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Abstract

We address the fundamental question of whether the Nash equilibria of a game can be
computed in polynomial time. We describe certain efficient reductions between this problem
for normal form games with a fixed number of players and graphical games with fixed degree.
Our main result is that the problem of solving a game for any constant number of players, is
reducible to solving a 4-player game.

1 Introduction

Whether a Nash equilibrium of a game can be found in polynomial time is one of the most important
open problems facing our field today. It is known that the problem is in P in the 2-player, zero-sum
case, by a reduction to linear programming (12), but the general case is wide open. Very little is
known about reductions between variants of the problem. It is known that finding a symmetric
Nash equilibrium in a symmetric game is no easier than the general, asymmetric problem, and
it is trivial, of course, to reduce r-player games to r + 1-player games by introducing a dummy
player (actually, to r + 1-player zero-sum games by having the dummy player absorb everybody’s
payoffs). Also, evidence from Nash’s original 1951 paper suggests that it may be harder to solve a
3-player game than a 2-player game, since in the 3-player case, the resulting probabilities may be
irrational. In other words, all we know about the complexity of the Nash equilibrium problem is
that it comprises a potentially infinite hierarchy 2-Nash, 3-Nash, . . . , r-Nash, . . . In this paper we
show that this hierarchy collapses to the 4th level.

Games with many players require exponential data for their description; hence multiplayer
games are typically represented succinctly. A most useful and influential succinct representation
are the graphical games of (8), in which players are nodes of a graph, and the payoffs of each
player depend only on the choices of the adjacent players. (In this paper we suggest a useful
generalization, also proposed by Schoenebeck and Vadhan (15), in which the graph is directed, and
player u’s choice can affect the payoff of player v only if edge (u, v) is present.) When the degree
of the underlying graph is bounded, the representation of the game is polynomial in the number
of players and strategies. It has been claimed (8) that Nash equilibria in tree-structured graphical
games with a fixed number of strategies per player can be computed in polynomial time. In this
paper we reduce the Nash problem for graphical games to the standard version. The reduction is a
polynomial one for graphical games with bounded degree (which is the intended use of graphical
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games). More precisely, for fixed d > 1 let d-graphical Nash be the problem of finding Nash
equilibria in graphical games with maximum degree d. We present a reduction from d-graphical

Nash to d2-Nash.
We also give a reduction in the opposite direction: For any normal form game we can construct

a graphical game with all degrees bounded by three and with two strategies per player such that
we can recover a Nash equilibrium of the original game from any Nash equilibrium of the graphical
game. Notice that the degree 3 and two strategies restriction is significant here, since otherwise
the reduction is immediate (via a graphical game played on an r-clique).

In fact, our reduction from r-player games to 4-player games is a composition of these two
reductions: First we reduce the r-player game to a graphical game, then we reduce the graphical
game to a normal form game, and we obtain the 4-player result by specializing the latter reduction
to the output of the former.

Our reduction from graphical games to normal form games is based on a rather simple idea: We
color the graph, and simulate all vertices in a color class by a single player. This player represents
the whole class by playing a mixed strategy that is the average of the mixed strategies played by
the vertices in the class. In order to make sure that a color class player does not “neglect” any node
by failing to include its strategies in its mixed strategy, we pair up the players, and have the pairs
play against each other a generalization of Matching Pennies (see Definition 1) at very high-stakes:
at any Nash equilibrium the color class player is now forced to assign the same probability mass to
each vertex that it represents.

Our reduction from normal form games to graphical games is more sophisticated. Every vertex
in the graphical game has two strategies, and thus, at Nash equilibrium, it can be considered as a
real number: the probability that it plays strategy 1. For every player p and every strategy j or
p we have such a vertex. The challenge now is to make sure that, at any Nash equilibrium of the
graphical game (a) these numbers add up to 1 for every p and, more importantly (b) they encode
a Nash equilibrium of the original game. (b) is accomplished by “gadgets” performing arithmetic
operations such as addition (with ceiling 1, of course), multiplication, comparison, and copying.
Using these gadgets we create arithmetic circuits which compute the multinomials describing the
Nash equilibrium conditions of the game. Finally, (a) above is guaranteed by a hierarchy of players
connected by addition gadgets.

1.1 Review of Related Work

It is known from (7; 2) that it is NP-complete to find various specific kinds of Nash equilibria, even
in the 2-player case. For example, it is NP-hard to find the Nash equilibrium with maximal social
welfare. Kearns et al. (8; 10) give algorithms for solving graphical games in the case where the
graph is a tree and all players have 2 strategies. As for the Nash equilibrium problem itself, it is
known to lie in the complexity class PPAD of (14).

Pure Nash equilibria of normal form games are of course easy to find; Gottlob et al. (6) show that
most versions of the problem of finding pure Nash equilibria are hard when the game is described
succintly. Also from Fabrikant et al. (5) we know that for congestion games (where Nash equilibria
minimize a potential function) it is PLS-complete to find a Nash equilibrium in general.

In contrast with Nash equilibrium, the problem of finding correlated equilibria is substantially
more tractable: Papadimitriou (13) shows that for most standard forms of succinctly represented
games, including graphical games, correlated equilibria can be found in polynomial time.

Lipton and Markakis (9) study the algebraic properties to the solution of a game. For a r-player
game they exhibit a polynomial of degree 2r whose roots contain the Nash equilibria, and they give
algorithms for computing Nash equilibria and approximate Nash equilibria, using existing quantifier
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elimination algorithms. By applying our reduction the degree of the associated polynomial is 8,
which should lead to an improved upper bound on the time taken to find these equilibria. Note that
is not an upper bound on the algebraic degree of the solutions of a game, which may be exponential
in the number of actions per player, in the 4-player case.

