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Abstract

One way to quantify how dense a multidag is in long paths is to find
the largest n, m such that whichever ≤ n edges are removed, there is still
a path from an original input to an original output with ≥ m edges - the
larger we can make n, m, the denser is the graph. For a given n, m, we
would like to lower bound the size such a graph, say in edges, at least
when restricting to a particular class of graphs. A bound of Ω(n lg m)
was provided in [Val77] for one notion of series-parallel graphs. Here we
reprove the same result but in greater detail and relate that notion of
series-parallel to other popular notions of series-parallel. In particular, we
show that that notion is more general than minimal series-parallel and
two terminal series-parallel.

1 Introduction

Theorem 5.4 appearing in [Val77] states that if a series-parallel graph G has
the property that (whichever ≤ n edges are removed, there is still a path from
an original input node to an original output node with ≥ m edges) then G has
Ω(n lg m) edges. 1 The definition of series-parallel graph there is misstated,
yielding a trivial class of graphs; but a slight modification that still allows the
proof to work yields a very large class of graphs. (and so this definition is what
was probably originally intended) While the proof there was in outline form,
the proof here will be much more specific about how to decompose a graph,
whether input, output edges are counted in a particular path or graph, and
whether input, output are with respect to the original graph or the parts into
which it is decomposed. The main purpose of the extra rigor is to test this
modified definition, which we will call Valiant series-parallel (VSP).

We relate VSP to other popular definitions of series-parallel - minimal series-
parallel (MSP), two terminal series-parallel (TTSP), general series-parallel (GSP)
- and show

MSP ∪ TTSP ⊆ GSP ∩ VSP,

1Theorem 5.4 [Val77] actually stated Ω(n lg lg m), but this was a typo.
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as well as basic relationships among them. Since GSP and VSP are subset
incomparable, despite its name, GSP is therefore not the only reasonable gen-
eralization of the MSP and TTSP notions of series-parallel.

2 Series-parallel graphs

There are several incompatible definitions of series-parallel graphs. We will
explore a few of the most popular ones here. A comprehensive survey can be
found in [Val78]. A multidag G = (V,E) is a directed-acyclic multigraph. Define

input(G) = {v ∈ V | deg
in

(v) = 0}

output(G) = {v ∈ V | deg
out

(v) = 0}

We now define the class of two terminal series-parallel multidags (TTSP).
A multidag G is two terminal (TT) iff |input(G)| = |output(G)| = 1 and
input(G) "= output(G). The class of elementary TTSPs is those multidags
with 2 nodes and a single edge between them. For i = 1, 2, let Gi be TT
with input ai and output bi. Define the TT parallel composition PTT(G1, G2)
as the disjoint union of G1, G2 but with a1, a2 identified and b1, b2 identified,
and the TT series composition STT(G1, G2) as the disjoint union of G1, G2

but with b1, a2 identified. Note that PTT(G1, G2), STT(G1, G2) are both TT,
STT is associative but not commutative, and PTT is associative and commu-
tative. Associativity allows us to extend the notation to more than 2 argu-
ments: STT(G1, . . . , Gk), PTT(G1, . . . , Gk). The class of TT series-parallel mul-

tidags (TTSP) is the closure of the elementary TTSPs under the 2 operations
STT, PTT. By a structural induction, one can see that every TTSP is TT.

Define a choke point of a TT as a node other than the input and output
through which every path from the input to the output must pass. The result
of an STT operation has a choke point but the result of a PTT operation does
not. So the last operation used to construct a TTSP can be uniquely identified.

A second notion of series-parallel is the class of minimal series-parallel dags
(MSP). The elementary MSPs are those dags with a single node. Let G1, G2 be
multidags. Define the parallel composition P (G1, G2) as the disjoint union of
G1, G2, and the series composition S(G1, G2) as the disjoint union of G1, G2 to-
gether with the edges output(G1)×input(G2). Note that S is associative but not
commutative and P is associative and commutative. Associativity allows us to
extend the notation to more than 2 arguments: S(G1, . . . , Gk), P (G1, . . . , Gk).
The class of minimal series-parallel dags (MSP) is the closure of the elementary
MSPs under the 2 operations S, P . A structural induction shows that every
MSP is a dag with no parallel edges.

