
The Orbit problem is in the GapL Hierarchy

V. Arvind1 and T. C. Vijayaraghavan2

1 The Institute of Mathematical Sciences, Chennai 600 113, India
2 Chennai Mathematical Institute, SIPCOT IT Park Padur PO, Siruseri 603103 India

Abstract. The Orbit problem is defined as follows: Given a matrix A ∈

Qn×n and vectors x,y ∈ Qn, does there exist a non-negative integer
i such that Aix = y. This problem was shown to be in deterministic
polynomial time by Kannan and Lipton in [7]. In this paper we place
the problem in the logspace counting hierarchy GapLH. We also show
that the problem is hard for C=L with respect to logspace many-one
reductions.

1 Introduction

The Orbit problem is defined as follows.

Given A ∈ Qn×n and x,y ∈ Qn, does there exist a non-negative integer
i such that Aix = y.

The goal of this paper is to give a new upper bound for the complexity of the
orbit problem using logspace counting classes. We show that the orbit problem
is in AC0(GapL), and hence is in NC2 as AC0(GapL) ⊆ TC1 ⊆ NC2.

In a celebrated paper, Kannan and Lipton in [7] gave a polynomial time
algorithm for the orbit problem. Their approach is to reduce it to the Matrix
power problem. In the matrix power problem, we are given two matrices B, D ∈
Qn×n as input and we need to check if there exists a non-negative integer i such
that Bi = D. Kannan and Lipton further show that (B, D) is a yes instance
of the matrix power problem if and only if Bi = q(B) for some nonnegative
integer i, where q(x) ∈ Q[x] is a polynomial that depends on B and D and its
coefficients can be computed in polynomial time. Here the degree of q(x) is one
less than the degree of the minimal polynomial of B. The rest of the algorithm
in [7] focuses on checking if there is an i ∈ Z+ satisfying Bi = q(B). Assume
that we have computed the polynomial q(x), and let α be an eigenvalue of B.
Now, if there exists i ∈ Z+ such that Bi = q(B) then αi = q(α). The algorithm
in [7] uses this fact repeatedly while considering different cases: when q(x) has a
root that is not a root of unity, or when all roots of q(x) are roots of unity with
multiplicity 1, or the case when all the roots of q(x) are roots of unity but with
at least one root of multiplicity greater than 1. Kannan and Lipton design their
algorithm based on this case analysis.

In this paper, we broadly follow the Kannan-Lipton algorithm [7], but differ-
ently analyze the complexity of the main steps involved in it. As a consequence,

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 52 (2008)

ISSN 1433-8092

we modify several subroutines in the algorithm. Since these steps basically re-
quire linear algebraic computation over Q, we obtain an upper bound in the
GapL hierarchy. Some of the steps involve checking if a set of vectors are linearly
independent over Q, computing the determinant of a matrix over Q, computing
the inverse of a matrix, computing powers and the minimal polynomial of a ra-
tional matrix etc. We crucially use earlier work [1, 5, 6] classifying the complexity
of various linear-algebraic problems using logspace counting classes. Among the
new observations, we show that testing if all roots of a univariate polynomial
over Q are complex roots of unity is in AC0(GapL). Furthermore, if all roots of
a polynomial are complex roots of unity we can factorize p(x) into its irreducible
factors in AC0(GapL).

Finally, we show that the orbit problem is hard for C=L with respect to
logspace many-one reductions.

2 Basic Results

In this section we recall basic definitions, notation, and results.

Definition 1. A complex number θ is a nth root of unity if θn−1 = 0. Further-
more, θ is a primitive nth root of unity if θ is a nth root of unity and θm−1 6= 0
for all integers 0 < m < n.

Clearly, an nth root of unity is of the form e(2π
√
−1)j/n for 0 ≤ j ≤ (n−1). Also,

e(2π
√
−1)j/n is a primitive nth root of unity if and only if gcd(j, n) = 1.

Let ϕ(j) denote the Euler totient function: the number of positive integers
less than and relatively prime to j.

Definition 2. Let θ1, . . . , θϕ(j) be primitive jth roots of unity. Then, the jth

cyclotomic polynomial is defined as Cj(x) =
∏ϕ(j)

i=1 (x − θi).

It is well-known that Cj(x) is irreducible over Q and hence it must divide
any polynomial h(x) ∈ Q[x] that has as root one of the primitive nth roots of
unity.