Finally, certain other interesting reductions between equilibrium problems have been recently
pointed out (1; 15). Some of the results of (15) are conceptually similar to ours, for example,
Theorem 4.1 of (15) reduces graphical games to 2-strategy “circuit games”, such that there are
polynomial-time computable functions that map Nash equilibria from the graphical game to the
corresponding circuit game, and back. (A circuit game has payoffs specified by boolean circuits
that compute them, given as inputs the strategies chosen by the players.)

1.2 Definitions–Notation

A game G in normal form has r ≥ 2 players (indexed by p) and for each player p a finite set Sp of
pure strategies. The set S of pure strategy profiles is the Cartesian products of the Sp’s. The set
of all strategy profiles of players other than p is denoted S−p. Finally, for each p ≤ r and s ∈ S we
have a payoff or utility up

s. We also use the notation up
js for p ≤ r, j ∈ Sp, s ∈ S−p.

Given real numbers xp
j for each player p and strategy j ∈ Sp and a strategy profile s = (s1, . . . , sr)

where sp ∈ Sp, we denote by xs the product x1
s1

· x2
s2
· · · xr

sr
. Such real numbers constitute a Nash

equilibrium if the following conditions hold:

xp
j ∈ [0, 1]

∑

j xp
j = 1

∑

s∈S−p
up

jsxs >
∑

s∈S−p
up

j′sxs =⇒ xp
j′ = 0 for all p, i, j ∈ Sp

(1)

Intuitively, a Nash equilibrium is a probability distribution on the strategies of each player so that
no player can improve its expected utility by unilaterally changing its distribution.

In a game in normal form we are given a rational number up
s for every p and s — a total

of r|S| numbers. A graphical game GG is an undirected graph G = (V,E), where each vertex v
has an associated set of strategies Sv. Let N (v) denote v and v’s neighbors in G, and let SN (v)

denote the set of all pure profiles of N (v). In a graphical game, the utilities to v are given by
{uv

s : s ∈ SN (v)}. Intuitively, a graphical game is a succinct representation of a game in normal
form, when it so happens that for every p, up

s only depends on a small set of other players. Hence
there is no need to redefine Nash equilibrium here. A generalization of graphical games are the
directed graphical games, where G is directed and N (v) consists of v and the predecessors of v.

Definition 1 The (2-player) game Generalized Matching Pennies is defined as follows. Call the
2 players the pursuer and the evader, and let [n] denote their strategies. If for any i ∈ [n] both
players play i, then the pursuer receives a positive payoff u > 0 and the evader receives a payoff
of −u. Otherwise both players receive 0. It is not hard to check that the game has a unique Nash
equilibrium in which both players use the uniform distribution.

We next introduce certain simple concepts from the complexity theory of total functions, see
(14) for a formalism in the same spirit. A search problem S is a set of inputs IS such that for each
x ∈ IS there is an associated set of solutions Sx (each of length bounded by a polynomial in |x|)

such that for each x ∈ IS and y ∈ Σ|x|k whether y ∈ Sx is decidable in polynomial time (note that
this is essentially NP, except that the emphasis is on finding a witness). For example, r-Nash is
the search problem S in which IS is all r-player games in normal form and Sx is the set of Nash
equilibria of game x ∈ IS . Similarly, d-graphical Nash is the search problem with inputs the
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set of all graphical games with degree at most d, and solutions the corresponding Nash equilibria.
(Strictly speaking, since the solutions of these problems are potentially irrationally numbers, the
input also includes a specification of the desired accuracy.) The search problem is total if Sx 6= ∅
for all x ∈ IS . For example, Nash’s 1951 theorem (11) implies that r-Nash is total. Obviously, the
same is true of d-graphical Nash.

A polynomially computable function f is a polynomial-time reduction from total search problem
S to total search problem T if for every input x ∈ IS of S f(x) ∈ IT is an input of T , and furthermore
there is another polynomial function g such that for every y ∈ Tf(x), g(y) ∈ Sx. If furthermore for
all x g is an isomorphism between Tf(x) and Sx, f is said to be faithful. All reductions presented
in this paper happen to be faithful.

2 Reduction from Graphical Games to Normal Form Games

Theorem 1 For every d > 1 there is a polynomial reduction from d-graphical Nash to d2-Nash.

Input: Degree d graphical game GG, players {v1, . . . , vn} each with t strategies.
Output: Normal-form game G.

1. Re-scale the utilities up
j so that they lie in the range [0, 1].

2. Let r = d2 or r = d2 − 1; r chosen to be even.

3. Let c : V −→ {1, . . . , r} be a r-coloring of G such that no two adjacent vertices have
the same color, and furthermore no two vertices having a common neighbor have the
same color. Assume the same number of vertices for each color, adding extra isolated
vertices to make up any shortfall.

Let {v
(i)
1 , . . . , v

(i)
n/r} denote {v : c(v) = i}.

4. For p ∈ [r] player p in G has strategy set Sp with |Sp| = tn/r; Sp is the union (assumed
disjoint) of all Sv with c(v) = p.

Sp = {(vi, a) : c(vi) = p, a ∈ Svi
}.

5. Let s ∈ S be a strategy profile. For p ∈ [r], up(s) is defined as follows:

(a) Initially, all utilities are 0.

(b) For v0 ∈ V having neighbors v1, . . . , vd′ in G, if c(v0) = p and for i = 0, . . . , d′, s
contains (vi, ai), then up(s) = uv0(s′) for s′ a strategy profile of GG in which vi

plays ai for i = 0, . . . , d′.

