
Relationless completeness and separations

Pavel Hrubeš∗ Avi Wigderson∗ Amir Yehudayoff∗

Abstract

This paper extends Valiant’s work on VP and VNP to the settings in which vari-
ables are not multiplicatively commutative and/or associative. Our main result is
a theory of completeness for these algebraic worlds. We define analogs of Valiant’s
classes VP and VNP, as well as of the polynomials permanent and determinant,
in these worlds. We then prove that even in a completely relationless world which
assumes no commutativity nor associativity, permanent remains VNP-complete,
and determinant can polynomially simulate any arithmetic formula, just as in the
standard commutative, associative world of Valiant.

In the absence of associativity, the completeness proof gives rise to the following
combinatorial problem: what is the smallest binary tree which contains as minors
all binary trees with n leaves. We give an explicit construction of such a universal
tree of polynomial size, a result of possibly independent interest.

Given that such non-trivial reductions are possible even without commutativ-
ity and associativity, we turn to lower bounds. In the non-associative, commu-
tative world we prove exponential circuit lower bounds on explicit polynomials,
separating the non-associative commutative analogs of VP and VNP. Obtain-
ing such lower bounds and a separation in the complementary associative, non-
commutative world has been open for about 30 years.

∗School of Mathematics, Institute for Advanced Study, Princeton NJ 08540. Emails:
pahrubes@gmail.com,avi@ias.edu, and amir.yehudayoff@gmail.com.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 40 (2010)

1 Introduction

In his seminar paper [19], Valiant extended complexity theory to the algebraic setting

of computation of multivariate polynomials. As analogs of the fundamental classes of

Boolean functions P and NP, he defined two classes of polynomials, now called VP and

VNP: the first are polynomials (of small degree) computable by small arithmetic circuits,

and the second are polynomials definable as a Boolean sum
∑

ē∈{0,1}p f(x̄, ē), with f(x̄, ē)

in VP. The exponential summation is an arithmetic analogy of disjunction in the non-

deterministic Boolean case. The strength of VNP is witnessed by the fact VNP contains

every explicit polynomial1. Most polynomials one meets in mathematics are explicit in

this sense, and this is also the case of the important permanent polynomial. Valiant

goes on to show that under the natural projection reductions the permanent polynomial

is complete for VNP, and that the determinant polynomially simulates any arithmetic

formula (and thus by Hyafil’s result [12] the determinant quasi-polynomially simulates

VP). He goes on to draw important conclusions from these results, most prominently

exposing the universality of linear algebra for efficient arithmetic computation, and

bringing the natural mathematical question of permanent vs. determinant as capturing

(a version of) the fundamental computational P vs. NP problem.

In the subsequent paper [20], Valiant proceeds to make the case that, given the lack

of progress on proving lower bounds for general Boolean circuits, one may naturally

turn to the strictly simpler problem of proving them for general arithmetic circuits.

Assuming GF (2) as the underlying field, the difference between the two problems is

that Boolean circuits (which compute functions) may use cancellations arising from the

relation x2 = x, while arithmetic circuits (computing polynomials) may not. In a sense,

Valiant proposes removing relations from the mathematical structure underlying the

computation, as an alternative to the more common approach of handicapping circuits’

structure, for example, by limiting their depth.

In this paper, we take Valiant’s proposal of removing relations to its logical conclusion.

In the usual arithmetic setting one assumes that polynomials satisfy standard multi-

plicative relations: that multiplication is commutative and associative. Proving super-

polynomial lower bounds for commutative associative circuits (implying VP 6= VNP)

1A polynomial of low degree is explicit, if we can compute the coefficient of any monomial in
polynomial time

2

seems far from reach despite decades of attempts, and so we might try to prove lower

bounds for circuits which cannot use either (or both) of these multiplicative relations2;

a task which is strictly easier.

This approach gives rise to four natural classes of polynomial algebras. For a field F
and a set of variables X, let us consider free algebras FA,C[X], FA,C̄[X], FĀ,C[X], FĀ,C̄[X],

where the indices indicate whether we assume that the variables X are commutativite

resp. associative. The first is the standard polynomial algebra. In the non-comutative

cases the order of variables in a monomial matters, and in the non-associative cases each

monomial comes with a binary tree which describes its mltiplicative structure.

Like Valiant, we can now look at complexity classes, which may be similarly denoted

VPA,C,VPA,C̄,VPĀ,C,VPĀ,C̄ and VNPA,C,VNPA,C̄,VNPĀ,C,VNPĀ,C̄. The first in each set is

Valiant’s VP and VNP. The classes VPĀ,C,VNPĀ,C, for example, are the non-associative,

commutative versions of Valiant’s classes. It now makes sense to study the power and

weakness of these classes, wonder about completeness, and in particular ask the VP vs.

VNP question in each of its four variants.

1.1 Non-commutative, associative computation

Non-commutative algebras abound in mathematics, with the most common examples be-

ing tha algebra of matrices, group algebras of non-commutative groups, and the quater-

nion algebra. Note that, unlike the algebra FA,C̄[X], these examples are not “free”: for

example, d× d matrices x1, . . . x2d satisfy the identity
∑

σ∈S2d
sgn(σ)

∏2d
i=1 xσ(i) = 0.

Algorithms over (non-commuting) matrices can be carried out by (commutative) op-

erations on their entries, so it may not be clear where non-commutative algorithms

arise naturally. But considering matrices as “atomic”, and thus their multiplication as

non-commutative, can be extremely useful. One classical example is Strassen’s matrix

multiplication algorithm, and its improvements [8,7,. . .], where the recursive step treats

submatrices as atomic. Another example is the sequence of works, culminating in [5],

on approximating permanent via evaluating determinants on random non-commuting

elements (from Clifford algebras).

2However, we assume that addition, as well as multiplication with field elements, is associative and
commutative, and that multiplication distributes over addition.

3

The weakness of non-commutative computation as compared with commutative one is

usually illustrated by the following simple example. The polynomial x2 − y2 can be

commutatively computed as (x+ y)(x− y), using one multiplication. Without commu-

tativity, the term xy − yx does not cancel, and we need two multiplications.

This example is just the tip of an iceberg. Computation over the free non-commutative

algebra FA,C̄[X] was studied in several papers, with Nisan’s seminal paper [14] contain-

ing the most important techniques and results. Defining non-commutative versions of

determinant and permanent DETA,C̄ and PERMA,C̄, Nisan proves an exponential lower

bound for the size of any non-commutative formula for any of these polynomials. More-

over, he proves an exponential separation between the formula and circuit size in this

model (a result which stands in sharp contrast to the commutative case, where formu-

lae can superpolynomially simulate circuits [12, 22]). Nisan’s lower bound techniques

were later strengthened by Chien and Sinclair [4] to prove the same exponential lower

bounds for PERMA,C̄ and DETA,C̄ in concrete non-commutative algebras, including the

ones mentioned above.

