
A Generic Time Hierarchy for Semantic Models

With One Bit of Advice

Dieter van Melkebeek∗ Konstantin Pervyshev†

September 14, 2005

Abstract

We show that for any reasonable semantic model of computation and for any positive integer
a and rationals 1 ≤ c < d, there exists a language computable in time nd with a bits of advice but
not in time nc with a bits of advice. A semantic model is one for which there exists a computable
enumeration that contains all machines in the model but may also contain others. We call such
a model reasonable if it has an efficient universal machine that can be complemented within the
model in exponential time and if it is efficiently closed under deterministic transducers.

Our result implies the first such hierarchy theorem for randomized machines with zero-sided
error, quantum machines with one- or zero-sided error, unambiguous machines, symmetric alter-
nation, Arthur-Merlin games of any signature, interactive proof protocols with one or multiple
provers, etc. Our argument yields considerably simpler proofs of known hierarchy theorems with
one bit of advice for randomized or quantum machines with two-sided error and randomized
machines with one-sided error.

Our paradigm also allows us to derive stronger separation results in a unified way. For models
that have an efficient universal machine that can be simulated deterministically in exponential
time and that are efficiently closed under randomized reductions with two-sided error, we estab-
lish the following: For any constants a and c, there exists a language computable in polynomial
time with one bit of advice but not in time nc with a logn bits of advice. In particular, we obtain
such separation for randomized and quantum machines with two-sided error. For randomized
machines with one-sided error, we get that for any constants a and c there exists a language
computable in polynomial time with one bit of advice but not in time nc with a(log n)1/c bits
of advice.

1 Introduction

Hierarchy theorems address one of the most fundamental questions in computational complexity:
Can we decide more languages on a certain model of computation when given a bit more of a
certain resource? In fact, a time hierarchy for deterministic Turing machines constitutes the main
technical contribution in the paper by Hartmanis and Stearns [HS65] that founded the field. Later
on, Cook [Coo73], Seiferas, Fischer and Meyer [SFM78], and Žàk[Ž83] established time hierarchies
for nondeterministic Turing machines. Their techniques apply to virtually any syntactic model of

∗Department of Computer Sciences, University of Wisconsin - Madison. Email: dieter@cs.wisc.edu. Partially
supported by NSF Career award CCR-0133693.

†Department of Mathematics and Mechanics, St. Petersburg State University. Email:
pervyshev@logic.pdmi.ras.ru.

1

Electronic Colloquium on Computational Complexity, Report No. 111 (2005)

ISSN 1433-8092

interest, i.e., one for which there exists a computable enumeration of exactly the machines in the
model.

Several models we care about are not syntactic, though. Examples include randomized or quan-
tum machines with two-, one-, or zero-sided error, unambiguous machines, symmetric alternation,
Arthur-Merlin games of any signature, interactive proof protocols with one or multiple provers,
etc. Each of these models has a computable enumeration that contains all machines of the model
but may also contain other machines. For example, we can computably enumerate all randomized
machines; the enumeration contains all randomized machines with two-sided error but also contains
machines that violate the promise of bounded error. We dub models with such an enumeration as
semantic. See Section 4.1 for more on nomenclature.

To date, no hierarchy is known for any non-syntactic model – assuming one interprets “a bit
more time” as implying “at most a polynomial amount more time.” In particular, it remains open
whether for every constant c there exists a language that can be solved on randomized machines
with two-sided error in polynomial time but not in time nc.

In 2002, Barak [Bar02] used instance checkers for exponential-time complete languages to prove
the latter statement in a slightly nonuniform version of the model, namely a model in which the
machines get a(n) bits of advice for some function a(n) = O(log log n). In other words, he estab-
lished the result for randomized machines with two-sided error whose descriptions can depend on
the input length n in such a way that the size of the variable part is bounded by a(n). Subsequently,
several authors tried to get as close as possible to the desired uniform result and managed to reduce
the amount of advice to a single bit [FS04, GST04]. Barak’s argument also applies to quantum
machines with two-sided error but not to any of the other semantic models on our list. Roughly
speaking, due to the use of instance checkers, the model has to be closed in an efficient way under
randomized reductions with two-sided error for the proof to carry through.

More recently, Fortnow, Santhanam, and Trevisan [FST05] gave a specific argument for ran-
domized machines with one-sided error and one bit of advice. They also developed an approach
that works for all of the above models but needs considerably more advice: They obtain a hierarchy
theorem for any reasonable semantic model of computation with a(n) bits of advice where a(n) is
some function in O(log n · log log n).

As our main result, we manage to get the best of both worlds and thereby improve both lines
of research.

Theorem 1 For any reasonable semantic model of computation and any constants a and c, there

exists a language computable in polynomial time with one bit of advice but not in time nc with a
bits of advice.

As a corollary to Theorem 1, we obtain the following hierarchy with a bits of advice for any constant
a ≥ 1.

Theorem 2 For any reasonable semantic model of computation and any positive integer a and

rationals 1 ≤ c < d, there exists a language computable in time nd with a bits of advice but not in

time nc with a bits of advice.

We refer to Section 4.2 for a precise definition of “reasonable” but all of the specific models listed
above fall under the notion.

We use the technique of delayed diagonalization adapted to the setting of computations with
advice. Our approach differs from Barak’s as well as the one by Fortnow et al. Like the latter

2

but unlike the former, our proof relativizes. Since instance checkers are the sole culprit of nonrela-
tivization in Barak’s argument, our proof shows that that component is not critical for obtaining
a time hierarchy for randomized machines with two-sided error and one bit of advice. Apart from
yielding stronger results and being more widely applicable, our approach also provides consider-
ably simpler proofs for all the hierarchy theorems with one bit of advice that were known before
[FS04, GST04, FST05]. We think that our argument constitutes the “book” proof for a generic
time hierarchy with one bit of advice. We refer to Section 2 for a more detailed comparison of
techniques.

As is clear from the statement of Theorem 1, the proof of our main result actually yields more
than a hierarchy theorem because we can accommodate up to a bits of advice for any constant a
at the smaller time bound while still only needing a single bit of advice at the larger time bound.
Barak’s argument goes further along that road and handles up to a log n instead of a bits of advice
but only for a more restrictive subclass of semantic models. We show how to match Barak’s bound
of a log n using our approach.

Theorem 3 For any reasonable randomized semantic model of computation that is efficiently closed

under randomized reductions with two-sided error, and any constants a and c, there exists a language

computable in polynomial time with one bit of advice but not in time nc with a log n bits of advice.

We refer to Section 5.2 for a full specification of the models to which Theorem 3 applies; the list
includes randomized and quantum machines with two-sided error. Our proof of Theorem 3 uses
instance checkers again but in a different way than Barak and for a more limited purpose. Thus,
we further relegate the use of instance checkers in this context.

Theorem 3 does not seem to apply to randomized machines with one-sided error. For that
specific model, Fortnow et al.’s argument1 yields a somewhat weaker separation theorem, namely
for a(log n)1/c bits of advice instead of a log n bits at the smaller time bound of nc. We show how
to obtain that result using our approach, too.

Theorem 4 For any constants a and c there exists a language computable by randomized machines

with one-sided error in polynomial time with one bit of advice but not in time nc with a(log n)1/c

bits of advice.

Thus, the paradigm we present offers a unified way for deriving new as well as all known separation
results within non-syntactic models of computation.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the
arguments that have been used for deriving hierarchy theorems in the past. Section 3 describes
the intuition behind our constructions and develops them in an informal way. Section 4 contains
the formal presentation of our generic hierarchy theorem, and Section 5 does the same for our
separation theorems. Finally, in Section 6, we present some possible directions for further research.

2 Previous Work

In this section, we survey the arguments that have been used in hierarchy theorems and that
exhibit a close relationship to ours. We focus on techniques and qualitative improvements rather

1Fortnow et al. [FST05] actually only prove the result for (log n)1/2c bits of advice but a small modification of
their argument works up to a(log n)1/c bits of advice at the smaller time bound of n

c.

3

than quantitative ones. Readers who would like to skip to Section 3 for a description of our
constructions can do so without loss of continuity.

For their seminal hierarchy theorem, Hartmanis and Stearns [HS65] used a diagonalization
technique rooted in Cantor’s proof that the reals are not countable. They assume the model of
computation has a computable enumeration of machines and a universal machine U . They pick
an infinite sequence of inputs x1, x2, . . ., and use xi to diagonalize against the ith machine Mi of
the enumeration by running the universal machine on 〈Mi, xi, 0

t〉, where t denotes the allotted
amount of time, and doing the opposite. This approach results in a time hierarchy for essentially
any syntactic model with an efficient universal machine for which “doing the opposite” is easy.

We don’t know whether “doing the opposite” is easy in models like nondeterministic machines.
We can run a deterministic simulation and complement the result but that involves an exponential
slowdown. Cook [Coo73] was the first to get around the need for easy complementation. His proof
works by contradiction and goes as follows.

Assume the hierarchy theorem for nondeterministic machines fails. Then for every polynomial-
time nondeterministic machine there exists an equivalent nondeterministic machine that runs in
time nc for some fixed c. Applying this speedup O(log n) times in a uniform way (exploiting the
existence of a universal machine) shows that even every exponential-time nondeterministic machine
has an equivalent nondeterministic machine that runs in time nc. We can simulate the latter
nondeterministic machine on a deterministic one in time 2nc

. On the other hand, deterministic
machines are also nondeterministic machines. Thus, we obtain a simulation of every exponential-
time deterministic machine by another deterministic machine that runs in time 2nc

– a contradiction
with the time hierarchy for deterministic machines.