(c) Let M = (tn/(d2 − 1))d2−1n4tr′.

(d) For odd number p < 2m, if player p plays (v
(p)
i , a) and p+ 1 plays (v

(p+1)
i , a′), for

any i, a, a′, then add M to up(s) and subtract M from up+1(s).

Figure 1: Reduction from graphical game GG to normal form game G
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Proof. Overview. Figure 1 shows the construction of G = f(GG). We show that f is computable
in polynomial-time, and for any Nash equilibrium NG of G we can construct NGG = g(NG), a Nash
equilibrium of GG.

We first rescale all payoffs so they are nonnegative and at most 1, and assume that all vertices
have the same number of strategies |Sv| = t. We then color the vertices of G with at most d2 − 1
colors such that any two adjacent vertices have different colors, but also no two vertices with a
common neighbor have the same color. This is tantamount to coloring the union of G and the
square of G, a graph that has degree d2 − 1 and is hence d2 − 1-colorable. We assume for simplicity
that each color class has the same number n/(d2 − 1) of vertices (adding dummy vertices if not).

We construct a normal form game G with r ≤ d2 players. Each player has tn/(d2−1) strategies,
the t strategies of each of the n/(d2 − 1) vertices in its color class. We can assume r is even, and
we divide the r players into pairs, who play generalized Matching Pennies at very high stakes, so
as to ensure that they will all randomize uniformly over their vertices. (A similar trick is used in
Theorem 7.3 of (15), a hardness result for a class of circuit games.) Within each set of strategies
associated with each vertex, the Matching Pennies game expresses no preference, and payoffs are
augmented to correspond to the payoffs that would arise in the original graphical game GG.

Polynomial size of G = f(GG).
The input size is |GG| = Θ(nq · td+1), where q is the size of input quantities up

j in the logarithmic
cost model.

The normal form game G has ≤ d2 players, each having tn/(d2 − 1) strategies. Hence there are

≤
(

tn
d2−1

)d2

matrix entries in G. This is polynomial so long as d is constant.

The size of M (in logarithmic cost) is O((d2−1) log(tn/(d2−1))), and all other non-zero entries
of G are payoffs (of size q) that appear in GG.

Construction of g(NG) (where NG denotes a Nash equilibrium of G).
Given a Nash equilibrium NG of f(GG), we claim we recover a Nash equilibrium of GG, NGG = g(NG),
as follows. For t′ ∈ [t], xv

t′ = xp
(v,t′)/

∑

a∈[t] x
p
(v,a), where p = c(v). Clearly g is computable in

polynomial time.

Proof that the reduction preserves Nash equilibria.
For v ∈ V , c(v) = p, let “p plays v” denote the event that p plays (v, a) for some a ∈ Sv.

First we prove that in a Nash equilbrium NG , for every player p, every v ∈ V with c(v) = p,
Pr(p plays v) ≥ 1

2r/n. Note that the “fair share” for v is r/n.

Suppose for a contradiction that in a Nash equilibrium of G, Pr(p plays v
(p)
i ) < 1

2r/n. If p is odd

(the pursuer) then p + 1 (the evader) will prefer v
(p+1)
i to some other vertex v

(p+1)
j which p plays

with probability > r/n and which p+1 will play with probability zero. But if the evader is choosing

certain vertices with probability zero, then there is some v
(p+1)
i such that Pr(p + 1 plays v

(p+1)
i ) >

r/n. The pursuer p gets an expected payoff for playing v
(p)
i of at least Mr/n, and from playing j

an expected payoff of at most 1 + 1
2M/n

r . The additive 1 comes from the payoffs (in [0, 1]) in GG.
M has been chosen large enough such that Mr/n > 1 + 1

2M/n
r , which contradicts the assumption

that we have a Nash equilibrium.

If p is even, then for some j, p plays v
(p)
j with probability > r/n. Choose j such that p has a

non-zero probability of playing v
(p)
j . Then p − 1 plays v

(p−1)
i with probability 0 (since p − 1 gets

a better payoff from playing v
(p−1)
j ). But then p has a better payoff for playing i than for j, a

contradiction.
As a result, every vertex is chosen with probability greater than 1

2r/n by the player that
represents its color class. The division of Pr(p plays v) into Pr(p plays (v, a)) for various values of
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a, is driven entirely by the same payoffs as in GG; there is some probability p(v) ≥ ( 1
2r/n)d that

the neighbors of v are chosen by other players, and the additional payoff resulting from the choice
of Pr(p plays(v, a)), a ∈ [t], is p(v) times the payoff v would get in GG.

Uniqueness of g−1(NGG).
There is a 1-1 correspondence between the Nash equilibria of G and GG, since every Nash equilibrium
of GG encodes a specific Nash equilibrium of G.

3 Reduction from Normal Form Games to Graphical Games

Given a normal form game G having r players, we construct a graphical game GG, with a bipartite
underlying graph with maximum degree 3, and two strategies per vertex, with description length
polynomial in the description length of G, so that from every Nash equilibrium of GG we can recover
a Nash equilibrium of G. In this subsection we decribe the basic building blocks of the construction.
Each player in GG will have just two strategies, denoted 0 and 1. Also, it will be easy to check that
the graph of GG is bipartite and has degree 3; this graph will be denoted G = (V ∪ W,E), where
W and V are disjoint, and each edge in E goes between V and W .
Notation. p[v] denotes the probability that v plays 1 (as opposed to 0). v : b denotes the event
that the player at vertex v uses strategy b, for b ∈ {0, 1}.

