregman k-center problem, the Bregman k-median problem, and
the Bregman k-diameter problem when the number of clusters k is part of the input.

1.1 The k-center, the k-median, and the k-diameter problem

In this section, we introduce the formulation of the three k-clustering problems which we study in this paper.
To this end, let X ⊆ Rd denote an arbitrary ground set of possible data points. Furthermore, let D(·, ·) denote
an arbitrary dissimilarity measure on X. Throughout this paper, let n denote the size of the input point set
we wish to cluster.

In the k-center problem with respect to D, the objective is to minimize the maximum dissimilarity of any
input point towards the center point of its cluster. That is, for finite point set P ⊆ X and any finite set of k
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Figure 1: Geometric interpretation of a Bregman divergence.

centers C ⊆ X, let

radD(P,C) = max
p∈P

min
c∈C

D(p, c) (1)

denote the k-center radius of P using center points C. Given a finite P ⊆ Rd, the goal of the k-center
problem is to find a set C ⊆ X of size k that minimizes radD(P,C). We denote the radius of such an optimal
solution by optradk,D(P ).

In the k-median problem with respect to D, the objective is to minimize the average dissimilarity of any
input point (or, equivalently, the total dissimilarity of all input points) towards the center point of its cluster.
More precisely, for finite input set P ⊆ X and any finite set of k centers C ⊆ X, let

costD(P,C) =
∑
p∈P

min
c∈C

D(p, c) (2)

denote the k-median cost of P using center points C. Given a finite P ⊆ Rd, the goal of the k-median
problem is to find a set C ⊆ X of size k that minimizes costD(P,C). We denote the cost of an optimal
solution by optcostk,D (P ). Note that if dissimilarity measure D is the squared Euclidean distance, this problem
is widely known as the Euclidean k-means problem.

In the k-diameter problem, the objective is to minimize the maximum dissimilarity between pairs of
points from the same cluster. That is, let P ⊆ X be a finite point set and let P = {P1, P2, . . . , Pk} be a
partition of P into k non-empty sets. Then, the k-diameter of P using partition P is defined a

diamD(P) = max
i=1,...,k

max
p,q∈Pi

D(p, q). (3)

Given P ⊆ Rd, the goal of the k-diameter problem is to find a partition P of P into k subsets that minimizes
diamD(P). We denote the diameter of an optimal solution by optdiam

k,D (P ).

1.2 Bregman clustering

Throughout this paper, we consider an arbitrary but fixed dissimilarity measures that belongs to the class of
Bregman divergences. In this case, we refer to the problems stated above as the Bregman k-center problem,
the Bregman k-median problem, and the Bregman k-diameter problem, respectively. The dissimilarity
measures known as Bregman divergences were introduced in 1967 by Lev M. Bregman [9]. Intuitively, a
Bregman divergence can be seen as the error when approximating a strictly convex function by a tangent
hyperplane (see Figure 1). Formally, let X ⊆ Rd be a convex set and let ri(X) denote the relative interior
of X. For any strictly convex, differentiable function φ : ri(X) → R we define the Bregman divergence with
respect to generating function φ as

Dφ(p, q) = φ(p)− φ(q)−∇φ(q)>(p− q) (4)

for p, q ∈ ri(X). Here, ∇φ(q) denotes the gradient column vector of φ at point q.
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Bregman divergences include many prominent dissimilarity measures like the squared Euclidean distance
D`22

(p, q) = ‖p − q‖22 (with φ`22(t) = ‖t‖22 on X`22 = Rd), the Kullback-Leibler divergence DKL(p, q) =∑
pi ln pi

qi
−pi+qi (with φKL(t) =

∑
ti ln ti−ti on XKL = Rd≥0), and the Itakura-Saito divergence DIS(p, q) =∑ pi

qi
− ln pi

qi
−1 (with φIS(t) = −

∑
ln ti on XIS = Rd≥0). We point out that, in general, Bregman divergences

are asymmetric and do not satisfy the triangle inequality. Furthermore, Dφ may possess singularities, i.e.,
there may exist points p, q ∈ X such that Dφ(p, q) =∞.

Clustering with Bregman divergences is a problem that arises in many different disciplines of computer
science, such as machine learning, data compression, data mining, speech processing, image analysis, or
pattern recognition. In fact, our work started with an industrial project on lossless compression of Java
and C++ executable code on smartcards. This project included the design of a number of codebooks for
a given instruction set in such a way that for an arbitrary executable source code file at least one these
codebooks provides good compression. For any possible source code file, its optimal codebook is uniquely
determined by the probability distribution given by the relative frequencies of the instructions from the
instruction set. However, due to the strict space and memory limitations of a smartcard, only a small
number of, say, k prototypical codebooks can actually be realized on a smartcard chip. These prototypical
codebooks can be learned from a training set of n source code samples as follows. First, compute the optimal
codebook and, hence, the corresponding probability distribution of each source code sample. Then, find the
k prototypical codebooks that minimize the loss of compression when using the best fitting prototype instead
of the optimal codebook. It is known from coding theory that this loss of compression is well approximated
by the Kullback-Leibler divergence between the original and the prototypical probability distribution [13].
Hence, learning these prototypes immediately leads to a k-median clustering problem involving the Kullback-
Leibler divergence.

1.3 Related work

It is known that the Euclidean k-center (k-diameter, k-means) problem can be solved in polynomial time if
the dimension d and the number of clusters k are both constant [24]. Hence, there are usually two branches
of hardness results that can be studied: First, the case when the number of clusters k is part of the input.
In this case, the dimension d of the Euclidean space Rd may be fixed. Or, second, the case when k is a
constant that is fixed for all input instances. In this case, the dimension d is part of the input and potentially
unbounded. Hardness and and non-approximability results for these two settings are summarized in Table 1
on page 2.

In this paper, we concentrate on the case when k is part of the input. In this case, hardness and
non-approximability results for the Euclidean k-clustering problems have been known for some time. In
particular, Feder and Greene [16] gave a gap-introducing reduction from the degree-bounded planar vertex
cover problem to show the non-approximability of the Euclidean k-center and the Euclidean k-diameter
problem. Stated in detail, they show that the Euclidean k-center problem (and the Euclidean k-diameter
problem) in Rd with d ≥ 2 can not be approximated within factor α < 1.82 (and α < 1.96, respectively) in
time polynomial in n and k, unless P = NP. To the best of our knowledge, these are still the best bounds on
the non-approximability of the Euclidean k-center and the Euclidean k-diameter problem that are currently
known. Also, note that there exist approximation algorithms with an approximation guarantee of α = 2
and a running time polynomial in n and k for both the Euclidean k-center problem and the Euclidean k-
diameter problem [21, 22, 23, 16]. Furthermore, it is an immediate consequence of [16] that the k-center and
k-diameter problem with respect to the squared Euclidean distance can not be approximated within factor
α < 1.822 ≈ 3.32 and factor α < 1.962 ≈ 3.87, respectively.