Seiferas et al. [SFM78] use a more direct argument and explicitly construct a language L that
witnesses the nondeterministic time hierarchy for a given constant c. They start from any com-
putable language L′ that cannot be decided by nondeterministic machines in time nc+1, e.g., a
complete language for double exponential time. They define L as the language accepted by the
nondeterministic machine M that acts as follows on strings of the form 〈x, i, 0k〉. Let M ′ denote a
fixed deterministic machine that decides L′. If k is larger than the running time of M ′ on x, then
M outputs the result of that computation. Otherwise, M uses the universal machine to simulate
Mi on input 〈x, i, 0k+1〉 for nc steps. M runs in polynomial time but the language L it defines
cannot be accepted by nondeterministic machines that run in time nc. Indeed, suppose that Mi

were such a machine. For small k, we have that Mi(〈x, i, 0
k〉) = M(〈x, i, 0k〉) = Mi(〈x, i, 0

k+1〉),
and for large k that Mi(〈x, i, 0

k〉) = M(〈x, i, 0k〉) = M ′(x). It follows that M ′(x) = Mi(〈x, i, ε〉)
for each x. Since Mi runs in time nc, this contradicts the fact that the language L′ decided by M ′

cannot be accepted by a nondeterministic machine in time nc+1.
Žàk’s argument [Ž83] is similar but replaces the use of a difficult language L′ by delayed di-

agonalization. Essentially, on inputs of the form 〈x, i, 0k〉, the role of M ′ is taken over by the
complement of the deterministic simulation of Mi for nc steps. The rest of the argument is analo-
gous: Suppose that Mi runs in nc steps and is equivalent to M , and let k be the first large value (for
the given i). We have on the one hand that Mi(〈x, i, 0

k〉) = Mi(〈x, i, 0
k−1〉) = . . . = Mi(〈x, i, ε〉)

and on the other hand that Mi(〈x, i, 0
k〉) = ¬Mi(〈x, i, ε〉). Thus, Mi is not equivalent to M or

takes more than nc steps.
As a side note, we point out that it suffices for the machine M in Žàk’s construction to act

as described on some input x, say x = ε, whereas Seiferas et al. in principle need the behavior
on every x. Thus, Žàk’s argument naturally leads to a unary language L that can be accepted by

4

nondeterministic machines in polynomial time but not in time nc.
The constructions by Cook, Seiferas et al., and Žàk work for any syntactic model that has an

efficient universal machine and is efficiently closed under deterministic transducers. For Cook’s
argument, we also need the existence of deterministic simulations that incur a non-exorbitant
slowdown; exponential overhead as in the case of nondeterministic machines is fine. This essentially
corresponds to what we mean by a “reasonable” syntactic model of computation. See Section 4.2
for the formal definitions.

Unfortunately, none of these techniques seem to extend to semantic models because they all
involve simulations of arbitrary machines of the enumeration. For example, in the case of random-
ized machines with two-sided error, simulating a randomized machine Mi on an input on which Mi

accepts with probability 50% would take M outside of the model because its error probability is
not bounded away from 50%.

Instance checkers are tools that enable us to refrain from making errors. Recall that an instance
checker for a language L′ is a polynomial-time randomized oracle machine C that can output 0,
1, or “I don’t know” on any input x such that the following properties hold: (i) CL′

(x) outputs
L′(x) with probability 1, and (ii) for any oracle P , CP (x) outputs ¬L′(x) with exponentially small
probability. Barak [Bar02] had the insight that an instance checker for a language L ′ in exponential
time yields a randomized machine M ′ with two-sided error that decides L′ and has a running time
that is optimal up to a polynomial factor. The machine M ′ acts as follows: For k = 1, 2, . . . and for
i = 1, . . . , k, run CMi for k steps and halt as soon as one of the runs of the instance checker comes
to a 0/1 conclusion; then output that conclusion. Let t(n) denote the worst-case high-confidence
running time of M ′ on inputs of length n. The properties of the instance checker imply that (a)
t(n) is exponentially bounded, (b) M ′ decides L′ with exponentially small two-sided error, and (c)
for some positive constant α, no machine Mi can do the same in (t(n))α steps. The details of the
argument are not relevant for us but the intuition for the optimality property (c) is that M ′ would
start running the instance checker with oracle Mi as soon as k ≥ i; if Mi were to decide L′ with
high confidence within (t(n))α steps for some sufficiently small positive constant α, then M ′ would
halt with high confidence within fewer than t(n) steps.

If L′ is complete for exponential time and t(n) is polynomially bounded then we can efficiently
transform every exponential-time deterministic machine into an equivalent polynomial-time ran-
domized machine with two-sided error. We can trivially transform a polynomial-time randomized
machine into an equivalent exponential-time deterministic machine. The desired hierarchy theorem
for randomized machines with two-sided error (at the polynomial-time level) then follows from the
hierarchy theorem for deterministic machines (at the exponential-time level).

If t(n) is not polynomially bounded then for any constant c there are infinitely many input
lengths n such that (t(n))α/4c ≥ n + 1. Suppose we could efficiently compute a value t∗(n) such
that (t(n))α/4c < t∗(n) ≤ (t(n))α/2c. Then padding strings of length n in L′ to length t∗(n) would
yield a language L = {x10t∗(|x|)−|x|−1 |x ∈ L′ and t∗(|x|) ≥ |x| + 1} computable by randomized
machines with two-sided error in polynomial time but not in time nc. We chose the range for

t∗(n) such that there exists a (unique) value of the form t∗(n) = 22τ∗(n)
in that range with τ ∗(n)

integer. Computing τ ∗(n) may be difficult but its value can be specified using log log t∗(n) bits.
Therefore, L can be decided by a randomized machine M with two-sided error in polynomial time
with a(n) = log log n bits of advice but not by such machines in time nc without advice.

This isn’t a fair time hierarchy theorem yet – for that, the time nc machines should be allowed
the same amount of advice as M . We can satisfy that requirement by tweaking the construction

5

of the machine M ′ such that it runs each of the machines Mi with every possible advice string
of length log log k. In fact, we can accommodate up to a log k bits of advice for the Mi’s for any
constant a. Both the case where t(n) is polynomially bounded (now needing a hierarchy theorem
for deterministic machines with advice) and the other case carry through.

Moreover, once the advice for the witnessing machine M is under log n bits, we can apply a
translation technique and obtain a hierarchy theorem with a single bit of advice. This involves
another level of padding to encode the a(n) < log n bits of the original advice for M in the padding
length and using the one bit of new advice to indicate whether the padding length is valid. See
[FS04, GST04] for the details. This way, we obtain a language which randomized machines with
two-sided error can decide in polynomial time and one bit of advice but not in time nc and a log n
bits of advice. The same strong separation holds for any reasonable semantic model of computation
with the additional property of being efficiently closed under randomized reductions with two-sided
error. We refer to Section 5.2 for the formal definitions.

Semantic classes with one-sided error typically do not exhibit the latter additional closure prop-
erty. For the specific model of randomized machines with one-sided error, Fortnow et al. [FST05]
use a modification of the above two-case approach to derive a somewhat weaker separation re-
sult, namely with a(log n)1/c instead of a log n bits of advice at the smaller time bound of nc.
See Theorem 4 and the footnote on page 3 for the precise statement. Instead of an exponential-
time complete language L′ and Barak’s optimal algorithm based on instance checkers, Fortnow
et al. consider an NP-complete language L and Levin’s optimal algorithm based on searching for
NP-witnesses [Lev73]. The more restrictive advice bound of a(log n)1/c is dictated by the separa-
tion result for nondeterministic machines with advice, which is needed for the case where t(n) is
polynomially bounded.

For their actual hierarchy theorem (where the length of the advice is the same for both time
bounds considered), Fortnow et al. manage to eliminate the need for additional model requirements
but they can only do so for some advice function in O(log n · log log n). Their approach can be
viewed as running Cook’s argument with advice. The log n term in the advice bound comes from
the O(log n) levels in Cook’s argument. The log log n term per level comes from a padding argument
similar to Barak’s.

Using a different strategy, we manage to get the advice down to a single bit. In fact, we obtain
a hierarchy theorem with a bits of advice for any reasonable semantic model and any constant
a ≥ 1. We view our approach as extending Žàk’s delayed diagonalization argument to machines
with a bits of advice. A similar extension of Seiferas et al.’s argument leads to the same result but
the proof becomes more complicated [Per05].

3 Intuition and Informal Derivation

In this section, we first sketch the construction of our generic hierarchy theorem with a constant
number of bits of advice, and then the argument for our separation theorems. The formal proofs
will be given in Sections 4 and 5, respectively.

3.1 Hierarchy Theorem

Consider a semantic model of computation with enumeration M1,M2, We assume that there
exists some underlying notion of “promise” which allows us to tell whether Mi with advice sequence

6

α = α0, α1, α2, . . ., satisfies the promise on a given input x. Whether the latter is the case only
depends on the behavior on input x; in particular, it is determined by Mi and the component α|x|

of the advice sequence α. We use the notation Mi/α to denote Mi with advice sequence α, and
Mi//αn to denote Mi with advice αn at a fixed length n. Mi/α falls within the model iff Mi//αn

satisfies the promise at every length n.
Let us try to use straightforward diagonalization to establish a hierarchy theorem with a ≥ 0

bits of advice. For a given constant c ≥ 1, we would like to construct a machine M and an advice
sequence α of modulus a (i.e., |αn| = a for each length n), such that M/α falls within the model,
takes not much more than nc time, and disagrees with each Mi/β for each advice sequence β of
modulus a for which Mi/β falls within the model and runs in time nc.

With each Mi we associate a length ni and distinct strings xi,b of length ni for each value of
b ∈ {0, 1}a. If Mi//b satisfies the promise on xi,b and runs in time nc

i , we would like to have M/α
do the opposite of Mi//b on that input. Assuming the existence of an efficient universal machine
U , we would set

M/α (xi,b) = ¬U(〈Mi//b, xi,b, 0
nc

i 〉). (1)

There are two problems with this approach. First, complementation may not be easy within the
model. Second, even if complementation is easy, the simulation (1) may violate the promise. Recall
that M/α has to satisfy the promise everywhere, whereas Mi//b (run for nc

i steps) may violate the
promise on input xi,b for some values of b. Of course, there is no need to diagonalize in the case
where b does not work for Mi on input xi,b, i.e., if Mi//b does not satisfy the promise on xi,b or
takes more than nc

i time. In that case, M/α can do something trivial, e.g., reject irrespective of the
input. However, figuring out whether b works for Mi on input xi,b may not be easy. We could tell
M for each value of b whether b works for Mi on xi,b but that would require 2a > a bits of advice
for Mi at length ni. In fact, with 2a bits of advice we could tell M explicitly how to behave like
(1) on the 2a strings xi,b.

By adapting the technique of delayed diagonalization, we can cut the advice M needs to a
single bit, implying a hierarchy theorem for any constant a ≥ 1. Delayed diagonalization consists
of a slow complementation executed at a larger input length n∗

i and a process to copy down the
complementary behavior to length ni. We will use a slow but safe simulation of ¬U and exploit
the freedom the copying process offers to link the behavior on various input lengths and — in some
sense — spread the 2a bits of advice needed at some length n′ over different smaller lengths n. By
a safe simulation of ¬U we mean a machine S which always satisfies the promise and agrees with
¬U on input x whenever U satisfies the promise on x. M may not have enough time to run S
on 〈Mi//b, xi,b, 0

nc
i 〉 at length ni but it certainly does at a sufficiently larger length n∗

i , typically
n∗i = 2nc

i . We then set up M and α on lengths between ni and n∗i in such a way that if Mi/β
satisfies the promise, runs in time nc, and agrees with M/α for some advice sequence β of modulus
a, then M/α “copies” its behavior at length n∗

i down to certain smaller and smaller lengths. If we
can reach length n = ni, we have the following contradiction for b = βn:

Mi/β (xi,b) = M/α (xi,b) = S(〈Mi//b, xi,b, 0
nc
〉) = ¬U(〈Mi//b, xi,b, 0

nc
〉) = ¬Mi/β (xi,b). (2)

Thus, we succeeded in diagonalizing against Mi/β for any advice sequence β of modulus a. Due
to the spreading, for a given Mi and b, we actually need strings xi,b = xi,b,n of many comparable
but different lengths n in order to guarantee that we can reach at least one of those lengths again
while copying down.