Recall that G is specified by the quantities {up
s : p ∈ [r], s ∈ S}. A mixed strategy profile of

G is given by probabilities {xp
j : p ∈ [r], j ∈ [n]}. GG will contain a vertex v(xp

j ) ∈ V for each
player p and strategy j ∈ Sp, and the construction of GG will ensure that in any Nash equilibrium
of GG, the quantities {p[v(xp

j )] : p ∈ [r], j ∈ Sp}, if interpreted as values of xp
j , will constitute a

Nash equilibrium of G. Extending this notation, for various arithmetic expressions A involving any
xp

j and up
s, vertex v(A) ∈ V will be used, and be constructed such that in Nash equilibria of GG,

p[v(A)] is equal to A evaluated at the given values of up
s and with xp

j equal to p[v(xp
j )]. Elements of

W are used to mediate between elements of V , so that the latter ones obey the intended arithmetic
relationships.

The following propositions show how we can ensure various arithmetic relations amongst the
values p[v], for v ∈ V .

Proposition 1 Let α be a non-negative real number. Let v1, v2, w be vertices in a graphical game
GG, and suppose that the payoffs to v2 and w are as follows.

Payoffs to v2 :

w : 0 w : 1

v2 : 0 0 1
v2 : 1 1 0

Payoffs to w : w : 0

v2 : 0 v2 : 1

v1 : 0 0 0
v1 : 1 α α

w : 1

v2 : 0 v2 : 1

v1 : 0 0 1
v1 : 1 0 1

Then, in any Nash equilibrium of GG, p[v2] = min(αp[v1], 1).

Proof. If w plays 1, then the expected payoff to w is p[v2], and if w plays 0 then the expected
payoff to w is αp[v1]. Therefore, in a Nash equilibrium of GG, if p[v2] > αp[v1] then p[w] = 1.

However, note also that if p[w] = 1 then p[v2] = 0. (Payoffs to v2 make it prefer to disagree
with w.) Consequently, p[v2] cannot be strictly larger than p[v1].

Similarly, if p[v2] < αp[v1] then p[w] = 0, which implies that p[v2] = 1 (again since v2 has the
biggest payoff by disagreeing with w). Hence p[v2] cannot be less than min(1, αp[v1]).
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Note in particular that using the above construction with α = 1, v2 becomes a “copy” of v1

and we can make a sequence of copies of any vertex, which form a path in the graph. The copies
alternate with distinct w vertices.

Proposition 2 Let α, β, γ be non-negative real numbers. Let v1, v2, v3, w be vertices in a graphical
game GG, and suppose that the payoffs to v3 and w are as follows.

Payoffs to v3 :

w : 0 w : 1

v3 : 0 0 1
v3 : 1 1 0

Payoffs to w : w : 0

v2 : 0 v2 : 1

v1 : 0 0 β
v1 : 1 α α + β + γ

w : 1 v3 : 0 0
v3 : 1 1

Then, in any Nash equilibrium of GG, p[v2] = min(αp[v1] + βp[v2] + γp[v1]p[v2], 1).

Proof. If w plays 1, then the expected payoff to w is p[v3], and if w plays 0 then the expected
payoff to w is αp[v1] + βp[v2] + γp[v1]p[v2]. Therefore, in a Nash equilibrium of GG, if p[v3] >
αp[v1] + βp[v2] + γp[v1]p[v2] then p[w] = 1.

However, note from the payoffs to v3 that if p[w] = 1 then p[v3] = 0. Consequently, p[v3]
cannot be strictly larger than αp[v1] + βp[v2] + γp[v1]p[v2].

Similarly, if p[v3] < αp[v1]+βp[v2]+γp[v1]p[v2] then due to the payoffs to w we have p[w] = 0.
This in turn implies that p[v3] = 1 (since v3 has the biggest payoff by disagreeing with w). Hence
p[v3] cannot be less than min(1, αp[v1] + βp[v2] + γp[v1]p[v2]).

Using the above construction, we can compute sums and products of quantities represented
as probabilities that particular vertices choose to play strategy 1. In particular, if a vertex v(xp

j )
encodes probability xp

j , then we can compute the expressions
∑

s∈S−p
up

jsxs. The challenge is

now to allow the values to feed back to the vertices v(xp
j ) encoding the xp

j values, the constraint
∑

s∈S−p
up

jsxs >
∑

s∈S−p
up

j′sxs =⇒ xp
j′ = 0.

Proposition 3 Let v1, v2, v3, v4, v5, v6, w1, w2, w3, w4 be vertices in a graphical game GG, and
suppose that the payoffs to vertices other than v1 and v2 are as follows.

Payoffs to w1 : w1 : 0

v2 : 0 v2 : 1

v1 : 0 0 0
v1 : 1 1 1

w1 : 1

v2 : 0 v2 : 1

v1 : 0 0 1
v1 : 1 0 1

Payoffs to v5 :

w1 : 0 w1 : 1

v5 : 0 1 0
v5 : 1 0 1

Payoffs to w2 and v3 are chosen using Proposition 2 to ensure p[v3] = p[v1](1 − p[v5]).
Payoffs to w3 and v4 are chosen using Proposition 2 to ensure p[v4] = p[v2]p[v5].
Payoffs to w4 and v6 are chosen using Proposition 2 to ensure p[v6] = min(1,p[v3] + p[v4]).

Then, in any Nash equilibrium of GG, p[v6] = max(p[v1],p[v2]).

It is actually possible to “merge” w1 and v5 in the above, but then the graph would not be
bipartite.