The question of lower bounds for non-commutative circuits, however, remains wide

open. We mention two very recent papers on the subject. One is by the present au-

thors [11], where it is shown how exponential lower bounds for general non-commutative

circuits may be obtained from certain super-linear commutative lower bounds. The

other, by Arvind and Srinivasan [1], shows that PERMA,C̄ and DETA,C̄ have the same

non-commutative circuit complexity, up to polynomial factors. This implies that small

non-commutative circuits for the determinant gives small commutative circuits for the

standard permanent. In other words, they prove that DETA,C̄ ∈ VPA,C̄ implies VPA,C̄ =

VNPA,C̄ (and hence VP = VNP).

Our main contribution in this setting is simply establishing the completeness of PERMA,C̄

and DETA,C̄. Like in the commutative case, PERMA,C̄ is complete for VNPA,C̄ and

DETA,C̄ can polynomially simulate non-commutative formulae. This was apparantly

never observed before. We obtain this as a consequence of the more general statement

in the non-commutative and non-associative case. A direct proof in non-commutative

associative setting would, however, be easier and give better parameters.

4

1.2 Non-associative computation

We discuss here both the commutative and non-commutative versions of non-associative

computation.

Non-associative algebras are quite common in mathematics as well. The most notable

ones are Lie algebras, which may be viewed as matrix algebras with the “bracket”

product3. Lie algebras are not commutative either, but do satisfy other nontrivial

relations like xx = 0 and the Jacobi identity (xy)z + (yz)x + (zx)y = 0. There are

some known non-associative algebras which are commutative, e.g. the Jordan algebras,

but they too are not free.

It is evident that in the non-associative setting, when describing a polynomial, every

monomial must come with a specification of the ordering of multiplications of the vari-

ables in it (this can be given by a parenthesis structure, or equivalently a binary tree

whose leaves are the variables).

The composition of operations in computer programs is typically non-associative, which

makes this issue present in wide areas of program schemas, verification and symbolic

computation. One beautiful concrete example of how a non-associative algorithm is use-

ful in solving a basic problem is Valiant’s CFL (Context Free Language) recognizer, see

[18]. For a fixed context free grammar4 G, the recognizer on input x must determine if

x can be generated by the grammar G. A classical cubic time algorithms existed for the

problem, and Valiant gives a sub-cubic algorithm by reducing it to matrix multiplication.

However, the matrix entries are elements of a non-associative monoid defined by Valiant

from the given grammar G and input x. The algorithm solves a general problem: com-

puting the transitive closure of an upper-triangular matrix with non-associative entries,

giving a polynomial in which every monomial is computed in all possible multiplication

orderings (corresponding to all possible derivations of the string x by the grammar G).

The non-associative model, even when commutative, turns out to be simple enough

to allow lower bound proofs. We use standard rank arguments to obtain exponential

lower bounds for an explicit polynomial. We also prove, as in the non-commutative

case, completeness theorems for the determinant DETĀ,C and the permanent PERMĀ,C.

Thus the exponential lower bound above holds also for the permanent, and we get

3For square matrices A, B, this product is defined by [A, B] = AB −BA.
4Without loss of generality, in Chomsky normal form.

5

a separation VPĀ,C 6= VNPĀ,C. We note that this proof is certainly “natural” in the

sense of Razborov and Rudich [16], which may be interpreted as meaning that efficient

non-associative arithmetic circuits cannot compute “pseudo-random” polynomials.

1.3 Completeness in the relationless model

The completeness results in the previous sections are proved in a very weak computa-

tional model, namely, a model where no multiplicative relations hold. We consider such

a weak model merely to view the completeness results in their most general form. Our

proof extends Valiant’s proof to the relationless setting. Indeed, we closely follow the

recent version of this proof by Malod and Portier [13], which we find very amenable to

the extensions we need. The loss of commutativity presents only a few subtleties which

can be handled reasonably simply. The loss of associativity, however, presents a major

hurdle, which is of a purely combinatorial nature.

In the absence of either commutativity or associativity, there are many ways to define

permanent and determinant. In order for the completeness theorems to hold, we must

define permanent and determinant in a careful, perhaps not the most natural, way. We

find it noteworthy that such a definition is possible, and that the nontrivial completeness

proofs can be carried out in such a weak computational model. When defining the

relationless determinant DETĀ,C̄ and permanent PERMĀ,C̄, we need to “commit” to

an ordering of multiplication of monomials, which is capable of emulating arbitrary

orderings. As orderings are specified by trees, this gives rise to a problem about finding

a certain “universal” tree; we explain this problem and our results in the next subsection.

We conclude this one with the consequences of this reduction: PERMĀ,C̄ is complete for

the class VNPĀ,C̄, and every polynomial computed by a relationless formula of size s is

a projection of DETĀ,C̄ of size s + 1. This consequently holds also in the free algebras

FA,C[X],FA,C̄[X], and FĀ,C[X].

1.4 Universal trees

In this paper, binary trees are rooted, uniform and ordered (see Section 2.1).The size

of a binary tree is the number of leaves in it. We now discuss two standard notions of

universality of trees. We say that a binary tree T is

6

• n-subgraph universal, if T contains every binary tree of size at most n as a subtree,

• n-minor universal, if T contains every binary tree of size at most n as a minor.

In both cases, the tree T must be able to accommodate both very balanced and very

unbalanced trees. As it happens, either type of universal tree would suffice for a com-

pleteness reduction, if it has polynomial size.

The question of subgraph universal trees was studied in [6]. They showed that the

smallest n-subgraph universal tree has size nΘ(logn). This is superpolynomial in n and

thus unsuitable for our purposes. Interesting, though not related to our goal, is the

fact that there exist small subgraph universal graphs : in [9], it was shown that when

a graph G is a good enough expander of linear size, it contains all (unordered) binary

trees of size at most n as subgraphs. To the best of our knowledge, the question of minor

universal trees was not studied before. In this paper we construct a n-minor universal

tree of size O(n4), the construction being in polynomial time.

2 Formal definitions and results

2.1 Definitions

We give formal definitions of the notions described above.

Relationless polynomials Let F be a field, and X a set of variables. Unless oth-

erwise stated, the variables we consider have no multiplicative relations: they are non-

commutative and non-associative. However, addition remains commutative and asso-

ciative, and multiplication is distributive over addition. We define algebra of relationless

polynomials, FĀ,C̄[X], as the free algebra generated by F, X and operations +, ·, where

the operations satisfy, for every a, b ∈ F and f, g, h ∈ F〈X〉,

• a+ b = a+F b, a · b = a ·F b, where +F, ·F are the field operations,

• a · f = f · a,

• 0 · f = 0, 1 · f = f , where 0, 1 ∈ F is the zero, unit element of F,

7

• f + g = g + f , f + (g + h) = (f + g) + h, and

• f · (g + h) = f · g + f · h, (g + h) · f = g · f + h · f .