7

The copying process capitalizes on M ’s ability to spend polynomially more time than the nc

steps Mi is allotted. This allows M to simulate Mi on polynomially larger inputs. Consider length
n′ = n∗i and each possible value of b ∈ {0, 1}a. We say that b works for Mi at length n′ if b works
for Mi on all inputs of length n′, i.e., Mi//b satisfies the promise on all inputs of length n′ and runs
in time (n′)c. In that case, we pick some smaller but polynomially related length n and allow M/α
on inputs x of length n to run Mi//b on the input 0n′−nx of length n′. As a result, we have that

(∀x ∈ {0, 1}n) M/α (x) = Mi//b (0n′−nx).

We say that M/α at length n copies Mi//b at length n′. If b does not work for Mi at length n′, we
let M/α act trivially at length n′. We use different lengths n for different values of b in such a way
that b and n′ are efficiently recoverable from n. Thus, M only needs a single bit of advice αn at
each length n, namely whether or not b works for Mi at length n′.

We then recursively apply the process to all 2a lengths n we introduced, each time fixing the
behavior of M/α at new lengths n. Provided we do not run out of lengths, we reach a point where
the lengths n become so small that S(〈Mi//b, x, 0

nc
〉) runs in time polynomial in n∗

i for strings x
of length n. At that point, the copying process bottoms out and we try to diagonalize as indicated
above: For each b ∈ {0, 1}a, we pick a different string xi,b,n of length n, e.g., xi,b,n = 10n−a−1b, and
define

M/α (0n∗
i −nxi,b,n) = S(〈Mi//b, xi,b,n, 0

nc
〉). (3)

The pattern 1(0 + 1)∗ for the strings xi,b,n ensures the compatibility of (3) for different lengths n.
On strings of length n∗

i that are not of the form 0∗xi,b,n, M/α acts trivially. If we make sure that
n∗i and the bottom-out lengths n are efficiently recognizable, M does not need any advice at length
n∗i .

One can think of the copying process as constructing a tree from the root n∗
i to the leaves. Each

copying step creates 2a siblings that are connected to their parent n′ through an edge labeled with
a corresponding value of b ∈ {0, 1}a. The process associates a unique length to each non-root node
and determines the behavior of M/α at that length by specifying the corresponding advice bit. It
leaves the behavior at the root length n∗

i free to be used for the diagonalization.
Now, suppose that for some advice sequence β of modulus a, Mi/β falls within the model, runs

in time nc, and agrees with M/α. Consider the path from the root n∗
i to a leaf n obtained by

selecting at every non-leaf node n′ the edge labeled βn′ . For each edge on that path, its label works
for Mi at the parent node n′ so M/α at the child node n copies Mi/β at the parent node n′. Since
M/α and Mi/β agree, this means that the behavior of M/α is copied down along that path and
that M/α at length n copies M/α at length n∗

i . However, (3) then leads to the contradiction (2)
for b = βn and xi,b = xi,βn,n.

To finish the argument, we need to argue that we have enough lengths n available to execute
the above process. We can assign subsequent lengths from left to right to any given level of the
copying tree, with gaps between the intervals used for adjacent levels. Let ni denote the start of
the first interval and ki denote the number of intervals, i.e., the number of levels of the tree. The
jump from the start of any interval to the start of the next one can be an arbitrary but fixed
polynomial, say from n to nd. Assuming the safe simulation S runs in exponential time, we need
Θ(log ni/ log d) such jumps to go from ni to n∗i so we set ki = Θ(log ni/ log d). The first interval
forms the bottleneck for the embedding because it is the largest one and the gap that is available

for it is smallest. The first interval contains aki−1 = n
Θ(log a/ log d)
i elements, which fit within the

8

ni

2
ki−1

n∗

i

Ii,ki
Ii,ki−1Ii,ki−2Ii,1

Ii

Mi//0

Mi//1

Mi//0

Mi//1

Mi//0

Mi//1

Figure 1: Construction of M on Ii for a = 1 in Theorem 1. An arrow from length n to length n′

labeled Mi//b denotes that M//1 at length n copies Mi//b at length n′.

gap between ni and nd
i provided d is a sufficiently large. Thus, we can accommodate all intervals

without overlap. We refer to the formal proof in Section 4.3 for a more detailed calculation.
Figure 1 illustrates the process for a = 1. In that case, the tree is binary; interval Ii,j in the

figure contains the 2ki−j nodes at depth ki − j of the copying tree, 1 ≤ j ≤ ki.
We managed to let M/α diagonalize against Mi/β for any β of modulus a. We did so by

specifying the behavior of M/α on some lengths n in the interval Ii = [ni, n
∗
i], while always making

sure that M/α satisfies the promise and runs in some fixed polynomial amount of time. To handle
all machines Mi in one construction, we use disjoint intervals Ii for different machines Mi and let
M/α act trivially on those lengths n we do not use during the process.

The above technique applies to any semantic model that has an efficient universal machine
which can be complemented within the model in exponential time, and that is efficiently closed
under deterministic transducers. Taking these properties as the definition for a reasonable semantic
model, we obtain Theorem 1. Theorem 2 follows from Theorem 1 by a standard padding argument.
We refer to Section 4 for the details.

Before moving on to our stronger separation results, let us point out the intuitive role the one
bit of advice for M plays: It allows us to prevent M/α from simulating machines Mi/β on inputs
where they do not satisfy the promise – a critical issue in semantic non-syntactic models.

3.2 Separation Theorems

The above approach only works for bounded modulus a(n). For unbounded modulus a(n), the
number of leaves of the copying tree becomes super-polynomial in the largest length ` associated
to a leaf, which is incompatible with the requirement that each leaf maps to a unique length. Even
if we are willing to give M a(n) bits of advice at length n, the issue remains.

We get around the problem by restricting the behavior of M/α in such a way that it can be
safely recovered at length n′ from any list of machines at least one of which works appropriately at
length n′. By the latter we mean: satisfying the promise at length n′, running in time (n′)c, and
agreeing with M/α at length n′. We can then modify the process for copying from length n′ to
length n as follows. At length n, M/α gets as advice whether there exists a string b ∈ {0, 1}a(n′)

such that Mi//b works appropriately at length n′. In case the advice bit is set, on an input x
of length n, M/α runs the above recovery procedure for M/α on input 0n′−nx using the list of
machines Mi//b for each b ∈ {0, 1}a(n′); as a result, M/α at length n copies M/α at length n′.

9

Otherwise, M/α acts trivially at length n.
Notice that there no longer is a need for multiple lengths n to map to the same length n ′. The

copying tree becomes a line with root at length n∗
i and a unique leaf at length ni. There also no

longer is a need to make large (polynomially bounded) jumps from n to n′. We needed those in
Section 3.1 just to ensure enough space for embedding the intervals. Since the intervals are now of
length 1, we could set n′ = n + 1. Since there is only one leaf, the structure of the copying tree
on its own does not impose any limitations on the size of the modulus. As the recovery procedure
needs to consider Mi//b for each possible b ∈ {0, 1}a(n′), a(n′) has to be logarithmically bounded
for M/α to run in polynomial time. Therefore, logarithmic moduli are the best one can hope for
using this approach.

Safe recovery is only possible in some settings. We know of two basic mechanisms, namely
instance checking and membership proof recovery. Both severely restrict the behavior of M/α and
take away the freedom to define M/α at length n∗

i so as to complement Mi//b at length ni. Thus,
for each mechanism we need new strategies to diagonalize. The models of computation also need
to have the necessary closure properties to accommodate the recovery process based on instance
checkers or membership proofs, respectively.

We use an instance checker to copy down EXP-complete behavior and then exploit that to
diagonalize assuming the model allows complementation in EXP. We develop this approach in
Section 3.2.1. It works up to the limit of logarithmic modulus.

We use membership proofs to copy down NP-complete behavior. Assuming the model allows an
efficient simulation in NP, we obtain an efficient safe simulation which we then use to simplify the
construction from Section 3.1. We develop this approach in Section 3.2.2. It works up to modulus
Θ((log n)1/c).

3.2.1 Copying using instance checking

Recall that an instance checker for a language L is a polynomial-time randomized oracle machine
C that can output 0, 1, or “I don’t know” on any input x such that the following properties hold:
(i) CL(x) outputs L(x) with probability 1, and (ii) for any oracle P , CP (x) outputs ¬L(x) with
exponentially small probability. There exist instance checkers for certain paddable exponential-
time complete languages L that only make queries of length f · n on inputs of length n for some
constant f ≥ 1. For ease of exposition, we assume in this section that f = 1. The formal proof in
Section 5.3 shows how to eliminate that assumption.

The key for safe recovery of L is roughly the following computation: For each possible advice
string b of length a(n), run the instance checker C with the oracle defined by nc computation
steps of Mi//b at length n; halt as soon as one of these runs produces a 0/1 conclusion and then
output that conclusion. Provided the model of computation is closed under randomized reductions
with two-sided error, the properties of the instance checker guarantee that this computation works
appropriately as long as there exists at least one advice string b for whichMi//b works appropriately.

Let us be a bit more precise. Let ni,j, 1 ≤ j ≤ ki, denote the lengths associated to the nodes
of the copying line, where ni,1 = ni and ni,ki

= n∗i . On input 0n∗
i −nix, where x is a string of length

ni, M runs a fixed deterministic exponential-time algorithm for L on input x. For any 1 ≤ j < ki,
M//1 acts as follows on inputs of the form 0ni,j−nix where x is a string of length ni: For each advice
string b of length a(ni,j+1), run the instance checker C on input x answering each query y by taking
the majority vote of a linear number of independent runs of U(〈Mi//b, 0

ni,j+1−niy, 0(ni,j+1)c
〉); halt

as soon as one of these computations yields a 0/1 conclusion and then output that conclusion.