The underlying graph of a digraph is obtained by replacing each directed
edge by an undirected edge. A digraph is weakly connected iff the underlying
graph is connected. The result of an S operation is weakly connected and the
result of a P operation is not. So the last operation used to construct a MSP
can be uniquely identified.
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A third notion of series-parallel is the general series-parallel multidags. Let
G = (V,E) be a multidag. The transitive reduction tr(G) of G is the unique
minimal subgraph of G with the same transitive closure as G. Existence and
uniqueness are due to G being finite and acyclic. By a structural induction, one
can see that every MSP is transitively reduced. A multidag is general series-

parallel (GSP) iff its transitive reduction is MSP.
To test whether a multidag G is TTSP, we can repeatedly apply the following

2 operations: replace 2 parallel edges by a single edge, replace a node b with
indegree and outdegree 1 and its two neighboring edges (a, b), (b, c) by a single
edge (a, c). The result is unique and is an elementary TTSP iff G is TTSP.

To test whether a dag G is MSP, we use a fact from [Val78]: a multidag G

is GSP iff the transitive closure of G does not contain the following N graph as
a node-induced subgraph.

This means that it is not the case that G contains 4 distinct nodes a, b, c, d such
that there are paths from a to b, from c to d, from c to b, and between no other
pairs. Then multidag G is MSP iff, in addition to forbidding the N graph, it is
transitively reduced.

To demonstrate the incompatible nature of these definitions, note that the
following dag

is MSP, TT but not TTSP; and

is TTSP but not MSP since it includes a transitive edge.
However, there is a dual relationship between 2 of the definitions. The line

graph L(G) of G = (V,E) is (E, {(e1, e2) ∈ E×E | the head of e1 is the tail of e2}).

Theorem 1. Let G be TT. Then G is TTSP iff H = L(G) is MSP.

Proof. This is lemma 1 from [VTL79]. The proof there is cursory, so we give
more details.
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(⇒) Follows easily by structural induction.
(⇐) We use a structural induction on H. If H is an elementary MSP, then

G must be an elementary TTSP, and so is TTSP.
If H = S(H1,H2), then G must have a corresponding choke point v and can

be constructed as STT(G1, G2) where G1 is the multidag inclusively between the
input of G and v and G2 is the multidag inclusively between v and the output
of G. Furthermore, L(Gi) = Hi, and so by the induction hypothesis, each Gi is
TTSP, and so G is TTSP.

If H = P (H1, . . . ,Hl) where each Hi is either an elementary MSP or pro-
duced by a series operation, then each Hi is weakly connected. By removing
the terminals of G we can divide what remains into weak components and add
the terminals of G back to each weak component to obtain a sequence of TT
multidags G1, . . . , Gk. Any edge that goes directly between the terminals of G

we will also represent in this list as an elementary TTSP. Note that each Gi is
weakly connected even when its terminals are removed.

We claim that each L(Gi) is some weak component of H. To see this, let
e1, e2 be 2 edges in Gi. There is a weak path v1, . . . , vk in Gi not using any
terminal that connects an endpoint of e1 to an endpoint of e2. Because Gi is TT,
there are paths from each vj to the terminals of Gi. Consider the undirected
edges {vj , vj+1}, {vj+1, vj+2}. If the corresponding directed edges f1, f2 in Gi

have that the head of one is the tail of the other then the corresponding nodes
in H are connected. Otherwise, suppose their tails (heads) are both vj+1. Let
x be the input (output) of Gi. There is a path in Gi from x to vj+1 #= x (from
vj+1 #= x to x). So f1, f2 are weakly connected in H. So e1, e2 are weakly
connected in H.

So the Gi and Hj are in bijective correspondence. The induction hypothesis
implies that each Gi is TTSP. G = PTT(G1, . . . , Gk) and so is TTSP.

It is shown in [Val78] that for each TT G, G is TTSP iff it does not contain
a subgraph homeomorphic to the W graph:

2 digraphs are homeomorphic iff one can be obtained from the other by a se-
quence of operations that either replace a vertex b with indegree and outdegree
1, say (a, b), (b, c) are its neighboring edges, by the single edge (a, c); or replace
an edge (a, c) by 2 edges (a, b), (b, c) where b is a new vertex.