If k is part of the input, the Euclidean k-means problem (i.e., the k-median problem with respect to
the squared Euclidean distance) in Rd with d ≥ 2 is known to be NP-hard [31, 43]. Although no non-
approximability result is known, the best poly(n, k)-time approximation algorithm currently known for the
Euclidean k-means problem has an approximation guarantee of merely 9 + ε [27]. It is an open question
whether a better approximation can be achieved in time polynomial in n and k.

Recently, Chaudhuri and McGregor gave a gap-preserving reduction from the Euclidean k-center problem
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to the Kullback-Leibler k-center problem [11]. Using this reduction and [16], they are able to show the non-
approximability of the Kullback-Leibler k-center problem. The same reduction can be used to prove the
non-approximability of the Kullback-Leibler k-diameter problem, although the authors did not consider this
problem explicitly.

However, prior to our work, the special cases of the squared Euclidean distance and the Kullback-Leibler
divergence were the only hardness results known for Bregman k-clustering problems.

A technique that has been used recently to obtain approximation algorithms for arbitrary Bregman
divergences and that will also play an important role in our contribution is the technique of Mahalanobis-
similarity [2, 1]. Generally speaking, the main observation of Mahalanobis-similarity is that all Bregman
divergences behave locally just like a Mahalanobis divergence, up to some small multiplicative error. Here,
the Mahalanobis distances are exactly the subclass of the Bregman divergences that are the square of a
metric [37]. Mahalanobis-similarity has also been used implicitly in a number of different publications
(e.g., [41, 8, 33]).

1.4 Our contribution

In all the recent work on Bregman clustering, the computational hardness of the Bregman k-clustering prob-
lems as given in Section 1.1 has always been assumed. However, beside the special case of the squared
Euclidean distance and the recent result of Chaudhuri and McGregor considering the Kullback-Leibler di-
vergence [11], no proof of hardness considering an arbitrary Bregman divergence has been known. We resolve
this open problem in the case that the number of clusters k is part of the input. We prove that finding an
optimal solution of the Bregman k-center problem, the Bregman k-median problem, and the Bregman k-
diameter problem is NP-hard. Furthermore, we show that it is even NP-hard to approximate the Bregman
k-center problem within a factor of 3.32, and the Bregman k-diameter problem within a factor of 3.87.

To achieve our result, we have to make two mild assumptions on Bregman divergence Dφ. First, we call
a Bregman divergence Dφ smooth if its generating function φ is twice differentiable on ri(X) with continuous
second-order partial derivatives. This assumption is not very strong since essentially all Bregman divergences
that are used in practice are smooth. Second, we call a Bregman divergence Dφ trivial if its domain X ⊆ Rd
is completely contained in a 1-dimensional affine subspace of Rd (i.e, X is contained in a straight line).
Otherwise, we call Dφ non-trivial. In the trivial case, there exists a simple poly(n, d, k)-time algorithm
that solves k-clustering problems optimally (see Section 4 for a discussion of this algorithm). Hence, the
restriction to non-trivial Bregman divergences is a necessary assumption to show any hardness result.

Using the technique of Mahalanobis-similarity, we are able to generalize the approach of Chaudhuri and
McGregor to all smooth and non-trivial Bregman divergences. Stated in detail, we prove the following
theorems.

Theorem 1. Let Dφ be a smooth, non-trivial Bregman divergence on domain X ⊆ Rd and let α < 3.32.
There exists no α-approximation algorithm for the k-center problem with respect to Dφ with a running time
polynomial in n and k, unless P = NP.

Theorem 2. Let Dφ be a smooth, non-trivial Bregman divergence on domain X ⊆ Rd and let α < 3.87.
There exists no α-approximation algorithm for the k-diameter problem with respect to Dφ with a running
time polynomial in n and k, unless P = NP.

In the case of the k-median objective function, it turns out that we need a stronger reduction than the
one suggested by Chaudhuri and McGregor. Instead, we use the Mahalanobis similarity to adopt a reduction
that has been given recently by Vattani [43] to show the NP-hardness of the Euclidean k-means problem.
To this end, we have to strengthen our assumption of smoothness to what we call a computationally smooth
Bregman divergence. We will state this notion in detail later in Section 3.3. Again, to the best of our
knowledge, all Bregman divergences that are used in practice (such as the Kullback-Leibler divergence and
the Itakura-Saito divergence) are computationally smooth.
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Theorem 3. Let Dφ be a computationally smooth, non-trivial Bregman divergence on domain X ⊆ Rd.
There exists no algorithm solving the k-median problem with respect to Dφ optimally with a running time
polynomial in n and k, unless P = NP.

1.5 Organization

The rest of this paper is organized as follows. As a first step towards our results, in Section 2, we prove hard-
ness and non-approximability results for Mahalanobis k-clustering problems. These results are an immediate
consequence of the close relationship between Mahalanobis distances and the squared Euclidean distance.
After that, in Section 3, we give a generalization of the reduction of Chaudhuri and McGregor [11] to prove
Theorem 1 and Theorem 2. In addition to that, we combine the technique of Mahalanobis-similarity with a
reduction given by Vattani [43] to show Theorem 3. In Section 4, we briefly discuss the simple polynomial
time algorithm for trivial Bregman k-clustering problems. We end this paper with a discussion of open
problems in Section 5.

2 Hardness of Mahalanobis k-clustering problems

Among the Bregman divergences, one particular subclass of dissimilarity measures plays an important role
in our approach. For a symmetric positive definite matrix A ∈ Rd×d, the Mahalanobis distance with respect
to A is defined as

DA(p, q) = (p− q)>A (p− q) (5)

for all p, q ∈ Rd. Mahalanobis distances were introduced in 1936 by P. C. Mahalanobis based on the inverse
of the covariance matrix of two random variables [32]. It is easy to see that all Mahalanobis distances are
Bregman divergences by means of the generating function φA(t) = t>A t on Rd. In many ways, the class
of Mahalanobis distances is a generalization of the squared Euclidean distance. This close relationship is
formalized in the following lemma.