Proposition 1. Let h(x) ∈ Q[x]. If h(θ) = 0 for a primitive nth root of unity θ
then h(θ′) = 0 for every other primitive nth root of unity θ′.

We recall the definition of logspace counting classes such as GapL and C=L
from [2]. Many of the problems to follow are shown to be in the GapL hierarchy.
We refer to [2] for more details.

Definition 3. We define GapLH1 to be GapL. For i ≥ 1, let GapLHi+1 be the
class of all functions f : Σ∗ → Z, such that for some logspace-bounded non-
deterministic oracle Turing machine M with a function g ∈ GapLHi as oracle,
we have f(x) = accM (x) − rejM (x). We denote the GapL hierarchy by GapLH.
Here we assume the Ruzzo-Simon-Tompa oracle access mechanism as given in
[2].

Definition 4. We say that a language L ∈ AC0(GapL) if there exists a logspace
uniform AC0 oracle circuit family {Cn}n≥1 with oracle gates computing a func-
tion g ∈ GapL, such that on any input x of length n, we have Cn(x) = 1 if and
only if x ∈ L.

Theorem 1. [2] GapLH = AC0(GapL).

We assume that each rational entry of an input matrix A ∈ Qn×m is given in
terms of its numerator and denominator. Also, we will assume that an algorithm
computing det(A) for a rational matrix A ∈ Qn×n will output two integers p
and q such that det(A) = p/q. Furthermore, we will not require that p and q be
relatively prime, that is gcd(p, q) need not be 1. This assumption is necessary
because computing the GCD of two integers is not known to be in NC. This
representation of rationals does not affect our algorithm so long as the size in
binary of the two integers p and q is bounded by a polynomial in the size of
the input. We will make a similar assumption for other computations involving
rational inputs. We now recall the following results concerning rational matrices.
These are usually stated for integer matrices.

Lemma 1. Let A ∈ Qn×m be the given input rational matrix. Then,

1. [2, 3, 8–10] When n = m, computing the determinant of A denoted by det(A),
computing the (i, j)th entry of A−1, and computing the (i, j)th entry of Al

for a given positive integer l are complete for GapL under logspace many-one
reductions.

2. [1]Checking if the set of column vectors of A are linearly dependent is com-
plete for C=L under logspace many-one reductions.

3. [1] Let b ∈ Qn be an n-dimensional rational vector. Then, determining if the
system of linear equations Ax = b has a rational vector x as a solution is

complete for LC=L under logspace truth-table reductions.
4. Computing a maximal set of linearly independent columns from A is in

FLC=L.
5. [5] Given B ∈ Qn×n, we can compute the coefficients of the minimal poly-

nomial of B in AC0(GapL).

Proof. Let A ∈ Qn×m be the given input rational matrix. Let Aij = pij/qij ,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Also, we can assume the size of each pij and
qij is at most max(m, n). Let q be the product of all the denominators of the
entries in A. It follows from [4] that, for any positive integer n, we can compute
the ith bit of the product of n integers, each of size n, using an NC1 circuit and
therefore we can compute q which is a product of nm integers in NC1 as well.
Let us consider the matrix (qA), obtained by multiplying each entry of A by
q. Clearly (qA) is an integer matrix and A = (qA)/q. In problems involving an
additional vector b, we multiply q with the denominators of the entries occurring
in b to reduce the problem to the case when the inputs are integer matrices. In
all these cases, the size of q as well as entries of (qA) and (qb) are bounded by
a polynomial in the size of the input, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus we

can compute the ith bit of any entry of these matrices in logspace. The results
stated above then follow by applying known complexity bounds (proven in the
references appearing in the Theorem statement) on linear algebraic problems
involving integer matrices to (qA), and (qb).

The next lemma shows that a solution to a feasible system of linear equations
over rationals can be computed in the GapL hierarchy.

Lemma 2. Let A ∈ Qm×n and b ∈ Qn. If the system of linear equations Ax = b

is feasible, then a solution to it can be computed in AC0(GapL).