A labeling of a multidag G = (V,E) is a function l : V → N such that
∀(a, b) ∈ E l(a) < l(b). It is said in [Val77] that G is series-parallel iff it has the
property that there is some labeling l such that

∀(a, b), (c, d) ∈ E (l(a) − l(c))(l(d) − l(b)) ≥ 0, (1)
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which we can see as a forbidden subgraph characterization. But (1) is uninter-
esting because of the following.

Lemma 2. G satisfies (1) iff G is bipartite.

Proof. Suppose G satisfies (1) with labeling l. We claim there is no node b with
indegree ≥ 1 and outdegree ≥ 1. Otherwise, let (a, b), (b, c) be edges. Since l is
a labeling, l(a) < l(b) < l(c). So (l(a)− l(b))(l(c)− l(b)) < 0, a contradiction. So
all edges go from input nodes to output nodes, and so G is bipartite. Conversely,
if G is bipartite, label all the input nodes 0 and all the output nodes that are
not also input nodes 1. This shows G satisfies (1).

In a recent personal communication, Valiant fixed this by giving what was
originally intended: say multidag G = (V,E) is Valiant series-parallel (VSP) iff
there is a normal labeling l s.t.

¬∃(a, b), (c, d) ∈ E l(a) < l(c) < l(b) < l(d), (2)

where a labeling l is normal iff ∀a ∈ input(G) l(a) = 0 and ∃d ∈ N ∀b ∈
output(G) − input(G) l(b) = d.

This definition will allow us to prove theorem 5.4 [Val77]. In the next section,
we will show that MSP,TTSP ⊆ VSP, which shows that theorem 5.4 applies to
several of the definitions of series-parallel that appear in [Val78], although not
to GSP.

2.1 Generality of VSP and GSP

Lemma 3. MSP ⊆ VSP.

Proof. It is sufficient to show that VSP contains the elementary MSPs and is
closed under S, P . If G is an elementary MSP, then label its only node 0. So
G ∈ VSP. Let G1, G2 be VSP and for j ∈ {1, 2}, let lj be a normal labeling
satisfying (2) for Gj . If one of G1, G2 is empty, then obviously S(G1, G2) =
P (G1, G2) ∈ VSP, so suppose both are nonempty. Let d be the largest label l1
assigns. Then l1 ∪ (l2 + d + 1) is the required normal labeling of S(G1, G2). To
show that P (G1, G2) ∈ VSP will require much more effort.

We consider an alternative formulation of (2). For each edge e = (a, b), let
Ie = (l(a), l(b)] be the half-open real interval from l(a) to l(b). (2) is equivalent
to saying that for any 2 edges e1, e2, either Ie1

, Ie2
are disjoint or one is a subset

of the other. We can say 2 edges are equivalent iff they define the same interval,
and then ⊆ induces a partial order on the equivalence classes: [e1] ≤ [e2] iff
Ie1

⊆ Ie2
. We claim that the transitive reduction of ≤, represented as a graph

F , is a forest. To see this, let [e1] be a node in F and suppose indirectly that [e1]
has 2 parents [e2], [e3]. If there were a path between [e2], [e3] in F , then one of
the edges ([e1], [e2]), ([e1], [e3]) in F would be a transitive edge. So [e2], [e3] are
incomparable in F . So the intervals Ie2

, Ie3
are disjoint. But ∅ *= Ie1

⊆ Ie2
∩Ie3

,
a contradiction.
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To make the following discussion simpler, consider the maximal nodes of F

to be siblings, as well as the children of internal nodes. We can order sibling
nodes of F : if [e1] = [(a, b)], [e2] = [(c, d)] are siblings, then Ie1

, Ie2
are disjoint,

so we can say [e1] comes before [e2] iff l(a) < l(c). Do not confuse this sibling
ordering with the ancestor partial ordering induced by F .

Say F is gap free iff for each node [e] with children [e1], . . . , [ek], we have
that Ie1

, . . . , Iek
is a partition of Ie, and for the maximal nodes [e1], . . . , [ek], we

have that Ie1
∪ · · · ∪ Iek

is an interval. If F is not gap free, we can complete it
by adding new nodes representing new edges in G with appropriate labels.