Lemma 4. Let DA be a Mahalanobis distance with respect to a symmetric positive definite matrix A ∈ Rd×d.
There exists a non-singular matrix U ∈ Rd×d such that for all p, q ∈ Rd we have

DA(p, q) = ‖Up− Uq‖22. (6)

Proof. Since A is a symmetric positive definite matrix, it is a well-known fact from linear algebra that there
exists a non-singular matrix U with A = U>U . I.e., such a matrix U is given by the Cholesky decomposition
of matrix A [42]. Hence, we obtain

DA(p, q) = (p− q)>U>U (p− q) = (Up− Uq)>(Up− Uq) = ‖Up− Uq‖22 . (7)

That is, a Mahalanobis distance is merely a squared Euclidean distance in a linearly transformed point
space, where the linear transformation is given by the non-singular matrix U from Lemma 4.

2.1 NP-hardness and non-approximability

Using Lemma 4, it is easy to show how the Euclidean k-center (k-diameter, k-means) problem can be reduced
to a given Mahalanobis k-center (k-diameter, k-median) problem. We immediately obtain the following
hardness results from the known results with respect to the squared Euclidean distance [16, 31, 43].

Corollary 5. Let DA be an arbitrary Mahalanobis distance on Rd with d ≥ 2, and let α < 3.32. Then
there exists no α-approximation algorithm for the k-center problem with respect to DA with a running time
polynomial in n and k, unless P = NP.
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Corollary 6. Let DA be an arbitrary Mahalanobis distance on Rd with d ≥ 2, and let α < 3.87. Then
there exists no α-approximation algorithm for the k-diameter problem with respect to DA with a running
time polynomial in n and k, unless P = NP.

Corollary 7. Let DA be an arbitrary Mahalanobis distance on Rd with d ≥ 2. Then there is no algorithm
solving the k-median problem with respect to DA optimally with a running time polynomial in n and k, unless
P = NP.

2.2 Mahalanobis k-clustering in bounded regions of Rd

In addition to the results given above, we also find that the computational hardness of the Mahalanobis
k-clustering problems remains unaltered if we restrict the problem to input points from some bounded (full-
dimensional) region of Rd. Let Bdr (z) ⊆ Rd denote the Euclidean ball of radius r > 0 centered at point
z ∈ Rd, that is,

Bdr (z) = {x ∈ Rd ‖x− z‖2 ≤ r}. (8)

In the lemma below, we show the computational hardness of Mahalanobis k-clustering problems restricted
to input points from the unit ball Bd1 (0). We will make use of Lemma 8 in the reduction in Section 3. Please
note that the same result as given below applies for restrictions to any (full-dimensional) region of Rd.
Lemma 8. Let DA be an arbitrary Mahalanobis distance on Rd. If the Mahalanobis k-center (k-diameter,
k-median) problem with respect to DA and input domain Bd1 (0) can be approximated within factor α in time
polynomial in n and k, then the Mahalanobis k-center (k-diameter, k-median) problem with respect to DA

and input domain Rd can also be approximated within factor α in time in polynomial n and k.

Proof. Assume that there exists an algorithm that computes an α-approximate solution to the Mahalanobis k-
center (k-diameter, k-median) problem for arbitrary input sets from Bd1 (0). Then we obtain an approximate
solution to the Mahalanobis k-center (k-diameter, k-median) problem with respect to an arbitrary input
instance P ⊆ R2 the following way. Let ∆ = max{‖p‖2 p ∈ P}. Compute the scaled input set ∆−1P =
{∆−1p p ∈ P} and solve the k-center (k-diameter, k-median) problem for input instance ∆−1P .

Obviously, ∆−1P ⊆ Bd1 (0). Note that by scaling the instance by factor ∆−1 the description size of the
instance is increased by at most a constant. Also, we find that scaling does only change the numerical values
of a clustering solution and not the clustering problem itself. That is, for all C ⊆ P and all partitions P of
P we have

radDA(P,C) = ∆2 max
p∈P

min
c∈C

(∆−1p−∆−1c)>A (∆−1p−∆−1c)

= ∆2 radDA(∆−1P,∆−1C) , (9)

diamDA(P) = ∆2 max
i=1,...,k

max
p,q∈Pi

(∆−1p−∆−1c)>A (∆−1p−∆−1c)

= ∆2 diamDA(∆−1P) , (10)

costDA(P,C) = ∆2
∑
p∈P

min
c∈C

(∆−1p−∆−1c)>A (∆−1p−∆−1c)

= ∆2 costDA(∆−1P,∆−1C) , (11)

where ∆−1P = {∆−1S S ∈ P}. Hence, the lemma follows.

3 Hardness of Bregman k-clustering problems

In this section, we prove the hardness and the non-approximability of Bregman k-clustering problems. We
achieve our results by giving a polynomial time reduction from a Mahalanobis problem to the Bregman
problem. This reduction is constructed in such a way that the Bregman k-center radius (k-diameter, k-
median cost) of the reduced instance equals the Mahalanobis k-center radius (k-diameter, k-median cost) of
the original instance within small multiplicative error.
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3.1 Local Mahalanobis-similarity

We start by showing that the domain X of any smooth Bregman divergence Dφ contains a small region B such
that we find that Dφ on B behaves just like a certain Mahalanobis distance, up to a small multiplicative
error. To this end, we make the following elementary yet crucial observation: Since Dφ(p, q) equals the
remainder term of the first-order Taylor expansion of φ(p) at point q, the Bregman divergence Dφ can be
expressed in terms of the Hessian matrix of φ.

Lemma 9. Let Dφ be a smooth Bregman divergence on domain X. Then for all p, q ∈ ri(X) there exists a
point t on the line segment through p and q such that

Dφ(p, q) =
1
2

(p− q)>∇2φ(t) (p− q) . (12)

Here ∇2φ(t) denotes the Hessian matrix of φ at point t.

Proof. Since Dφ is smooth, the second-order partial derivatives of φ exist. Hence, consider the first-order
Taylor expansion of φ(p) at point q, that is,

φ(p) = φ(q) +∇φ(q)(p− q) +R1(p) , (13)

where R1(p) denotes the remainder term of the first-order Taylor expansion. Using the Lagrange form of
the remainder term we obtain that there exists a point t on the line segment through p and q such that

Dφ(p, q) = R1(p) =
1
2

(p− q)>∇2φ(t) (p− q) . (14)

Lemma 9 enables us to show the local similarity of any Bregman divergence towards a Mahalanobis
distance. Intuitively, this similarity follows from the fact that the right-hand side of (12) resembles the
definition of a Mahalanobis distance. In fact, if the Hessian ∇2φ(t) is constant for all t ∈ ri(X), we obtain
that Dφ is indeed a Mahalanobis distance. Also note that since the second partial derivatives of φ are
continuous, we know that all Hessians ∇2φ(t) are symmetric.

