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Abstract

We study the security of individual bits in an RSA encrypted message
EN (x). We show that given EN (x), predicting any single bit in x with only
a non-negligible advantage over the trivial guessing strategy, is (through a
polynomial time reduction) as hard as breaking RSA. Moreover, we prove
that blocks of O(log log N) bits of x are computationally indistinguishable
from random bits. The results carry over to the Rabin encryption scheme.

Considering the discrete exponentiation function gx modulo p, with
probability 1−o(1) over random choices of the prime p, the analog results
are demonstrated. Finally, we prove that the bits of ax+ b modulo p give
hard core predicates for any one-way function f .

1 Introduction

What is to be meant by a secure cryptosystem? There are rigorously defined
notions, given by Goldwasser and Micali [14], such as semantic security ; “what-
ever can be computed efficiently from the cryptotext should also be computable
without it”. Obtaining semantic security requires rather elaborate construc-
tions, and we cannot in general hope to achieve this by simply applying a natu-
ral one-way function. In fact, any deterministic, public-key crypto system must

leak some information. It is therefore important also to analyze the security
of specific information concerning the plaintext. We here study the question
of given the encrypted message E(x), is it feasible to predict even a single bit
of x? Now, “feasible” refers to the existence of probabilistic, polynomial time
algorithms, and we cannot exclude the possibility of “guessing” a bit of x. What
we can hope for is that this is essentially all you can do. With this in mind, as
a successful adversary, we consider one who on average has a small advantage
over the trivial guessing strategy.

We study the particular case when E(x) = EN (x) is RSA encryption. Here
N is the product of two large primes, see [24]. RSA has been investigated from
many different angles over the last 20 years, but still relatively little is known
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about the security. It is known that certain information such as (x/N), the
Jacobi symbol of x, leaks through EN (x). For the specific issue of security
for individual bits in x, this has so far only been proven to be true for the
O(log logN) least significant bits. Starting from a relatively weak result, in
a sequence of papers, [15, 3, 29, 11, 26, 8], this was improved, ending with
the final proof of “complete” security by Alexi, Chor, Goldreich, and Schnorr
in [1]. There are also other known security results for certain predicates that
are related to the individual bits of x, e.g. halfN (x) , 1 if x ≥ (N + 1)/2, 0
otherwise, see [15] for instance.

For the other, internal bits, however, the best known result up until now
states that they can cannot be computed with probability greater than 3/4. By
using relations between halfN (x) and the individual bits of x, Ben-Or, Chor, and
Shamir proved in [3], that the internal bits cannot be computed with probability
of success exceeding 15/16. By a reduction to this proof, the result in [1] for the
least significant bit, then improved the result to 3/4, still leaving a large gap to
the desired 1/2-result.

In this paper we show the following:

Theorem. For any constant c and all sufficiently large n, unless RSA can be
broken1 in random polynomial time, no single bit of E−1

N (x) (where dlogNe = n)
can be predicted with advantage2 exceeding n−c.

Moreover, distinguishing a block of O(log n) bits of x from random bits is
also as hard as inverting RSA.

For a given function E(x), the concept of bit-security is of course only mean-
ingful when computing E−1(x) is assumed (or known) to be hard. Under such
assumptions, there are a few cases where all individual bits are known to be
secure. Assuming that factoring Blum-integers is hard, H̊astad, Schrift, and
Shamir proved in [16] that given gx modulo N , where N is a Blum-integer,
all bits of x are individually secure. Näslund showed in [20] that all bits in
affine functions modulo a (not too small) prime, x 7→ ax + b modulo p, are
secure given the information a, b, p, and f(x) for any one-way function f . Our
results here are achieved by extending and combining this work with the work
in [1, 3, 10, 20].

The techniques can also be extended to show the analog results for other
functions. The results carry over to the Rabin encryption function, x 7→ x2

modulo N . For a randomly chosen prime p, with high probability, the results
also hold with respect to the discrete exponentiation function x 7→ gx modulo
p. That is, for almost all p, predicting a single bit (or distinguishing blocks of
bits from random bits) is as hard as computing discrete logarithms. We also
give explicit primes p for which it seems hard to get the same results using the
methods currently at our disposal. Finally we also prove that the individual

1Here, “breaking” simply means retrieving the message x with non-negligible success prob-
ability. In particular, our result is not connected to issues such as the relationship between
RSA and factoring, recently investigated in [5].

2We do not give credit to trivial advantage due to bias.
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bits of hash-functions ax + b modulo p give unpredictable predicates for any
one-way function f even if p is quite small.

The paper is organized as follows. After first giving some notation in Sec-
tion 2, we, in Section 3, review some techniques used in previous results. The
bulk of the paper then proves the security results for all individual RSA bits.
Section 4 generalizes some well-known sampling techniques. For technical rea-
son, we divide the study into two cases; the internal bits are treated in Section 5
(which is the essentially new case) and then the most significant bits in Section 6.
In Section 7 the simultaneous security of O(log n) bits is proven. Section 8 dis-
cusses the special case of the Rabin encryption scheme. In Section 9 we show
that the techniques can be extended to prove security for the bits of the dis-
crete logarithm, and we end by proving that the bits of ax + b modulo p give
unpredictable predicates in Section 10.

2 Preliminaries

The model of computation used is that of probabilistic Turing machines running
in time poly(n) where n is the length of the input, pptm for short. In general,
‖y‖ denotes the length of the binary string y. If S is a set, #S is the cardinality
of S and by x ∈D S we mean an x chosen at random according to the distribution
D on S, U denotes the uniform distribution. If T ⊂ S, then λS(T ) , #T/#S is
the standard uniform measure. (When S is obvious from the context, we write
λ(T ).) For two sets S, T , SOT is the symmetric difference: (S \ T ) ∪ (T \ S).

We call a function g(n) negligible if for every constant c > 0 and all suffi-
ciently large n, g(n) < n−c. A one-way function is a poly-time computable func-
tion f such that for every pptm, M , the probability that M(f(x)) ∈ f−1(f(x))
is negligible. The probability is taken over x ∈U {0, 1}n and M ’s random coin
flips.

Let f be a one-way function and let b be a poly-time computable boolean
function. An ε(n)-oracle for b is a pptm O for which Pr[O(f(x)) = b(x)] ≥
1+ε(n)

2 , the probability taken over x ∈U {0, 1}n, and O’s random choices. The
only interesting case is when ε(n) > 0. If no ε(n)-oracle exists, we call b ε(n)-
secure for f , and if b is ε(n)-secure for all non-negligible ε(n), we say that b is

secure for f .
For m, z ∈ Z, m > 0, we write [z]m , z modulo m and put absm(z) ,

min{[z]m,m − [z]m}. If for some δ ∈ [0, 1], absm(z) ≤ δm, z is said to be δ-
small (modulo m). A number x is δ-determined modulo m if it can be written
on the form y + z where y is known and z is δ-small. The gcd of a, b ∈ Z is
written (a, b).

We use EN (x) to denote the RSA encryption function: EN (x) , [xe]N for
‖N‖ = n, N = pq, the product of two primes, and e, an integer relatively prime
to (p− 1)(q − 1).

For z ∈ Z, 0 ≤ i < ‖z‖, biti(z) denotes the ith bit in the binary rep-
resentation of z, biti(z) , bz/2ic modulo 2. This means that the bits are
numbered 0, 1, . . . , ‖z‖ − 1, “right-to-left”. In particular lsb(z) , bit0(z). For
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0 ≤ i ≤ j < ‖z‖, let Bji (z) denote bits i, i+1, . . . , j in the binary representation
of z.

For a given N , and random z, the bits in [z]N are not uniformly distributed
since the uniform distribution on ZN is not the same as the uniform distribution
on {0, 1}‖N‖. By the bias of the ith bit we mean the value βi(N) such that

Prz∈UZN
[biti(z) = 0] = 1+βi(N)

2 . It is an easy exercise to verify that always,

βi(N) ≤ 2i

N . The bias is therefore only of significance for the O(log logN) most
significant bits. A notion of ε(n) security of biased bits is given in Section 6.

Finally, let D,D′ be distributions on the same space S. We call D,D′ (poly-
nomially) distinguishable if there is a pptm D such that

∣
∣
∣
∣

Pr
y∈DS

[D(y) = 1]− Pr
y′∈

D′S
[D(y′) = 1]

∣
∣
∣
∣

is non-negligible.
A warning about convention. In many places we define integers by an expres-

sion that gives a real number. If the number is not integral we simply round it
to one of the two closest integers. Sometimes we round explicitly i.e. by writing
bxc but at other times, for readability reasons, we do not.

3 Previous Work and Proof Outline

The security of the least significant bit in an RSA encrypted message has gained
a lot of attention. The first result by Goldwasser, Micali, and Tong, [15], was to
prove a 1− o(1)-security result. They used the relation halfN (x) = lsb([2x]N )
(halfN as in the introduction), enabling a binary search to find x. By introducing
a gcd computation technique a 1

2 +o(1) result was given in [3] by Ben-Or, Chor,
and Shamir. Further progress (still using the gcd technique) was accomplished
by a more intricate sampling technique, and then by an improved combinatorial
analysis of this technique. More precisely, Vazirani and Vazirani, [29], and
then Goldreich, [11], respectively, showed 0.464- and 0.45-security. The main
drawback of the method in [3] is that queries to the oracle are made in pairs,
causing so called error-doubling.

By improving the sampling techniques once again, Schnorr and Alexi, [26],
proved ε-security for any constant ε. They removed the error-doubling phe-
nomenon by using “preprocessing”. The cost of this preprocessing was, however,
exponential in ε−1.