Note that we can construct a normal labeling lF satisfying (2) from a gap
free F as follows: for any edge e = (a, b) in the equivalence class of the ith leaf
(starting at 1) of F , set lF (a) = i − 1, lF (b) = i. For an edge e = (a, b) in the
equivalence class of an internal node of F , set lF (a) (lF (b)) to be the left (right)
label of the leftmost (rightmost) leaf descended from [e]. It is not hard to see
that lF is well defined.

For j ∈ {1, 2}, we can build a forest Fj representing Gj . Since we are in the
business of proving that G = S(G1, G2) ∈ VSP and adding extra edges to Gj

only makes this harder, we can assume wlog that each Fj is gap free.
The following algorithm will graft F1, F2 together to make a forest repre-

senting an appropriate labeling for G.

graft(F1, F2)
for j ∈ {1, 2}, let Fj,1, . . . , Fj,kj

be the trees of Fj

if k1 = 0, return F2

if k2 = 0, return F1

if k1 ≤ k2

for i ← 1, . . . , k1 − 1
Hi ← graft(F1,i, F2,i)

remove root r from F1,k1
and let F ′

1,k1
be the remaining forest

H ← graft(F ′

1,k1
,union{F2,k1

, . . . , F2,k2
})

add r as a root to H and call resulting tree H ′

return union{H1, . . . ,Hk1−1,H
′}

else
for i ← 1, . . . , k2 − 1

Hi ← graft(F1,i, F2,i)
remove root r from F2,k2

and let F ′

2,k2
be the remaining forest

H ← graft(union{F1,k2
, . . . , F1,k1

}, F ′

2,k2
)

add r as a root to H and call resulting tree H ′

return union{H1, . . . ,Hk2−1,H
′}

Let F = graft(F1, F2). It can be shown by induction on the number of nodes
of F1, F2 that lF is normal and induces the same order on the nodes of each
Gj as lFj

does - i.e. for nodes a, b in Gj , lF (a) ≤ lF (b) iff lFj
(a) ≤ lFj

(b), and
lF (a) = 0 iff lFj

(a) = 0, and lF (a) = the largest label lF assigns iff lFj
(a) = the

largest label lFj
assigns. So G ∈ VSP.
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Lemma 4. TTSP ⊆ VSP.

Proof. The elementary TTSPs are in VSP. It is sufficient to show that if G1, G2 ∈

VSP are TT, then STT(G1, G2), PTT(G1, G2) ∈ VSP. For j ∈ {1, 2}, let lj be a
normal labeling of Gj satisfying (2). Let d be the largest label assigned by l1.
Then l = l1 ∪ (l2 + d) is a normal labeling satisfying (2) for STT(G1, G2). In
the proof of lemma 3, we showed that VSP is closed under disjoint union. So
there is a normal labeling l of union{G1, G2} satisfying (2). After identifying
the terminals, this same labeling will suffice to show PTT(G1, G2) ∈ VSP.

We now show that GSP is a generalization of both MSP and TTSP, not just
of MSP alone. If G = (V,E) is a graph and V ′ ⊆ V , let G−V ′ be the subgraph
induced by the nodes V − V ′.

Lemma 5. Let G be MSP and TT with input x and output y. Then H =
G − {x, y} is MSP or empty, and G = S(x,H, y).

Proof. Since G is TT, G cannot be an elementary MSP nor the result of a
parallel operation. Say G = S(G1, . . . , Gk) where each Gi is an elementary
MSP or the result of a parallel operation. Clearly x is in G1. We claim that G1

is just x. Otherwise, G1 is the result of a parallel operation and so is not weakly
connected, contradicting that in G1 every node is reachable from x. A similar
argument shows Gk is just y. So H = S(G2, . . . , Gk−1) is MSP or empty.

Lemma 6. TTSP,MSP ⊆ GSP.