A relationless polynomial is an element of the algebra F〈X〉. A monomial in F〈X〉 is

a product of variables in X. Every polynomial g in F〈X〉 can be uniquely written as∑
i biαi, where bi ∈ F and αi are distinct monomials. The field element bi is called

the coefficient of αi in g. The degree of a monomial α is defined in the obvious way:

deg(xi) = 1 for a variable xi and deg(α1α2) = deg(α1) + deg(α2). The degree of a

polynomial f is the maximal degree of a monomial in f with a non-zero coefficient.

We can similarly define three other classes of polynomials, FA,C[X], FĀ,C[X], FA,C̄[X],

depending on whether we include the relations f · g = g · f and f · (g · h) = (f · g) · h.

Relationless circuits We consider computations in the algebra of relationless poly-

nomials. A relationless arithmetic circuit Φ is a directed acyclic graph as follows. Nodes

(or gates) of in-degree zero are labelled by either a variable in X or a field element in F.

All the other nodes have in-degree two and they are labelled by either + or ×. The two

edges going into a gate v labelled by × are labelled by left and right. This is important

for functionality, as the variables do not commute.

The two standard complexity measures for circuits are size and depth: the size of a

circuit, |Φ|, is the number of edges in it, and the depth of a circuit is the length of the

longest directed path in it. For a node v in a circuit Φ, denote by Φv the sub-circuit of

Φ rooted at v. Denote by Xv the set of variables that occur in Φv. The gate v computes

a polynomial Φ̂v ∈ F〈Xv〉 in the obvious way. The degree of v, deg(v), is the degree of

Φ̂v. A formula is a circuit in which every gate has out-degree one (and so it is a directed

binary tree).

In this paper, polynomials and circuits stand for relationless polynomials and circuits,

unless stated otherwise.

Complexity classes. As mentioned before, Valiant defined the algebraic analogs of

P and NP, which are now called VP and VNP. In this paper, we denote these classes by

VPA,C,VNPA,C, and we define three other classes of polynomials VPA,C̄,VPĀ,C,VPĀ,C̄ and

VNPA,C̄,VNPĀ,C,VNPĀ,C̄ as well. Technically, there is one such class for every field F,

8

but we omit this dependency for the sake of simplicity. We state the formal definitions

of VPĀ,C̄,VNPĀ,C̄, the other three definitions are similar.

A family of relationless polynomials {fn} is called p-bounded, if there exists a polynomial

q(n) so that for every n, the polynomial fn is in q(n) variables, it has degree at most

q(n), and it can be computed by a circuit of size at most q(n). The class of relationless

p-bounded families of polynomials is denoted VPĀ,C̄.

A family of relationless polynomials {fn} is called p-definable, if there exist polynomials

p(n) and q(n), and a p-bounded family {gn} so that each fn is in q(n) variables, each

gn is in q(n) + p(n) variables, and

fn(x1, . . . , xq(n)) =
∑

e1,...,ep(n)∈{0,1}

gn(e1, . . . , ep(n), x1, . . . , xq(n)).

The class of relationless p-definable families of polynomials is denoted VNPĀ,C̄.

A polynomial f is called a projection of a polynomial g, if f(x1, . . . , xn) = g(y1, . . . , ym),

where each yi is either a variable xj or a field element. A family of relationless poly-

nomials {fn} is called VNPĀ,C̄-complete, if it is in VNPĀ,C̄ and for every family {gn} in

VNPĀ,C̄, there exists a polynomial p(n) so that for every n, gn is a projection of some

fm with m ≤ p(n).

Let us state an important property of the four VNP classes. Let {fn} be a family of

polynomials in one of the algebras Fp,q[X], p ∈ {A, Ā}, q ∈ {C, C̄}, and let VNPp,q be the

corresponding VNP class. We say that {fn} is explicit, if fn has polynomial degree and

there exists a polynomial-time algorithm5 which, given n and a monomial α as inputs,

computes the coefficient of α in fn.

Fact 1. If {fn} is explicit then {fn} ∈ VNPp,q.

In the case VNPA,C = VNP, this was shown in [19]. We leave the other cases as an

exercise for the reader.

Binary trees and universal trees In this paper, binary trees are rooted, uniform

and ordered. More exactly, a binary tree T

5That is, a Turing machine. To avoid discussing how to handle, say, reals on a Turing machine,
assume that fn has 0, 1-coefficients.

9

• has one special node called the root of T ,

• every node in T which is not a leaf has exactly two children, and

• if a node u in T has two children u1, u2, one of the edges 〈u, u1〉, 〈u, u2〉 is labelled

with left and the other with right.

The size of a binary tree, |T |, is the number of leaves in it6. If T1, T2 are two binary trees

with roots u1, u2, we define (T1, T2) as the tree whose root u is connected to the two

roots u1 and u2, and the edge 〈u, u1〉 is labelled by left and 〈u, u2〉 by right. If we do not

allow redundant parenthesis ((. . .)), every parenthesis structure can be associated with

a binary tree. For example, (()())() is associated with the tree ((v1, v2), v3). Every mono-

mial α of degree r can thus be associated with a binary tree with r leaves, representing

the multiplicative structure of α. Given an ordered set F = (F1, . . . , Fr) of relationless

polynomials, and given a binary tree T with r leaves, denote by
∏T F the product of

the polynomials in F according to the tree T . For example, when T = ((v1, v2), v3),

T∏
(x1 + 1, x2, x3) = ((x1 + 1)x2)x3 = (x1x2)x3 + x2x3.

We want to define relationless permanent so that it is VNPĀ,C̄-complete. The number of

binary trees of size n is exponential in n. Hence there exists an exponential number of

monomials of degree n and n variables, differing only in their multiplicative structure

(in the associative, commutative world there is only one such monomial). This poses a

difficulty in the definition of permanent, for its multiplicative structure must somehow

encompass the structure of all possible monomials. In order to overcome this obstacle,

we introduce the notion of universal tree. Roughly, a universal tree contains every small

tree as a minor.

Let T be a binary tree and let V be a non-empty subset of the leaves of T . Define κ(T ;V)

as the minor of T induced by the set V , formally defined as follows. If T = v ∈ V then

κ(T ; {v}) = v. When T = (T1, T2), let V1 be the set of elements in V which are leaves

of T1 and V2 be the elements of V which are leaves of T2. Define

κ(T ;V) =

κ(T2;V2) if V1 = ∅,
κ(T1;V1) if V2 = ∅,
(κ(T1;V1), κ(T2, V2)) otherwise.

6Since we assume that trees are uniform, the total number of nodes in a tree is at most twice the
number of its leaves.

10

For a node v in T , denote by Tv the sub-tree of T rooted at v. The definition can be

restated as follows:

(i) Remove from T all nodes v such that the subtree of Tv does not contain an element

of V . This gives a tree T ′.