7



Proof. If, in a Nash equilibrium, we have p[v1] < p[v2] then it follows from w1’s payoffs that
p[w1] = 1. It then follows that p[v5] = 1 since v5’s payoffs induce it to imitate w1. Hence, p[v3] = 0
and p[v4] = p[v2], and consequently, p[v5] = p[v4] = p[v2], as required. A similar argument shows
that if p[v1] > p[v2] then p[v5] = p[v1].

If p[v1] = p[v2] then p[w1] may take any value. However, we have

p[v3] = p[v1](1 − p[v5])
p[v4] = p[v2]p[v5] = p[v1]p[v5].

Finally,
p[v6] = min(1,p[v3] + p[v4])

= min(1,p[v1](1 − p[w1]) + p[v1]p[w1])
= p[v1].

We use Propositions (1-3) as building blocks of GG, starting with r subgraphs that represent
mixed strategies for the players of G. In the following we make a binary tree with leaves v(xp

j )
whose probabilities sum to 1, and internal nodes yp

j which use their probabilities to select subtrees
(see Figure 2 for an illustration).

Proposition 4 Consider a graphical game that contains

• for j ∈ [n] a vertex v(xp
j )

• for j ∈ [n − 1] a vertex vp
j

• for j ∈ [n] a vertex v(
∑j

i=1 xp
i )

• for j ∈ [n − 1] a vertex wj(p) used to ensure p[v(
∑j

i=1 xp
i )] = p[v(

∑j+1
i=1 xp

i )](1 − p[vp
j ])

• for j ∈ [n − 1] a vertex w′
j(p) used to ensure p[v(xp

j+1)] = p[v(
∑j+1

i=1 xp
i )]p[vp

j ]

• a vertex w′
0(p) used to ensure p[v(xp

1)] = p[v(
∑1

i=1 xp
i )]

v(
∑n

i=1 xp
i ) has payoff 1 when it plays 1, 0 otherwise.

Then
∑n

i=1 p[v(xp
i )] = 1 and moreover p[v(

∑j
i=1 xp

i )] =
∑j

i=1 p[v(xp
i )], and the graph is bipartite

and of degree 3.

Proof. It is not hard to verify that the graph has degree 3. Most of the degree 3 nodes are
the w nodes used in Propositions 1 and 2 to connect the pairs or triples of graph players whose
probabilities are supposed to obey an arithmetic relationship.

In a Nash equilibrium, v(
∑n

i=1 xp
i ) plays 1. The vertices vp

j split this probability into the two
subtrees below them.

Comment. The values p[vp
j ] control the distribution of probability (summing to 1) amongst the

n vertices v(xp
j ). These vertices can set to zero any proper subset of the probabilities p[v(xp

j )].

Notation. For s ∈ S−p let xs = x1
s1
·x2

s2
· · · xp−1

sp−1
·xp+1

sp+1
· · · xr

sr
. For s ∈ S−p let Up

j =
∑

s∈S−p
up

jsxs.

Thus Up
j is the utility to p of playing j in the context of a given mixed profile.
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The vertices whose labels include U do not form part of Proposition 4; they have been
included to show how the gadget fits into the rest of the construction, as described in
Figure 3. Unshaded vertices belong to V , shaded vertices belong to W (V and W being the
two parts of the bipartite graph).
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v(x  )
p
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v(x  )
p
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p
n

v(    x  )Σ p
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v(    x  )Σ p
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v(    x  )Σ p
i

3

i=1

v(    x  )Σ p
i

n-1

i=1

v(    x  )Σ p
i

n

i=1

w (p)1

w (p)2

w   (p)n-1

w’ (p)0

w’ (p)1

w’ (p)2

w’   (p)n-1

vp
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2

vp
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p
2

v(U     )
p
<=1

w(U   )p
1

v(U  )
p
3

v(U     )
p
<=2

w(U   )p
2

v(U  )
p
n

v(U       )
p
<=n-1

w(U    )p
n-1

Figure 2: Diagram of Proposition 4

Lemma 1 Suppose all utilities up
s lie in the range [0, 1]. We can construct a degree 3 bipartite

graph having a total of O(rnr−1) vertices, including vertices v(xp
j ), v(Up

j ), v(Up
≤j), for p ∈ [r],

j ∈ [n], such that in any Nash equilibrium,

p[v(Up
j )] =

∑

s∈S−p

up
js

∏

6̀=p

p[v(x`
s`

)] p[v(Up
≤j)] = max

i≤j

∑

s∈S−p

up
js

∏

6̀=p

p[v(x`
s`

)]

The general idea is to note that the ezxpressions for p[v(U p
j )] and p[v(U p

≤j)] are constructed
from arithmetic subexpressions using the operations of addition, multiplication and maximization.
If each subexpression E has a vertex v(E), then using Propositions 2 and 3 we can assemble them
into a graphical game such that in any Nash equilibrium, p[v(e)] is equal to the value of E with
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input p[v(xp
j )], p ∈ [r], j ∈ [n]. We just need to limit our usage to O(rnr) subexpressions and

ensure that their values all lie in [0, 1].

Proof.

Up
≤j = max{Up

j , Up
≤j−1}, Up

j =
∑

s∈S−p

up
jsxs

∑

s∈S−p

up
jsxs =

∑

s∈S−p

up
jsx

1
s1
· · · xp−1

sp−1
xp+1

sp+1
· · · xr

sr

Let S−p = {S−p(1), . . . , s−p(n
r−1)}.

∑

s∈S−p

up
jsxs =

nr−1

∑

`=1

up
jsS−p(`)

For each partial sum
∑z

`=1 up
jsS−p(`) include vertex v(

∑z
`=1 up

jsS−p(`)).