Proof. First, we can compute a maximal linearly independent set of columns of

A with an FLGapL computation as follows: for each index i such that 2 ≤ i ≤ n
we check if the ith column Ai of A is linearly independent of the first (i − 1)
columns {A1, A2, . . . , Ai−1}. If so, we output the index i. Let S ⊆ [n] denote
the set of indexes output, and let A′ denote the matrix formed by these linearly
independent columns. It is easy to note that Ax = b is feasible if and only if
A′z = b is feasible, where z is an n − |S| dimension vector of indeterminates.
Furthermore, given a solution z for A′z = b we can extend it to a solution x

of Ax = b by setting xi = 0 for i 6∈ S. Since the columns of A′ are linearly
independent, the solution z, if it exists, is unique. In order to compute z, we

perform another FLGapL computation in which we output a maximal linearly
independent set of rows of A′ (using the same method as above). Let T ⊆ [m]
denote the set of |S| row indexes output, and let B denote the corresponding
|S| × |S| matrix. Furthermore, let b′ denote the corresponding |S|-dimensional
subvector of b picked out by index set T . Clearly, A′z = b if and only if Bz = b

′

for any vector z. Finally, since B is invertible we can compute B−1 using an

LGapL computation to obtain the solution vector z = B−1b
′. The solution

computed above can then be extended to obtain a solution for the input system
Ax = b. Since the number of levels of oracle calls involved while these steps are
composed remains a constant (at the most bounded by 5), we get the required
AC0(GapL) upper bound.

We also need the following result of [6] to compute the GCD of two polyno-
mials over Q.

Lemma 3. [6] Given polynomials f(x), g(x) ∈ Q[x] as input their GCD can be

computed in the complexity class PL, which is contained in LGapL.

3 Kannan-Lipton algorithm

We now proceed to show that the orbit problem is in GapLH, and hence in
AC0(GapL). We first describe the main steps in Kannan-Lipton algorithm [7]
for the orbit problem. They first reduce the orbit problem to the Matrix Power
problem: Given B, D ∈ Qn×n does there exists a non-negative integer i such that
Bi = D.

We next describe the reduction. Let (A,x,y) be an instance of the orbit
problem. Let V ⊆ Qn denote the subspace spanned by {x, Ax, A2x, . . . , An−1x}.
Clearly V is k-dimensional for the largest k such that {x, Ax, A2x, . . . , Ak−1x}
are linearly independent, and a basis for V is this set {x, Ax, A2x, . . . , Ak−1x}.

We can compute this basis in AC0(GapL): with an LGapL computation we can
first compute Ajx for 1 ≤ j ≤ n − 1. The output of this machine is taken

as input for another LGapL computation that finds the largest k such that
{x, Ax, A2x, . . . , Ak−1x} is linearly independent.

The subspace V is A-invariant. That is, x ∈ V if and only if Aix ∈ V for
each i ≥ 0. Consequently, (A,x,y) is a ’yes’ instance for the orbit problem only

if y ∈ V . We can check if y ∈ V in LGapL. If y 6∈ V then the reduction outputs
the pair (On, In) of the matrix power problem, where On is the n × n zero
matrix and In is the identity matrix. Therefore, in the sequel we can assume
that dim(V) = k and y ∈ V . Let

Akx =
k−1∑

j=0

αjA
jx, x =

k−1∑

j=0

βjA
jx, y =

k−1∑

j=0

γjA
jx.

Notice that β0 = 1 and βj = 0 for all j > 0. We can compute the scalars

αj , βj , γj in LGapL by solving each of the above three systems of linear equations
using Cramér’s rule.

The k × k matrix for the linear transformation A from V to V has ej+1,
where 1 ≤ j ≤ k − 1, as its first k − 1 columns and (α0, . . . , αk−1)

T as the
last column.3 Call this matrix A′. Likewise, let x′ = (β0, . . . , βk−1)

T and y′ =
(γ0, . . . , γk−1)

T . Clearly, (A′,x′,y′) is a yes instance of the orbit problem if and
only if (A,x,y) is a yes instance. This is because A′,x′,y′ are essentially A, x,
and y expressed using the basis x, Ax, . . . , Ak−1x of V . Now, let C denote the
k × k invertible matrix [x′|A′x′| · · · |A′k−1x′]. Similarly, let C′ denote the k × k
matrix [y′|A′y′| · · · |A′k−1y′]. Then, there exists an i ≥ 0 such that A′ix′ = y′ if
and only if A′iC = C′, which we can rewrite as A′i = C′C−1 as C is invertible.
Thus, (A′, C′C−1) is the instance of the matrix power problem to which we have
reduced (A,x,y). We formally state this as a lemma.

Lemma 4. The orbit problem can be reduced to the matrix power problem in
AC0(GapL).

Proof. The correctness of the reduction follows from the above argument. To see

that it is computable in AC0(GapL), we note that a set of LGapL computations
need to be carried out that involves a nesting of at most two levels of GapL
queries.