10

M//1 acts trivially on other inputs of length ni,j, as does M//0 on all inputs.
We say that Mi//b works appropriately at length n if b works for Mi at that length and L at

length ni is a copy of Mi//b at length n, i.e., for each string x of length ni, Mi//b (0ni,j−nix) = L(x).
We set αni,j for 1 ≤ j < ki to indicate whether there exists a string b of length a(ni,j+1) such that
Mi//b works appropriately at length ni,j+1. If so, we know that L at length ni is a copy of M/α at
length ni,j.

If the copying process succeeds, we have that αni = 1 and therefore M/α agrees with the
exponential-time complete language L at length ni. We exploit this fact to accomplish the desired
diagonalization as follows. We introduce a new length ñi smaller than ni. For any string b of
length a(ñi), consider the complement of the deterministic simulation of U(〈Mi//b, 0

ñi−a(ñi)b, 0ñc
i 〉).

Assuming that computation runs in deterministic exponential time, we can compute in polynomial
time a string zi,b such that L(zi,b) = ¬U(〈Mi//b, 0

ñi−a(ñi)b, 0ñc
i 〉). Using the paddability of L, we

can set up things such that the length of zi,b equals ni.
M//1 on input 0ñi−a(ñi)b then runs M//1 on input zi,b. Like before, M//1 acts trivially on other

strings of length ñi, as does M//0 on all strings. We set αñi to indicate whether M//1 agrees with
L on inputs of length ni.

Now, suppose there exists an advice sequence β of modulus a(n) such that Mi/β falls within the
model, runs in time nc, and agrees with M/α. Then the copying process is guaranteed to succeed
and we obtain a contradiction similar to (2): For b = βñi and xi,b = 0ñi−a(ñi)b,

Mi/β(xi,b) = M/α (xi,b) = M/α (zi,b) = L(zi,b) = ¬U(〈Mi//b, xi,b, 0
ñc

i 〉) = ¬Mi/β (xi,b).

Note that M/α at length n runs the instance checker C at most 2a(n′) times, where n′ = nO(1).
It follows that M/α runs in polynomial time as long as a(n′) ≤ a log n′ for some constant a and the
model is efficiently closed under randomized reductions with two-sided error. This approach works
for any reasonable randomized semantic model with the latter closure property, thus establishing
Theorem 3.

Let us end the informal treatment by reiterating the role of the instance checkers in our con-
struction: They provide us an advice efficient way to realize the desired copying by M while always
satisfying the promise. We want the copying to happen as soon as there exists at least one advice
string b for which Mi//b behaves appropriately at length n′. Before, M needed a separate bit of
advice for each possible advice string b, namely to indicate whether Mi//b behaves appropriately
at length n′. Now, we can handle all possibilities for b at once using a single bit of advice for
M , namely whether there exists at least one choice of b for which Mi//b behaves appropriately at
length n′.

3.2.2 Copying using membership proof recovery

Consider a language L that has membership proofs and for which the search for a membership proof
at length n reduces to L at length n. Satisfiability is an example of such a language L. The crux for
the safe recovery of L is the following computation: For each possible string b of length a(n), run
the reduction using the oracle defined by nc computation steps of Mi//b at length n; verify those
candidate membership proofs and accept iff at least one of them is valid. Models like randomized
machines with one-sided error allow the efficient simulation of the above process. Provided the
model has the latter closure property, we can develop a copying process with one bit of advice in a

similar way as in Section 3.2.1. It uses a sequence of lengths from mi to m∗
i = 2m

O(1)
i with jumps

bounded by some fixed polynomial, and allows us to assume that M//1 decides L at length mi.

11

∏j=ki

j=2 2
a(ni,j)

Mi//0

Mi//0

Mi//0

Mi//0

Mi//1

Mi//1

Mi//1

Mi//1

Mi//0

Mi//1

Mi//0

Mi//1

Mi//0

Mi//1

ni = ni,1 ni,2 ni,ki−1 n∗

i = ni,ki

Figure 2: Partial construction of M on Ii for a(n) = 1 in Theorem 3. Each box contains 2 distinct
strings, one corresponding two each value in {0, 1}a(ni). An arrow from boxes at length n to boxes
at length n′ labeled Mi//b denotes that M//1 copies Mi//b on the corresponding inputs.

Now, assume that our model of computation has a universal machine U that can be mimicked
by a nondeterministic polynomial-time machine N . This is the case, for example, for the model of
randomized machines with one-sided error: For a randomized machine Mi, string x, and integer
t ≥ 0, we can let N(〈Mi, x, 0

t〉) check whether there exists a random string that makes Mi accept
input x in t steps; whenever Mi satisfies the promise on input x and runs in t steps, N(〈Mi, x, 0

t〉) =
Mi(x). Suppose also that L is paddable and NP-complete, as satisfiability is. Then, for some length
m̃i polynomially related to mi, there exists an efficient translation of queries to U of length m̃i into
queries to L of length mi. Since we can assume that M//1 satisfies the promise at length mi, runs
in polynomial time, and agrees with L at length mi, we obtain an efficient safe simulation T of U
at length mi.

An efficient safe simulation of U can be used as a substitute for U in the construction from
Section 3.1. In that case, there no longer is a need for advice as each advice bit in that construction
indicates whether U satisfies the promise on a certain set of inputs — T satisfies the promise
everywhere! As a consequence, we no longer have to use different lengths for all the nodes of the
copying tree. We still need to assign 2a(`) strings of length ` to each leaf of length ` such that these
strings are distinct for all leaves.

Suppose the length we assign to a node only depends on its depth in the tree. As before, let us
use the notation ni,j to denote the length corresponding to depth ki − j, 1 ≤ j ≤ ki, with ni

.
= ni,1

and n∗i
.
= ni,ki

. The resulting copying process is illustrated for the case a(n) = 1 in Figure 2.
The logarithm of the number of distinct strings of length ni we need can then be expressed as

a(ni) +

ki
∑

j=2

a(ni,j) =

ki
∑

j=1

a(ni,j). (4)

The question is how large we can make a(n) such that (4) does not exceed ni.

12

Ii

ni,jni ni,j+1
ni,ki−1 n

∗

i mi m
∗

i

Figure 3: Full construction of M on Ii in Theorem 3, combining simplified copying nodes (black)
with efficient safe simulation nodes (white). An arrow from length n to length n ′ denotes that
M//1 at length n calls M//1 (above line) or Mi//b (below line) at length n′.

If a computation of nc steps can be complemented within the model in time 2nc
(as in the case

of randomized machines with one-sided error), we have the condition 2nc
i ≤ (n∗i)

O(1) in order to
guarantee that M/α runs in polynomial time at length n∗

i . Since a(n∗i) ≤ ni follows from our upper
bound on (4), we conclude that a(n∗

i) = O((log n∗i)
1/c).

We can actually achieve modulus a(log n)1/c for any constant a. By setting ni,j+1 = nd
i,j,

1 ≤ j < ki, where d is any constant, (4) becomes a linear function in ni with a coefficient that is a
geometric sum

∑ki
j=1 r

j and such that the ratio r converges to 0 when d grows. We refer to (7) in
Section 5.4 for the details of the computation. By picking d large enough, we can bound (4) by ni.

We developed our simplification of the copying process from Section 3.1 assuming free access to
an efficient safe simulation T of U at all the levels we need it. In reality, we have to build T at all
those levels using the recovery procedure. We can apply the recovery as described above to obtain
T at length m̃i ≈ n∗i by building L at length mi. Once we have L at length mi, we can exploit
the paddability properties of L and apply the recovery procedure to obtain L at any smaller length
in Ii except the few lengths that are reserved for the simplified copying process. This effectively
makes T available at all lengths up to n∗

i , which is (more than) what we need for the simplified
copying process. See Figure 3 for an illustration. We refer to Section 5.4 for the remaining details
of the proof of Theorem 4.

4 Hierarchy Theorem

In this section, we establish our generic hierarchy theorem. We introduce the notion of a semantic
model of computation with advice and list the modest properties we need for our hierarchy theorem
to apply. We then formally prove Theorems 1 and 2. We refer to Section 3.1 for the intuition behind
the proofs.

4.1 Semantic Models

Fix an alphabet Σ containing the symbols 0 and 1. We abstractly view a model of computation

as consisting of a set M ⊆ Σ∗ of “machines” (or “programs”), and a partial computable function
γ : Σ∗ × Σ∗ → Σ∗. For any M ∈ M and x ∈ Σ∗, γ(M,x) determines the output of M on input
x (possibly undefined). We also use the shorthand M(x) for γ(M,x). A language L ⊆ Σ∗ is said
to be “accepted” or “decided” by M if M(x) = L(x) for each x ∈ Σ∗, where L(x) denotes the

13

indicator for the property “x ∈ L”, i.e., L(x) = 1 if x ∈ L and L(x) = 0 otherwise.

We assume there is an underlying notion of time. Whenever γ(M,x) is defined, M halts and
produces its output after a finite number of steps, denoted tM (x). We say that M runs in time t
at length n if tM(x) ≤ t for each x ∈ Σn, and that M runs in time t(n) if M runs in time t(n) at
each length n.

We call a model of computation syntactic if M is computably enumerable. We call the model
semantic if there exists a computably enumerable set M′ ⊆ Σ∗ and a predicate π ⊆ Σ∗ × Σ∗ such
that

M = {M ∈ M′ | (∀x ∈ Σ∗)π(M,x)}.

The predicate π can be thought of as a condition on or promise about the behavior of M on input
x. A machine M ∈ M′ has to satisfy the promise on each input x in order to fall within the
computation model M. Note that we could abstract away the predicate π at this point and just
consider the model as defined by M and γ. However, the predicate π will play a critical role once
we introduce advice. We assume the notion of running time extends to every machine M in M ′.

Examples of syntactic models include deterministic, nondeterministic, and randomized ma-
chines, as well as alternating machines of any fixed signature. Every syntactic model is also seman-
tic but not vice versa. For example, randomized machines with two-sided error form a semantic
non-syntactic model M. There does not exist a computable enumeration of M but the model M ′ of
all randomized machines is syntactic and we can obtain M as those machines of M ′ that satisfy the
promise of two-sided error. Other examples of semantic non-syntactic models include randomized
machines with one-sided or zero-sided error, quantum machines with two-, one-, or zero-sided error,
unambiguous machines, symmetric alternation, Arthur-Merlin games of any signature, interactive
proof protocols with one or multiple provers, etc.

We point out that similar formalizations of the intuitive difference between syntactic and se-
mantic computation have been proposed before in the literature [Pap94, FST05]. However, the
earlier attempts all seem to associate these notions with complexity classes rather than models of
computation. For example, BPP (the class of languages decidable by polynomial-time randomized
machines with two-sided error) is considered a semantic non-syntactic class, whereas P is considered
syntactic. This leads to inconsistencies since BPP may coincide with P. Our approach based on
machines rather than languages does not suffer from that pitfall.