To show ε(n)-security for any non-negligible ε(·), Chor and Goldreich man-
aged in [8] (see also [1]) to reduce the cost of preprocessing to poly(ε−1) by
introducing the so called two-point based sampling. Recently, a simpler proof of
ε(n)-security was given in [10] by Fischlin and Schnorr. This last method does
not use a gcd computation. Instead, the main idea is to use lsb-information to
iteratively improve an approximation for the rational number x

N .
The results for the least significant bit generalizes in a straightforward way to

any of the O(log n) least significant bits. For the internal bits of RSA however,
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the results so far are not very strong. The first appeared in the paper [15],
where it was shown that for each i, there are N of very special form, for which
the ith bit of x cannot be computed without errors. In [3], it was proved that
an oracle for the ith bit of RSA can be converted into an lsb-oracle, increasing
the error probability by 1

4 in the worst case. However, they could also prove
that for every second bit-position i, the error introduced could be bounded by
3
16 . Hence, from their own result for the lsb, a 7

8 -security for “half” of the
individual bits followed. All later progress in proving security for the lsb has
then, via the reduction by Ben-Or et al., strengthened the provable security for
the internal bits. The best result so far is the 1

2 + o(1)-security that follows
from the work in [1], still leaving a large gap to the desired o(1) result. The
provable security obtainable by these reductions depends on N and i (the bit-
position considered), but for worst case N and i, results better than 1

2 +o(1) are
impossible by this “standard” reduction. If the oracle for the ith bit we start
with is correct with probability 1+ε′

2 , then after the conversion to an lsb-oracle,
a success probability non-negligibly greater than 1

2 must remain. The extra 1
4

error that the reduction may add to the error probability is a tight bound, so
we certainly need 1+ε′

2 − 1
4 >

1
2 , i.e. ε′ > 1

2 .
As mentioned, few results of bit security for all individual bits in some func-

tion are known. In [20], it was claimed that all bits in functions of the form
x 7→ [ax+b]p, p an Ω(n)-bit prime, were ε(n)-secure with respect to any one-way
function. However, upon completing the proofs, it has become clear that the
methods outlined there can not give better results than 3

4 -security for general p.
In fact, it was this completion that led us to realize that the techniques apply to
RSA as well. The common property between the two types of functions is multi-
plicativity; EN (cx) = [EN (c)EN (x)]N and [ch(x)]p = [(ca)x+cb]p. That is, even
if x is unknown, given EN (x) one can compute EN (cx), and given h(x), [ch(x)]p
can be found as h′(x), another function of the same type. This property is used
extensively in obtaining the previous RSA results and also in [20]. Of course,
h(·) above has an extra feature; additive properties ([h(x)−c]p = [ax+(b−c)]p).
However, it will be shown that we do not need that property.

In Section 10 we give the proofs of the results of [20] extended to allow primes
of smaller size. This extension makes essential use of the results of Goldreich,
Ron, and Sudan [13] giving an error correcting version of the Chinese remainder
theorem.

Our proofs are by reductio ad absurdum: if an ε(n)-oracle for biti(x) exists,
then this oracle can be used in a black-box fashion to retrieve x, i.e. to invert
the one-way function we are currently considering .

3.1 The Method of Fischlin and Schnorr

To compute x using an lsb-oracle [10] proceeds as follows. Given is an initial
guess y with |y − x| < N/nk for some k. Then by calculating lsb(x) we get
a guess, (y − lsb(x))/2 + lsb(x)(N + 1)/2, of x/2 with half the uncertainty.
Repeating this about n gives an exact value for a number of the form x2−l

and from this we can retrieve x. Finally note that we can in advance specify a
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polynomial number of initial values of y one of which will be accurate enough.
It turns out that it is not necessary to have a very accurate lsb-oracle to

start with to make this procedure work. Let an interval J ⊂ [0..N − 1] denote
a set of consecutive integers in ZN and for z ∈ Z, J + z is the interval J
translated by z, allowing reductions modulo N . Suppose that for some not too
short interval J , we have an oracle that, when given EN (z), is somewhat more
likely to answer “1” for z ∈ J than for z ∈ J + (N + 1)/2. Now ask this oracle
about EN ([2−1x]N ). We used above that

[2−1x]N =
x− lsb(x)

2
+ lsb(x)[2−1]N =

x− lsb(x)

2
+ lsb(x)

N + 1

2
, (3.1)

see also Figure 1. Hence, if x−lsb(x)
2 ∈ J , then [2−1x]N ∈ J + lsb(x)(N + 1)/2.

Since the oracle “behaves” differently on J , J + (N + 1)/2, there is some hope
to determine the lsb by querying the oracle.

0

x

N − 1

2−1x

lsb(x) = 0 lsb(x) = 1

0
(N + 1)/2

N − 1

Figure 1: Division by 2 in ZN . Values that only differ in their lsb’s are mapped
to points N+1

2 apart.

There are some technical details that needs to be taken care of however. For
instance, it is not clear how to get x−lsb(x)

2 to lie in J in the first place, and a
more serious concern is the existence of such J .

3.2 The Method of Näslund

Here the objective was to use an oracle for the ith bit in the function x 7→
[ax+ b]p, p an Ω(‖x‖)-bit prime and a, b random elements in Zp, to retrieve x.

To handle the internal bits, the main idea in [20] was to convert the oracle
for the ith bit into an oracle that computed both the lsb and the i + 1st bit,
creating a two-bit window that by manipulating a, b through multiplications can
be made to slide over all the bits in [ax+ b]p, see Figure 2.
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. . . . . . . . . . . .

. . . . . .

n− 1 i+ 1 0

i+ 2 1

Figure 2: Deciding bits two-by-two.

As mentioned, a closer study of this work reveals that the methods in fact do
not apply for some “highly structured” oracles that behave in a certain way.
On the other hand, the oracles for which the methods fail are of a very special
nature that we can exploit. We mentioned above that the tools from [3] can
not be used to prove stronger security than 1

2 for general N . The plan is now:
(a) Investigate how, and when, the methods in [20] are applicable to prove bit
security for RSA. (b) Show that when those methods fail, we can deduce that
a certain relation between N and 2i+1 holds (i is the bit position predicted
by the oracle), and furthermore, the oracle must then have a certain structure.
(c) Prove that for bad N, i, and oracles as specified by (b), this makes it possible
to construct an algorithm, i.e. a new oracle, O′, using the original oracle O as a
black box, such that O′ is an lsb-oracle. That is, either the methods from [20]
works or the methods in [3] can be refined to prove the desired result.

We start by giving some generalizations of well-known sampling techniques
and then formalize how the method by Fischlin and Schnorr is used as a “warm-
up”. We then follow (a), (b), (c) as above.

4 Sampling Techniques

Throughout the paper, i is reserved to denote the bit-position predicted by the
oracle and ε(n) is reserved for the advantage of the oracle. More precisely, we
assume that we have an oracle O that given EN (x), ‖N‖ = n, predicts the ith

bit of x with probability at least 1+ε(n)
2 where ε(n) is non-negligible.

Definition 4.1. By an interval, J , we mean a set of consecutive values J =
{[u]N , [u + 1]N , . . . , [v]N} in ZN . The length of J is #J and the measure is
λ(J) , #J/N . If J is an interval and z ∈ ZN , denote by J + z , {[y + z]N |
y ∈ J}.

For a distribution D with support on J ⊂ ZN , let PO
D (J) be the fraction of

1-answers the oracle gives on D:

PO
D (J) , Ez∈DJ [O(EN (z))] = Pr

z∈DJ
[O(EN (z)) = 1].
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If D is the uniform distribution on J , we shall omit it from the notation, and fur-
thermore, we then also define for J1, J2 ⊂ ZN : ∆O(J1, J2) ,

∣
∣PO(J1)− PO(J2)

∣
∣.

Fix an a ∈ ZN and suppose we have some set of random values R = {rj} ⊂
ZN . Using the multiplicative properties of RSA, we can query the oracle for the
ith bit of

R′ = {E−1
N ([(rj + a)x]N ) | rj ∈ R}.

The idea is that in cases when some bit (or bits) of x equals 0, R′ corresponds
to some distribution D0 on ZN , and when the bit is 1, it corresponds to a
distribution D1. If theses two distributions are polynomially distinguishable,
we can by taking enough samples almost surely decide the relevant bit(s) of x
in this way.

Now, these distributions D0,D1 have support on two subsets of ZN (e.g.
when we want to distinguish between values in some interval J and J + (N +
1)/2). To make sure that we hit one of these two subsets when sampling, we
make sure that we know in advance the approximate locations in ZN of the
sample points. We will in fact later also need to know more than just the
approximate locations, so we therefore state the following lemma.

Lemma 4.2. Let m(n) ∈ poly(n), dI(n), dY (n) ∈ O(log n). Then, given EN (x)
and r, s ∈U ZN , it is in deterministic polynomial time possible to generate a list
of m(n) values of the form EN (rjx) so that each [rjx]N is uniformly distributed
and the values in {[rjx]N} are pairwise independent. Furthermore, we generate
a set consisting of 24+2(dI(n)+dY (n))m(n)2 pairs of lists, {(LI , LY )}, each LI

consisting of m(n) values in Z2i+1 and each LY of m(n) values in Z.
For at least one (L′, L′′) ∈ {(LI , LY )}, for each j = 1, . . . ,m(n), for some

zj so that [zj ]N = [rjx]N we have

∣
∣zj − L′′

j

∣
∣ ≤ N

2dY (n)
(4.1)

and

abs2i+1(zj − L′
j) ≤ 2i+1−dI(n). (4.2)

The reader is encouraged to compare this to §4.4 of [1]. There, it was only
necessary to know the lsb of each point.

Proof. Let U = [rx]N , V = [sx]N , and rj = (r + js), zj = U + jV , so that
[rjx]N = [zj ]N , j = 1, . . . ,m(n). We easily see that this gives uniformly dis-
tributed values [rjx]N ∈ ZN that are pairwise independent (see [7]). Repeat the
following for all possibilities of

Bii−dI(n)(U), Bii−(dI(n)+logm(n))(V ), (4.3)

and

u′ ,
21+dY (n)U

N
, v′ ,

2(1+dY (n)+logm(n))V

N
. (4.4)
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Notice that there are 24+2dI(n)+2dY (n)m(n)2 possibilities all together. For each
we create one (LI , LY )-pair as described below. Let us focus on the one based
on the correct values above.

Since by (4.4) above, we know V within N/2dY (n)+1+logm(n) and j ≤ m(n),
we know jV to within N/2dY (n)+1. We also know U within N/2dY (n)+1 so
U + jV (i.e. zj) is known within N/2dY (n). Hence, this gives us a L′′

j such that
∣
∣U + jV − L′′

j

∣
∣ ≤ N/2dY (n).