In the sequel, let z ∈ ri(X) and A = ∇2φ(z) be such that A is positive definite, i.e., for all x ∈ Rd \ {0}
we have x>Ax > 0. Such points z ∈ ri(X) exist in abundance for the following reason. Since the generating
function φ is strictly convex, we know that its Hessian matrix ∇2φ(t) is positive definite at almost all points
t from ri(X), with the exception of a merely nowhere dense subset Y ( ri(X) (if such a subset Y exists at
all). Hence, any point z ∈ ri(X) \ Y will do.

Using these definitions and the smoothness of Dφ, we are able to show that there exists a small region
Bdδ (z) around center point z such that for all t ∈ Bdδ (z) ∩ ri(X) the quadratic form x>∇2φ(t)x is well
approximated by x>Ax.

Lemma 10. Let z,A be as given above. For all ε > 0 there exists a δ > 0 and a δ-ball Bdδ (z) centered at z
such that for all x ∈ Rd and for all t ∈ Bdδ (z) ∩ ri(X) we have

(1− ε)x>Ax ≤ x>∇2φ(t)x ≤ (1 + ε)x>Ax . (15)

Proof. Let x = (x1, x2, . . . , xd)>. Note that for x = 0 the claim is trivially true. Hence, in the following, we
may assume x ∈ Rd \ {0}.

Recall that A is a symmetric positive definite matrix. Hence, all eigenvalues of A are positive reals. Let
λmin > 0 denote the smallest eigenvalues of A. It is known from linear algebra that for all x ∈ Rd \ {0} the
Rayleigh quotient of A and x is bounded from below by the smallest eigenvalue of A [42]. That is, we find

x>Ax

‖x‖22
≥ λmin . (16)
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In the sequel, let ν(x) = 1/‖x‖22. Note that ν(x) is continuous in all points x ∈ Rd \ {0}. Furthermore,
for t ∈ ri(X) let φij(t) = ∂2

∂ti∂tj
φ(t) denote the second partial derivatives of φ. Since we assume Bregman

divergence Dφ to be smooth, we know that for all i, j the functions φij(t) are continuous on ri(X). Using the
notation given above, it is easy to see that

h(t, x) =
x>∇2φ(t)x
λmin‖x‖22

=
1

λmin
ν(x)

∑
i,j

xixjφij(t) (17)

is continuous for all (t, x) ∈ ri(X)×
(
Rd \ {0}

)
. Hence, for all ε > 0 there exists a δ > 0 and a Euclidean ball

Bdδ (z) of radius δ centered at z such that

1
λmin‖x‖22

· |x>Ax− x>∇2φ(t)x| = |h(z, x)− h(t, x)| ≤ ε (18)

for all x ∈ Rd \ {0} and for all t ∈ Bdδ (z) ∩ ri(X). Using Inequality (16), we obtain

|x>Ax− x>∇2φ(t)x| ≤ ελmin‖x‖22 ≤ ε x>Ax . (19)

Thus, the lemma follows.

Using Lemma 9 and Lemma 10, we conclude that for all points from Bdδ (z) ∩ ri(X), Bregman divergence
Dφ is a (1± ε)-approximation of Mahalanobis distance D 1

2A
.

Lemma 11. For ε, δ, z, A as given in Lemma 10 and for all p, q ∈ Bdδ (z) ∩ ri(X) we have

(1− ε) D 1
2A

(p, q) ≤ Dφ(p, q) ≤ (1 + ε) D 1
2A

(p, q) . (20)

Proof. Let p, q ∈ Bdδ (z) ∩ ri(X). From Lemma 9 we know that there is a ξ ∈ Bdδ (z) ∩ ri(X) such that
Dφ(p, q) = 1

2 (p− q)>∇2φ(ξ) (p− q). Hence, using Lemma 10 with x = p− q, we obtain

Dφ(p, q) =
1
2

(p− q)>∇2φ(ξ) (p− q) ≤ 1 + ε

2
(p− q)>A (p− q) = (1 + ε) D 1

2A
(p, q) (21)

and

Dφ(p, q) =
1
2

(p− q)>∇2φ(ξ) (p− q) ≥ 1− ε
2

(p− q)>A (p− q) = (1− ε) D 1
2A

(p, q) . (22)

Lemma 11 can be used to relate the k-center radius (k-diameter, k-median cost) in terms of Bregman di-
vergence Dφ to the k-center radius (k-diameter, k-median cost) of the same instance in terms of Mahalanobis
distance D 1

2A
. We obtain the following corollary.

Corollary 12. Let ε, δ, z, A be as given in Lemma 10. For all P,C ⊆ Bdδ (z)∩ ri(X) and for all partitions P
of P we have

(1− ε) radD 1
2A

(P,C) ≤ radDφ(P,C) ≤ (1 + ε) radD 1
2A

(P,C) , (23)

(1− ε) diamD 1
2A

(P) ≤ diamDφ(P) ≤ (1 + ε) diamD 1
2A

(P) , (24)

(1− ε) costD 1
2A

(P,C) ≤ cost Dφ(P,C) ≤ (1 + ε) costD 1
2A

(P,C) . (25)
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Figure 2: Sketch of mapping g.

3.2 Construction of a reduction function

In the following, we give the construction of a polynomial time computable reduction from a certain 2-
dimensional Mahalanobis k-center (k-diameter, k-median) problem to the Bregman k-center (k-diameter,
k-median) problem with respect to Dφ. This reduction is achieved by embedding a Mahalanobis k-clustering
input instance P ⊆ R2 into a small region B ⊆ ri(X), where the local Mahalanobis-similarity results from
Section 3.1 apply. This embedding is constructed in such a way that the Bregman k-center radius (k-diameter,
k-median cost) of the embedded instance corresponds to the Mahalanobis k-center radius (k-diameter, k-
median cost) of the original instance P within a multiplicative error of 1± ε.

To this end, recall that we assume Bregman divergence Dφ to be non-trivial, i.e., its domain X ⊆ Rd
is not contained in a straight line. Thus, there exists a small 2-dimensional disc in Rd that is completely
contained in ri(X). That is, there exist a 2-dimensional affine subspace F ⊆ Rd, a constant β > 0, and
a center point z ∈ ri(X) ∩ F such that Bdβ(z) ∩ F ⊆ ri(X). Let A = ∇2φ(z). As has been discussed in
Section 3.1, without loss of generality, we may assume that z is chosen in such a way that A is symmetric
positive definite. Hence, for all ε > 0 there exists a δ > 0 such that the results from Section 3.1 apply for
all points in Bdδ (z) ∩ ri(X). Also note that once Dφ and ε are fixed, δ is a fixed constant. Furthermore,
let G ∈ Rd×2 be a matrix whose column vectors form an orthonormal basis of the 2-dimensional subspace
F − z = {x− z x ∈ F}.