Proof. MSP ⊆ GSP follows from the definitions. To show TTSP ⊆ GSP, let G

be TTSP. We will show by a structural induction on G that tr(G) is MSP. If G

is an elementary TTSP, then tr(G) = G is MSP.
If G = STT(G1, G2), then tr(G) = STT(tr(G1), tr(G2)). By the induction

hypothesis, tr(G1), tr(G2) are MSP. Let x be the input of tr(G2). By lemma 5,
tr(G2) − {x} is MSP. So tr(G) = S(tr(G1), tr(G2) − {x}) is MSP.

Suppose G = PTT(G1, G2). Let x be the common input of G1, G2 and y be
the common output. If one of the Gi has only 2 nodes, then tr(G) = tr(G3−i)
is MSP, by the induction hypothesis. Otherwise, tr(G) = PTT(tr(G1), tr(G2)).
By the induction hypothesis and lemma 5, tr(G1) − {x, y}, tr(G2) − {x, y} are
each MSP, and tr(G) = S(x, P (tr(G1) − {x, y}, tr(G2) − {x, y}), y).

Note that a total ordering on 4 nodes is GSP but not VSP, and that

is VSP but not GSP. So VSP is in some sense a competing, different general-
ization of MSP and TTSP than GSP.
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2.2 Decomposability

In the proof of the main theorem 8, given a graph G from some class of graphs,
we will make use of an inductive step that decomposes G into 2 parts G1, G2

based on a labeling of our choice. It is critical to the proof that G1, G2 are both
from the same class of graphs as G is (which favors choosing a large class of
graphs), and that there are not simultaneously edges from the inputs of G1 to
some reasonable notion of the interior of G2 and from some reasonable notion
of the interior of G1 to the outputs of G2 (which favors choosing a small class of
graphs). The purpose of this section is to abstract out these requirements and
make them technically precise.

Let G = (V,E) be a multidag. The neighbors of a set of nodes V ′ ⊆ V in
G is NG(V ′) = {v ∈ V | ∃u ∈ V ′ (u, v) ∈ E ∨ (v, u) ∈ E}. Given a labeling l,
i ∈ N, j ∈ {1, 2}, define

I l,i = {v ∈ V | l(v) = i} V l,i
j = I l,i

j ∪ NG(I l,i
j )

I l,i
1

= {v ∈ V | l(v) < i} El,i
1

= E ∩ I l,i
1

× V l,i
1

I l,i
2

= {v ∈ V | l(v) > i} El,i
2

= E ∩ V l,i
2

× I l,i
2

Gl,i
j = (V l,i

j , El,i
j ).

Expressions like E ∩ A × B are to be interpreted as those edges in E with
endpoints in A × B - the multiplicity of the edge comes from E.

A class C of multidags is decomposable iff ∀G ∈ C ∃ a normal labeling l of
G s.t. ∀i ∈ N, j ∈ {1, 2}, we have

Gl,i
j ∈ C and (3)

E ∩ input(G) × (I l,i
2

− output(G)) = ∅

∨E ∩ (I l,i
1

− input(G)) × output(G) = ∅,
(4)

in which case we say l decomposes G.

Lemma 7. VSP is decomposable.

Proof. Let G = (V,E) ∈ VSP have normal labeling l satisfying (2) and let

i ∈ N. We will show that Gl,i
1

∈ VSP (that Gl,i
2

∈ VSP is symmetric). Let

D = max{l(a) | a ∈ V }. Let l1 be l|V l,i
1

but with each a ∈ input(Gl,i
1

) relabeled

0 and each a ∈ output(Gl,i
1

) − input(Gl,i
1

) relabeled D. Then l1 is normal.

If l1 violates (2) for Gl,i
1

, then ∃(a, b), (c, d) ∈ El,i
1

s.t. l1(a) < l1(c) < l1(b) <
l1(d) and at least one x ∈ {a, b, c, d} has l(x) += l1(x). x /∈ {a, c} since if

x ∈ input(Gl,i
1

), then x ∈ input(G) and so l(x) = 0 = l1(x). It cannot be the
case that l, l1 disagree on both b, d since then both would assign b, d to D. So
we must have that l, l1 agree on a, b, c; and d ∈ output(Gl,i

1
) − output(G); and

l(b) ≥ l(d). So l(d) ≥ i, otherwise, d would not be an output of Gl,i
1

. But then

l(b) ≥ l(d) ≥ i, which implies that b ∈ output(Gl,i
1

)− input(Gl,i
1

), which implies
that l1(b) = D ≥ l1(d), a contradiction.