We now turn to the matrix power problem. Let B, D ∈ Qn×n be an input
instance. Following [7] we further reduce it to a more tractable problem.

3 Here the vectors ej+1 denote the standard basis vectors of Rk.

Lemma 5. Given B, D ∈ Qn×n, we can compute in AC0(GapL) a polynomial
q(x) ∈ Q[x] of degree at most n− 1 such that there exists a non-negative integer
i satisfying Bi = D if and only if Bi = q(B).

Proof. Let p(x) be the minimal polynomial of B (computable in AC0(GapL)
[5]). We have p(B) = 0 and deg(p(x)) = r ≤ n. If there exists an i ≥ 0 such
that Bi = D, then we show that there is a polynomial q(x) of degree at most
n − 1 such that D = q(B). We divide xi by p(x) and take the remainder as the
polynomial q(x). Thus, q(x) ≡ xi(mod p(x)), and deg(q(x)) ≤ (deg(p(x))− 1) ≤
(n − 1). Therefore, (B, D) is a yes instance of the matrix power problem only
if such a polynomial q(x) exists. We can test this and compute the coefficients
of q(x) by solving the following system of n2 linear equations over n variables:∑(r−1)

j=0 qjB
j = D where the unknowns are the coefficients qj of the polynomial

q(x). Given B and D as input, an LGapL computation will first compute Bj for

1 ≤ j ≤ n− 1 and pass it as input to another LGapL computation to check the
feasibility of the above system and find a solution q(x) using Lemma 2. Thus,
the polynomial q(x) can be computed in AC0(GapL). Clearly, Bi = q(B) if and
only if Bi = D.

As mentioned previously, the overall reduction from the orbit problem in-
volves composing computations, each of which is in some constant level of the
GapL hierarchy. Since we will do only a constant number of such compositions
the overall computation is still in a constant level of the GapL hierarchy. Con-
tinuing with the proof, as a consequence of Lemma 4 and Lemma 5, we obtain
the following.

Corollary 1. Given an instance A ∈ Qn×n and x,y ∈ Qn of the orbit problem,
for some m ≤ n we can compute a matrix B ∈ Qm×m and a polynomial q(x) ∈
Q[x] of degree at most (m−1) in AC0(GapL), such that Aix = y for some i ≥ 0
if and only if Bi = q(B).

The following easy lemma is a useful property for the next step.

Lemma 6. Suppose p(x) ∈ Q[x] is the minimal polynomial of matrix B ∈ Qn×n.
For any two polynomials r(x), q(x) ∈ Q[x] we have r(B) = q(B) if and only if
r(x) = q(x)(mod p(x)).

In particular, it follows that Bi = q(B) for some i ≥ 0 if and only if xi =
q(x)(mod p(x)). As a consequence of Corollary 1 and Lemma 6, it suffices to solve
in AC0(GapL) the problem of checking if xi = q(x)(mod p(x)) for some i ≥ 0,
where p(x) is the minimal polynomial of the matrix B. Given polynomials p, q ∈
Q[x], where p is a monic, the goal is to test in AC0(GapL) if xi = q(x)(mod p(x))
for some i ≥ 0. Following [7], we need to handle different cases depending on the
roots of p(x). A crucial property is a bound from algebraic number theory [7,
Theorem 3]. For a polynomial f ∈ Q[x] let |f | denote the `2 norm of the vector
of its coefficients.

Theorem 2. [7, Theorem 3] There is a polynomial P such that for any algebraic
number α ∈ C that is not a root of unity and any polynomial q(x) ∈ Q[x], if
αi = q(α) for i ∈ Z+ then i ≤ P (deg(fα), log(|fα|), log(|q|)), where fα ∈ Q[x] is
the minimal polynomial of α.

Thus, if the given polynomial p(x) has a root α that is not a root of unity then,
by Theorem 2, we can test if there is an i such that xi = q(x)(mod p(x)) by trying
the polynomially many values of i in the range i ≤ P (deg(fα), log(|fα|), log(|q|)).
Since fα is an irreducible factor of p(x), we know that |fα| is polynomially
bounded by |p|. Hence the range of values for i is indeed polynomially bounded
by the input size. Indeed, since this test involves only division of polynomials,
using the result of [4, Corollary 6.5] it can be carried out in logspace.