An advice sequence α of modulus a(n) is an infinite sequence of strings α0, α1, α2, . . ., one for
each length n, such that |αn| = a(n) for each n. We define the behavior of a machine M ∈ M′ with
advice α, denoted M/α, on a given input x as equal to the behavior of M on input 〈x, α |x|〉, where
〈·, ·〉 denotes a standard pairing function. In particular, M/α satisfies the promise on input x iff
π(M, 〈x, α|x|〉) holds, and M/α(x) = M(〈x, α|x|〉). Whenever we talk about a property of M/α at
length n (like satisfying the promise, running time, etc.), we refer to that property on all inputs
of the form 〈x, αn〉 where x is a string of length n. Note that the behavior of M/α at length n
depends on the component αn but not on the other components of α. We use the shorthand M//αn

to denote that behavior.
We consider M/α to fall within the model iff M ∈ M′ and M/α satisfies the promise at each

length. We point out that, apart from the predicate π, the choice of the encapsulating syntactic
model M′ and the actual advice string α play a role. This differs from the Karp-Lipton notion
of computation with advice [KL82], who essentially only consider those machines M ∈ M ′ that

14

robustly satisfy the promise, i.e., the machines in M. More precisely, M/α falls within their model
iff M/β falls within our model for each advice sequence β of the same modulus as α.

4.2 Reasonable Semantic Models

We now introduce the additional requirements a semantic model of computation has to satisfy for
our hierarchy theorem to apply. The first one deals with the existence of an efficient universal
machine.

Definition 1 A universal machine is a machine U ∈ M′ such that for each M ∈ M′, x ∈ Σ∗, and

t ≥ tM (x), U satisfies the promise on input 〈M,x, 0t〉 whenever M satisfies the promise on input

x, and if so, U(〈M,x, 0t〉) = M(x). We call U efficient if it runs in polynomial time.

The second condition states that the model can be complemented within the model in expo-
nential time. We phrase the condition in terms of the universal machine U .

Definition 2 We say that U can be complemented within the model in exponential time if there

exists a machine S that runs in time 2nO(1)
, satisfies the promise on every input, and such that

S(x) = ¬U(x) for every input x ∈ Σ∗ on which U satisfies the promise.

The final property states that the model is closed under deterministic transducers. By the
latter, we mean deterministic machines D that, on input x, output either an answer a(x), or else
a query q(x). Note that a transducer that always outputs an answer is equivalent to a standard
Turing machine, and that a transducer that always outputs a query is equivalent to a many-one
reduction. For any M ′ ∈ M′, we use the following notation:

DM ′

(x) =

{

a(x) if D outputs an answer on input x
M ′(q(x)) otherwise

and

tDM′ (x) =

{

tD(x) if D outputs an answer on input x
tD(x) + tM ′(q(x)) otherwise.

We are now ready to formally state the closure property we need.

Definition 3 A semantic model is closed under deterministic transducers if for each deterministic

transducer D and each machine M ′ ∈ M′, there exists a machine M ∈ M′ such that the following

holds for all inputs x: If D(x) outputs an answer or if M ′ satisfies the promise on input q(x), then

M satisfies the promise on input x, and M(x) = DM ′
(x). We say that the closure is efficient if M

runs in time tDM′ (x) on input x.

Our hierarchy theorem applies to any semantic model with the above three properties.

Definition 4 A semantic model of computation is called reasonable if it has an efficient universal

machine that can be simulated deterministically in exponential time and if it is efficiently closed

under deterministic transducers.

All the concrete models mentioned in this paper are reasonable semantic models.
We point out that for the proof of Theorem 1, we can relax the efficiency requirement in

Definition 3 to time (tDM′ (x))O(1) instead of time tDM′ (x). However, for the strong hierarchy of
Theorem 2, we seem to need the efficiently requirement as stated in Definition 3.

15

4.3 Proof of Theorem 1

Assume a reasonable semantic model of computation. Let M be the set of the machines belonging
to the model. This set is contained in some other set M′ that has a computable enumeration
(Mi)

∞
i=1. This reasonable semantic model has an efficient universal machine U which runs in time

nu for some constant u (Definition 1) and has a safe complementation S within the model running
in time 2ns

for some constant s (Definition 2). Without loss of generality, we assume that c is a
positive integer.

A disjoint interval Ii = [ni, n
∗
i] of input lengths is reserved for every machine Mi. Interval Ii

contains the subintervals Ii,j = [li,j, ri,j], 1 ≤ j ≤ ki, where li,1 = ni, ri,j < li,j+1 and ri,ki
= n∗i .

We set

ri,j = li,j + (2a)(ki−j) − 1 ki = dlog nie .

Thus, for every n ∈ Ii,j we have n = li,j + ∆n, 0 ≤ ∆n < (2a)(ki−j). We can think of Ii,j as the
nodes at level ki − j of a full 2a-ary tree with root at n∗

i . Let us fix li,j , 1 ≤ j ≤ ki, such that

li,j = ni
d(j−1)

d = max(d4a·c·se , 2a).

It remains to fix the starting input lengths ni of the intervals Ii taking the following into account.
For any number n we want to efficiently compute a number i such that n ∈ Ii and the description
of the machine Mi that corresponds to interval Ii. Since the enumeration (Mi)

∞
i=1 of machines in

M′ can be very ineffective, we allow the intervals Ii to be sparsely distributed over input lengths,
and we let ni = max(n∗i−1 + 1,m) where m is such that the description of machine Mi is produced
after m steps of the enumerating procedure. As for the starting length n1, some of the inequalities
in the proof below require that every input length n of interest (that is, belonging to some interval)
is greater than some constant. We choose n1 larger than all these constants. Notice that now,
given a number n, we can compute in linear time the numbers i and j, if any, such that n ∈ Ii,j

and produce the description of machine Mi.
To guarantee the disjointness of the subintervals Ii,j we need to check that ri,j < li,j+1 for any

i and any 1 ≤ j < ki. If n1 is big enough, we have

(2a)(ki−j) ≤ (2a)(ki−1) ≤ (2a)log ni ≤ ni
a

ri,j = ni
d(j−1)

+ (2a)(ki−j) − 1 < ni
d(j−1)

+ ni
a < ni

dj
= li,j+1.

Let xi,b,n = 10n−a−1b where b is some string of length a. This works provided n1 > a as then
any input length n ∈ Ii,j is greater than a.

Given an input x of length n, machine M/α does the following.

1. Compute numbers i and j such that n ∈ Ii,j. If no such numbers exist, output 0 and halt.

2. If j < ki and αn = 1 then

(a) Compute ∆n such that n = li,j + ∆n.

(b) Let n′ = li,j+1 + b∆n/2
ac and let b = ∆n mod 2a.

(c) Call U on 〈Mi//b, 0
n′−nx, 0(n′)c

〉.

3. If j = ki and x = 0n−mxi,b,m for some m ∈ Ii,1 then

16

(a) Call S on 〈Mi//b, xi,b,m, 0
mc

〉.

4. Output 0.

M uses its advice αn at length n only if n belongs to some subinterval Ii,j, 1 ≤ j < ki. For such
an input length n, let αn = 1 if Mi//b satisfies the promise at length n′ and runs in time (n′)c (see
the above algorithm for definitions of n′ and b). Otherwise, let αn = 0.

Let us verify that the resulting machine M and advice α are such that M/α:

(A) falls within the model,

(B) runs in polynomial time, and

(C) disagrees with any Mi/β for any advice sequence β of modulus a for which Mi/β falls within
the model and runs in time nc.

Note that we can translate a query y of length m to S into the query 〈S, y, 0t〉 to U with
t = 2ms

. Using that translation, M becomes a deterministic transducer to machine U ∈ M ′.
The possible queries to U occur in steps 2(c) and 3(a) of the algorithm. Step 2(c) makes the
query 〈Mi//b, 0

n′−nx, 0(n′)c
〉 to U . By the choice of the advice α, that step is only executed if Mi//b

satisfies the promise at length n′ and runs in time (n′)c. As for step 3(a), by Definition 2, S satisfies
the promise on every input. It follows from Definition 1 that machine U satisfies the promise on
every query the transducer M makes. Thus, by Definition 3, M/α falls within the model.

The length of the query 〈Mi//b, 0
n′−nx, 0(n′)c

〉 to U in step 2(c) is polynomial in n since Mi is
produced in time linear in n and n′ ≤ nd. Step 3(a) runs S on input 〈Mi//b, xi,b,m, 0

mc
〉 for some

m ∈ Ii,1 and is only executed if the input to M is of length n∗
i . If n1 is big enough, we have

|〈Mi//b, xi,b,m, 0
mc

〉| ≤ 2mc

m ≤ ni + (2a)ki−1 − 1 < ni + (ni)
a ≤ 2ni

a

n2·a·c·s
i ≤ nlog d

i = dlog ni ≤ dki ≤ log(ndki

i) = log((n∗i)
d),

and step 3(a) using the simulation by U takes time at most

(2 · 2(2mc)s
)u ≤ 22s+1(2·na

i)c·su < 2n2a·c·s
i ≤ (n∗i)

d.

The efficiency requirement in Definition 3 then implies that M runs in polynomial time.
For property (C), consider an arbitrary machine Mi with an advice sequence β of modulus a

such that Mi/β falls within the model and runs in time nc. Let us assume that Mi/β agrees with
M/α at each length. Then we can prove by induction on j from ki down to 1 that there exists an
input length n ∈ Ii,j such that M/α at length n copies M/α at length n∗

i , i.e.,

(∀x ∈ {0, 1}n) M/α (x) = M/α (0n∗
i −nx).

The case when j = ki holds trivially. For any j < ki, by the induction hypothesis, there is an
input length n′ ∈ Ii,j+1 such that M/α at length n′ copies M/α at length n∗

i . Then consider
n = li,j + ∆n′ · 2a + βn′ . We have that n ∈ Ii,j and n′ = li,j+1 + b∆n/2

ac. By the specification
of M and by the choice of the advice sequence α, M/α at length n copies M/α at length n ′ and,
consequently, copies M/α at length n∗

i .

17

Hence, for some n ∈ Ii,1, M/α at length n copies M/α at length n∗
i . At the same time, Mi/β

at length n fails to copy M/α at length n∗
i since M/α (0n∗

i −n xi,βn,n) = ¬Mi/β (xi,βn,n) whenever
Mi/β satisfies the promise at length n and runs in time nc. Therefore, Mi/β does not agree with
M/α at length n, which contradicts our assumption.