This shows (3). (4) is somewhat more obvious.
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A careful analysis of the proof above shows that we can actually make the
definition of VSP a little looser, forbidding only edges (a, b), (c, d) with l(a)+1 <
l(c) + 1 < l(b) < l(d).

3 Main theorem

Let C be a class of multidags, G ∈ C. An ioG path p is a path in G from some
a ∈ input(G) to some b ∈ output(G). We let |p| be the number of edges in p.
Define

RC(n, m) = {G = (V,E) ∈ C | ∀E′ ⊆ E, |E′| ≤ n

∃ioG path p in (V,E − E′) s.t. |p| ≥ m}

SC(n, m) = min{|E| | ∃G = (V,E) ∈ RC(n, m)}.

Theorem 8. Let C be a decomposable class of multidags. ∃c > 0 ∀m ≥ 1, n ≥ 0,
if SC(n, m) exists, then

SC(n, m) ≥ cn lg m.

Proof. For G = (V,E) ∈ C, define the interior edges of G as

interior(G) = E − E ∩ (input(G) × V ∪ V × output(G)).

It suffices to lower bound

S′

C(n, m) = min{|interior(G)| | G ∈ RC(n, m)},

since SC(n, m) ≥ S′

C(n, m). We work with S′

C since it will be slightly easier to
formulate a recursive lower bound for S′

C than for SC . We will show by induction
on m that ∀m ≥ 4 where m is a power of 2, if it exists, S′

C(n, m) ≥ cn lg m.
For m ≥ 3, if it exists, S′

C(n, m) ≥ n + m − 2. If we choose c ≤ 1

3
, then for

m ∈ [3, 8], if it exists, S′

C(n, m) ≥ n + m − 2 ≥ cn lg m. Suppose m ≥ 8.
Let G = (V,E) ∈ RC(n, m), |interior(G)| = S′

C(n, m), and let l : V → N be
a normal labeling of G with maximum label d. Let

i = min{i ∈ N | Gl,i
1

∈ RC

(n

2
,
m

2

)

}.

Since m ≥ 1, Gl,0
1

is empty and Gl,0
1

/∈ RC(n
2
, m

2
). Also Gl,d

1
= G ∈ RC(n, m) ⊆

RC(n
2
, m

2
). So 1 ≤ i ≤ d. For j ∈ {1, 2}, define

I = I l,i Vj = V l,i
j

Ij = I l,i
j Ej = El,i

j

Gj = Gl,i
j .

Lemma 9. G1 ∈ RC(n
2
, m

2
) − RC(n

2
, m

2
+ 1).
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Proof. G1 ∈ RC(n
2
, m

2
) by definition. Suppose indirectly that G1 ∈ RC(n

2
, m

2
+

1). We claim Gl,i−1

1
∈ RC(n

2
, m

2
). Let E′ ⊆ El,i−1

1
, |E′| ≤ n

2
. Then ∃ ioG1

path
p in (V1, E1 −E′) s.t. |p| ≥ m

2
+ 1. Let v0, . . . , vk be the sequence of nodes in p.

Since m ≥ 1, k ≥ 2 and vk−2 ∈ I l,i−1

1
. So all of p except possibly the last edge

is in Gl,i−1

1
. Let p′ be p restricted to Gl,i−1

1
. If p′ = p then p is an io

G
l,i−1

1

path.

Otherwise, l(vk−1) = i − 1 and so vk−1 ∈ output(Gl,i−1

1
). So Gl,i−1

1
∈ R(n

2
, m

2
),

contradicting the minimality of i.

Lemma 10. For m even, G2 ∈ RC(n
2
, m

2
).

Proof. By lemma 9, ∃E′ ⊆ E1, |E
′| ≤ n

2
s.t.