We now consider the case when all the roots of p(x) are complex roots of
unity. We use key properties of the cyclotomic polynomial Cj(x). First we show
that Cj(x) can be computed in AC0(GapL) by an algorithm that takes j in
unary as input.

Lemma 7. Given 1j as input the jth cyclotomic polynomial Cj(x) can be com-
puted in AC0(GapL).

Proof. The jth cyclotomic polynomial Cj(x) =
∏ϕ(j)

r=1 (x − ωr) where the ωr are
the ϕ(j) different primitive jth roots of unity and Cj(x) is an irreducible factor
of xj − 1.

We first define the polynomial tj(x) =
∏j−1

i=1 (xi − 1). The polynomial tj is
of degree j(j − 1)/2 with rational coefficients. We can also compute the coeffi-
cients of this polynomial in logspace by substituting a large power of 2 for the
indeterminate x and extracting the bits of the coefficients from the resulting
value. Furthermore, it is clear that bj(x) = gcd(tj(x), xj − 1) contains as roots
precisely all non-primitive jth roots of unity. Therefore, it follows that Cj(x) is
the quotient obtained on dividing xj − 1 by bj(x). Given the coefficients of tj(x)
we can apply Lemma 3 to compute gcd(tj(x), xj − 1) in AC0(GapL). Therefore,
the overall computation is clearly in AC0(GapL).

We can easily show that testing if all roots of p(x) are complex roots of unity is
in AC0(GapL).

Lemma 8. Given p(x) ∈ Q[x] as input we can test in AC0(GapL) if all roots of
p(x) are complex roots of unity, and if so we can factorize p(x) into its irreducible
factors in AC0(GapL).

Proof. Let deg(p(x)) = d. We first compute Cj(x), 1 ≤ j ≤ d using Lemma 7.
Next, since division of polynomials with rational coefficients can be carried out
in logspace using [4, Corollary 6.5], we can find the highest power of Cj(x) that
divides p(x) in logspace. Putting it together will give us all the irreducible factors
of p(x), with multiplicity, from the set Cj(x), 1 ≤ j ≤ d.

After applying Lemma 8 we will know whether p(x) has a root that is not
a root of unity (in which case we can use the easy logspace algorithm based on

Theorem 2). Thus, we now consider only the case when p(x) =
∏d

j=1 Cj(x)kj ,
where kj ≥ 0. An easy and useful lemma is the following.

Lemma 9. Let q(x) be an arbitrary polynomial and let Cj(x) be the jth cy-
clotomic polynomial. The congruence x` ≡ q(x) (mod Cj(x)) holds for some
nonnegative integer ` if and only if it holds for some unique ` in the range
0 ≤ ` ≤ (j − 1).

Proof. Since Cj(x) divides xj − 1, it follows that x` ≡ q(x) (mod Cj(x)) implies
x` (mod j) ≡ q(x) (mod Cj(x)).

Using the above result we first handle the case when kj ∈ {0, 1} in p(x) =∏d
j=1 Cj(x)kj .

Lemma 10. If p(x) =
∏d

j=1 Cj(x)kj for kj ∈ {0, 1}, then the problem of testing

for a given polynomial q(x) ∈ Q[x] if xi ≡ q(x) (mod p(x)) for some positive
integer i, is in AC0(GapL).

Proof. By the Chinese remainder theorem, it suffices to check if there is a positive
integer i such that xi ≡ q(x) (mod Cj(x)) for every Cj such that kj = 1. By
Lemma 9 there is an i ≥ 0 such that xi ≡ q(x) (mod Cj(x)) if and only if there
is an ij ∈ {0, 1, · · · , j − 1} such that xij ≡ q(x) (mod Cj(x)). Notice that such
an ij , if it exists, has to be unique. If for some Cj such that kj = 1 no such ij
exists we reject the input. Otherwise, we would have computed ij for each Cj

with kj = 1. We only need to check if there exists a positive integer i such that

i ≡ ij(mod j) (1)

for all j such that kj = 1. We cannot directly apply the chinese remainder the-
orem to check this congruence as the different j’s need not be relatively prime.
However, since each such j is bounded by d, it follows that j has logarithmically
many bits. Hence we can compute the prime factorization for each j such that
kj = 1 in deterministic logspace. Let p1, p2, . . . , pk denote the set of all prime
factors of any j ≤ d. Clearly, each pi is logarithmic in size and k is also logarith-
mic in the input size. Then we can rewrite the congruences in Equation 1 above
as