Similarly for each partial product of the summands up
jsx

1
s1
· · · xz

sz
include vertex v(up

jsx
1
s1
· · · xz

sz
)

There are p partial sums for each summand. There are nr−1 partial sums. There are p partial
sequences over which we have to maximize. So using a vertex for each of 2p + nr−1 arithmetic
subexpressions, a Nash equilibrium will compute the desired quantities. All of these quantities in
the subexpressions lie in the range [0, 1], so the ceiling of 1 in the computations of Propositions 1,2,3
is not a problem.

Theorem 2 For any fixed r > 1, there is a polynomial reduction from r-Nash to 3-graphical

Nash with two strategies per vertex.

Proof. Let G be a r-player normal-form game, and construct GG from G as shown in Figure 3. The
graph has degree 3, since we use separate copies of the v(xp

j ) vertices to influence different v(U p
j )

vertices.

Polynomial size of GG = f(G).
The size of GG is proportional to the description length r·nr of G (using the standard representation).

Construction of g(NGG) (where NGG denotes a Nash equilibrium of GG).
g(NGG) is defined by letting xp

j = p[v(xp
j )], clearly computable in polynomial-time.

Proof that the reduction preserves Nash equilibria.
We show that any Nash equilibrium NGG of GG has a corresponding g(NGG), Nash equilibrium of
G.

By Proposition 4 and Lemma 1, we have the first two parts of (1). We need to show the last
part, i.e. that

∑

s∈S−p
up

jsxs >
∑

s∈S−p
up

j′sxs =⇒ xp
j′ = 0.

Suppose that
∑

s∈S−p
up

jsxs >
∑

s∈S−p
up

j′sxs. Suppose first that j < j ′. Then p[v(U p
≤j−1)] >

p[v(Up
j )], so p[vp

j−1] = 0 and consequently v(xp
j ) plays 0 as required (since p[v(xp

j )] = p[vp
j−1]p[v(

∑j
i=1 xp

i )]).
If j > j′, consider p[v(U p

≤j−1)]. If p[v(U p
≤j−1)] < p[v(Up

j )] then p[vp
j−1] = 1 and for all i < j we

get as a result p[v(xp
i )] = 0 (since these quantities are multiples of 1 − p[vp

j−1]). If p[v(U p
≤j−1)] ≥

p[v(Up
j )] then either p[v(U p

j−1)] ≥ p[v(Up
j )] (in which case, use j − 1 instead of j) or p[v(U p

j−1)] <
p[v(Up

j )], in which case p[v(U p
≤j−2)] = p[v(Up

≤j−1)], so again use j − 1 instead of j.

Uniqueness of g−1(NG).
We have shown by construction of GG, that any Nash equilibrium forces all the quantities p[v(xp

j )]
to obey the constraints (1). To show the reduction is faithful, we also show that given a Nash

10



Input: Normal form game G having r players, n strategies per player, given by utilities
{up

s : p ∈ [r], s ∈ S}
Output: graphical game GG with bipartite graph (V ∪ W,E).

1. Re-scale the utilities up
s so that they lie in the range [0, 1].

2. For each player/strategy pair (p, j) let v(xp
j ) ∈ V be a vertex in GG.

3. For each p ∈ [r] construct a subgraph as described in Proposition 4 so that in a Nash
equilibrium of GG, we have

∑

j p[v(xp
j )] = 1.

4. Use the construction of Proposition 1 with α = 1 to make nr copies of the v(xp
j )

vertices (which are added to V ).

5. Use the construction of Lemma 1 to introduce (add to V ) vertices v(U p
j ), v(Up

≤j), for

all p ∈ [r], j ∈ [n]. Each v(U p
j ) uses its own set of copies of the vertices v(xp

j ). For
p ∈ [r], j ∈ [n] introduce (add to W ) w(U p

j ) with

(a) If w(Up
j ) plays 0 then w(U p

j ) gets payoff 1 whenever v(U p
≤j) plays 1, else 0.

(b) If w(Up
j ) plays 1 then w(U p

j ) gets payoff 1 whenever v(U p
j+1) plays 1, else 0.

6. Give the following payoffs to the vertices vp
j (the additional vertices used in Proposi-

tion 4 whose payoffs were not specified).

(a) If vp
j plays 0 then vp

j has a payoff of 1 whenever w(U p
j ) plays 0, otherwise 1.

(b) If vp
j plays 1 then vp

j has a payoff of 1 whenever w(U p
j ) plays 1, otherwise 0.

Figure 3: Reduction from normal form game G to graphical game GG

equilibrium NG of G there is a unique corresponding Nash equilibrium NGG of GG, where NGG =
g−1(NG).

Let NG = {xp
j : p ∈ [r], j ∈ Sp}. In NGG , let p[v(xp

j )] = xp
j .

Lemma 1 shows that the values p[v(U p
j )] are the expected utilities to player p of strategy j,

given that all other players use the mixed strategy {xp
j : p ∈ [r], j ∈ Sp}.

We identify values for p[vp
j ] that complete a Nash equilibrium for GG.

Based on the payoffs to vp
j described in Figure 3 we have

• If p[v(Up
≤j)] > p[v(Up

j+1)] then p[w(U p
j )] = 0; p[vp

j ] = 0

• If p[v(Up
≤j)] < p[v(Up

j+1)] then p[w(U p
j )] = 1; p[vp

j ] = 1

• If p[v(Up
≤j)] = p[v(Up

j+1)] then choose p[w(U p
j )] = 1

2 ; p[vp
j ] is arbitrary (we may assign it any

value)

Given the above constraints on the values p[vp
j ] we must check that we can choose them (and there

is a unique choice) so as to make them consistent with the probabilities p[v(xp
j )]. We use the fact

the values xp
j form a Nash equilibrium of G. In particular, we know that p[v(xp

j )] = 0 if there exists
j′ with Up

j′ > Up
j .