Let γ = min{δ, β} > 0 be a constant that depends only on Dφ and ε. Obviously, we have Bdγ(z) ∩ F ⊆
Bdδ (z) ∩ ri(X). We can define a mapping g between the 2-dimensional unit disc B2

1(0) and Bdγ(z) ∩ F as
follows. Let g : R2 → Rd be given by

g(x) = γGx+ z (26)

for all x ∈ R2. See Figure 2 for an illustration of this mapping. Also note that the inverse of g is given by
the mapping g−1(x) = 1

γG
>(x− z). Since G is a basis of F − z, we have γGx ∈ F − z for all x ∈ R2 and all

γ ∈ R. Hence, g(x) = γGx+ z ∈ F . Using the fact that the orthogonal mapping G is length-preserving, for
all x ∈ B2

1(0) we find

‖g(x)− z‖2 = ‖γGx‖2 = γ‖x‖2 ≤ γ (27)

and, thus, g(x) ∈ Bdγ(z). Therefore, B2
1(0) is indeed mapped into Bdγ(z) ∩ F .

In the sequel, let

A′ =
γ2

2
G>AG ∈ R2×2. (28)

10



First, we argue that A′ is indeed a symmetric positive definite matrix. Since A is symmetric positive definite
we know that x>Ax > 0 for all x ∈ Rd \ {0}. Let y ∈ Rd′ \ {0}. Since y 6= 0 and G is non-singular, we have
that Gy 6= 0. Hence,

y>A′ y =
γ2

2
(Gy)>A (Gy) > 0 (29)

and A′ is positive definite. Furthermore, since

A′> = (
γ2

2
G>AG)> =

γ2

2
G>A>G (30)

we find that if A is symmetric, then so is A′. Hence, the Mahalanobis distance DA′ on domain R2 is well
defined.

It is easy to show that using the mapping g, the Bregman divergence Dφ on Bdγ(z)∩F approximates the
2-dimensional Mahalanobis distance DA′ on the unit disc B2

1(0).

Lemma 13. For all p, q ∈ B2
1(0) we have

(1− ε) DA′(p, q) ≤ Dφ

(
g(p), g(q)

)
≤ (1 + ε) DA′(p, q) (31)

Proof. Let p, q ∈ B2
1(0) be arbitrary. We obtain

DA′(p, q) =
γ2

2
(p− q)>G>AG (p− q) (32)

=
1
2

(γGp− γGq)>A (γGp− γGq) (33)

=
1
2
(
g(p)− g(q)

)>
A (g(p)− g(q)) (34)

= D 1
2A

(
g(p), g(q)

)
(35)

Using Lemma 11, we have

(1− ε) D 1
2A

(
g(p), g(q)

)
≤ Dφ

(
g(p), g(q)

)
≤ (1 + ε) D 1

2A

(
g(p), g(q)

)
(36)

and the lemma follows.

Corollary 14. Let P,C ⊆ B2
1(0) and let P be a partition of P . Furthermore, let g(P ) = {g(p) p ∈ P} and

g(P) = {g(S) S ∈ P}. Then we have

(1− ε) radDA′ (P,C) ≤ radDφ

(
g(P ), g(C)

)
≤ (1 + ε) radDA′ (P,C) , (37)

(1− ε) diamDA′ (P) ≤ diamDφ

(
g(P)

)
≤ (1 + ε) diamDA′ (P) , (38)

(1− ε) costDA′ (P,C) ≤ cost Dφ

(
g(P ), g(C)

)
≤ (1 + ε) costDA′ (P,C) . (39)

Using Corollary 14, an α-approximation algorithm for a Bregman k-clustering problem can be used to
approximate a solution to a Mahalanobis k-clustering problem with respect to A′. We obtain the following
lemma.

Lemma 15. Let Dφ be a smooth and non-trivial Bregman divergence, let ε > 0 be arbitrary, and let A′ be as
given above. If the Bregman k-center (k-diameter, k-median) problem with respect to Dφ on domain X can
be approximated within factor α in time polynomial in n and k, then the Mahalanobis k-center (k-diameter,
k-median) problem with respect to DA′ on R2 can be approximated within factor (1 + ε)α in time polynomial
in n and k.
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Proof of Lemma 15. Assume that there exists an algorithm that computes an α-approximate solution to the
Bregman k-center (k-diameter, k-median) problem with respect to Bregman divergence Dφ in polynomial
time. From Lemma 8, we know that it is sufficient to consider input instances of the Mahalanobis k-clustering
problem from the unit disc B2

1(0). We obtain an approximate solution to the k-center (k-diameter, k-median)
problem with respect to DA′ and arbitrary input instance P ⊆ B2

1(0) the following way. Apply mapping g
to point set P to obtain point set g(P ) ⊆ ri(X). This step can be done in time O(dn). Then, approximate
the Bregman k-clustering problem on input instance g(P ) to obtain an α-approximate clustering in time
poly(n, k). In case of center-based clustering (k-center, k-median), transform the approximate center set
C ⊆ ri(X) into g−1(C) ⊆ B2

1(0) using the inverse mapping of g. This step takes time O(dk).
According to Corollary 14, the clustering induced on the original input instance P by this clustering

algorithm forms a (1 + ε)α-approximate solution to the Mahalanobis k-clustering problem with respect to
DA′ . Hence, such an approximation is obtained in time polynomial in n and k.

3.3 Proof of NP-hardness and non-approximability

The non-approximability of the Bregman k-center and k-diameter problem (Theorems 1 and 2) is an im-
mediate consequence of Lemma 15. This is due to the fact that for these objective functions, Corollaries 5
and 6, respectively, provide a constant non-approximability gap α for the Mahalanobis k-center (k-diameter)
problem. Hence, an arbitrarily small, constant distortion of the k-center radius (k-diameter) as introduced
by mapping g is negligible.

However, in case of a Bregman k-median problem, no such non-approximability gap is known. Thus, we
have to show the hardness by other means. To this end, we make use of a recent reduction from the well
known X3C decision problem to the Euclidean k-means problem [43]. Here, the X3C problem is defined as
follows. Given a set U of size |U | = 3n and a family S = {Si}i=1,...,l of subsets Si ⊆ U of size |Si| = 3.
Decide whether there is an index set I ⊆ {1, . . . , l} such that {Si}i∈I is an exact covering of U , that is,
U =

⋃
i∈I Si and |I| = n. It is known that X3C is NP-complete [28, 20]. The following lemma is an

immediate consequence of the construction of a reduction function as given by Vattani [43].