i ≡ ij(mod p
rj,`

`), (2)

where 1 ≤ ` ≤ k and j such that kj = 1 and j =
∏

p
rj,`

` . Now, for each prime p`

above we club together all congruences of the type i ≡ ij (mod p
rj,`

`) for all the
j’s. Let j′ be a value of j for which rj′,` is maximum. Then, a necessary condition
that Equation 2 has a solution for i is that ij = ij′ (mod p

rj,`

`) for all j which
we can check in logspace. Having checked this condition we can replace all the
congruences in Equation 2 by the single congruence i ≡ ij′(mod p

rj′,`

`). Thus,
for each p` we will have a single congruence and we can now invoke the chinese
remainder theorem to check in logspace if there is a solution for Equation 1.

It now remains to handle the case when for some j, the exponent kj of Cj(x)
is at least 2 in the factorization of p(x).

Lemma 11. Given q(x) ∈ Q[x] and a cyclotomic polynomial Cj(x), we can
compute in deterministic logspace a set Sq(x),j of positive integers such that
|Sq(x),j | is polynomially bounded in log |q| and j, with the property that xi ≡
q(x)(mod Cj(x)2) can have solutions only for i ∈ Sq(x),j.

Proof. Suppose xi ≡ q(x)(mod Cj(x)2). Then we have xi − q(x) = r(x)Cj (x)2.
Taking the formal derivative on both sides we obtain ixi−1−q′(x) = 2Cj(x)r(x)+
r′(x)Cj(x)2, implying that ixi−1− q′(x) ≡ 0 (mod Cj(x)), where q′(x) and r′(x)
are the derivatives of q(x) and r(x) respectively. Let P` denote the polynomial
x` (mod Cj(x)) for 0 ≤ ` ≤ j − 1. Notice that each P` is of degree at most
ϕ(j) − 1. Furthermore, let q′1(x) = q′(x) (mod Cj(x)). Thus, i is a candidate
solution only if for some ` we have iP` = q′1(x). We define the set Sq(x),j = {s |

s =
q′

1
(x)

P`
for some `}. Clearly, |Sq(x),j | ≤ j and can be computed in deterministic

logspace.

We obtain the following corollary which limits the search space for the index i
to such a set Sq(x),j.

Corollary 2. Suppose p(x) =
∏d

j=1 Cj(x)kj such that kj′ ≥ 2 for some j′. Then

xi ≡ q(x) (mod p(x)) for some i if and only if xi ≡ q(x) (mod p(x)) for some
i ∈ Sq(x),j′ .

The rest of the algorithm is as follows: we need to check if there is an i ∈
Sq(x),j′ such that for each kj > 0 we have xi ≡ q(x) (mod Cj(x)kj). Such an
i is a solution. Notice that we cannot directly check this by division because
i ∈ Sq(x),j′ may be an integer that is polynomially many bits long. Thus we need

to devise a different test for checking if xi ≡ q(x) (mod Cj(x)kj) for a given i.
This is described in our final lemma that will also complete the upper bound
description.

Lemma 12. Given as input a polynomial q(x) ∈ Q[x], and integer i (encoded in
binary), a cyclotomic polynomial Cj(x) and an integer k, where k and j are en-
coded in unary, we can test in deterministic logspace if xi ≡ q(x) (mod Cj(x)k).

Proof. Let ω denote a primitive jth root of unity. Since Cj(x) is irreducible it
follows that Cj(x)k divides xi − q(x) if and only if (x − ω)k divides xi − q(x).
That means ω is a root of multiplicity k for f(x) = xi − q(x). Equivalently, we
need to check if ω is a root of the `th formal derivative f (`)(x) of the polynomial
f(x) for each 0 ≤ ` ≤ k−1. Notice that f (`)(x) assumes the form i(i−1) · · · (i−
`)xi−` − q(`)(x). Computing the coefficient i(i − 1) · · · (i − `) is iterated integer
multiplication that can be done in deterministic logspace. Furthermore, the `th

derivative of the polynomial can be done term by term, which will also involve
a similar iterated integer multiplication for each term and it can be done in
deterministic logspace. Now, checking if ω is a root of f (`)(x) is equivalent to

checking if Cj(x) divides f (`)(x), again by the irreducibility of Cj(x). But f (`)(x)
has the nice form i(i−1) · · · (i− `)xi−`− q(`)(x) which is easy to divide by Cj(x)
as we can replace the exponent i − ` in the first term by (i − `) (mod j). This
completes the proof.