(ii) T ′ is, in general, not a binary tree, as it may contain nodes v with only one child

v′. Contract such vertices until a binary tree is obtained.

Let t ≥ 1 be a real number. We say that a tree T is t-universal, if for every binary tree

T of size at most t, there exists a subset V of leaves of T so that T = κ(T ;V). Clearly,

we can always assume that t is a natural number; we allow t ∈ R for our convenience.

In Section 3, we show how to efficiently construct a universal tree T of size at most t4.

Permanent and determinant. Valiant [19] showed that permanent is VNP-complete.

In the relationless world, there are many options to define the permanent. In order to

show that it is VNPĀ,C̄-complete, we have to define it in a specific way, using universal

trees. This enables us to simulate the various multiplicative structures of relationless

polynomials.

We first define PERM(T) relatively to a given binary tree T . Let T be a binary tree with

t leaves and let M be a t× t matrix. Define

PERM(T)(M) =
∑
σ

T∏
(M1,σ(1), . . . ,Mt,σ(t)),

where σ is a permutation of [t] = {1, . . . , t}. Fix an integer n, and let T = T (n) be the

n-universal tree defined in Section 3. Let m be the number of leaves in T (thus m is

polynomial in n), and let X = (xi,j) be a m×m matrix of variables. Define

PERM(X) = PERMn(X) = PERM(T)(X) .

We also show that determinant is universal; we define the determinant similarly:

DET(T)(M) =
∑
σ

(−1)sgn(σ)

T∏
(M1,σ(1), . . . ,Mt,σ(t)),

and

DET(X) = DETn(X) = DET(T)(X).

11

2.2 Results

Let us state the main results of this paper.

Theorem 2. The permanent is VNPĀ,C̄-complete, over any field of characteristic dif-

ferent than two.

Theorem 2 implies the following corollary.

Corollary 3. The permanent is VNPĀ,C-complete and VNPA,C̄-complete, over any field

of characteristic different than two.

An important step in the proof of the theorem is the following universality of the per-

manent and determinant, which is well-known in the associative, commutative world.

Theorem 4. For every arithmetic formula Φ, there exists a matrix M of poly(|Φ|)-

dimension with entries that are either variables or field elements so that Φ̂ = PERM(M).

A similar statement holds for the determinant, that is, there exists a matrix M ′ of

poly(|Φ|)-dimension with entries that are either variables or field elements so that Φ̂ =

DET(M ′).

A key ingredient in the two theorems above is the construction of a universal tree:

Theorem 5. For every t ≥ 1, there exists a t-universal tree T of size at most t4.

Moreover, we can construct T in polynomial time, and, given a binary tree T of size at

most t, we can find V so that T = κ(T ;V) in time polynomial in t.

On the other hand, we can show that in the non-associative world, VP 6= VNP. In Section

5 we prove an exponential lower bound on circuit size of an explicit non-associative

commutative polynomial, which gives:

Theorem 6. Over any field, VPĀ,C 6= VNPĀ,C.

This immediately implies:

Corollary 7. Over any field, VPĀ,C̄ 6= VNPĀ,C̄.

12

3 Universal trees

Universal sequences. The first ingredient in the construction of the universal tree is

a construction of a universal sequence. We say that a sequence of positive real numbers

b̄ = 〈b1, . . . , bn〉 ∈ Rn covers a sequence of positive natural numbers ā = 〈a1, . . . , am〉,
if there exist i1 < i2 < · · · < im ∈ [n] so that aj ≤ bij for every j ∈ [m]. The indices

i1, . . . , im are called covering of ā by b̄. For a real parameter t ≥ 1, we say that b̄ ∈ Rn

is t-universal, if b̄ covers every ā = 〈a1, . . . , am〉 such that a1 + · · ·+ am ≤ t.

Lemma 8. For every t ≥ 1, there exists a t-universal sequence b̄ = 〈b1, . . . , bn〉 such

that

(i) b̄ consists of real numbers of the form t/2j, j ∈ {0, . . . , blog tc}, and

(ii) for every j ∈ {0, . . . , blog tc}, the number t/2j occurs exactly 2j times in b̄.

The sequence can be constructed in time polynomial in t and for a given ā, we can find

a covering of ā by b̄ in polynomial time.

Proof. For t ≥ 1, let us construct a t-universal sequence b̄(t) by induction on btc. If

btc = 1, set b̄(t) = 〈t〉. If btc > 1, let

b̄(t) = 〈b̄(t/2), t, b̄(t/2)〉,

the concatenation of b̄(t/2), t, b̄(t/2). It is easy to see that (i) and (ii) are satisfied, and

it thus remains to show that b̄(t) is indeed universal.

Assume btc > 1, otherwise the statement is immediate. Let ā = 〈a1, . . . , am〉 be a

sequence of positive integers such that s =
∑

i∈[m] ai ≤ t. If s ≤ t/2, then b̄(t) covers ā,

since b̄(t/2) already covers a. Otherwise, let j ∈ [m] be the smallest natural number so

that
∑

i≤j ai > t/2. Hence
∑

i<j ai ≤ t/2 and
∑

i>j ai ≤ t/2. Therefore b̄(t/2) covers

a1, . . . , aj−1 and aj+1, . . . , am. Since aj ≤ t, b̄(t) covers ā. ut

Lemma 8 implies the following corollary (it will not be used anywhere in this paper, but

may be interesting in its own right).

Corollary 9. For every t ≥ 1, there exists a t-universal sequence b̄ = 〈b1, . . . , bn〉 such

that n = O(t) and b1 + · · ·+ bn = t(blog tc+ 1).

13

The following fact is a commonly used property of trees, usually attributed to Spira

[17].

Fact 10. Let T be a binary tree with |T | ≥ 2. Then there exists a node v in T such that

|T |/3 < |Tv| ≤ 2|T |/3. Such a node can be found in polynomial time.

Proof of Theorem 5. We construct T (t) by induction on btc. If btc = 1, set T (t) to be

a single node. Otherwise, let b̄ = 〈b1, . . . , bn〉 be the (2t/3)-universal sequence given by

Lemma 8. We define T (t) by the following self-explanatory picture

Q
QQ
T (b1)�

��
T (b1) Q

QQ
T (b2)

...

�
��

T (bn−1)QQQ
T (bn)�

��
T (bn)

T (2t/3)

The tree is an ordered one, edges going to the left of the central branch are labelled

by left and the ones to the right by right. We denote the copies of T (bi) to the left of

the central branch by T L(bi) and the ones to the right by T R(bi). The bottom copy of

T (2t/3) is denoted T0.