Lemma 16. Let (U,S) be an instance of the X3C problem with |U | = 3n and |S| = l. Then there exists
a point set P ⊆ R2 of size |P | = poly(n, l), a cluster size k = Θ(|P |), and parameters L = poly(n, l) and
α = 1/ poly(n, l) such that

1. If (U,S) ∈ X3C then optcostk,D
`22

(P ) ≤ L.

2. If (U,S) 6∈ X3C then optcostk,D
`22

(P ) ≥ L+ α.

Furthermore, P , k, L, and α are computable in time polynomial in n and l.

Proof. Lemma 16 is an immediate consequence of the construction of the reduction instance as given by
Vattani [43]. The reader is directed to Vattani’s paper for any details on the construction.

Lemma 11 of [43] shows that instance P (named Gl,n ∪X in [43]) has a k-means clustering of cost less
or equal L = poly(n, l) if, and only if, the instance of the X3C problem is a yes-instance. Hence, part (1.)
of Lemma 16 follows immediately. It remains to prove the second statement of the lemma.

To this end, note that Lemma 10 of [43] states that any optimal k-means clustering of P has cost exactly
L + (n − t)α for some integer t ≤ n and an α = 1/ poly(n, l). That is, in case of a no-instance of the X3C
problem, we obtain n− t ≥ 1 and we have optcostk,D

`22

(P ) = L+ (n− t)α ≥ L+ α.

Corollary 17. Lemma 16 also holds with respect to any Mahalanobis distance DA.

Note that the gap parameter α in Lemma 16 is non-constant yet computable in polynomial time. Our
goal is to give a reduction function that allows to embed the instance P into a small region B ⊆ ri(X) such
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that the cost of the optimal Bregman k-median solution of the embedded instance still decides the X3C
problem, that is,

(1 + ε)L < (1− ε)(L+ α) (40)

for a sufficiently small ε. However, since α is not a constant, the mapping g from Section 3.2 with respect to
a globally constant region Bdδ (z) ∩ ri(X) will not suffice. Instead, for each instance of the X3C problem, we
have to find a fitting δ in polynomial time. Then, a reduction from the X3C problem to a Bregman k-median
problem can be obtained as follows. Given any X3C instance, construct point set P ⊆ R2 as well as k, L,
and α as given in [43]. Let ε > 0 be such that (1 + ε)L < (1− ε)(L+ α) or, equivalently,

ε <
α

2L+ α
= 1/ poly(n, l). (41)

Compute parameter δ > 0 such that the results from Section 3.1 apply with respect to the computed ε.
Using this δ, we obtain mapping g as given in Section 3.2. The embedded instance is given by g(P ). By
choice of parameter ε we find that (U,S) ∈ X3C if, and only if, optcostk,Dφ

(
g(P )

)
≤ (1 + ε)L. Hence, if there

exists a polynomial time algorithm solving the Bregman k-median problem optimally, then the X3C problem
can be decided in polynomial time.

However, we have to assume that generating function φ allows us to compute a fitting δ efficiently. To
this end, we call a smooth Bregman divergence computationally smooth if it satisfies the following condition:
There exists an ε0 such that for any 0 < ε ≤ ε0, a parameter δ as given in Lemma 10 can be computed in
time polynomial in 1/ε. Since in the case at hand 1/ε = poly(n, l), Theorem 3 follows for all computationally
smooth Bregman divergences.

3.4 NP-hardness of concrete Bregman k-median problems

To the best of our knowledge, all Bregman divergences that are used in practice are computationally smooth.
An overview of the trade-off between ε and δ for a number of computationally smooth Bregman divergences
can be found in Table 2.

As an example, in the following we give explicit proofs of the hardness of two of the most practically
relevant Bregman divergences, namely the Kullback-Leibler divergence and the Itakura-Saito divergence.

3.4.1 Kullback-Leibler divergence

The (generalized) Kullback-Leibler divergence on domain XKL = Rd≥0 is defined as

DKL(p, q) =
d∑
i=1

(
pi ln

pi
qi
− pi + qi

)
(42)

for all p, q ⊆ Rd≥0. From Lemma 3.10 of [2] we know that when restricted to domain [λ, υ]d, the Kullback-
Leibler divergence is similar to a certain Mahalanobis distance within a multiplicative error of λ

υ . The
following corollary is an immediate consequence of this result.

Corollary 18. Let υ > λ > 0. Then for all P ⊆ [λ, υ]d we have

1
2υ

optcostk,D
`22

(P ) ≤ optcostk,DKL
(P ) ≤ 1

2λ
optcostk,D

`22
(P ). (43)

Lemma 19. Let (U,S) be an instance of the X3C problem with |U | = 3n and |S| = l. Then there exist a
point set P ′ ⊆ R2

≥0 of size |P ′| = poly(n, l), a cluster size k = Θ(|P ′|) and a constant L′ = poly(n, l) such
that

(U,S) ∈ X3C ⇐⇒ optcostk,DKL
(P ′) ≤ L′. (44)

Furthermore, P ′, k, and L′ are computable in time polynomial in n and l.
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Dφ(p, q) φ(t) z ∇2φ(z) Bdδ (z) ⊆ X ⊆ Rd

squared Euclidean distance
‖p− q‖22 ‖t‖22 any 2Id any

Mahalanobis distance
(p− q)>A (p− q) t>A t any 2A any

Kullback-Leibler divergenceP
pi ln( pi

qi
)− pi + qi

P
ti ln(ti)− ti (1, ..., 1)> Id δ ≤ ε

1+ε

Itakura-Saito divergenceP pi
qi
− ln( pi

qi
)− 1 −

P
ln(ti) (1, ..., 1)> Id δ ≤

√
1+ε− 1√

1+ε

harmonic divergence (a > 0)P 1
pai
− a+1

qai
+ api
qa+1
i

P 1
tai

(1, ..., 1)> (a2+a)Id δ ≤ 1− a+2
q

1
1+ε

norm-like divergence (a > 1)P
pai + (a− 1)qai − apiq

a−1
i

P
tai (1, ..., 1)> (a2−a)Id δ ≤ a+2√1 + ε−1

exponential divergenceP
exp(pi)− (pi − qi + 1) exp(qi)

P
exp(ti) (0, ..., 0)> Id δ ≤ ln(1 + ε)

reciprocal exponential divergenceP
exp(−pi)− (pi − qi + 1) exp(−qi)

P
exp(−ti) (0, ..., 0)> Id δ ≤ ln(1 + ε)

logistic lossP
pi ln

pi
qi

+ (1−pi) ln 1−pi
1−qi

P
ti ln ti+(1−ti) ln(1−ti) ( 1

2
, ..., 1

2
)> 4Id δ ≤ 1

2

q
ε

1+ε

Hellinger-like divergenceP 1−piqiq
1−q2i

−
q

1− p2i −
P q

1− t2i (0, ..., 0)> Id δ ≤
r

1− 1

(1+ε)
2
3

Table 2: Some computationally smooth Bregman divergences, with ε, δ, z as given in Lemma 10.