¬∃ioG1
path p in (V1, E1 − E′) s.t. |p| ≥

m

2
+ 1. (5)

Let E′′ ⊆ E2, |E
′′| ≤ n

2
. We want to show that ∃ ioG2

path of size ≥ m
2

in
(V2, E2 −E′′). ∃ ioG path p in (V,E − (E′ ∪E′′)) with node sequence v0, . . . , vk

where k ≥ m.
Let q1 = max{q | vq ∈ V1}. i ≥ 1 implies v0 ∈ I1, which implies q1 ≥ 1. Note

that v0, . . . , vq1
is a path in G1. So (5) implies that q1 < k. The maximality of

q1 implies that vq1
/∈ I1. So l(vq1

) ≥ i and vq1
∈ output(G1). So v0, . . . , vq1

is
an ioG1

path. (5) implies that q1 < m
2

+ 1, which implies q1 ≤ m
2

. (n.b. this is
the only place where we use that m is even.)

Let q2 = min{q | vq ∈ V2}. We claim that i < d. Otherwise, G1 = G ∈
RC(n, m) ⊆ RC(n

2
, m

2
+1), contradicting lemma 9. i < d implies vk ∈ I2, which

implies q2 < k. Note that vq2
, . . . , vk is a path in G2. If q2 = 0, then we are

done, since then p is an ioG2
path. So suppose q2 ≥ 1. The minimality of q2

implies vq2
/∈ I2. So l(vq2

) ≤ i and vq2
∈ input(G2). l(vq2

) ≤ i ≤ l(vq1
) implies

q2 ≤ q1. So vq2
, . . . , vk is an ioG2

path of size k − q2 ≥ k − q1 ≥ m
2

.

Let

F = E∩
(

(I1 − input(G)) × I

∪(I1 − input(G)) × (I2 − output(G))

∪I × (I2 − output(G))
)

.

Suppose |F | < n
4
. Also suppose E ∩ input(G) × (I2 − output(G)) = ∅.

We claim that G1 ∈ RC( 3n
4

,m). To see this, let E′ ⊆ E1, |E
′| ≤ 3n

4
. ∃

an ioG path p in (V,E − (E′ ∪ F )) s.t. |p| ≥ m. Since m ≥ 3, p does not
go from input(G) directly to I directly to output(G), it must use a node in
I1 − input(G) or I2 − output(G). But there is no path in (V,E − (E′ ∪ F ))
from input(G) to I2 − output(G). So p uses a node from I1 − input(G), which
implies p does not use any node from I. So the penultimate node in p is in I1

and we conclude that p is in G1. So G1 ∈ RC( 3n
4

,m), contradicting lemma 9.
So E ∩ input(G) × (I2 − output(G)) += ∅.

By (4), we have E ∩ (I1 − input(G)) × output(G) = ∅. A similar argument
as above shows that G2 ∈ RC( 3n

4
,m).
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Lemma 11. ∀m ≥ 3, n ≥ 0, k ∈ [0, n], if it exists,

S′

C(n, m) ≥ S′

C(n − k,m) + k.

Proof. Let G = (V,E) ∈ RC(n, m). m ≥ 3 implies that |interior(E)| ≥ n.
Remove E′ ⊆ interior(E) where |E′| = k from G to get G′ ∈ RC(n− k,m).

Using lemma 11, we have

S′

C(n, m) = |interior(G)|

≥ |interior(G1)| + |interior(G2)| + |F |

≥ S′

C

(n

2
,
m

2

)

+ S′

C

(3n

4
,m

)

≥ 2S′

C

(n

2
,
m

2

)

+
n

4
.

If |F | ≥ n

4
, then

S′

C(n, m) = |interior(G)|

≥ |interior(G1)| + |interior(G2)| + |F |

≥ 2S′

C

(n

2
,
m

2

)

+
n

4
.

Either way, S′

C
(n, m) ≥ 2S′

C
(n

2
, m

2
)+n

4
. Solving this recurrence gives SC(n, m) ≥

S′

C
(n, m) ≥ cn lg m for some c > 0. If m is not a power of 2, let m′ be the

largest power of 2 smaller than m. Then SC(n, m) ≥ SC(n, m′) ≥ cn lg m′ ≥
1

2
cn lg m.

4 Thanks

This note is a result of discussions with Mohan Paturi and Leslie Valiant, whom
I thank.
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