Let us first bound the size of T (t). We have |T (t)| = 1 if btc = 1, and by Lemma 8, if

btc > 1, the size of T is

|T (t)| = |T (s)|+ 2
(blog sc∑

i=0

2i|T (s/2i)|
)
, where s = 2t/3. (3.1)

Looking for an upper bound |T (t)| ≤ tc, c > 1, it is sufficient to satisfy

tc ≥ (2t/3)c + 2
(∞∑
i=0

2−i(c−1)(2t/3)c
)

= tc(2/3)c
(

1 + 2
2c−1

2c−1 − 1

)
.

14

Hence it is sufficient to have

(3/2)c ≥
(

1 +
2c

2c−1 − 1

)
.

This is satisfied for c = 4. Obviously, the construction of the tree takes polynomial time.

Let us show that T (t) is t-universal. Fix a binary tree T of size |T | ≤ t. We describe

how to find a set V of the leaves of T (t) so that T = κ(T ;V).

If |T | = 1, set V to be the leftmost leaf of T (t). Otherwise, let |T | > 1. Let v0 be the

node given by Fact 10 so that |T |/3 < |Tv0 | ≤ 2|T |/3. Since T0 is 2t/3 universal, we can

find V (0) a subset of leaves of T0 such that

Tv0 = κ(T0;V (0)) = κ(T (t);V (0)).

Let γ = (vm, . . . , v1, v0) be the directed path from the root of T to v0. For ` ∈ [m],

let u` be the child of v` in T that is not v`−1, and let a` be the size of Tu` . Thus,

|Tv0 | +
∑

` a` = |T | ≤ t and so
∑

` a` ≤ 2|T |/3 ≤ 2t/3. Since b̄ is (2t/3)-universal, we

can find i1 < i2 < · · · < im such that a1 ≤ bi1 , . . . , am ≤ bim . If u` is the left child of v`,

let V (`) be the subset of leaves of T L(i`) such that

Tu` = κ(T L(i`);V
(`)).

Such a set exists since T L(i`) is bi`-universal and a` ≤ bi` . Otherwise, u` is the right

child of v`; let V (`) be set of leaves of T R(i`) such that

Tu` = κ(T R(i`);V
(`)) .

Define V = V (0) ∪
⋃
`∈[m] V

(`). We claim that for every ` ∈ {0, . . . ,m},

Tv` = κ
(
T (t);V (0) ∪

⋃
k∈{0,...,`}

V (k)
)
.

This is straightforward to verify by induction on `. The time it takes to find V is

polynomial in t (similarly to (3.1)). ut

15

4 Completeness

In this section we show that the permanent is complete even in the relationless world.

The standard proof the permanent’s completeness has three parts (see, for example,

[3]). In the relationless world, the proof consists of three parts as well, but each one is

slightly modified. We first describe the three steps.

Part I: simulating circuits by Boolean sums over formulas. As in the standard

proof, the first part is to show that circuits can be efficiently simulated by a Boolean

sum over polynomial size formulas.

Denote by VNPĀ,C̄
e the family of polynomials {fn} in VNPĀ,C̄ so that the polynomials

{gn} in the definition of VNPĀ,C̄ have polynomial size formulas (instead of polynomial

size circuits). Formally, the first part of the proof is the following theorem, which is

proved in Section 4.1

Theorem 11. VPĀ,C̄ ⊆ VNPĀ,C̄
e, over any field.

Theorem 11 implies the following.

Corollary 12. VNPĀ,C̄ = VNPĀ,C̄
e, over any field.

Part II: universality. The second part in our proof as well as in the standard proof

is to show that the permanent is universal, that is, formulas can be efficiently simulated

by permanents (a similar statement holds for determinant).

Lemma 13. For every arithmetic formula Φ of size s, there exist a tree T with t ≤ s+1

leaves and a t × t matrix M with entries that are either variables or field elements so

that Φ̂ = PERM(T)(M). A similar statement holds for the determinant, that is, there

exists a t × t matrix M ′ with entries that are either variables or field elements so that

Φ̂ = DET(T)(M ′).

Lemma 13 is proved in Section 4.2. It implies Theorem 4 by embedding M,M ′ in a

matrix of |T (t)|-dimension, as in the end of the proof of Theorem 2 below.

16

Part III: the permanent simulates Boolean sums. In this part we show that we

can write Boolean sum over one variable as permanent of a small matrix. This property

differentiates the permanent from the determinant, and here we must assume that the

underlying field has characteristic different from 2.

To state and prove this property, we need to add field elements to a given matrix. Let

M be an s× s matrix. Let M (1) be a s× t matrix, M (2) be a t× s matrix and M (3) be

a t× t matrix, so that all the entries in M (1),M (2) and M (3) are field elements. We call

the matrix

M =

[
M M (1)

M (2) M (3)

]
a t-field-increment of M . To define the permanent of M , we need to choose a canonical

tree P (t) with t leaves (P stands for path): P (1) is the leaf v1, and for i > 1, set

P (i) = (vi, P
(i−1)) with a new leaf vi.

The following theorem shows that the permanent simulates Boolean sums.

Proposition 14. Assume that the underlying field is of characteristic different than

two. Let M be an s × s matrix with entries that are variables, field elements, and a

special variable e. Let T be a tree with s leaves. Let se be the number of entries in M

that e occurs in.

Then there exists a (5se)-field-increment M ′ of M so that

PERM(T ′)(M ′∣∣
e=0

) = PERM(T)(M
∣∣
e=0

) + PERM(T)(M
∣∣
e=1

),

with T ′ = (T, P (5se)). Every variable other than e occurs in H as many times as it

occurs in M .

Proposition 14 is proved in Section 4.3

The completeness proof. Given these three parts, we can prove that the permanent

is complete.

Proof of Theorem 2. The standard proof that the permanent is in VNP also implies that

the permanent is in VNPĀ,C̄ (alternatively, use Fact 1). It remains to show that every

17

polynomial in VNPĀ,C̄ is reducible to permanent. Let f = fn be in VNPĀ,C̄. Corollary 12

tells us that without loss of generality f is of the form

f(x̄) =
∑

ē∈{0,1}p
g(ē, x̄),

with p polynomial in n and g computable by a polynomial size formula. Lemma 13 tells

us that there exists a polynomial size matrix M with entries that are either variables

xi, ej and field elements so that

f(x̄) =
∑

b̄∈{0,1}p
PERM(M

∣∣
ē=b̄

).

Proposition 14 tells us that there exist polynomial size matrices H1, . . . , Hp and corre-

sponding trees T1, . . . , Tp so that

f =
∑

b1,...,bp−1

(∑
bp

PERM(M
∣∣
ep=bp

)
)

=
∑

b1,...,bp−1

PERM(Tp)(Hp)

= · · · =
∑
b1

PERM(T2)(H2

∣∣
e1=b1

) = PERM(T1)(H1).

Finally, let T be a |T1|-universal tree of size polynomial in n, as given by Theorem 5.