This finishes the proof of Theorem 1.

Let us point out that we do not really need the strong form of efficiency stated in Definition 3
for the above proof. The place where it plays a role is in our argument for property (B); requiring
the running time of M to be (tDM′ (x))O(1) suffices for that argument. For the next proof we do
seem to need the stronger notion of efficiency.

4.4 Proof of Theorem 2

The proof of Theorem 2 follows from Theorem 1 by successive padding.
Assume that the statement of the theorem does not hold. Then every language computable in

time nd with a bits of advice is also computable in time nc with a bits of advice. In what follows, we
will employ a translation argument to prove by induction on k ≥ 0 that every language computable
in time nc·rk

with a bits of advice is also computable in time nc with a bits of advice, where r is
some constant larger than 1. Since c · rk grows unboundedly, we obtain a contradiction to Theorem
1.

We choose r to be a rational in the range 1 < r ≤ (d/c)1/3. The fact that r is rational will make

sure that we can perform all the arithmetic needed sufficiently efficiently, e.g., computing
⌊

nc·rk
⌋

.

The upper bound on r guarantees that the cases of the inductive statement with k ≤ 3 are implied
by the assumption we made at the beginning of the proof. This is because nc·rk

≤ nd for values of
k ≤ 3. Thus, k ≤ 3 forms the base for the induction.

In order to prove the induction step from k to k+1 for k ≥ 3, consider an arbitrary language L
computable in time nc·r(k+1)

with a bits of advice. We will prove that L is also computable in time
nc·rk

with a bits of advice and thus, by the induction hypothesis, in time nc with a bits of advice.
The language L is recognized by some machine M with advice α of modulus a such that M/α

falls within the model and runs in time nc·r(k+1)
. In order to apply the speed up provided by the

induction hypothesis, we construct the following padded version L′ of L:

L′ = {0σ(|x|)−|x|−1 1x : x ∈ L} where σ(n) =
⌈

nr2
⌉

.

We claim that we can compute L′ in time mc·rk
with a bits of advice on inputs of length m. To

see this, let us construct a machine M ′ with advice α′ such that M ′/α′ recognizes L′. The advice
α′ is defined so that for any m = σ(n) in the range of σ, α′

m = α′
σ(n) = αn. Given an input y of

length m, M ′ first checks whether y is of the form y = 0σ(|x|)−|x|−1 1x; if so, it recovers the string
x, say of length n. M ′ then runs M//α′

m = M//αn on input x. By Definition 3, M ′/α′ falls within
the model and runs in time

O(m) + nc·rk+1
≤ O(m) +mc·rk−1

≤ mc·rk
−m

for sufficiently large m. By applying Definition 3 to a deterministic transducer that has the answers
for small y’s hardwired and queries M ′ at y otherwise, we can assume without loss of generality
that M ′/α′ runs in time mc·rk

for all lengths m. So, L′ is computable in time mc·rk
with a bits of

18

advice and therefore, by the induction hypothesis, also in time mc with a bits of advice. That is,
L′ is recognized by some machine N ′ with advice sequence β ′ of modulus a such that N ′/β′ falls
within the model and runs in time nc.

Next, we lift the computation N ′/β′ for L′ up to a computation N/β for L. We define β such
that βn = β′σ(n). Given an input x of length n, N constructs the string y = 0σ(n)−n−1 1x and runs

N ′//βn = N ′//β′m on input y, where m = |y| = σ(n). Again, by Definition 3, N/β falls within the
model and runs in time

O(m) +mc = O(nc·r2
) ≤ nc·r3

≤ nc·rk
− n

for sufficiently large n. By a similar application of Definition 3 as above, we can assume without
loss of generality that the running time of N/β is bounded by nc·rk

for all lengths n. Applying the
inductive hypothesis for k one more time, we have that L can be computed in time nc with a bits
of advice. This finishes the inductive step and thereby the proof of Theorem 2.

We point out that if the efficiency requirement in Definition 3 is relaxed from time tDM′ (x) to
time (tDM′ (x))e for some constant e, then the above proof yields the statement of Theorem 2 but
only for values of d > e · c instead of d > c.

5 Separation Theorems

In this section, we establish our separation theorems. We review some preliminaries about instance
checkers and introduce the notion of a randomized semantic model of computation with advice.
We specify the properties we need for our generic separation theorem (Theorem 3) to apply and
then formally prove it. Finally, we establish our separation theorem for randomized machines with
one-sided error (Theorem 4). We refer to Section 3.2 for the intuition behind the proofs.

5.1 Instance Checkers and Randomized Semantic Models

An instance checker for a language L is a polynomial-time randomized oracle machine C that can
output 0, 1, or “I don’t know” such that for any x ∈ Σ∗:

(Completeness) Pr[CL(x) = L(x)] = 1.

(Soundness) For any oracle P , Pr[CP (x) = L(x)] ≤ 2−|x|.

We will use an instance checker for a language L with the properties given by the following lemma.

Lemma 1 There exists a paddable language L that is complete for exponential time and has an

instance checker C such that all queries C makes on inputs of length n are of length f · n for some

constant f ≥ 1.

Proof Sketch. The proof follows from the probabilistically checkable proofs for deterministic time
t that are computable in time tO(1) [AS98] and their connection to instance checkers [BK89]. See
[Bar02] for more details. 2

We do not know whether Lemma 1 holds with the additional restriction that f = 1. If so, the
formal proof of Theorem 3 in Section 5 can be somewhat simplified.

We will actually run the instance checker of Lemma 1 with an “oracle” P that isn’t a fixed
language but rather the outcome of a randomized process, i.e., P (y) is the outcome of a 0/1 coin

19

flip with a bias depending on y. By a standard averaging argument2, the soundness property of the
instance checker also holds for such “oracles” P . Perfect completeness typically does not carry over
to this setting. However, provided P has bounded error, we can bring the completeness to level
1− 2−|x| or higher by answering each query as the majority vote of a linear number of independent
runs.

In order to apply an instance checker C in a semantic model of computation (M ′, γ, π), we
need to augment the notion we introduced in Section 4.1. Intuitively, we would like to run C with
an “oracle” P that is the result of running a machine M ′ ∈ M′ on the queries y of the instance
checker. For that to make sense and interact well with the properties of the instance checker, we
need to associate a random variable M ′(y) with the behavior of M ′ on input y. We call a model
equipped with such random variables a randomized model. Natural examples for M ′(y) include the
acceptance indicator for randomized machines or for interactive proofs under an optimal prover.

5.2 Reasonable Randomized Semantic Models

Once we have such an underlying random process, for any randomized oracle machine D, we can
define the random variable DM ′

(x) as the outcome of a run of D where each query y is answered
according to a sample of M ′(y). We require that we can efficiently simulate such a process in our
model of computation and that the simulation be sound whenever DM ′

has two-sided error on input
x. More precisely, we stipulate the following.

Definition 5 A randomized semantic model of computation is closed under randomized reductions
with two-sided error if for every randomized oracle machine D and every machine M ′ ∈ M′, there

exists a machine M ∈ M′ such that the following holds for any string x: If DM ′
has two-sided error

on input x, then M satisfies the promise on input x and M(x) equals the majority outcome of DM ′

on input x. We say that the closure is efficient if M runs in time (tD(n)·max0≤m≤tD(n) tM ′(m))O(1).

Another condition we need is that the model has an efficient universal machine U (see Definition
1) which can be simulated deterministically in exponential time.

Definition 6 We say that U can be deterministically simulated in exponential time if there exists

a deterministic machine T which runs in time 2nO(1)
and such that T (x) = U(x) for each x ∈ Σ∗

on which U satisfies the promise.

Our generic separation theorem applies to any reasonable randomized semantic model defined
as follows.

Definition 7 A randomized semantic model of computation is called reasonable if it has an efficient

universal machine that can be simulated deterministically in exponential time and if it is efficiently

closed under randomized reductions with two-sided error.

Reasonable randomized semantic models include randomized and quantum machines with two-
sided error.

2W.l.o.g., we are assuming that no run of the instance checker C makes the same query more than once.

20

5.3 Proof of Theorem 3

Assume a reasonable randomized semantic model of computation. Let M be the set of the ma-
chines belonging to the model. This set is contained in some other set M′ that has a computable
enumeration (Mi)

∞
i=1. Let U denote an efficient universal machine for the model, as in Definition

1. Let the modulus a(n) be a log n for some constant a. Without loss of generality, we assume that
a and c are positive integers.

Let L be a paddable language that is complete for deterministic exponential time and has an
instance checker C such that all queries C makes on inputs of length m are of length f ·m for some
constant f ≥ 1. Such a language exists by virtue of Lemma 1.

We use the instance checker C to construct an efficient randomized reduction D to U that will
allow M/α to copy L at length m provided Mi/β “appropriately” copies L at length f ·m for some
advice sequence β of modulus a(n). The critical point is that D is not given access to β.

Lemma 2 There exists a polynomial-time randomized reduction D with the following property for

any integers m ≥ 0 and n ≥ f ·m and any machine Mi: If there exists a string b ∈ {0, 1}a(n) such

that Mi//b satisfies the promise at length n and runs in time nc, and L at length f ·m is a copy of

Mi//b at length n, i.e.,

(∀ z ∈ {0, 1}f ·m)Mi//b (0n−f ·mz) = L(z),

then

(∀ y ∈ {0, 1}m) Pr[DU (〈Mi, y, 0
n〉) = L(y)] > 1 − 2−n.

Proof. The idea is to execute Mi at length n with any possible advice string b of length a(n) and
to use the instance checker C to verify the answers. By making modifications to C as discussed
after Lemma 1, we obtain a polynomial-time randomized oracle machine C ′(·, ·) which outputs 0,
1, or “I don’t know” and such that for any y of length m, C ′(y, 0n) only makes queries of length
f ·m and the following holds for any n ≥ f ·m:

(Completeness) For any randomized oracle P which solves L with two-sided error,

Pr[C ′P (y, 0n) = L(y)] > 1 −
1

na · 2n
.

(Soundness) For any randomized oracle P ,

Pr[C ′P (y, 0n) = ¬L(y)] <
1

na · 2n
.

Given input 〈Mi, y, 0
n〉, reduction DU does the following:

1. For any advice string b of length a(n)

(a) Simulate C ′(y, 0n) and when C makes a query z, answer it with U(〈Mi//b, 0
n−|z|z, 0nc

〉).

(b) If C ′(y, 0n) ∈ {0, 1}, output that value and halt.

2. Output 0.

21

The number of advice strings we try is 2a(n) = na. Instance checker C runs in time polynomial
in n and the length of y, and every query z which C asks is transformed into a query to U in
polynomial time. Therefore, procedure D runs in polynomial time.