Furthermore, we make the following observations. First, by (4.3), [V ]2i+1 is
known to within 2i+1−(dI(n)+1+logm(n)), and j ≤ m(n), so we also know [jV ]2i+1

within 2i+1−(dI(n)+1). We have [U ]2i+1 with the same accuracy, so [U + jV ]2i+1

is known within 2i+1−dI(n).

Note in particular that (4.1) implies that each [rjx]N is N
2dY (n) -determined. To

start with, we will in fact only need (4.1) above, (4.2) will be useful later.
To be able to distinguish between two subsets of ZN by observing how the

oracle behaves, we must first know how the oracle ought to behave in the two
cases.

Lemma 4.3. Let J ⊂ ZN with λ(J) non-negligible such that membership in
J can be determined in polynomial time. Then, for any non-negligible ε′(n),
and K(n) ∈ poly(n), it is in probabilistic polynomial time possible to compute
a value p̃ such that

Pr[
∣
∣PO(J)− p̃

∣
∣ ≥ ε′(n)] ≤ 1

K(n)
.

Proof. Let m′(n) = ε′(n)−2 ln(4nK(n)), and set m(n) = 4λ(J)−1m′(n). Pick
randomly and independently x1, . . . , xm(n) ∈ ZN . For each xj , such that xj ∈ J ,
query the oracle on EN (xj) and compute p̃ as the fraction of 1-answers the oracle
gives. Two applications of Chernoff bounds now establishes the lemma: first
bound the probability that #({xj} ∩ J) is small; then the probability that p̃
deviates too much from the expected value, PO(J).

5 Security of Non Leftmost RSA Bits

In this section, we consider i such that

τ(n) + 4 log ε(n)−1 + logn+ 33 ≤ i ≤ n− 3τ(n)− log ε(n)−1 − 7

where τ(n) , 34 + 5 log ε(n)−1 + logn. We impose these restrictions on i for
two reasons. First, we need at least a logarithmic number of bit positions to
“the right” of the oracle to make the proof work. This does not matter, since
the O(log n) least significant bits are covered by previous results. Secondly, for
bit positions among the O(log n) most significant bits, the bias imposed by the
binary representation of N may be non-negligible, and we handle these bits in
Section 6.
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5.1 RSA inversion, Method 1

The main technical lemma needed of this section is the following. It generalizes
slightly lemmas from [3, 1, 10].

Lemma 5.1. If O is such that for some interval J we have ∆O(J, J + (N +
1)/2) ≥ ε′(n), where λ(J), ε′(n) are non-negligible, then we can in random

polynomial time construct an oracle, O′ such that for all λ(J)ε′(n)
512n -determined

[ax]N , O′ determines lsb([ax]N ) with probability at least 1− 1
2n .

We will later see how to use such an oracle to find x in a straightforward
way using the methods of [10].

We use O as a black-box to build the new oracle as follows. Use Lemma 4.2
to get a set of random, pairwise independent values in ZN of the form {[rjx]N}
for which we know their approximate locations in ZN , that is, we know Lj so
that absN (rjx − Lj) is small. Let us assume the hypothesis “lsb([ax]N ) = 0”.
Then, if the hypothesis is correct, since [ax]N is λ(J)ε′(n)/(512n)-determined
and we have good approximations of the numbers [rjx], we can almost surely
tell whether [2−1ax + rjx]N = [(2−1a + rj)x]N is in J or not. If so, ask the
oracle about this value and otherwise, disregard this rjx. Since the length of J
is not too short, we will ask the oracle on some non-negligible fraction of the
points. Now, if the hypothesis is correct, these are almost all points in J . If,
on the other hand, the hypothesis is wrong (lsb([ax]N ) = 1) we will query the
oracle on points in J + (N + 1)/2 and by observing the oracle’s behavior (the
fraction of 1-answers) we should be able to tell the two cases apart. Let us turn
to the formal argument.

Proof of Lemma 5.1. By Lemma 4.3 we can assume that we have p̃0, p̃1, ap-
proximations to PO(J), PO(J + (N + 1)/2) respectively, within ε′(n)/4. This
can be made to hold with probability at least 1 − 1/(4n), and we assume for
concreteness that p̃1 > p̃0.

Furthermore, assume that, we as described in Lemma 4.2, have generated
R′, a set of

m(n) = 512λ(J)−1nε′(n)−2

pairwise independent, uniformly distributed values of the form rjx with each
[rjx]N known within 2−d(n)N for d(n) = 9 + log ε′(n)−1 + logλ(J)−1 + logn.
Actually, there are a polynomial number of candidates to these approximate
locations, but let us concentrate on the correct one—we can make one oracle O′

for each possibility, and we can exhaustively try them all.
Consider the set

R = {[(2−1a+ rj)x]N | [rjx]N ∈ R′}.

Assuming that lsb([ax]N ) = 0, we can for each j compute an aj such that

[aj−(2−1a+rj)x]N is λ(J)ε′(n)
256n -small. If aj ∈ J , we decide that [(2−1a+rj)x]N ∈

J , and otherwise that it is not and remove it from R.

10



Definition 5.2. If lsb([ax]N ) = 0 and [(2−1a+rj)x]N ∈ J while [(2−1a+rj)x]N
is not put into R (or the other way around) we call (2−1a+ rj)x misclassified.
The same notion applies to the case when lsb([ax]N ) = 1 with J replaced by
J + (N + 1)/2.

Not too many points are misclassified.

Claim 5.3. The expected number of misclassified points is bounded by

m(n)ε′(n)λ(J)/(64n).

We postpone the proof of the claim.
Ask O about all points of R. If the number of 1-answers is at least

m(n)λ(J)(p̃0 + p̃1)/2,

guess lsb([ax]N ) = 1 and otherwise guess lsb([ax]N ) = 0.
Let us estimate the probability of an incorrect answer. We assume that

lsb([ax]N ) = 0, the other case being similar. Let us analyze what would have
happened if all points had been correctly classified. Note that in this case
all points are uniformly distributed and pairwise independent. The expected
number of points put into R and given the answer 1 is PO(J)λ(J)m(n) and the
variance on this number is at most PO(J)λ(J)m(n). The probability that more
than λ(J)m(n)(PO(J) + ε′(n)/8) points are put into R and given the answer 1
is bounded, by Chebychev’s inequality, by

64λ(J)PO(J)m(n)

ε′(n)2λ(J)2m(n)2
≤ 64

ε′(n)2λ(J)m(n)
≤ 1

8n
,

where the last inequality follows from the definition of m. Now, unless at least
λ(J)m(n)ε′(n)/8 numbers are misclassified the number of 1-answers is, in the
above case, bounded by λ(J)m(n)(PO(J) + ε′(n)/4). By assumption,

p̃0 ≥ PO(J)− ε′(n)/4

and
p̃1 ≥ PO(J + (N + 1)/2)− ε′(n)/4 ≥ PO(J) + 3ε′(n)/4

and thus PO(J)+ε′(n)/4 ≤ (p̃0+p̃1)/2 and hence in the above case the algorithm
would output the correct answer. Since, by Claim 5.3 the probability of having
λ(J)m(n)ε′(n)/8 misclassified points is bounded by 1/(8n) adding the failure
probabilities, the lemma follows.

It remains to prove Claim 5.3

Proof of Claim 5.3. Since the points in question are ε′(n)λ(J)/(256n)-determined
the only points that can be misclassified are those which are within at most this
distance of either endpoint of J . Since the points are uniformly distributed the
expected number of such points is m(n)ε′(n)λ(J)/(64n).

11



Let us see how to use Lemma 5.1 to invert RSA.

Lemma 5.4. If O is such that for some interval J we have ∆O(J, J + (N +
1)/2) ≥ ε′(n), where λ(J), ε′(n) are non-negligible, then we can, in random
polynomial time, recover x with probability at least 1/2.

Proof. Given the oracle O′ proved to exist by Lemma 5.1 we proceed as follows
with all arithmetic modulo N .

Algorithm 5.5.

Input: EN (x) = [xe]N , ‖N‖ = n
Output: x
(1) guess y so that absN (x− y) ≤ Nλ(J)ε′(n)/512n
(2) z ← EN (x)
(3) for j := 0 to n− 1 do
(4) b← O′(z, y)
(5) z ← 2−ez;
(6) y ← b(N + 1)/2 + (y − b)/2;
(7) return y2n

A sufficiently dense set of possible values of y can be tried in polynomial
time and thus “guessing” is in fact replaced by a polynomially bounded loop.
By induction, provided that all the oracle calls are answered correctly, y is at
the call to O′ for a particular value of the loop variable j, an approximation of
2−jx within 2−jNλ(J)ε′(n)/512n and z is the encryption of 2−jx. This implies
that the preconditions of the parameters sent to the oracle remains correct and
with probability at least 1 − n · 1

2n = 1/2 we get n correct answers from the
oracle. This implies that at the end of the algorithm y is in fact exactly 2−nx
and the algorithm is correct.

We next to proceed to describe an alternate way to use an oracle to predict RSA.
It is much more correlated directly with the i’th bit and hence more directly
applicable to proving our main result.

5.2 RSA inversion, Method 2

This second method is much more technical than the previous, and we start by
outlining the ideas. This method follows the principles used in [20].

The idea is to use the oracle for the ith bit to decide both the lsb and the
i + 1st bit. Suppose that we already know the value of Bii−d+1(x), the value
of the d bits to the right of, and including bit i. (If d is small enough we can
initially simply guess this value.) As described in Section 3.2 the most intuitive
approach would be to ask the oracle on EN ([2−1x]N ). For technical reasons we
will, however, use EN ([2−τx]N ) where 1 < τ � i. Why τ > 1 is a good idea
is explained shortly. Make a list of all 22τ possibilities for bits i+ 1, . . . , i+ τ ,
and bits 0, . . . , τ − 1 in x, i.e, for Bi+τi+1(x) and Bτ−1

0 (x). Hence, an entry in this
list looks like (uj , vj), 0 ≤ uj , vj ≤ 2τ − 1, uj corresponding to a possibility for
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Bi+τi+1(x) and vj to a possibility for Bτ−1
0 (x). The two bits we are after, biti+1(x)

and lsb(x), then corresponds to lsb(uj) and lsb(vj), respectively.
Take any two distinct candidates from the list (u1, v1) and (u2, v2). Surely,

they cannot both be correct, so we shall try to exclude one of them (the incorrect
one if one is correct). Furthermore, since we only aim to determine the two
bits biti+1(x), lsb(x), we are only interested in pairs (u1, v1), (u2, v2) for which
lsb(u1) 6= lsb(u2) or lsb(v1) 6= lsb(v2).