Proof. Let P , k, L, and α be given as in Lemma 16. Without loss of generality, we may assume P ⊆ B2
1(0).

The point set P can be mapped in to a small δ-region B2
δ (z) around center point z = ( 1

2 ,
1
2 )> ∈ R2

≥0,
using mapping g(x) = δx+ z as described in Section 3.2. Note that g(P ) is merely a scaled and translated
version of P , that is,

D`22

(
g(p), g(q)

)
= ‖(δp+ z)− (δq + z)‖2 = δ2‖p− q‖2 = δ2 D`22

(p, q) (45)

for all p, q ∈ P . The intention of this mapping is that any Kullback-Leibler k-median clustering of g(P ) yields
approximately the same cost as the Euclidean k-means clustering of g(P ), with only low (multiplicative)
distortion. However, for each constant δ the distortion of this mapping is merely bounded by a constant.
Since in the case at hand the gap parameter α is not a constant and depends reciprocally polynomially on n
and l, no global constant δ will suffice. Instead, we have to show that for each instance of the X3C problem
a fitting δ can be computed in time polynomial in n and l.

To this end, let δ = α
6L . Hence, δ = 1/ poly(n, l) and g(P ) can be computed in time polynomial in n and

l. Using Corollary 18, for all P ′ ⊆ B2
δ (z) ⊆ [ 12 − δ,

1
2 + δ]2 we have

1
1 + 2δ

optcostk,D
`22

(P ′) ≤ optcostk,DKL
(P ′) ≤ 1

1− 2δ
optcostk,D

`22
(P ′). (46)

Furthermore, note that by definition of δ we have

2δ(2L+ α) < 6δL = α (47)

since L > α. Hence, we find that
2δL < α− 2δ(L+ α) (48)
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which leads to
(1 + 2δ)L = L+ 2δL < L+ α− 2δ(L+ α) = (1− 2δ)(L+ α). (49)

Therefore, if (U,S) ∈ X3C, using Lemma 16 and (46) we find

optcostk,DKL

(
g(P )

)
≤ 1

1− 2δ
optcostk,D

`22

(
g(P )

)
=

δ2

1− 2δ
optcostk,D

`22
(P ) ≤ δ2L

1− 2δ
. (50)

On the other hand, if (U,S) 6∈ X3C, using Lemma 16, (46), and (49) we conclude

optcostk,DKL

(
g(P )

)
≥ 1

1 + 2δ
optcostk,D

`22

(
g(P )

)
=

δ2

1 + 2δ
optcostk,D

`22
(P ) ≥ δ2(L+ α)

1 + 2δ
>

δ2L

1− 2δ
. (51)

Thus, the lemma follows by choice of P ′ = g(P ) and L′ = δ2L
1−2δ = poly(n, l).

Corollary 20. There exists no algorithm solving the Kullback-Leibler k-median problem optimally with a
running time polynomial in n and k, unless P = NP.

3.4.2 Itakura-Saito divergence

The (discrete) Itakura-Saito divergence on domain XIS = Rd≥0 is defined as

DIS(p, q) =
d∑
i=1

(
pi
qi
− ln

pi
qi
− 1
)

(52)

for all p, q ⊆ Rd≥0. From Lemma 3.14 of [2] we know that when restricted to domain [λ, υ]d, the Itakura-Saito

divergence is similar to a certain Mahalanobis distance within a multiplicative error of λ2

υ2 . The following
corollary is an immediate consequence of this result.

Corollary 21. Let υ > λ > 0. Then for all P ⊆ [λ, υ]d we have

1
2υ2

optcostk,D
`22

(P ) ≤ optcostk,DIS
(P ) ≤ 1

2λ2
optcostk,D

`22
(P ). (53)

Lemma 22. Let (U,S) be an instance of the X3C problem with |U | = 3n and |S| = l. Then there exist a
point set P ′ ⊆ R2

≥0 of size |P ′| = poly(n, l), a cluster size k = Θ(|P ′|) and a constant L′ = poly(n, l) such
that

(U,S) ∈ X3C ⇐⇒ optcostk,DIS
(P ′) ≤ L′. (54)

Furthermore, P ′, k, and L′ are computable in time polynomial in n and l.

Proof. Let P , k, L, and α be given as in Lemma 16. Without loss of generality, we may assume P ⊆ B2
1(0).

As in the proof of Lemma 19, the point set P can be mapped in to a small δ-region B2
δ (z) around center

point z = (1, 1)> ∈ R2
≥0 using mapping g(x) = δx+ z, such that for all p, q ∈ P we find

D`22

(
g(p), g(q)

)
= ‖(δp+ z)− (δq + z)‖2 = δ2‖p− q‖2 = δ2 D`22

(p, q). (55)

We show that for each instance of the X3C problem a fitting δ can be computed in time polynomial in n
and l such that any Itakura-Saito k-median clustering of g(P ) yields approximately the same cost as the
Euclidean k-means clustering of g(P ).

To this end, let δ = α
7L . Hence, δ = 1/ poly(n, l) and g(P ) can be computed in time polynomial in n and

l. Using Corollary 21, for all P ′ ⊆ B2
δ (z) ⊆ [1− δ, 1 + δ]2 we have

1
2(1 + δ)2

optcostk,D
`22

(P ′) ≤ optcostk,DIS
(P ′) ≤ 1

2(1− δ)2
optcostk,D

`22
(P ′). (56)
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Furthermore, note that by definition of δ we have

3δL+ 2δ(L+ α) = δ(5L+ 2α) < 7δL = α (57)

since L > α. Hence, we find that
3δL < α− 2δ(L+ α) (58)

which leads to
(1 + 3δ)L = L+ 3δL < L+ α− 2δ(L+ α) = (1− 2δ)(L+ α). (59)

Therefore, using δ < 1 we find

(1 + δ)2L ≤ (1 + 3δ)L < (1− 2δ)(L+ α) ≤ (1− δ)2(L+ α). (60)

Hence, if (U,S) ∈ X3C, using Lemma 16 and (56) we find

optcostk,DIS

(
g(P )

)
≤ 1

2(1− δ)2
optcostk,D

`22

(
g(P )

)
=

δ2

2(1− δ)2
optcostk,D

`22
(P ) ≤ δ2L

2(1− δ)2
. (61)

On the other hand, if (U,S) 6∈ X3C, using Lemma 16, (56), and (60) we conclude

optcostk,DIS

(
g(P )

)
≥ 1

2(1 + δ)2
optcostk,D

`22

(
g(P )

)
=

δ2

2(1 + δ)2
optcostk,D

`22
(P ) ≥ δ2(L+ α)

2(1 + δ)2
>

δ2L

2(1− δ)2
. (62)

Thus, the lemma follows by choice of P ′ = g(P ) and L′ = δ2L
2(1−δ)2 = poly(n, l).