Let b∗ be the value of b given in the statement of the lemma. When trying the value b = b∗ in
the algorithm, DU accepts the answer of Mi//b with probability at least 1 − (n−a · 2−n). On the
other hand, the probability that DU accepts an incorrect answer of Mi//b when using some b 6= b∗,
is less than (na − 1) · (n−a · 2−n). Therefore, DU succeeds and outputs L(y) with probability more
than 1 − 2−n. 2

Now we turn to the construction of M/α. We reserve a disjoint interval Ii = [ñi, n
∗
i] of input

lengths for every machine Mi, and will construct a machine M and advice α of modulus 1 such
that M/α falls within the model, runs in polynomial time and has the following property: For
any advice sequence β of modulus a(n) for which Mi/β falls within the model, runs in time nc

and agrees with M/α at every length n ∈ Ii \ {ñi}, M/α disagrees with Mi/β at length ñi. With
that goal in mind, for any string b of length a(ñi), we let M/α on input xi,b = 0ñi−a(ñi)b compute
and output ¬Mi//b (xi,b). Evidently, M/α disagrees with Mi/β at length ñi, because for b = βñi ,
we have M/α (xi,b) = ¬Mi/β (xi,b). The only hurdle on the way to the time hierarchy is that the
computation of Mi//b (xi,b) must be done in time polynomial in ñi.

The value of Mi//b (xi,b) can be computed by means of the universal machine as U(qi,b) where
qi,b = 〈Mi//b, xi,b, 0ñc

i 〉. By Definition 6, there exists a deterministic procedure T that simulates
the universal machine U in exponential time, and therefore also a deterministic exponential-time
machine S that simulates ¬U . Since L is complete for exponential time, there is a polynomial-time
many-one reduction R that translates every query ¬U(qi,b) into some query L(zi,b). Since L is
paddable, we can set up R to produce queries zi,b of length exactly ni = (|Mi| · ñi)

p for some
constant p > 1. It remains to make M/α efficiently compute L at length ni.

As an exponential-time language, L is computable in time 2ne
on a deterministic machine for

some constant e. Let each interval Ii contain input lengths ni,j, 1 ≤ j ≤ ki, such that

ni,j+1 = (ni,j)
d d = (2f)e ki = dlog nie .

Let ni
.
= ni,1 and n∗i

.
= ni,ki

. These settings enable M/α at length n∗
i to solve L at length f ki−1 ·ni

in time polynomial in the input length n∗
i , since

(fki−1 · ni)
e ≤ (f log ni · ni)

e = n
(1+log f)·e
i = nlog d

i = dlog ni ≤ dki = log((n∗i)
d)

2(fki−1·ni)e
≤ (n∗i)

d.

It remains to set the boundaries of the intervals Ii = [ñi, n
∗
i]. As in the proof of Theorem 1, we

make the choice of the starting points ñi so that the description of machine Mi can be produced
in time linear in ñi. The first length ñ1 is chosen large enough for every inequality in this proof to
hold.

Finally, we construct machine M with advice α. Given an input x of length n, M/α does the
following.

1. Compute numbers i and j such that n = ni,j or n = ñi. If no such numbers exist, output 0
and halt.

2. If n = ñi for some i, x is of the form 0ñi−a(ñi)b, and αn = 1 then

22

(a) Let qi,b = 〈Mi//b, 0
ñi−a(ñi)b, 0(ñi)c

〉.

(b) Compute zi,b = R(qi,b) of length ni.

(c) Call M//1 on input zi,b.

3. If n = ni,j for some i and j, and x is of the form 0n−fj−1·niy then

(a) If n = n∗i then

i. Evaluate L(y) deterministically, output the result, and halt.

(b) If αn = 1 then

i. Call DU on input 〈Mi, y, 0
ni,j+1〉.

4. Output 0.

For any n = ni,j, 1 ≤ j < ki, let αn = 1 iff for some advice sequence β of modulus a(n), Mi/β
satisfies the promise at length ni,j+1 and runs in time nc

i,j+1 and if L at length f j · ni is a copy of
Mi/β at length ni,j+1. For n = ñi, let αn = 1 iff M//1 agrees with L at length ni. Let αn = 0 in
all other cases.

Let us verify that the machine M and advice sequence α we constructed are such that M/α:

(A) falls within the model,

(B) runs in polynomial time, and

(C) disagrees with any Mi/β for any advice sequence β of modulus a(n) for which Mi/β falls
within the model and runs in time nc.

Note that step 2(c) can be expanded into step 3(b)i at length ni. After doing that, machine
M/α becomes a randomized reduction to machine U . In order to prove that M/α falls within the
model and runs in polynomial time, we use the closure of the model under randomized reductions
with two-sided error (Definition 5). We consider several cases.

In all cases where M/α acts deterministically and does not call U , it follows from Definition 5
that M/α satisfies the promise since deterministic behavior trivially satisfies the condition of two-
sided error. In all these cases, M/α also runs in polynomial time. For step 3(a)i, this is because
M/α can deterministically solve f ki−1 ·ni-long instances of L in time polynomial in n∗

i , as we argued
above.

There are two remaining cases. In step 3(b)i at length ni,j, 1 ≤ j < ki, M/α invokes DU on
input 〈Mi, y, 0ni,j+1〉 with |y| = f j−1 · ni. This only happens if αni,j = 1, i.e., if for some advice
sequence β, Mi/β satisfies the promise at length ni,j+1 and runs in time nc

i,j+1 and if L at length

f j · ni is a copy of Mi/β at length ni,j+1. In that case, Lemma 2 guarantees that DU satisfies the
condition of two-sided error. By Definition 5, M/α then satisfies the promise. Also, M/α runs in
polynomial time since ni,j+1 = (ni,j)

d.
Finally, in step 2(c) at length ñi, M/α invokes itself on an input of length ni. Both the promise

and the running time then follow from the previous case.

Now assume that Mi/β falls within the model, runs in time nc, and agrees with M/α for some
advice sequence β of modulus a(n). Then for each 1 ≤ j ≤ ki, L at length f j−1 · ni is a copy of
M/α at length ni,j, i.e.,

(∀ y ∈ {0, 1}fj−1 ·ni)M/α (0ni,j−|y|y) = L(y). (5)

23

This can be proved by induction on j from ki down to 1. At length ni,ki
= n∗i , the construction

of M/α explicitly satisfies (5). Let us prove the transition from j + 1 to j. By the induction
hypothesis, as Mi/β agrees with M/α, L at length f j ·ni is a copy of Mi/β at length ni,j+1. Thus,
αni,j = 1 and at length ni,j, M/α executes step 3(b)i. By Lemma 2, this implies that L at length
f j−1 · ni is a copy of M/α at length ni,j.

For j = 1, we obtain that M/α agrees with L at length ni = ni,1. Thus, αñi = 1 and, on input
xi,b of length ñi, M/α computes L(zi,b) = ¬Mi/β (xi,b). Consequently, M/α disagrees with Mi/β
at length ñi, which contradicts our hypothesis.

5.4 Proof of Theorem 4

Before presenting the proof of Theorem 4, let us recall the techniques used in the proofs of Theorems
1 and 3. The main idea of the separation result for semantic models with two-sided error (Theorem
3) is to copy an exponential-time complete language using an instance checker. This allows M/α
to compute Mi/β efficiently (under the assumption that Mi/β agrees with M/α) and “do the
opposite” while always keeping the promise. The main idea of the hierarchy for general semantic
models (Theorem 1) is quite different. Informally speaking, it is a tree-like delayed diagonalization.

Returning to randomized computations with one-sided error, we face the fact that we do not
know how to “do the opposite” efficiently. However, computations with one-sided error have some
nice properties, which we want to employ to construct the machine M/α that disagrees with Mi/β
for any advice sequence β of super-constant modulus. As we mentioned earlier, tree-like delayed
diagonalization fails in the case of super-constant modulus. So, both techniques we used before
individually fail for randomized computations with one-sided error.

The solution is to combine both techniques, namely to use delayed diagonalization, which
enables M/α to “do the opposite,” and to employ copying using membership proofs, which allows
M/α to simulate M/β efficiently for every step of the delayed diagonalization.

Let (Mi)
∞
i=1 denote a standard enumeration of all randomized machines and let a(n) = a log n

where a is a constant. Without loss of generality, we assume that a and c are positive integers.
We let L denote a nicely paddable version of the satisfiability problem, namely the language of

all strings of the form 0`1φ, where ` is any nonnegative integer and φ is a satisfiable propositional
formula. Note that if M/α at length n copies L at length n′ > n then M/α actually computes L
at length n. Our definition of L also allows us to assume that substituting a logical value for a
variable of a formula does not change its length.

We start by constructing a randomized machine D that will help M/α to copy NP-complete
behavior. Note that the machine D in the next lemma does not receive any advice.

Lemma 3 There exists a randomized polynomial-time machine D with the following property for

any integers n,m ≥ 0, randomized machine Mi and any b ∈ {0, 1}a(n): If Mi//b satisfies the promise

at length n and runs in time nc and if L at length m is a copy of Mi//b at length n copies L at

length m, i.e.,

(∀ψ ∈ {0, 1}m) Mi//b (0n−mψ) = L(ψ),

then

(∀φ ∈ {0, 1}m)

{

Pr[D(〈Mi, φ, 0n〉) = 1] > 1/2 if φ ∈ L

Pr[D(〈Mi, φ, 0n〉) = 1] = 0 if φ 6∈ L.

24

Proof. Machine D simply tries all possible advice strings b of length a(n) and employs the self-
reducibility of L to check the answer of Mi//b. Let φ|xi=v denote the substitution of the logical
value v for variable xi in formula φ(x1, . . . , xk). On input 〈Mi, φ, 0n〉, D acts as follows.

1. Let k be the number of variables in φ(x1, . . . , xk).

2. For each b ∈ {0, 1}a(n) do

(a) Let φ0 = φ.

(b) For each j from 1 to k do

i. For dlog 2ne times, simulate Mi//b (0n−|φ|φj−1|xj=0) for nc steps.

ii. If at least one of the answers is 1, then let φj = φj−1|xj=0.

iii. Otherwise, let φj = φj−1|xj=1.

(c) If φ evaluates to 1, then output 1 and halt.

3. Output 0.

Basically, machine D executes a polynomial number of self-reductions, each time using a poly-
nomial number of runs of Mi to decide whether to substitute a value 0 or 1 for variable xj in the
formula. Note that the simulation of nc steps of a randomized machine Mi with one-sided error
can be accomplished in time polynomial in n and |Mi|. Thus, D runs in time polynomial in its
input length.