11



We claim that for j satisfying p[v(U p
≤j)] = p[v(Up

j+1)], if we choose

p[vp
j ] =

j
∑

i=1

p[v(xp
i )]/

j+1
∑

i=1

p[v(xp
i )],

then the values p[v(xp
j )] are consistent.

4 Combining the Reductions

Suppose that we take either a graphical or a normal-form game, and apply to it both of the
reductions described in the previous sections. Then we obtain a game of the same type that is at
least as hard to solve, despite having certain restrictions on its structure. We obtain the following
results.

Corollary 1 If it is possible in polynomial time to solve a graphical game having 2 strategies per
player, and an underlying graph that is bipartite and of degree 3, then it is possible in polynomial
time to solve a graphical game with t strategies per player on any degree d graph, for d and t
constant.

The following also follows directly from Theorems 2 and 1, but is not as strong as Theorem 3
below.

Corollary 2 For any fixed r > 1, there is a polynomial reduction from r-Nash to 8-Nash.

Proof. Theorem 2 converts a r-player game G into a graphical game GG with d = 3. Theorem 1
converts GG into a 8-player game G ′, where 8 = d2 − 1 whose Nash equilibria encode the Nash
equilibria of GG and hence of G. (Note that for d an odd number, the proof of Theorem 1 implies
a reduction to d2 − 1-Nash; for d even it reduces to d2-Nash.)

We prove Theorem 3 below, by exploiting in more detail the structure of games GG constructed
by Theorem 2. The following definition is used in this respect.

Definition 2 Suppose that GG is a graphical game with underlying graph G = (V,E). The affects-
graph G′ = (V,E′) of GG is a directed graph with edge (v1, v2) ∈ E′ if the payoff to v2 depends
partly on the action of v1.

Thus the edge (v1, v2) in G′ represents the relationship “v1 affects v2”. Notice that if (v1, v2) ∈ E′

then {v1, v2} ∈ E.

Theorem 3 For any fixed r > 1, there is a polynomial reduction from r-Nash to 4-Nash.

Proof. Construct G ′ from G as shown in Figure 4.

Polynomial size of G ′ = f(G).
By Theorem 2, GG (as constructed in Figure 4) is polynomial size. The size of GG ′ is at most 3 times
the size of GG since we do not need to apply Step 3 to any edges that are themselves constructed
by an earlier iteration of Step 3. Finally it is straightforward to check that the size of G ′ is linear
in the size of GG ′.
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Construction of g(NG′) (for NG′ a Nash equilibrium of G ′).
For each j, each p, there is a probability at least (1/4N)4 that p plays {2j, 2j + 1} and the other

players play the vertices that affect v
(j)
p . We claim that the values Pr(p plays 2j+1)/(Pr(p plays j)+

Pr(p plays 2j + 1)), if used for p[v
(j)
p ], make a Nash equilibrium of GG ′. The Nash equilibria of GG ′

and GG are in a 1-1 correspondence that is clear from the construction of GG ′. Finally we recover
a Nash equilibrium of G using the function g of Theorem 2.

Proof that the reduction preserves Nash equilibria.
Let NG′ be a Nash equilibrium of the 4-player game G ′. We must show that we do indeed get a
Nash equilibrium of GG if we use the above formula.

We prove the following claim (that shows that the denominator is non-zero).
Claim. For p ∈ [4], j ∈ [N ],

Pr(p plays 2j) + Pr(p plays 2j + 1) ≥
1

2N
.

Proof. Suppose otherwise, i.e. for some p, j,

Pr(p plays 2j) + Pr(p plays 2j + 1) <
1

2N
.

Let p′ be p’s opponent in the generalized matching pennies game. If p′ is the pursuer then p′ will
not play {2j, 2j + 1} since if p′ transfers ε from {2j, 2j + 1} to elsewhere he can increase his payoff,
and the payoffs that encode GG ′ are overwhelmed by the M payoffs. Hence p plays 2j or 2j +1 for
values of j which p′ plays with probability less than 1

4N ; not a Nash equilibrium. If p′ is the evader
then p′ will play 2j or 2j + 1 for values of j for which p’s probability of playing {j, j + 1} is less
than 3

4N , again not a Nash equilibrium.

Let q ≥ (1/4N)4 denote the above probability. If in GG ′, the expected utility to v
(j)
p is ub if

v
(j)
p plays b, then in the 4-player game, if p uses Pr(p : 2j + b)/(Pr(2p : j) + Pr(p : 2j + 1)) = 1

his expected payoff increases by qub. There is no other factor influencing p’s choice about how to
share the probability he plays {2j, 2j + 1}, into the two alternatives 2j and 2j + 1. So the Nash
equilibria correspond.

Let G = (V ∪W,E) be the affects-graph of GG (V , W as defined in Figure 3). By construction
of GG,

• every W -vertex has at most 3 incoming edges (from v-vertices)

• every V -vertex has at most 1 incoming edge and 2 outgoing edges (to/from w-vertices)

• every W -vertex has ≤ 1 outgoing edge

Let G′ = (V ′ ∪ W ′, E′) be the affects-graph of GG ′ constructed in Step 3. The payoffs in GG ′

respect the structure of the new affects-graph (a vertex is affected by another only if there an edge
between them in the graph.) All other aspects of any Nash equilibrium are preserved.

At this point we have a 4-coloring with the feature that the V -vertices have incoming edges
from vertices of distinct colors (since they have only one incoming edge).