Corollary 23. There exists no algorithm solving the Itakura-Saito k-median problem optimally with a run-
ning time polynomial in n and k, unless P = NP.

4 Polynomial time algorithms for trivial Bregman clustering prob-
lems

The tractability of a number of 1-dimensional Euclidean clustering problems has already been proven by
Brucker in the late 1970s [10]. An adaptation of Brucker’s dynamic programming scheme is also applicable
to any trivial Bregman k-center (k-diameter, k-median) clustering problem. In a nutshell, the algorithm is
based on two observations. First, it can be shown that for any input instance P ⊆ X there exists a partition
of P into its optimal Bregman k-center (k-diameter, k-median) clusters such that any two distinct clusters
are separated by a hyperplane. Such an optimal clustering is called linear separable. Second, note that if
domain X is contained in a straight line, this means that there exists some ordering p1 � p2 � . . . � pn of
P = {p1, p2, . . . , pn} along this straight line.

An optimal solution is found as follows. Let P1 denote the optimal linear separable cluster that contains
p1. A combination of both observations above implies that P1 = {p1, p2, . . . , pi} for some 1 ≤ i ≤ n − k.
Hence, we obtain

optradk,Dφ(P ) = max
(
optrad1,Dφ

(P1), optradk−1,Dφ
(P \ P1)

)
, (63)

optdiam
k,Dφ

(P ) = max
(
optdiam

1,Dφ
(P1), optdiam

k−1,Dφ
(P \ P1)

)
, (64)

optcostk,Dφ
(P ) = optcost1,Dφ

(P1) + optcostk−1,Dφ
(P \ P1) , (65)

where optf1,Dφ(P1) with f ∈ {rad,diam, cost} can be found by enumerating and trying all subsets {p1, p2, . . . , pi}
with 1 ≤ i ≤ n − k, and optfk−1,Dφ

(P \ P1) can be found recursively. Therefore, an implementation of this
approach using dynamic programming computes an optimal solution.

We obtain that any trivial Bregman k-center (k-diameter, k-median) problem can be solved optimally
using at most kn2Tf (n) arithmetic operations, including evaluations of Bregman divergence Dφ. Here, Tf (n)
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is the number of operations necessary to compute the Bregman 1-center radius (1-diameter, 1-median cost)
of a point set {pi, . . . , pj} ⊆ P . That is, we have Trad(n) = O(d) since the optimal 1-center can be found by
computing the intersection of X with the Bregman bisector of pi and pj [37], Tdiam(n) = O(1) for computing
the maximum of Dφ(pi, pj) and Dφ(pj , pi), and Tcost(n) = O(dn) for finding the Bregman 1-median, which
is given by the centroid of {pi, . . . , pj} [7]. Thus, the algorithm runs in time polynomial in n, d, and k.

5 Discussion

In this paper, we have shown the NP-hardness of the Bregman k-center, the Bregman k-median, and the
Bregman k-diameter problem if the number of clusters k is part of the input. Furthermore, we have shown
that it is even NP-hard to approximate the Bregman k-center problem within a factor of 3.32, and the
Bregman k-diameter problem within a factor of 3.87. Additionally, we have shown that the Bregman k-
median problem can not be approximated within factor α ≥ 1 in time polynomial in n and k, unless the
Euclidean k-means problem can be approximated within a factor α + ε in time polynomial in n and k.
Hence, to prove non-approximability results for the Bregman k-median problem in general, it is sufficient to
find non-approximability results for the Euclidean k-means problem. Unfortunately, it is an open question
whether there holds any non-approximability result for the Euclidean k-means problem, or whether a (1+ε)-
approximation can be achieved in time polynomial in n and k.

In principle, an adaptation of our reduction function could be applied to the case when the number of
clusters k is fixed but the dimension d is part of the input. The only modification we would have to make is
to ensure that a d-dimensional unit ball can be embedded in the domain X of a given Bregman divergence.
However, unlike the case we considered, there are no non-approximability results for Euclidean k-clustering
problems if k = Θ(1). In particular, there exist (1 + ε)-approximation algorithms with a running time
polynomial in n and d (yet exponential in k) for both the Euclidean k-center [6, 5] and the Euclidean k-
means problem [18, 29, 17, 12]. There even exists a PTAS for the Bregman k-median problem with constant
k that is applicable to all instances generated by our reduction function [2, 1]. Hence, our approach can not
be used to show the non-approximability of Bregman k-clustering problems if k is a constant, and it remains
an open problem to show any hardness result in this case.

A variation of center based k-clustering problems (i.e., k-center, k-median) is defined as follows: Find a
set of k centers that minimizes the objective function when the centers are restricted to be elements from
the set of input points. We call these variations the discrete k-center problem and the discrete k-median
problem. In case of the Kullback-Leibler divergence, Chaudhuri and McGregor [11] showed that there exists
no constant factor approximation algorithm for the discrete Kullback-Leibler k-center problem and the
discrete Kullback-Leibler k-median problem, unless P = NP. To this end, Chaudhuri and McGregor made
use of the fact that there exist singularities on the domain X of the Kullback-Leibler divergence, that is,
there are points q on the relative boundary of X and {qi}i∈N ⊆ ri(X) with qi → q such that for all p ∈ ri(X)
we have Dφ(p, qi)→∞. Many other Bregman divergences (such as the Itakura-Saito divergence) do exhibit
singularities as well, and it is highly likely that the approach of Chaudhuri and McGregor can be extended
to these Bregman divergences. On the other hand, in the case of the discrete Euclidean k-center and the
discrete Euclidean k-means problem, there exist algorithms with an approximation guarantee of 2 [21, 22, 16]
and 9 + ε [27], respectively. Hence, there exist constant factor approximation algorithms for the case of the
squared Euclidean distance (and, in fact, for the whole family of Mahalanobis distances). Essentially nothing
is known on the (non-)approximability of these discrete k-clustering problems if Bregman divergence Dφ is
not a Mahalanobis distance, but does not exhibit singularities, either. Therefore, it is an open problem to
classify the (non-)approximability of discrete Bregman k-clustering problems in general.
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