Now consider [2−τx]N .

[2−τx]N =
x− Bi+τi+1(x)2i+1 − Bii−d+1(x)2

i−d+1 − Bτ−1
0 (x)

2τ

+ Bi+τi+1(x)2i+1−τ + Bii−d+1(x)2
i−d+1−τ

+ Bτ−1
0 (x)[2−τ ]N . (5.1)

The term x−Bi+τi+1(x)2i+1−Bii−d+1(x)2
i−d+1−Bτ−1

0 (x) is divisible (as an integer)
by 2τ , and it has d zeros to the right of bit i, so it is very small modulo 2i+1.
Hence, Bi+τi+1(x)2i+1−τ + Bτ−1

0 (x)[2−τ ]N is essentially the only unknown term
that influences the ith bit in [2−τx]N .

Now let us try to decide if (Bi+τi+1(x),Bτ−1
0 (x)) = (u1, v1) or (u2, v2), i.e. we

would like to tell if [2−τx]N is of the form z′+u12
i+1−τ+v1[2

−τ ]N or of the form
z′ +u22

i+1−τ + v2[2
−τ ]N , and this is the same as distinguishing between values

of the form z and z + u2i+1−τ + v[2−τ ]N , where z = z′ + u12
i+1−τ + v1[2

−τ ]N ,
u = u2 − u1, and v = v2 − v1. Since are only interested in the differences, we
may interchange (u1, v1) and (u2, v2) to ensure that v ≥ 0. Because at least one
of the pairs u1, u2 and v1, v2 differs in their least significant bit, we know that
at least one of u, v is odd.

If we assume that z belongs to some subset S ⊂ ZN , then [2−τx]N ∈ S if
(u1, v1) is correct and [2−τx]N ∈ S + u2i+1−τ + v[2−τ ]N if (u2, v2) is correct.
We now make the following definition:

Definition 5.6. For given N, τ and 0 ≤ v ≤ 2τ − 1, |u| ≤ 2τ − 1, define

ατN (u, v) , u2i+1−τ + v[2−τ ]N .

Note that ατN (u, v) is computed modulo N , not modulo 2i+1. Again, we
emphasize that we are only interested in ατN (u, v) where at least one of u, v is
odd.

Just like we in the previous section wanted to find sets J , J + (N + 1)/2 =
J + [2−1]N , where the oracle behaved differently, we can now ask if there are
similar sets S, S + ατN (u, v) where the oracle behaves differently. Consider first
the case when v is odd. There are 2τ distinct values of the form kατN (u, v),
k = 0, 1, . . . , 2τ − 1, and one can hope that for at least one of these k’s, the
oracle distinguishes between some S+kατN(u, v) and S+(k+1)ατN(u, v). When
k = 2τ , [kατN (u, v)]N = u2i+1 + v, which in turn is v modulo 2i+1. Since v is
small and the oracle predicts the ith bit, as far as the oracle is concerned, we
are then essentially back where we started. When τ = 1 there are therefore
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essentially only two possible multiples of α1
N (u, v) and this is the reason why

we use τ > 1. Now, if we can find good interval pairs for all these α-values, we
seem to be in good shape.

Consider a particular (u, v) and fix S ⊂ ZN so that all z ∈ S have the same
value for their ith bit. We can thus not let S be an interval as before, since
the length of S would then be bounded by 2i, which is negligible compared
to N . Instead, we take S as a union of short intervals, each at distance 2i+1,
i.e. S =

⋃

l(J
′ + l2i+1) where J ′ is a “traditional” interval of length at most

2i and the range of l is chosen suitably so that the measure of the set S is
non-negligible.

Definition 5.7. In the sequel we writeN asN , N12
i+1+N0 whereN0 < 2i+1.

We sometimes also study N1 closer, and it will be convenient to write N1 as
N1 , N32

τ(n) +N2 where N2 < 2τ(n).

Definition 5.8. Let I , Z2i+1 = {0, 1, . . . , 2i+1 − 1} and Y , ZN1+1 =
{0, 1, . . . , N1}. We can view ZN as a subset of I × Y by defining the natu-
ral projection π : ZN → I × Y by

π(z) = (πI(z), πY (z)) , (z mod 2i+1, bz/2i+1c).

Note that π is surjective, except for some values of the form (j,N1) with j ≥ N0.
We would like to draw the readers attention to the fact that since we are really
working modulo N , the value z that π(·) is applied to should, when necessary,
first be reduced modulo N . Such modular reductions could cause problems. For
this reason, we mostly, but not always, arrange things so that the argument z
(even when z is the sum of elements in ZN ) can be considered as an integer
in the range [0..N − 1]. We define the plane Π(N, i) = (I × Y ) ∩ π(ZN ). For
b ∈ {0, 1} we set

S(b) , {z ∈ ZN | biti(z) = b}.
For all non-negative integers we define a box, S, of width w and height h as the
following rectilinear subset of I × Y :

{π(z + 2i+1y) | z0 ≤ z < z0 + w, y0 ≤ y < y0 + h}.

The measure of such a box is simply λ(S) ,
#S
N = wh

N provided that h < N1

and w ≤ 2i+1. Furthermore, for a box S and z ∈ ZN we define the z-translation

of S as

S + z = S + (πI (z), πY (z)) , {(πI(z′ + z), πY (y′ + z)) | (z′, y′) ∈ S}.

A level is a subset of Π(N, i) consisting of the set of values having a fixed
πY -value. All levels except possibly the N1th level are of size 2i+1.

Finally, if S is a box and D is a probability distribution on S, we define as
before

PO

D (S) , Pr
z∈DS

[O(EN (z)) = 1].

When D is the uniform distribution, we omit it from the notation and then also
define ∆O(S, S′) ,

∣
∣PO(S)− PO(S′)

∣
∣.
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Figure 3: The Π(N, i)-plane. Shown is a typical box, S, and a translation, S+z.

Figure 3 below illustrates the plane.

In the figure, the relative scale on the I and Y -axis suggests that i > n/2, since
2i+1 = #I > #Y = dN/2i+1e ≈ 2n−(i+1).

We now state the main lemma of this section.

Lemma 5.9. Suppose that for all 0 ≤ v ≤ 2τ(n) − 1, |u| ≤ 2τ(n) − 1, u or
v odd, there is a box Su,v of width at least w(n)2i+1, height at least h(n)N1,

and with ∆O(Su,v , Su,v + α
τ(n)
N (u, v)) ≥ ε′(n), where h(n), w(n), ε′(n) are all

non-negligible. Define

d(n) , log ε′(n)−1 + log(w(n)h(n))−1 + 9 + 2τ(n) + logn.

Then it is possible to construct an oracle, O′, that given EN (x), j, Bi+ji−d(n)+1(x),

Bj−1
0 (x), and y so that absN (x−y) ≤ 2−d(n)N , for any 0 ≤ j ≤ max(n−i−2, i),

determines biti+j+1(x) and bitj(x) with probability at least 1− 1
2n .

Proof. We assume that, in fact, j ≤ min{i− d(n) + 1, n− d(n)− 1}. Otherwise,
only one of the two bits biti+j+1(x), bitj(x) is unknown, and it is easy to see
how that would only simplify the procedure below.

We define λu,v , λ(Su,v) and

m(n) , 512nλ−1
u,vε

′(n)−222τ(n).
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Let p̃u,v and p̃′u,v be estimates for PO(Su,v) and PO(Su,v + α
τ(n)
N (u, v)) respec-

tively such that |p̃u,v−PO(Su,v)| ≤ ε(n)′/8 and |p̃′u,v−PO(Su,v+α
τ(n)
N (u, v))| ≤

ε(n)′/8 with probability 1 − 1/(8n). Assume for notational simplicity that we
always have p̃′u,v > p̃u,v.

By Lemma 4.2, we can generate m(n) sample points of the form rkx where
for some zk, [rkx]N = [zk]N , zk is known within 2−d(n)N and with [zk]2i+1 known
with a relative error of 2−d(n). There are a polynomial number of possibilities
for these values but we can construct one oracle for each, and try them all, so
we may assume that we have the correct choice.

The procedure to decide two new bits in x is:

Algorithm 5.10.

Output: (biti+j+1(x), bitj(x))
(1) T ← {0, 1}τ(n) × {0, 1}τ(n)

(2) while ∃ (u1, v1), (u2, v2) ∈ T s.t. lsb(u1) 6= lsb(u2) OR lsb(v1) 6= lsb(v2) do
(3) possibly exchange (u1, v1), (u2, v2) to ensure v2 ≥ v1
(4) (u, v)← (u2 − u1, v2 − v1); α← α

τ(n)
N (u, v)

(5) guess that u1 = B
i+j+τ(n)
i+j+1 (x) and v1 = B

j+τ(n)−1
j (x)

(6) R = {}
(7) for k := 1 to m(n) do

(8) π′ ← approximation to π([(rk + 2−(j+τ(n)))x]N )
based on j, τ(n), u1, v1 and available info. on x, rkx

(9) if π′ ∈ Su,v then

(10) R← R ∪ {EN((rk + 2−(j+τ(n)))x)}
(11) p← number of 1 answers of O on R
(12) if p ≤ λu,vm(n)(p̃u,v + p̃′u,v)/2 then
(13) delete (u2, v2) from T
(14) else
(15) delete (u1, v1) from T
(16) pick any (u, v) ∈ T ; return (lsb(u), lsb(v))

Some comments may be in place. The while-loop runs over pairs of candi-

dates for B
i+j+τ(n)
i+j+1 (x), B

j+τ(n)−1
j (x), and terminates when all remaining pairs

have the same value both for lsb(B
i+j+τ(n)
i+j+1 (x)) (corresponding to biti+j+1(x))

and lsb(B
j+τ(n)−1
j (x)) (i.e. bitj(x)), meaning that we hopefully have decided

two new bits in x.
In line (5) we “guess” that (u1, v1) is the correct choice for the unknown bits.