Let V be a subset of the leaves of T so that κ(T , V) = T1. Let M be a |T |× |T | matrix,

whose rows and columns are labelled by leaves of T , in the order defined by T . Define

the entries of M so that the restriction of M to the rows and columns in V are H1, and

in all the other rows and columns it is the identity matrix, namely, for every 〈i, j〉 not

in V × V , we have Mi,j = 1 if i = j and Mi,j = 0 otherwise. Thus,

f = PERM(T1)(H1) = PERM(M).

ut

4.1 Simulating circuits by Boolean sums over formulas

In this section, we employ the method of Malod and Portier [13] to prove Theorem 11.

18

4.1.1 Parse trees

Given a circuit Ψ, we define a family of trees, which we call parse trees. They are

intended to capture computation of monomials in Ψ. A parse tree T consists of nodes

that are labelled by nodes of Ψ. The root of T is labelled by the output node of Ψ. If

Ψ has only one node, T consists only of one node as well. If v is the output gate of Ψ,

then

(i) if v = v1 × v2, then T = (T1, T2), where T1, T2 are parse trees of Ψv1 ,Ψv2 , and

(ii) if v = v1 + v2, then T is Ti with the edge 〈vi, v〉 added to it, where Ti is a parse

tree of Ψvi and i is either 1 or 2.

A parse tree T computes a monomial T̂ in the obvious way: Let µ(T) be the minor

of T that consists only of product gates and input gates, that is, after contracting all

edges going into sum gates in T (µ stands for multiplicative part). The tree µ(T) is a

binary tree. Every leaf v in µ(T) is an input gate in Ψ labelled by Ψ̂v. The t leaves of

µ(T) are ordered in a natural way: if v = v1 × v2 in µ(T), then the leaves in µ(T)v1 are

smaller than the leaves in µ(T)v2 . Denote this order by (v1, v2, . . . , vt). The monomial

T computes is

T̂ =

µ(T)∏
(Ψ̂v1 , . . . , Ψ̂vt). (4.1)

We say that a circuit Ψ is multiplicatively disjoint if for every u = u1×u2 in Ψ, the two

circuits Ψu1 and Ψu2 are disjoint. When Ψ is multiplicatively disjoint, all the parse trees

of Ψ are indeed trees. Multiplicatively disjoint circuits can be decomposed as follows.

Claim 15. If Ψ is multiplicatively disjoint, then

Ψ̂ =
∑
T

T̂ ,

where T is a parse tree of Ψ.

Proof. The claim follows by induction on the size of Ψ. ut

19

The following proposition shows that circuits can be efficiently simulated by multiplica-

tively disjoint circuits. The proof proceeds in the same way as in [13], and will not be

repeated here.

Proposition 16. Let Φ be a relationless circuit of size s computing a polynomial f of

degree r, then there is a multiplicatively disjoint relationless circuit Ψ of size O(r4s)

computing f as well.

4.1.2 Parse trees are Boolean vectors

We use parse trees to simulate a circuit by a Boolean sum over a formula.

Proof of Theorem 11. Let f be a polynomial in n variables of polynomial degree, and let

Φ be a relationless circuit of polynomial size computing f . Let Ψ be the multiplicatively

disjoint polynomial size circuit computing f given by Proposition 16, and let s be the

size of Ψ, s being polynomial in n. Claim 15 implies that

f =
∑
T

T̂ ,

where T is a parse tree of Ψ. It thus remains to reduce the sum over parse trees to a

Boolean sum. Intuitively, auxiliary Boolean variables will be used to identify parse trees

of Ψ together with the monomials they compute.

Let T = T (s) be the s-universal tree of polynomial size given by Theorem 5. Recall

that we have a polynomial time algorithm that, given a tree T of size at most s, finds

V = V (T), a set of leaves of T , so that T = κ(T ;V). There may exist more than one

such set V , we fix the set to be the one that the algorithm outputs. Let σ be the natural

bijection between leaves of T and leaves in V , namely, if the leaves of T are v1, . . . , vm
and the leaves in V are u1, . . . , um (order the leaves according to the order defined by

the trees), then σ(vi) = ui for every i ∈ [m].

We now define the auxiliary variables that we use. For every gate v in Ψ, let a(v) be a

variable, and let ā be the vector of variables a(v). For every leaf u of T , let b(u) be a

variables, and let b̄ be the vector of variables b(u). For every leaf u of T and input gate

w in Ψ, let c(u,w) be a variable, and let c̄ be the vector of variables c(u,w). We are

interested in zero-one assignments of ā, b̄, c̄.

Let ζ be a 0, 1-assignment to the variables ā, b̄, c̄. We say that ζ is good, if

20

(i) Tζ = {v : ζ(a(v)) = 1} is a parse tree of Ψ,

(ii) Vζ = {u : ζ(b(u)) = 1} is the set V (µ(Tζ)) of leaves of T , and

(iii) ζ(c(u,w)) = 1 if and only if u ∈ V (µ(Tζ)) and the leaf σ−1(u) of Tζ is w.

For a leaf u of T , let

Lu = (1− b(u)) +
∑
w

c(u,w)Ψ̂w,

where w is an input gate of Ψ. If ζ is good, we thus have

T̂ζ =
T∏

(Lu1 , . . . , Lum)
∣∣∣
ζ

(4.2)

where u1, . . . , um are the leaves of T and
∣∣∣
ζ

denotes substituting every variable e in ā, b̄, c̄

by ζ(e).

Given a Boolean assignment ζ, we can determine in polynomial time whether it is

good. Cook’s theorem tells us that there exists a polynomial size Boolean formula B in

variables ā, b̄, c̄ and some additional variables d̄ so that ζ is good if and only if there exists

a zero-one assignment ζd to the variables d̄ so that B(ζ, ζd) = 1. As we are interested in

the value of B only for Boolean inputs, we can assume that B is an arithmetic formula.

This also tells us that commutativity and associativity is not an issue. We can therefore

write

f =
∑
T

T̂ =
∑
ζ,ζd

B(ζ, ζd)
T∏

(Lu1 , . . . , Lum)
∣∣∣
ζ

ut

4.2 Universality

We now show that the permanent in universal in the relationless world; a similar claim

holds for the determinant.

Claim 17. For every arithmetic formula Φ, there exist s ≤ |Φ|+ 1, and an s× s matrix

M with entries that are either variables or field elements and a tree T with s leaves so

that Φ̂ = PERM(T)(M). Moreover, M has the following property: for every i ∈ [s− 1],

Mi,i+1 = 1 and for every j > i+ 1, Mi,j = 0.

21

Claim 17 immediately implies Lemma 13.

Proof. The lemma follows by induction on the size of Φ. If the size of Φ is one, set

M =

[
1 1

0 Φ̂

]

and T a binary tree with two leaves. Thus, PERM(T)(M) = Φ̂ and M has the claimed

structure.