In Step 5 we pair off players 1 and 2, and players 3 and 4 into two independent games of
generalized Matching Pennies, and all players will randomize uniformly over pairs {2j, 2j + 1}.
Next we add payoffs that encode GG ′.

In GG and hence GG ′, payoffs are rescaled to lie in [0, 1]. This fact is used to argue that the M
payoffs in Step 5 are large enough that, despite the modifications to the payoffs, no player gives
probability 0 to any pair of actions {2j, 2j + 1}.
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5 Some Corollaries

We mentioned in Section 1.1 that the solution(s) of a 4-player game may have degree exponential
in the number of strategies available to the number of players. To see this, constuct a graphical
game as follows. Let x = p[v], the probability that some vertex v plays 1. Using the gadgets we
introduced in Propositions (1,2), we can construct a vertex v ′ such that p[v′] = xN , where N is
exponential in the number of vertices (this is done mainly with repeated squaring; make a copy of
a vertex and multiply the two copies). Then, if p[v ′] > 1

2 , we can give v an incentive to reduce
p[v], and if p[v′] < 1

2 we give v an incentive to increase p[v]. As a result, in any Nash equilibrium,

p[v] = ( 1
2 )1/N . Datta (4) shows that a 3-player game may have solutions whose algebraic degree is

linear in the number of strategies per player; we believe it is an open question whether the degree
could be much higher in the 3-player case.

Suppose we are interested in solving games on a graph with a 2-dimensional grid topology.
Daskalakis and Papadimitriou (3) consider grid graphs where all players are the same (having the
same number of strategies, and payoffs in terms of their strategies and their neighbors’ strategies).
They show that the problem of finding pure Nash equilibrium is in P in one dimension, and NEXP-
complete in more than one dimension. Let us suppose instead that each vertex has its payoffs
specified in terms of its neighbors in an ad-hoc fashion, which makes the description size much
less succinct, in particular it is proportional to the number of vertices. We claim that under this
restriction, the problem of finding an unrestricted Nash equilibrium remains equivalent to general
low-degree graphs.

We may use Proposition 1 with α = 1 to build paths that transport values around the grid,
and then what we need is a gadget that allows two of these paths to cross. See Figure 5, which
copies a value x from (−3, 0) over to (1, 0), and copies y from (0,−3) to (0, 3). The W -vertices are
shaded, and do the job of computing arithmetic relationships amongst their neighbors, as indicated
by their subscripts. Outgoing edges from W -vertices point to the vertices whose values are being
computed, based on the other neighbors of the W -vertex.

Acknowledgements. We would like to thank Edith Elkind for informative discussions on other
research related to this paper.
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Input: Normal form game G having r players, n strategies per player, given by utilities
{up

s : p ∈ [r], s ∈ [n]}
Output: 4-player Normal form game G ′.

1. Let GG be a graphical game constructed from G according to Figure 3.

2. Color the graph (V ∪ W,E) (where E are directed edges of the affects-graph) of GG.
Let c(w) = 1 for all W -vertices w. Initially, let c(v) = 2 for all V -vertices v.

3. Construct graphical game GG ′ from GG as follows. While there exist v1, v2 ∈ V ,
w ∈ W , (v1, w), (v2, w) ∈ E with c(v1) = c(v2):

(a) Every W -vertex has at most 1 outgoing edge, so assume (w, v1) 6∈ E.

(b) Add v(v1) to V , add w(v1) to W .

(c) Replace (v1, w) with (v1, w(v1)), (w(v1), v(v1)), (v(v1), w). Let c(w(v1)) = 1,
choose c(v(v1)) ∈ {2, 3, 4} 6= c(v′) for any v′ with (v′, w) ∈ E. Payoffs for w(v1)
and v(v1) are chosen using Proposition 1 with α = 1 such that in any Nash
equilibrium, p[v(v1)] = p[v1].

4. For i ∈ [4] let Vi denote the set of vertices with color i. Assume all sets Vi have the
same cardinality N . (If necessary add idle isolated vertices.) If a vertex v has fewer
than 3 incoming edges, add extra incoming edges to v so that v has an incoming edge
from each other color class.

5. Construct a 4-player game with 2N strategies per player. Let M = N 2. For j ∈ [N ],

(a) If player 1 plays 2j or 2j + 1 and player 2 plays 2j or 2j + 1 then player 1 gets a
payoff of M and player 2 gets a payoff of −M .

(b) If player 3 plays 2j or 2j + 1 and player 4 plays 2j or 2j + 1 then player 3 gets a
payoff of M and player 4 gets a payoff of −M .

6. Let Vi = {v
(i)
1 , . . . , v

(i)
N }. For vertex v

(i)
j , let v

(i′)
j′ , v

(i′′)
j′′ , v

(i′′′)
j′′′ be the vertices that have

edges going to v
(i)
j . The payoffs to v

(i)
j depend on the actions of these 4 vertices. For

s a pure profile of these vertices, let us(v
(i)
j ) be the payoff to v

(i)
j resulting from s. If

s is the binary numbers (b, b′, b′′, b′′′), where b is the action chosen by v
(i)
j , and so on,

give an additional payoff of us(v
(i)
j ) to player c(v

(i)
j ) if player c(v

(i)
j ) plays j + b, player

c(v
(i′)
j′ ) plays j + b′, player c(v

(i′′)
j′′ ) plays j + b′′, player c(v

(i′′′)
j′′′ ) plays j + b′′′.

Figure 4: Reduction from normal form game G to 4-player game G ′
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Figure 5: Diagram of Path Crossing in Grid

17
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