This means that the computations that follow are made as if (u1, v1) is correct.
The guess is needed to perform the computation in line (8). If (u1, v1) indeed
is correct, then the π′-value computed are good approximations to the true π-
values. Therefore, the distribution on the set R is close to uniform over Su,v
and pairwise independent. We, similarly to the proof of Lemma 5.1 call a point
misclassified if the decision whether to put it into R is incorrect. If instead,
(u2, v2) is correct, then R consists of values close to the uniform distribution on

Su,v + α
τ(n)
N (u, v) and we have a similar notion of misclassified.
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Of course, we may be totally wrong so that neither (u1, v1) nor (u2, v2) is
correct, but if so, we always (and correctly) rule out one of them as a possibility
and there is nothing to analyze.

Thus assuming that either (u1, v1) or (u2, v2) is correct, let us analyze the
probability of erroneously deleting the correct value in a single iteration. We
claim the following (c.f. Claim 5.3).

Claim 5.11. The expected number of misclassified points is bounded by

ε′(n)λu,vm(n)2−(2τ(n)+6)/n.

We postpone the proof of the claim.
Assume for concreteness that (u1, v1) is the correct value, the other case

being similar. If no misclassifications were made, since the points are pairwise
independent and uniformly distributed, the expected number of 1-answers is
PO(Su,v)λu,vm(n) and the variance of this number is at most PO(Su,v)λu,vm(n).
Thus, by Chebychev’s inequality, the probability that more than

λu,vm(n)(PO(Su,v) + ε′(n)/8)

1-answers are given is bounded by

64PO(Su,v)λu,vm(n)

ε′(n)2λ2
u,vm(n)2

≤ 64

ε′(n)2λu,vm(n)
≤ 2−2τ(n)

8n
.

Thus unless ε′(n)λu,vm(n)/8 points are misclassified the number of 1-answers
obtained is in this case at most λu,vm(n)(PO(Su,v) + ε′(n)/4). By the assump-
tion on p̃u,v and p̃′u,v we have

p̃u,v ≥ PO(Su,v)− ε′(n)/4

and

p̃′u,v ≥ PO(Su,v + α
τ(n)
N (u, v))− ε′(n)/4 ≥ PO(Su,v) + 3ε′(n)/4.

These inequalities imply PO(Su,v) + ε′(n)/4 ≤ (p̃u,v + p̃′u,v)/2 and thus we
conclude we do not discard the correct value in this case.

Finally, by Claim 5.11, we conclude that the probability of having more than
ε′(n)λu,vm(n)/8 misclassified points is bounded by 2−2τ(n)/(8n). This implies
that the probability of an error in one iteration is bounded by 2−2τ(n)/(2n) and
since we have at most 22τ(n) iterations, the lemma follows.

We have to give the above postponed proof of Claim 5.11

Proof of Claim 5.11. A point can only be misclassified if it is close to the borders
of S. In particular it should either be within distance N12

−d(n) in the Y -
direction or within 2i+1−d(n) in the I-direction. Since the points are uniformly
distributed the expected number of such points is at most m(n)23−d(n) and the
claim follows by the definition of d(n).
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Given the hypothesis of Lemma 5.9 it is not difficult to invert RSA.

Lemma 5.12. Given the same assumptions as Lemma 5.9, we can invert RSA
in random polynomial time with probability of success at least 1

2 .

Proof. Apply Lemma 5.9 and get the resulting oracle O′. The inversion algo-
rithm is now very simple.

Algorithm 5.13.

Input: EN (x), ‖N‖ = n
Output: x

(1) guess y so that absN (x− y) ≤ 2−d(n)N

(2) guess z′ = Bii−d(n)+1(x); z ← 0 /* z = Bj−1
0 (x) */

(3) for j := 0 to max(n− i− 2, i) do
(4) (b′, b)← O′(EN (x), j, z′, z, y) /* biti+1+j(x), bitj(x) */

(5) z′ ← 2j+d(n)b′ + z′; /* Bi+ji−d(n)+1(x) */

(6) z ← 2jb+ z; /* Bj0(x) */
(7) return z′2i+1−d(n) + z

We can repeat the process for all the polynomially many choices for y, z ′,
so we may assume that we have a correct guess. If the oracle does not err, it
is easy to see that the final z′2i+1−d(n) + z is the correct binary representation
of x. Since O′ is used at most n times, the total error probability is at most
n 1

2n = 1
2 .

The key to the overall proof is thus to establish the existence of the boxes
needed for Lemma 5.12 or the interval needed for Lemma 5.4. This is the topic
of the next section.

Before continuing let us, however, explain one point. We do not only need the
existence of the given boxes/intervals but also that they can be found efficiently.
Most of our proofs will in fact be efficient in this sense, but this is really not
needed. If S is a good box of non-negligible size then so is any other box
sufficiently close to S. It is not hard to see that once we have non-negligible lower
bounds for the size and the advantage then we can in fact specify a polynomial
number of candidates {Sj} such that if a good box exists then in fact one of the
Sj is also good, but of slightly inferior quality. This Sj can then be located by
Lemma 4.3. This implies that existence is equivalent to efficiently being able to
find a desired object and hence we can safely ignore this point.

5.3 Proving existence of good boxes/intervals

The main approach is to establish the existence of the boxes needed for Lemma 5.12.
The analysis is divided into a number of cases and only in one case may we fail
to directly establish the existence of the relevant boxes. In that case we prove
that either the desired boxes exist, or, we can construct the interval needed for
Lemma 5.4. We start with a simple case.
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Lemma 5.14. If v is even and u is odd we have a k ≤ 2τ(n) − 1 such that

∆O(S(0) + kα
τ(n)
N (u, v), S(0) + (k + 1)α

τ(n)
N (u, v)) ≥ ε(n)2−τ(n).

We give the simple proof in Section 5.3.1 on page 21.
Odd v require a bit more careful analysis and we start by a definition of a

new quantity that is intimately related to α
τ(n)
N (u, v).

Definition 5.15. For 0 < v ≤ 2τ − 1, v odd, and |u| ≤ 2τ − 1, define

α̃τN (u, v) , [−uv−1N ]2τ 2i+1−τ +

⌈
N

2τ

⌉

.

The key relation between α
τ(n)
N (u, v) and α̃

τ(n)
N (u, v) is given by the lemma

below.

Lemma 5.16. Let v be odd. If there is a box S ′ of height h and width w

such that ∆O(S′, S′ + α̃
τ(n)
N (u, v)) ≥ ε′(n), then there is a box S of the same

dimensions and with

∆O(S, S + α
τ(n)
N (u, v)) ≥ ε′(n)

2τ(n)
− 2

h
− 2

w
.

Proof. Let k = [−v−1N ]2τ(n) . Then

kα
τ(n)
N (u, v) ≡ [−v−1N ]2τ(n)(u2i+1−τ(n) + v[2−τ ]N ) ≡

≡ ([−uv−1N ]2τ(n) + c12
τ(n))2i+1−τ(n) + (−N + c22

τ(n))[2−τ(n)]N ≡
≡ [−uv−1N ]2τ(n)2i+1−τ(n) + c12

i+1 + c2 mod N,

where 0 ≤ c1 < 2τ(n) and 0 ≤ −N + c22
τ(n) ≤ 22τ(n). This implies that

kα
τ(n)
N (u, v)− α̃τ(n)

N (u, v) = c12
i+1 + c′2 mod N,

where c′2 = c2 − d N
2τ(n) e and hence 0 ≤ c′2 < 2τ(n). We conclude that

#
((

S′ + α̃
τ(n)
N (u, v)

)

O

(

S′ + kα
τ(n)
N (u, v)

))

≤ 2c1w + 2c′2h.

Hence

∆O(S′, S′ + kα
τ(n)
N (u, v)) ≥ ε′(n)− 2c1

h
− 2c′2

w
,

and the existence of k follows by the triangle inequality.

Lemma 5.16 allows us to study sequences of the form

{jα̃τ(n)
N (u, v)}j≥0 = {j(u′2i+1−τ(n) + dN/2τ(n)e)}j≥0,

where u′ = [−uv−1N ]2τ , rather than {jατ(n)
N (u, v)}j≥0. The key benefit of this

is that the former sequence is strictly increasing with respect to πY (·). Also,
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since u′ < 2τ(n) and 2i+1 < N/22τ(n) (from the upper bound on i), we never
need to perform any modular reductions modulo N , i.e.

[j(u′2i+1−τ(n)+dN/2τ(n)e)]N ≡ j(u′2i+1−τ(n)+dN/2τ(n)e), 0 ≤ j ≤ 2τ(n)−1,

and this simplifies the analysis. The central point point of the rest of the proof

is to study how the sequence {jα̃τ(n)
N (u, v)}j≥0 behaves modulo 2i+1. One key

property is whether α̃
τ(n)
N (u, v)2−(i+1) can be well approximated by a rational

number with small denominator. We need some definitions.

Definition 5.17. The number ζ ∈ Q is said to be of (Q,ψ)-type if for all
integers r, s, 0 < s ≤ Q and (r, s) = 1:

∣
∣
∣ζ − r

s

∣
∣
∣ >

1

s2ψ
.

Definition 5.18. Define Q(n) , 210ε(n)−1, ψ(n) ,
ε(n)2τ(n)

212 log2 Q(n)
.

We are now ready to state the three main lemmas needed to complete the
proof of security of the internal bits of RSA.

Lemma 5.19. Let v be odd. If the rational number α̃
τ(n)
N (u, v)/2i+1 is of

(Q(n), ψ(n))-type, then there is a box S of width 2i+1ε(n)/8, height at least

N3 − 1, and with ∆O(S, S + α̃
τ(n)
N (u, v)) ≥ ε(n)

2τ(n)+2 .

We give the proof in Section 5.3.2 on page 22. The key fact used in the proof

is that if α̃
τ(n)
N (u, v) is of the given type then {jα̃τ(n)

N (u, v)} is evenly distributed
modulo 2i+1.

Finally we need to address the case when we do have very good rational

approximations of α̃
τ(n)
N (u, v)/2i+1. The analysis is divided into two cases de-

pending on whether the denominator of this strong rational approximation is
odd or even.