If Φ = Φ1×Φ2, let s1, s2,M1,M2, T1, T2 be given by induction. Set s = s1 +s2 ≤ |Φ|+1,

set

M =

[
M1 E

0 M2

]
,

where E is a matrix that has a one in the lower left corner and zero elsewhere, and set

T = (T1, T2). Thus,

PERM(T)(M) =
∑
π′

T∏
(M1,π(1), . . . ,Ms,π(s))

+
∑
π1,π2

T1∏
(M1,σ(1), . . . ,Ms1,σ(s1))

T2∏
(M1,σ(1), . . . ,Ms2,σ(s2))

= 0 + Φ̂1 · Φ̂2 = Φ̂,

where π′ is a permutation so that π′(s1) = s1 + 1, π1 is a permutation of [s1], and π2 is

a permutation of [s2]. The reason why the sum over π′ is zero is that by the pigeon hole

principle, for every π′, there exists i > s1 so that π′(i) ≤ s1 and so Mi,π′(i) = 0.

If Φ = Φ1+Φ2, let s1, s2,M1,M2, T1, T2 be given by induction. Let s = s1+s2+1 ≤ |Φ|+1

and let M be the following s× s matrix

M =

 1 v 0 0

0 M1 v1 0

M2[1] 0 v2 M2[2+],

 ,
where v is a row vector with 1 in the leftmost entry and 0 elsewhere, v1, v2 are column

vectors with 1 in the bottom entry and 0 elsewhere, M2[1] is the first column of M2,

22

and M2[2+] is the matrix M2 without the first column. We define the tree T so that the

following is satisfied for every polynomials f :

T∏
(1, f1, . . . , fs1 , 1, . . . , 1) =

T1∏
(f1, . . . , fs1) , and

T∏
(f1, 1, . . . , 1, f2, . . . , fs2) =

T2∏
(f1, . . . , fs2) . (4.3)

To achieve this, let T ′ be the tree ((u1, T1)u2), where u1, u2 are two new nodes. Then T

is obtained by joining the tree T ′ to the leftmost leaf of the tree T2.

The definition of M guarantees that the following properties of permutations π of [s]

are satisfied.

(i) If π(1) = 1 and π(s1 + 1) = s1 + 2, then there exists i ∈ [s] so that Mi,π(i) = 0.

(ii) If π(1) = 1, π(s) = s1 + 2 and M1,π(1), . . . ,Ms,π(s) 6= 0, then π(i) ∈ {2, . . . s1 + 1}
for every i ∈ {2, . . . s1 + 1} and Mi,π(i) = 1 for every i ≥ s1 + 2.

(iii) If π(1) = 2, π(s1 + 1) = s1 + 2 and M1,π(1), . . . ,Ms,π(s) 6= 0, then π(i) ∈ {1, s1 +

3, . . . s} for every i ∈ {s1 + 2, . . . s} and Mi,π(i) = 1, for every 1 ≤ i ≤ s1 + 2.

(iv) If π(1) = 2 and π(s) = s1 + 2, then there exists i ∈ [s] so that Mi,π(i) = 0.

Using (4.3), we can then write

PERMT (M) =
∑
π∈(ii)

T∏
(M1,π(1), . . . ,Ms,π(s)) +

∑
π∈(iii)

T∏
(M1,π(1), . . . ,Ms,π(s))

=
∑
π∈(ii)

T∏
(1,M2,π(2), . . . ,Ms1+1,π(s1+1), 1, . . . , 1)+

+
∑
π∈(iii)

T∏
(M1,π(1), 1, . . . , 1,Ms1+2,π(s1+2)Ms,π(s))

=PERM(T1)(M1) + PERM(T2)(M2) = Φ̂.

To prove the statement for the determinant, we may need to change signs of v, v1, v2 in

the case of a sum gate. ut

23

4.3 The permanent simulates Boolean sums

To prove Proposition 14 we use the fact that the proposition holds in the commutative,

associative case [3].

Proof of Proposition 14. Assume that the underlying field is of characteristic different

than two. Let M be an s × s matrix whose entries are distinct variables, except a

special variable e that appear se times in M . That is, we assume that either Mi,j = xij
or Mi,j = e, where e, xij : i, j ∈ [s] are distinct variables, and e appears at se positions

in M .

The standard proof in the commutative, associative world tells us that we can construct

a (5se)-field-increment M ′ of M so that

PERM(M ′∣∣
e=0

) = PERM(M
∣∣
e=0

) + PERM(M
∣∣
e=1

) . (4.4)

This implies that every variable other than e occurs in M ′
∣∣
e=0

as many times as it

occurs in M . Equality (4.4) is an equality of commutative, associative polynomials.

Nevertheless, we claim that due to the structure of the polynomials in (4.4), the equality

holds also in the relationless setting. Let T be a tree with s leaves, and let T ′ =

(T, P (5se)). We claim that

PERM(T ′)(M ′∣∣
e=0

) = PERM(T)(M
∣∣
e=0

) + PERM(T)(M
∣∣
e=1

). (4.5)

This holds since every relationless monomial that appears in (4.5) corresponds to a

unique associative, commutative monomial, as we now explain. Let α be a commutative,

associative monomial of the form

α = xi1j1xi2j2 . . . xikjk ,

where i1 < · · · < ik ∈ [s] and j1, . . . jk ∈ [s] are distinct. Let u1, . . . us be the leaves

of T , ordered according to the ordering of T . Let Tα be the tree κ(T ;V), where V =

{ui1 , . . . uik}. Let α? be the non-commutative non-associative monomial defined as

α? =
Tα∏

(xi1j1 , xi2j2 , . . . , xikjk) .

First, we can see that every monomial that has a non-zero coefficient in (4.5) is of the

form α?, where α is as above. Second, the coefficient of α? on the left resp. right hand

24

side in (4.5) is equal to the coefficient of α on the left resp. right hand side of (4.4).

(For the left hand side, inspect the definition of field-increment.) Hence, (4.4) implies

(4.5). ut

5 The non-associative commutative world

We now show that in the non-associative, commutative world, VNP is strictly stronger

than VP. We do so by constructing an explicit non-associative polynomial that requires

exponential size circuits. In this section, all polynomials are non-associative commuta-

tive.

Let {Sn} be a fixed family of binary trees such that Sn has n leaves and the family

is constructible in polynomial time. Otherwise the particular structure of Sn is not

important. Let Vn be the polynomial of degree 2n and variables z0, z1

Vn =
∑
ζ<ζ′

Sn∏
(zζ(1), . . . , zζ(n))

Sn∏
(zζ′(1), . . . , zζ′(n)) ,

where ζ, ζ ′ ∈ {0, 1}n and “<” stands for lexicographic ordering.

We are going to prove an exponential lower bound on the circuit-size of Vn. It would

perhaps be more natural to define Vn as
∑

ζ

∏Sn(zζ(1), . . . , zζ(n))
∏Sn(zζ(1), . . . , zζ(n)).

This would however allow us to prove the lower bound only if char F 6= 2.