Let b∗ denote the value of b given in the statement of the lemma. Consider the iteration of
the above algorithm with b = b∗. In step 2(b)i, if φj−1|xj=0 is satisfiable, D discovers this with
probability greater than 1 − (1/2)log 2n = 1 − 1/2n and sets φj = φj−1|xj=0. On the other hand,
if φj−1|xj=0 is not satisfiable, then D always sets φj = φj−1|xj=1. As a result, provided φj−1 is
satisfiable, D produces a satisfiable φj with probability greater than 1 − 1/2n. Therefore, for any
satisfiable formula φ, machine D produces a satisfied φk and outputs 1 when trying b = b∗ with
probability greater than 1 − k · 1/2n ≥ 1/2. Given an unsatisfiable φ, D always produces an
unsatisfied φk and therefore always outputs 0. 2

Now we turn to the construction of machine M/α that witnesses the statement of Theorem 4
for the given values of a and c. We reserve a disjoint interval Ii = [ni,m

∗
i] of input lengths for each

machine Mi. We will implement the following scheme of delayed diagonalization against Mi/β:

M(xi,β)/α = Mi(0
ni,2−nixi,β)/β = M(0ni,2−nixi,β)/α = Mi(0

ni,3−nixi,β)/β = . . .

. . . = M(0ni,ki−1−nixi,β)/α = Mi(0
n∗

i −nixi,β)/β = M(0n∗
i −nixi,β)/α = ¬Mi(xi,β)/β. (6)

Let us define the strings xi,β on which M/α diagonalizes against Mi/β as follows:

xi,β = 0s ◦ βni,1 ◦ . . . ◦ βni,ki
,

where s is such that |xi,β| = ni.
We set the input lengths ni,j at which the delayed diagonalization is realized as follows:

ni,j+1 = (ni,j)
d d = (a+ 1)c ki = min{k : nd

i,k ≥ 2nc
i },

where ni
.
= ni,1 and n∗i

.
= ni,ki

as usual.

25

By the choice of ki and ni,j, M/α at length n∗i is able to simulate nc
i steps of ¬Mi/β at length ni

in time polynomial in n∗
i . Also, we have enough strings at length ni to represent all the behaviors

of Mi/β on input lengths ni,j, 1 ≤ j ≤ ki, because

n∗i ≤ (2nc
i)d

−1
ni,ki−j ≤ (2nc

i)d
−(j+1)

ki
∑

j=1

a(ni,j) =

ki
∑

j=1

a · (log ni,j)
1/c ≤

ki
∑

j=1

a · ni · d
−j/c < a · ni ·

1

d1/c − 1
= ni. (7)

Therefore, the strings xi,β are well-defined.

As mentioned in Section 3.2.2, there exists a universal machine U that can be mimicked by
a nondeterministic polynomial-time machine N . Every query to U can therefore be translated
in polynomial time into a query to the NP-complete language L. We denote this polynomial-time
reduction by R. If M/α can solve L efficiently at the lengths we need, it can also efficiently compute
U(〈Mi//βni , 0

ni,j−nixi,β, 0
(ni,j)c

〉) and execute the delayed diagonalization scheme (6) in polynomial
time.

The paddability properties of L and the polynomial running time of R allow us to assume
without loss of generality that |R(〈Mi//βni , 0

ni,j−nixi,β, 0
nc

i,j 〉)| = (|Mi| · ni,j)
r for some constant

r. Thus, the maximum length of an instance of L that M/α needs to evaluate when diagonalizing
against machine Mi is mi = (|Mi| ·n

∗
i)

r. So we let m∗
i = 2mi , and devote all lengths in Ii = [ni,m

∗
i]

except those that are already used for the delayed diagonalization, for copying L. The goal is that
for each n ∈ Ii \{ni,j}

ki
j=1, L at length min(mi, n) is a copy of M/α at length n. In particular, M/α

computes L at any such n ≤ mi.
Given an input x of length n, M/α does the following:

1. If n = ni,j for some i and j, then

(a) If j = ki and x is of the form 0n∗
i −nixi,β then % complement M

i. Extract βni from xi,β.

ii. Deterministically simulate Mi//βni (xi,β) for nc
i steps, output the complement and

halt.

(b) Else if j < ki, x is of the form 0n−nixi,β, and αn = 1 then % copy M

i. Let n′ = ni,j+1.

ii. Extract b = βn′ from xi,β.

iii. Compute φ = R(〈Mi, 0
n′−nixi,β, 0

(n′)c
〉).

iv. Let m′ = |φ| + 1 if |φ| + 1 6∈ {ni,`}
ki
`=1; otherwise, let m′ = |φ| + 2.

v. Call D on input 〈Mi, φ, 0m′
〉.

2. If n ∈ Ii \ {ni,j}
ki
j=1 then

(a) If n = m∗
i and x is of the form 0m∗

i −miφ then % compute L

i. Deterministically compute L(φ), output that value and halt.

(b) If n < m∗
i , x is of the form 0n−min(mi, n)φ, and αn = 1, then % copy L

i. Let m′′ = n+ 1 if n+ 1 6∈ {ni,`}
ki
`=1; otherwise, let m′′ = n+ 2.

26

ii. Call D on input 〈Mi, φ, 0m′′
〉.

3. Output 0.

Notice that m′ and m′′ lie in Ii \ {ni,j}
ki
j=1.

For any n = ni,j, 1 ≤ j < ki, let αn = 1 iff for some advice sequence β of modulus a(n), Mi/β
satisfies the promise at length m′ (see the algorithm above), runs in time (m′)c, and computes L at
length m′. For any n ∈ Ii \ {ni,j}

ki
j=1 \ {m

∗
i }, let αn = 1 iff for some advice sequence β of modulus

a(n), Mi/β satisfies the promise at length m′′ (see the algorithm above), runs in time (m′′)c, and
L at length min(mi,m

′′) is a copy of Mi/β at length m′′. In all other cases, let αn = 0.
We defined the advice α in such a way that whenever D is called on some input, Lemma

3 guarantees that D satisfies the condition of one-sided error on that input. Since M/α acts
deterministically in all other cases, it follows that M/α falls within the model independently of the
behavior of machine Mi/β.

As to time requirements for M/α, note that m′ and m′′, the lengths for which the polynomial-
time procedure D is invoked, are polynomial in the input length n. Also, M/α at length n∗

i

simulates Mi/β at length ni in time polynomial in n∗
i . M/α at length m∗

i = 2mi computes L at
length mi in time polynomial in m∗

i . Therefore, M/α runs in polynomial time on every input.
Now assume that Mi/β falls within the model, runs in time nc, and agrees with M/α for some

advice sequence β of modulus a(n). In that case, by induction on n from m∗
i down to ni, we

can show that L at length min(mi, n) is a copy of M/α at length n for each n in Ii \ {ni,j}
ki
j=1.

In particular, at all lengths m′ in the above algorithm, M/α computes L. This enables M/α to
implement the delayed diagonalization scheme (6), which contradicts that M/α and Mi/β agree
on xi,β. This finishes the proof of Theorem 4.

6 Further Research

In this paper, we established a hierarchy theorem that applies to any “reasonable” semantic model
of computation with one bit of advice (Theorems 1 and 2). The most pertinent open problem
is to eliminate the need for the one bit of advice. Ideally, we would like to do that without
further restricting the meaning of “reasonable” but the question remains open for any semantic
non-syntactic model.

For randomized machines with two-sided error, the question whether a hierarchy theorem would
require nonrelativizing techniques is still up for debate [FS89, FS97, RV01]. Prior to our work, a
hierarchy theorem with one bit of advice was established using nonrelativizing techniques. Our proof
shows that the result itself does relativize. Whether our generic separation theorem (Theorem 3)
relativizes remains open.

Improving the advice bound in our separation results (Theorems 3 and 4) forms another possible
direction for further research. As for Theorem 4, one can abstract the properties the model needs
for our proof to carry through, just as we did for our other arguments. We refrained from stating
Theorem 4 in such generality because randomized machines with one-sided error are the only
interesting application we could think of. Are there others?

27

Acknowledgments

We thank Edward A. Hirsch and Dimitri Grigoriev for helpful comments on an earlier version of
the paper.

References

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[Bar02] B. Barak. A probabilistic time hierarchy theorem for slightly nonuniform algorithms. In
Proceedings of the 6th International Workshop on Randomization and Approximation Tech-

niques in Computer Science, volume 2483 of Lecture Notes in Computer Science, pages 194–
208. Springer-Verlag, 2002.

[BK89] M. Blum and S. Kannan. Designing programs that check their work. In Proceedings of the

21st ACM Symposium on the Theory of Computing, pages 86–97. ACM, 1989.

[Coo73] S. Cook. A hierarchy theorem for nondeterministic time complexity. Journal of Computer

and System Sciences, 7:343–353, 1973.

[FS89] L. Fortnow and M. Sipser. Probabilistic computation and linear time. In Proceedings of the

21st ACM Symposium on the Theory of Computing, pages 148–156. ACM, 1989.

[FS97] L. Fortnow and M. Sipser. Retraction of “Probabilistic computation and linear time”. In
Proceedings of the 29th ACM Symposium on the Theory of Computing, page 750. ACM, 1997.

[FS04] L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pages 316–
324. IEEE, 2004.

[FST05] L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In Pro-

ceedings of the 37th ACM Symposium on the Theory of Computing, pages 348–355. ACM,
2005.

[GST04] O. Goldreich, M. Sudan, and L. Trevisan. From logarithmic advice to single-bit advice.
Technical Report TR-04-093, Electronic Colloquium on Computational Complexity, 2004.

[HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Transactions

of the American Mathematical Society, 117:285–306, 1965.

[KL82] R. Karp and R. Lipton. Turing machines that take advice. L’Enseignement Mathématique,
28(2):191–209, 1982. A preliminary version appeared in STOC 1980.

[Lev73] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265–266,
1973. In Russian.

[Pap94] C. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. Journal of Computer and System Sciences, 48:498–532, 1994.

28

[Per05] K. Pervyshev. Time hierarchies for computations with a bit of advice. Technical Report
TR-05-054, Electronic Colloquium on Computational Complexity, 2005.

[RV01] R. Rettinger and R. Verbeek. Monte-Carlo polynomial versus linear time - the truth-table
case. In Proceedings of the 13th International Sympsoium on Fundamentals of Computation

Theory, pages 311–322. Springer-Verlag, 2001.

[SFM78] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complexity
classes. Journal of the ACM, 25:146–167, 1978.

[Ž83] S. Žàk. A Turing machine time hierarchy. Theoretical Computer Science, 26:327–333, 1983.

29

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