Lemma 5.20. Suppose v is odd and that there are relatively prime integers
r, s, 0 < s ≤ Q(n) and s even, so that

∣
∣
∣
∣
∣

α̃
τ(n)
N (u, v)

2i+1
− r

s

∣
∣
∣
∣
∣
≤ 1

s2ψ(n)
, (5.2)

then there is k ≤ s such that

∆O(S(0) + kα̃
τ(n)
N (u, v), S(0) + (k + 1)α̃

τ(n)
N (u, v)) ≥ ε(n)

2s
.

The proof is rather similar to the proof for even v (Lemma 5.14) and is given
in Section 5.3.3 on page 24.

In the case of a good approximation with an odd denominator we cannot
prove that there exists a good box and in fact there are counterexamples showing
that there might not be any good boxes. We can prove, however, that if no good
box exists, then we can in fact find a related oracle which distinguishes intervals
at distance (N + 1)/2.
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Lemma 5.21. Suppose there are integers u, v, r, s, 0 < v ≤ 2τ(n) − 1, v odd,
|u| ≤ 2τ(n) − 1, 0 < s ≤ Q(n), (r, s) = 1 and s odd, such that

∣
∣
∣
∣
∣

α̃
τ(n)
N (u, v)

2i+1
− r

s

∣
∣
∣
∣
∣
≤ 1

s2ψ(n)
, (5.3)

and for all boxes S of height at least sN12
−τ(n) and width at least 2i+1ε(n)/(30s),

we have that ∆O(S, S+ α̃
τ(n)
N (u, v)) ≤ ε(n)2−(τ(n)+3). Then, using O, we can in

random polynomial time construct an oracle O′ and find an interval J of length
at least Nε(n)/32 such that ∆O

′

(J, J + (N + 1)/2) ≥ ε(n)/8.

The proof is given in Section 5.3.4 on page 25.
We can now add up together the pieces to establish security of all except the

most significant bits.

Theorem 5.22. For i ≤ n − 3τ(n) − log ε(n)−1 − 7, the ith bit in an RSA
encrypted message is secure, unless RSA can be broken in random polynomial
time.

Proof. If the hypothesis of Lemma 5.21 is true we can use the constructed O′

together with Lemma 5.4.
If the hypothesis of Lemma 5.21 is false then Lemma 5.14, Lemma 5.16,

Lemma 5.19, and Lemma 5.20 establishes the existence of all boxes needed to
apply Lemma 5.12.

Section 6 considers the remaining bits, i > n− 3τ(n)− log ε(n)−1 − 7.
As promised, we now turn to the postponed proofs. We start with the

proof of Lemma 5.14 and remember that it deals with multiples of the original

α
τ(n)
N (u, v) and not α̃

τ(n)
N (u, v) which only is relevant for odd v.

5.3.1 Proof of Lemma 5.14; even v

Setting v = 2v′ we have

2τ(n)−1α
τ(n)
N (u, v) ≡ u2i + v′ mod N.

Since u is odd, this implies that

λ((S(0) + 2τ(n)−1α
τ(n)
N (u, v))OS(1)) ≤ 2τ(n) 2i

N
+ 2τ(n)−i ≤ ε(n)/3.

The two error terms comes from u2i causing a modular reduction modulo N
and v′ causing a shift modulo 2i+1 respectively. The last inequality is due to
the definition of τ(n) and the assumption made on i.

By definition
∆O(S(0), S(1)) ≥ ε(n)− βi(N),
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where βi(N) is the bias of the ith bit. Since the bias is bounded by ε(n)/6 for
the range of i we are considering we conclude that

∆O

((

S(0) + 2τ(n)−1α
τ(n)
N (u, v)

)

, S(0)
)

≥ ε(n)/2.

The existence of the k in the lemma now follows by the triangle inequality.

5.3.2 Proof of Lemma 5.19; α̃
τ(n)
N (u, v)2−(i+1) of (Q(n), ψ(n))-type

The famous Weyl equidistribution theorem states that if ζ is irrational, the
fractional parts of the sequence {jζ}K−1

j=0 are uniformly distributed in [0, 1] in
the sense that as K → ∞, each [a, b] ⊂ [0, 1], gets about the expected number
of points from the sequence, i.e. a b − a fraction. The rate of convergence to
the uniform distribution depends on the extent to which ζ is approximable by

rationals. The assumption on α̃
τ(n)
N (u, v) implies, through a quantitative version

of the Weyl theorem, that {jατ(n)
N (u, v)}2τ(n)−1

j=0 is nicely distributed modulo 2i+1

and this is the key fact that we use in this section, see Theorem 5.25. Let us
start by defining a set of boxes.

Definition 5.23. Let w(n) = 2i+1ε(n)/8,m(n) =
⌊
2i+1/w(n)

⌋
, h(n) = πY (α̃

τ(n)
N (u, v))

and let S0,0 be the box [0..w(n)− 1]× [0..h(n)− 2]. Define

Sj,k = S0,0 + jw(n) + kα̃
τ(n)
N (u, v)

for 0 ≤ j ≤ m(n)− 1 and 0 ≤ k ≤ 2τ(n) − 2. A box is split if it intersects both
S(0) and S(1). Define the orbit oj by

oj =
⋃

k

Sj,k

where the union is only taken over boxes that are not split.

Figure 4 below describes the boxes Sj,k in a picture.

We establish the basic properties of our set of boxes.

Lemma 5.24. The boxes {Sj,k} are pairwise disjoint and cover Π(N, i) except
for at most a ε(n)/2-fraction. The total measure of the split boxes is at most
ε(n)/8.

Proof. First of all, notice that since

w(n)− 1 + (h(n)− 2)2i+1 + (
⌊
2i+1/w(n)

⌋
− 1)w(n) + (2τ(n) − 2)α̃

τ(n)
N (u, v) ≤

(h(n)− 1)2i+1 + (2τ(n) − 2)(2i +
N

2τ(n)
) < N

we need not perform any modular reductions when studying the boxes Sj,k. The
boxes are disjoint since boxes with different k-values have disjoint projections on
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S(0) S(1)

N1

S0,1 S1,1

S0,0 S0,1
h Sm−1,0

0

0 2i 2i+1 − 1

Figure 4: The basic boxes.

the Y -axis and boxes with the same k-value and different j-values have disjoint
projections on the I-axis. The total size of the boxes is

(h(n)− 1)w(n)m(n)(2τ(n)− 1) ≥ (2i+1−w(n))(1− 21−τ(n))N1 ≥ (1− ε(n)/4)N

and thus they cover all but an ε(n)/4 fraction of the plane. Finally note that for
each k only one Sj,k is split and thus we have at most 2τ(n) split boxes and the
total size of these split boxes is bounded by 2τ(n)(h(n)−1)w(n) ≤ ε(n)N/8.

As another preliminary consider the below theorem, the proof of which we
postpone to the appendix.

Theorem 5.25. Let 0 ≤ v ≤ 2τ(n)−1, v odd, |u| ≤ 2τ(n)−1. If α̃
τ(n)
N (u, v)/2i+1 ∈

Q is of (Q(n), ψ(n))-type, then for all 0 ≤ a < b < 2i+1,

∣
∣
∣
∣
Pr
j

[a ≤ jα̃τ(n)
N (u, v) ≤ b]− b− a

2i+1

∣
∣
∣
∣
≤ 14

(
1

Q(n)
+

4ψ(n) log2Q(n)

2τ(n)

)

,

the probability taken over j, chosen uniformly at random in {0, 1, . . . , 2τ(n)−2}.

Let us now turn to the proof of Lemma 5.19. In view of Lemma 5.24, O

must have advantage ε(n)/2 of determining the i’th bit on oj0 for some j0. Each
individual box that is part of oj0 is not split and hence it is either contained
completely in S(0) or completely in S(1). Define oj0,k = oj ∩ S(k) and assume
that oj0,k contains nk boxes. Since being contained in S(0) is equivalent to the
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lower left hand corner being in an interval of length 2i−w(n) modulo 2i+1, and
the same is true for being contained in S(1), two applications of Theorem 5.25
yield

|n1 − n0| ≤ 28(2τ(n) − 1)

(
1

Q(n)
+

4ψ(n) log2Q(n)

2τ(n)

)

≤ 2τ(n)ε(n)/16 (5.4)

and an additional application (using very blunt estimates) of the same theorem
yields

n1 + n0 ≥ 2τ(n)/2 (5.5)

Assume for concreteness that n1 ≥ n0. Now pair each box in oj0,0 in some
arbitrary way with a unique box in oj0,1. By (5.4) and (5.5), at most a fraction
ε(n)/8 of the boxes remain single. Thus by the assumption on the oracle there
must be an `k, k = 0, 1 such that Sj0,`k ∈ oj0,k and such that O has advantage
at least ε(n)/4 over Sj0,`0 ∪ Sj0,`1 . Now, since Sj0,`k ⊂ S(k) we can conclude
that

∆O(Sj0,`0 , Sj0,`1) ≥ ε(n)/4

. The lemma now follows by the triangle inequality.

5.3.3 Proof of Lemma 5.20; even denominator s

Set s = 2s′ and consider s′α̃
τ(n)
N (u, v). By the assumption on α̃

τ(n)
N (u, v) and

using that r is odd we have

|πI (s′α̃τ(n)
N (u, v))− 2i| ≤ 2i+1

sψ(n)
.

Furthermore |s′α̃τ(n)
N (u, v)| ≤ Q(n)N2−τ(n). This implies that

λ
((

S(0) + s′α
τ(n)
N (u, v)

)

OS(1)
)

≤ 2Q(n)

2τ(n)
+

2

sψ(n)
.

By the choice of Q(n) and τ(n) this latter quantity is bounded from above by
ε(n)/3. Now,

∆O(S(0), S(1)) ≥ ε(n)− βi(N)

where βi(N) is the bias of the ith bit. Since this is, by the assumption on i,
small compared to ε(n) we conclude that

∆O

((

S(0) + s′α
τ(n)
N (u, v)

)

OS(0)
)

≥ ε(n)/2.