The first step of the proof is given by the following linear lower bound.

Lemma 18. Assume that ∑
i,j∈[k]:i<j

xixj =
∑
i∈[m]

figi ,

where fi, gi are homogeneous polynomials of degree 1. Then m is at least (k−1)/2. This

holds over any field.

Proof. The lemma is true even in the associative, commutative setting. The integer m

is at least the minimum rank of a k × k matrix A which satisfies

Aii = 0 and Aij + Aji = 1

for every i, j ∈ [k]. Setting B = A+At, we obtain a matrix B with 0 on the diagonal and

1 everywhere else. Hence B has rank at least k−1, and A has rank at least (k−1)/2. ut

25

For a monomial α, let us say that it respects the tree Sn, if α =
∏Sn(zζ(1), . . . , zζ(n)),

where ζ ∈ {0, 1}n; we write α = z(ζ). A polynomial g respects Sn if every monomial

α which has a non-zero coefficient in g respects Sn. In particular, g is a homogeneous

polynomial of degree n (or g is zero). We use the following simple claim. It is this point

where we essentially use non-associativity.

Claim 19. Assume that β is a monomial with a non-zero coefficient in Vn and β = α1α2,

where 0 < degα1, degα2 < 2n. Then both α1 and α2 respect Sn.

We need one other claim, whose proof is the same as in the standard associative commu-

tative case. We say that a polynomial is homogeneous if all its monomials with non-zero

coefficients have the same degree. We say that a circuit Φ is homogeneous, if every node

v in Φ computes a homogeneous polynomial.

Claim 20. Assume that f is a homogeneous polynomial of degree d, and that f is

computed by a circuit of size s. Then f can be computed by a homogeneous circuit of

size O(d2s).

We are ready to prove the lower bound.

Proposition 21. Over any field, every non-associative circuit computing Vn has size

2Ω(n).

Proof. Let Φ be a circuit of size s computing Vn. Losing a factor of at most O(n2), we

can assume that Φ is homogeneous. Let v1, . . . , vm be the set of product nodes in Φ

such that vi = ui × wi, deg vi = 2n and deg ui, degwi < 2n. Thus m ≤ s and it is easy

to show that

Vn =
∑
i∈[m]

aiΦ̂uiΦ̂wi .

where ai is a field element.

Let us show that there exist polynomials fi, gi, for i ∈ [m], which respect Sn and

Vn =
∑
i∈[m]

figi . (5.1)

For a polynomial g =
∑

j bjαj with every bj a field element, define g′ as the polynomial

g′ =
∑

j:αj respects Sn

bjαj.

26

The polynomial g′ respects Sn. Claim 19 implies

Vn =
∑
i∈[m]

aiΦ̂
′
ui

Φ̂′wi ,

and (5.1) follows.

We use Lemma 18 to bound m in (5.1) from below. For every ζ ∈ {0, 1}n, introduce

a new variable xζ , and let X = {xζ : ζ ∈ {0, 1}n}. If g =
∑

ζ bζz(ζ) is a polynomial

in variables z0, z1 which respects Sn, let g? be the polynomial
∑

ζ bζxζ in variables X.

The polynomial g? is a homogeneous polynomial of degree 1 (or the zero polynomial).

Equation (5.1) and the definition of Vn imply that∑
ζ,ζ′∈{0,1}n:ζ<ζ′

xζxζ′ =
∑
i∈[m]

f ?i g
?
i .

By Lemma 18, this implies that m ≥ (2n − 1)/2. ut

Since we assume that Sn can be constructed in time polynomial in n, Vn is in VNPĀ,C

by Fact 1. This and Proposition 21 imply Theorem 6.

Acknowledgement. We wish to thank Swastik Kopparty and Leslie Valiant for help-

ful discussions, and Valentine Kabanets for useful references.

References

[1] V. Arvind and S. Srinivasan. On the hardness of the noncommutative determinant.

ECCC TR09-103, 2009.

[2] M. Braverman, S. Cook, P. McKenzie, R. Santhanam and D. Wehr. Pebbles and

branching programs for tree evaluation. MFCS, pages 175 – 186, 2009.

[3] P. Burgisser. Completeness and reduction in algebraic complexity theory. Springer-

Verlag Berlin Heidelberg 2000.

[4] Algebras with polynomial identities and computing the determinant. S. Chien and

A. Sinclair. SIAM Journal on Computing 37, pages 252 – 266, 2007.

27

[5] S. Chein, L. Rasmussen and A. Sinclair. Clifford algebras and approximating the

permanent. Journal of Computer and Systems Sciences 67, pages 263-290, 2003.

[6] F. R. K. Chung, R. L. Graham and D. Coppersmith. On trees containing all small

trees. The Theory of Applications of Graphs, John Wiley and Sons, pages 265–272,

1981.

[7] H. Cohn, R. Kleinberg, B. Szegedy and C. Umans. Group-theoretic algorithms for

matrix multiplication. FOCS 05’, pages 379–388, 2005.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation 9, pages 251–280, 1990.

[9] J. Friedman and N. Pippenger. Expanding graphs contain all small trees. Combina-

torica 7(1), pages 71–76, 1987.

[10] M. Goldberg and E. Lifshitz. On minimal universal trees. Mat. Zametki 4, pages

371 – 378, 1968.

[11] P. Hrubes, A. Wigderson and A. Yehudayoff. Non-commutative circuits and the

sum-of-squares problem. Manuscript, 2009.

[12] L. Hyafil. On the parallel evaluation of multivariate polynomials. SIAM J. Comput.

8(2), pages 120 – 123, 1979.

[13] G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity classes. J.

Complexity 24(1), pages 16–38, 2008.

[14] N. Nisan. Lower bounds for non-commutative computation. STOC 91, pages 410–

418, 1991.

[15] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial deriva-

tives. Computational Complexity, vol. 6, pages 217–234, 1996.

[16] A. A. Razborov and S. Rudich. Natural proofs. STOC 94’, pages 204–213, 1994.

[17] P. M. Spira. On time-hardware complexity tradeoffs for Boolean functions. 4.Hawaii

Symp.on Syst.Sc., 525-527.

28

[18] L. G. Valiant. General context-free recognition in less than cubic time. JCSS 102,

pages 308–315, 1975.

[19] L. G. Valiant. Completeness classes in algebra. STOC ’79, pages 249–261, 1979.

[20] L. G. Valiant. Why is Boolean complexity theory difficult? Poceedings of the

London Mathematical Society symposium on Boolean function complexity, pages 84

– 94, 1992.

[21] L. G. Valiant and V. V. Vazirani NP is as easy as detecting unique solutions. STOC

’85, pages 458463, 1985.

[22] L. G. Valiant, S. Skyum, S. Berkowitz and C. Rackoff. Fast parallel computation

of polynomials using few processors. SIAM J. Comput. 12(4), pages 641–644, 1983.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