We now show that the orbit problem is hard for C=L under logspace many-
one reductions.

Theorem 3. Orbit problem is hard for C=L under logspace many-one reduc-
tions.

Proof. Given a directed graph G = (V, E), and vertices u, v ∈ V , the problem
of checking is there is a directed path from u to v is NL-complete. In fact, this
problem remains NL-complete for input graphs that are layered, directed, and
acyclic, with u being in the first layer and the vertex v in the last layer. By a
layered digraph we mean for each edge (s, t) ∈ E in the graph if s is in layer i,
then t is in layer (i+1). The counting version of this problem: namely, counting
the number of directed u-v paths is thus #L complete under logspace many-one
reductions. Furthermore, verifying if the number of directed u-v paths is a given
nonnegative integer m is C=L-complete under logspace many-one reductions.
We now show a logspace many-one reduction from the above problem to the
orbit problem.

Given a input layered digraph G as mentioned above, let the vertex u be
indexed by 1, and vertex v be indexed by n. We then add a self-loop onto the
vertex n in G, and denote the resulting graph by G′. Let A be the adjacency
matrix of G′, with vertex set V = {1, 2, · · · , n}. We now check if the number of
paths from 1 to n is m. Let the number of layers in G be `+1. For every directed
path from u to v in G, we have a directed walk from 1 to n in G′ of length `.
Clearly, A is an n× n matrix with 0-1 entries, where rows and columns indexed
by V . For k ∈ Z+, the (i, j)th entry of Ak is the number of walks from vertex i
to vertex j in G. Since G is acyclic, all walks are directed paths. Define vectors
x = (0, . . . , 0, 1)T ∈ Qn×1, and y = (m, 0, . . . , 0)T ∈ Qn×1. Since n is the unique
node on the (` + 1)st layer, the number of directed paths in G from 1 to n is m
if and only if A`x = y. More precisely, there is some i ∈ Z+ such that Aix = y

if and only if there are exactly m directed paths in G from 1 to n.

4 Concluding remarks

The main open question here is to reduce the AC0(GapL) upper bound shown
above. Some other interesting questions also arise. In Lemma 8 we have shown
that factoring uni-variate polynomials whose roots are all complex roots of unity
is in AC0(GapL). Using the LLL algorithm, all uni-variate polynomials over Q

can be factored in polynomial time. To the best of our knowledge, there is no
known P-hardness result for polynomial factorization. It would be interesting to
either obtain a better complexity upper bound or show P-hardness.

Acknowledgments. Preliminary version of this paper appeared in COCOON
’08. We thank the anonymous referees of COCOON ’08 for their thoughtful
comments.

References

1. Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity of matrix rank
and feasible systems of linear equations. Computational Complexity, 8(2):99–126,
1999.

2. Eric Allender and Mitsunori Ogihara. Relationships among PL, #L and the deter-
minant. RAIRO - Theoretical Informatics and Applications, 30:1–21, 1996.

3. Carsten Damm. DET=L#L. Informatik-Preprint 8, Fachbereich Informatik der
Humboldt-Universitat zu Berlin, 1991.

4. William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-
depth threshold circuits for division and iterated multiplication. Journal of Com-

puter and System Sciences, 65(4):695–716, 2002.
5. Thanh Minh Hoang and Thomas Thierauf. The complexity of the characteristic and

the minimal polynomial. Theoretical Computer Science, 295(1-3):205–222, 2003.
6. Thanh Minh Hoang and Thomas Thierauf. The complexity of the inertia and some

closure properties of gapl. In Proceedings of 20th IEEE Conference on Computa-

tional Complexity, pages 28–37, 2005.
7. Ravi Kannan and Richard Lipton. Polynomial-time algorithm for the orbit problem.

Journal of the ACM, 33(4):808–821, 1986.
8. Seinosuke Toda. Counting problems computationally equivalent to computing the

determinant. Technical report 91-07, Department of Computer Science, University
of Electro-Communications, Tokyo, Japan, 1991.

9. Leslie G. Valiant. Why is boolean complexity theory difficult? In Proceedings of

the London Mathematical Society symposium on Boolean function complexity, pages
84–94, New York, NY, USA, 1992. Cambridge University Press.

10. V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In CCC ’91: Proceedings of 6th Structure in Complexity Theory Conference,
pages 270–284, 1991.

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