The existence of k now follows by the triangle inequality.
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5.3.4 Proof of Lemma 5.21; odd denominator s

To see how the proof will go, we remind the reader of the work by Ben-Or et al.
in [3]. Ben-Or et al. showed that if O is an ε(n)-oracle for the ith bit in E−1

N (x),
and we, utilizing the multiplicative properties of RSA, define a new oracle, O2,
by

O2(EN (x)) = O(EN ([N−1
1 x]N )), (5.6)

then O2(EN (x)) distinguishes between some sets J, J + (N + 1)/2, increasing
the error probability of O by a quantity depending on [N ]2i+1 and this quantity
in turn is 1

4 in the worst case (a tight bound). Using the improved sampling
techniques from [1], a 1

2 -security result for the internal RSA bits follows. The
reason that this works is that the mapping z 7→ [N1z]N maps intervals at dis-
tance 2i to intervals “almost” at distance (N +1)/2. This “almost” depends on
[N ]2i+1 and gives rise to the additional error term.

The assumptions of Lemma 5.21 enables us to find another transformation
(similar to (5.6)) of the original oracle that maps certain sets at distance 2i to
sets also almost at distance (N + 1)/2 and where the oracle has a significant
advantage. We start by a preliminary lemma.

Lemma 5.26. If there are integers u, v, r, s, 0 < v ≤ 2τ(n) − 1, v odd, |u| ≤
2τ(n)−1, 0 < s ≤ Q(n), (r, s) = 1 and s odd, such that

∣
∣
∣
∣

α̃
τ(n)
N

(u,v)

2i+1 − r
s

∣
∣
∣
∣
≤ 1

s2ψ(n) ,

then for u′ = [−uv−1N ]2τ(n) there is r′ ∈ Z, r′ ≤ 2Q(n) so that for all sufficiently
large n, ∣

∣
∣s(u′ +N2)− r′2τ(n)

∣
∣
∣ ≤ nsε(n)−1.

Proof. Set r′ = r − sN3. Unfolding the definition of α̃
τ(n)
N (u, v), for some δ <

2τ(n) we have
∣
∣
∣
∣
∣

α̃
τ(n)
N (u, v)

2i+1
− r

s

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

u′2i+1 +N32
i+1+τ(n) +N22

i+1 +N0 + δ

2i+1+τ(n)
− r

s

∣
∣
∣
∣

=

∣
∣
∣
∣
N3 +

u′2i+1 +N22
i+1 +N0 + δ

2i+1+τ(n)
− r′

s
−N3

∣
∣
∣
∣

=

∣
∣
∣
∣

(u′ +N2)2
i+1 +N0 + δ

2i+1+τ(n)
− r′

s

∣
∣
∣
∣
.

Multiplying by 2τ(n)s and using the assumption we get:

∣
∣
∣
∣
s(u′ +N2) +

s(N0 + δ)

2i+1
− 2τ(n)r′

∣
∣
∣
∣
≤ 2τ(n) 1

sψ(n)
.

But N0 + δ ≤ 2i+1, so

∣
∣
∣s(u′ +N2)− 2τ(n)r′

∣
∣
∣ ≤ 2τ(n) 1

sψ(n)
+ s.
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Using s ≤ Q(n), u′ < 2τ(n), N2 < 2τ(n) and substituting the definition of
Q(n), ψ(n), and τ(n) now establishes the results.

The integer s(u′ +N2)− 2τ(n)r′ plays a special role in our argument and we
introduce the symbol κ for it.

Definition 5.27. Define the integer

κ , s(u′ +N2)− 2τ(n)r′.

In the remainder of this section we now concentrate on r′, s, u′, κ as above.
We can at this point write down the oracle that distinguishes between some J
and J + (N + 1)/2.

Definition 5.28. Define ϕ : ZN → ZN by

ϕ(z) , [(sN1 − κ)z]N .

For S ⊂ ZN , ϕ(S) is defined in the natural way; {ϕ(z) | z ∈ S}.
We now define the oracle

O′(EN (x)) , O(EN (ϕ−1(x))).

We see that when s = 1, κ = 0, we get precisely the same oracle construction
as in [3].

It may be the case that ϕ−1 does not exist, i.e. that sN1 − κ does not have
a multiplicative inverse. If this happens then we have factored3 N and we can
invert RSA. Hence we may assume that ϕ−1 exists.

We now study the behavior of O on certain boxes.

Definition 5.29. Let

w′(n) ,

⌊

2i+1(
1

2s
− 1

sψ(n)
)

⌋

and w(n) , bw′(n)ε(n)/10c. Define the base box

S0,0 , {0, . . . , w(n) − 1} × {0, . . . , πY (sα̃
τ(n)
N (u, v))− 1}

and then translated boxes

Sj,k , S0,0+kα̃
τ(n)
N (u, v)+jw(n), 0 < k < 2τ(n)−s, 0 ≤ j < bw′(n)/w(n)c.

Also, define the orbit

oj ,
⋃

k

Sj,k.

For each Sj,k, oj we define S′
j,k , Sj,k + 2i, o′j , oj + 2i.

As before, we call a box S split if both S ∩S(0), and S ∩S(1) are non-empty.

3Note that sN1 − κ is much smaller than N and it is much larger than 0.
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The proof will now proceed as follows. By assumption, O behaves almost the
same on all boxes within any fixed orbit. We will shortly see (in Lemmas 5.31
and 5.32), that under the mapping ϕ(·), oj gets mapped into what is (almost)
an interval Jj , and that o′j (almost) maps to Jj + (N + 1)/2. We prove that
if O has a significant advantage in guessing the ith bit on Sj,k ∪ S′

j,k for some
k, then O′ distinguishes Jj and Jj + (N + 1)/2. We establish that the boxes
cover most of the plane and hence there must be such a j and this completes
the argument. We start by investigating how well the boxes Sj,k and S′

j,k cover
the Π(N, i)-plane.

Lemma 5.30. The collection of boxes given by all Sj,k, and S′
j,k for 0 ≤ j <

bw′(n)/w(n)c and 0 ≤ k < 2τ(n)−s are disjoint and cover the plane except for a
fraction at most ε(n)/4. The total measure of all split boxes is at most ε(n)/10.

Proof. First we claim that no modular reductions are needed in the definition
of the boxes. This follows since the maximal value of any element in any of the
boxes is bounded by

(2τ(n) − (s+ 1))α̃
τ(n)
N (u, v) + sα̃

τ(n)
N (u, v) + 2i+1 < N.

Next note that Sj,k are disjoint for different j and a fixed value of k and
thus we can study the ”superboxes”

Bk ,
⋃

j

Sj,k

together with their similarly defined counterparts B′
k. The width of such a

superbox is bounded by w′(n). By symmetry and translation we need only
prove that for any k, neither Bk nor B′

k intersect B0. Since B′
0 clearly does not

intersectB0, by studying Y -coordinates it follows that we need only consider 0 <

k < s. Now the lower left corner of Bk and B′
k has I-coordinates πI (kα̃

τ(n)
N (u, v))

and πI (kα̃
τ(n)
N (u, v)) + 2i, respectively. For a box to intersect with B0 this

coordinate should be at least 2i+1 − w′(n). By (5.3) on page 21, setting ` = kr

modulo s, we see that kα̃
τ(n)
N (u, v) modulo 2i+1 is within distance at most

2i+1(sψ(n))−1 of `2i+1/s. Since ` is not 0, this number attains its maximal
value when ` = s− 1. To have an intersection of Bk with B0 we would need

s− 1

s
2i+1 + 2i+1 1

sψ(n)
≥ 2i+1 − w′(n)

but

2i+1 1

sψ(n)
+ w′(n) <

2i+1

2s
(5.7)

and thus we can have no intersection. The largest possible value of the lower left
corner of B′

k is obtained when when ` = (s−1)/2 and in this case the condition
of intersection is

2s− 1

2s
2i+1 + 2i+1 1

sψ(n)
≥ 2i+1 − w′(n),
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which again is false by (5.7). Thus the boxes are disjoint.

The size of each Sj,k is w(n)πY (sα̃
τ(n)
N (u, v)) and the number of boxes of

each of the two types is at least (2τ(n)− s)(w′(n)/w(n)−1). Thus the total size
of all the boxes is

2(2τ(n) − s)(w(n)′/w(n)− 1)w(n)πY (sα̃
τ(n)
N (u, v)) ≥

⌊
N

2τ(n)+i+1

⌋

(2τ(n) − s)2s(w′(n)− w(n)) ≥

N

2i+1
(1− 2s

2τ(n)
)2i+1(1− 2

ψ(n)
)(1− ε(n)/10) ≥ N(1− ε(n)/4).

Finally let us study the size of the split boxes. Any split box intersects the

middle vertical line (i.e. πI(x) = 2i) for πY (sα̃
τ(n)
N (u, v)) levels. Since there are

only N2−(i+1) levels we have at most 2τ(n)/s split boxes. Their total measure
is at most w(n) ≤ ε(n)/10. The proof is complete.

We proceed by investigating how ϕ acts on the Π(N, i)-plane. Of particular

interest is what happens to the number α̃
τ(n)
N (u, v) and what happens with

values that differ in the ith bit position. We start by estimating ϕ(α̃
τ(n)
N (u, v)).

Lemma 5.31.

|ϕ(α̃
τ(n)
N (u, v))| ≤ 212nsε(n)−1 max(2i+1, N/2i+1).

Proof. We need to estimate (sN1−κ)α̃τ(n)
N (u, v). Let us for the moment ignore

the term κα̃
τ(n)
N (u, v) and concentrate on sN1α̃

τ(n)
N (u, v). Since N1 is close to

N2−(i+1) it is useful to write sα̃
τ(n)
N (u, v) on the form a2i+1 + b for integers a

and b. Introducing δ < 2τ(n), so that N + δ is divisible by 2τ(n), with u′ =
[−uv−1N ]2τ(n) , we have

sα̃
τ(n)
N (u, v) = s

u′2i+1 +N + δ

2τ(n)
= s

(u′ +N32
τ(n) +N2)2

i+1 +N0 + δ

2τ(n)

= sN32
i+1 + s

(u′ +N2)2
i+1 +N0 + δ

2τ(n)

= sN32
i+1 +

(κ+ 2τ(n)r′)2i+1 + s(N0 + δ)

2τ(n)

= (sN3 + r′)2i+1 + κ2i+1−τ(n) +
s(N0 + δ)

2τ(n)
(5.8)

Now N12
i+1 ≡ −N0 modulo N and hence using (5.8)

sN1α̃
τ(n)
N (u, v) ≡ −N0(sN3 + r′) +N1κ2

i+1−τ(n) +
sN1(N0 + δ)

2τ(n)
mod N.

Now |r′N0| ≤ 2i+12Q(n) ≤ 211ε(n)−12i+1 and |sδN12
−τ(n)| ≤ sN2−i. Further-

more

sN1N02
−τ(n) − sN0N3 = sN0N22

−τ(n)
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and this is of absolute value at most s2i. Remembering the omitted term

κα̃
τ(n)
N (u, v) we have

N1κ2
i+1−τ(n) − κα̃τ(n)

N (u, v) = κ(N0 + δ + u′2i+1)2−τ(n)

which is of absolute value at most κ2i+2. Collecting the error terms, the lemma
follows.

It may seem that the error term ∼ max(2i+1, N/2i+1) is very large. However,
since the plan is to find intervals J, J + (N + 1)/2 where the oracle behaves
differently, the error term should be compared to N and for the range of i
currently under consideration our error is small compared to N .

Lemma 5.32. For sufficiently large n,
∣
∣
∣
∣
ϕ(2i)− N + 1

2

∣
∣
∣
∣
≤ 2snε(n)−12i+1

and
absN

(
ϕ(2i+1)

)
≤ 4snε(n)−12i+1

Proof. To study ϕ(2i) = [(sN1 − κ)2i]N we first note that |κ2i| ≤ nsε(n)−12i

and this will be part of the error term. Writing s = 2s′ + 1 for an integer s′ we
see that

sN12
i = s′N12

i+1 +N12
i.

Now N12
i+1 ≡ −N0 modulo N and |s′N0| ≤ s2i+1. Noting that |N12

i − (N +
1)/2| ≤ 2i, we establish the first part of the lemma by collecting the error terms.
The second part of the lemma is follows immediately from the first.

The first part of the Lemma says that values that differ in their ith bit gets
mapped to values essentially (N + 1)/2 apart.

We now study how orbits, oj , o
′
j can be mapped into intervals.

Lemma 5.33. There is an interval Jj of length at least Nε(n)/32 such that

# (JjOϕ(oj)) ≤ ε(n)w(n)sN1/16

and

#

((

Jj +
N + 1

2

)

Oϕ(o′j)

)

≤ ε(n)w(n)sN1/16.

Proof. Define Jj as [jsN1w(n), . . . (j+1)sN1w(n)−1]. The length of this interval
is

#Jj = sN1w(n) ≥ w′(n)ε(n)sN1/11 ≥ ε(n)2i+1N1/23 ≥ ε(n)N/32.

The orbit oj contains (2τ(n) − s)πY (sα̃
τ(n)
N (u, v))w(n) points. As a first part

to establish the claim we prove that the sizes of the two sets (i.e. Jj and

ϕ(oj)) are about equal. To see this, note that πY (sα̃
τ(n)
N (u, v)) is within 1
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of sN2−(i+1+τ(n)) which in its turn is within 1 of sN12
−τ(n). Thus the total

number of points in oj is of the form (1 + δ(n))sN1w(n) where

|δ(n)| ≤ (s+ 2)2−τ(n) ≤ ε(n)/64.

To establish the first part of the lemma we thus just need to prove that at most
a fraction ε(n)/32 of the points of oj are mapped outside Jj by ϕ.

Let us first consider the bottom level of Sj,0. If it was not for the presence
of κ in the definition of ϕ this bottom level would have been mapped evenly to
the entire Jj . However the presence of κ only displaces elements of this bottom
level at most κ2i which is bounded by |Jj |ε(n)/128.

Let us next consider the bottom levels of Sj,k. By Lemma 5.31 these are
only shifted a distance at most

2τ(n)212nsε(n)−1 max(2i+1, N/2i+1)

which is again bounded by |Jj |ε(n)/128.
Finally let us consider the non-bottom levels. By Lemma 5.32 starting points

of adjacent levels get mapped to points only 4snε(n)−12i+1 apart. Since we
have sN12

−τ(n) levels in one box the top layer has been shifted a distance
4s2nε(n)−12−τ(n)N . This is, by the choice of τ(n), bounded by |Jj |ε(n)/128.
Adding the error terms we get the first part of the lemma.

To study the behavior of o′j we need only add the extra error term 2snε−1(n)2i+1,

as given by Lemma 5.32 coming from that fact that 2i is not mapped exactly
to (N + 1)/2. This small extra term does not disturb the calculations.

We get immediately.

Corollary 5.34. If there is a j such that ∆O(o′j , oj) ≥ ε(n)/4 then there is an
interval Jj , of length at least ε(n)N/32 for which the oracle O′ has

∆O
′

(Jj , Jj + (N + 1)/2) ≥ ε(n)

8
.

The last piece in the proof of Lemma 5.21 is given by the following lemma.

Lemma 5.35. If O has advantage ε(n) in deciding the ith bit then for some j
we have ∆O(o′j , oj) ≥ ε(n)/4.

Proof. When considering the oracle only on the part of ZN covered by nonsplit
boxes of the form Sj,k or S′

j,k the oracle must, by Lemma 5.30, still have advan-
tage ε(n)/2. Since O must achieve its average somewhere there must be a pair on
nonsplit boxes (Sj,k, S

′
j,k) such that O has advantage at least ε(n)/2 in predict-

ing the ith bit on Sj,k ∪S′
j,k. Since the ith bit is constant on both Sj,k and S′

j,k

and different on these two sets we can conclude that ∆O(Sj,k, S
′
j,k) ≥ ε(n)/2.

Now by assumption on O for any l we have

∆O(Sj,l, Sj,k) ≤ |k − l|2−(τ(n)+3)ε(n) ≤ ε(n)/8.

This implies that ∆O(oj , Sj,k) ≤ ε(n)/8 and by a similar reasoning ∆O(o′j , S
′
j,k) ≤

ε(n)/8. By the triangle inequality we conclude that ∆O(o′j , oj) ≥ ε(n)/4.
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We can now draw the final conclusion, proving Lemma 5.21. By Lemma 5.35
we get a pair of orbits on which O behaves differently. By Corollary 5.34 this
gives the desired pairs of intervals.

6 Security of Leftmost RSA Bits

We now study the O(log n) most significant bits. A new concern for the most
significant bits is that due to a possibly large bias of the ith bit, the oracle’s
advantage may be severely shifted, favoring values having the ith bit equal to
0. Furthermore, one may argue that if the probability that the ith bit equals
0 is non-negligibly larger than 1/2, there is a trivial prediction algorithm, one
that always predicts ’0’.

It has been shown that the definition of ε(n)-security used up until now does
not generalize in the natural way to functions that are a priori known to be
biased. Schrift and Shamir [27] gave the correct definition of “unpredictabil-
ity” for biased functions. To make the situation interesting we assume that a
predicate is non-constant which means that it has a non-neglible probability of
outputting both values. The are now several equivalent ways to define unpre-
dictable and we here give the definition that is easiest to apply in the current
situation. For other, equivalent, definitions we refer to [27].

Definition 6.1. Let p be a non-constant predicate. An oracle O predicts p
with advantage ε(n) if

|Pr[O(EN (x)) = 1 | p(x) = 1]− Pr[O(EN (x)) = 1 | p(x) = 0]| ≥ ε(n). (6.1)

A predicate is ε(n)-secure if no pptm oracle exists with advantage ε(n) and it is
unpredictable if it is ε(n)-secure for all non-negligible ε(n).

Before continuing with the proof, we note that all that appears to be known
about the security of the most significant bits in RSA is that certain predi-
cates such as halfN (x) = 1 if x ≥ (N + 1)/2, 0 otherwise, are secure (see [7]
for instance). The proof is easy, since as we have seen, this predicate is reducible
to/from an lsb-computation: halfN (x) = lsb([2x]N ) and lsb(x) = halfN ([2−1x]N ).
This predicate is to some extent, depending onN , related to the most significant
bit of x.

6.1 Proof Outline

For RSA it is known (see [1]), that the t(n) ∈ O(log n) least significant bits of
x are simultaneously secure, i.e. given EN (x), they are polynomially indistin-
guishable from random bits. Clearly, this implies that it is infeasible to predict

these bits with a non-negligible advantage over the trivial 2−t(n). The plan is
therefore to prove that an ε(n)-oracle for biti(x), i = n−O(log n), can be con-

verted into an algorithm O′ that for some t(n) ∈ O(log n) predicts B
t(n)−1
0 (x)

with probability 2−t(n) + ε′(n), where ε′(·) is non-negligible. This will then give
a contradiction to the result in [1].
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For the moment, let us assume that the bias of the ith bit is small. Ask the
oracle O about biti(E

−1
N ([2−tx]N )) where t = n− i+ t0 and where t0 ∈ Θ(logn)

(so that t ∈ O(log n)). Again we note that

[2−tx]N =
x− Bt−1

0 (x)

2t
+ Bt−1

0 (x)[2−t]N .

The term
x−Bt−1

0 (x)

2t is small,

x− Bt−1
0 (x)

2t
≤ N

2t
≤ 2i−t0 ,

so except with probability ∼ 2−t0 , we have biti(B
t−1
0 (x)[2−t]N ) = biti([2

−tx]N ).
This means that although there are a priori 2t possibilities for Bt−1

0 (x), if the
oracle is correct on the ith bit of [2−tx]N , we can narrow it down to roughly
2t−1 as only half of the Bt−1

0 (x)-values would have given this particular value for
the ith bit. We now have an algorithm that computes Bt−1

0 (x) with probability
2−(t−1), which is twice the success rate of any trivial guessing-strategy. We now
turn to a formal argument taking also the bias into account.

We analyze the success probability of the following algorithm. O is the oracle
that is assumed to predict the ith bit of x.

Algorithm 6.2.

Input: EN (x), ‖N‖ = n

Output: B
t(n)−1
0 (x), for some t(n) = n− i+ t0(n) ∈ O(log n)

(1) b← O(EN ([2−t(n)x]N )) /* biti([2
−t(n)x]N ) */

(2) J← {j | 0 ≤ j < 2t(n) ∧ ∃z, 0 ≤ z ≤ 2i−t0(n) s.t. biti([j2
−t(n) + z]N) = b}

(3) pick j ∈U J

(4) return j

Notice that for t(n) ∈ O(log n), t0(n) ≥ 1, the algorithm is polynomial time:
For each j, 0 ≤ j < 2t(n), we only need to consider z = 0 and z = 2i−t0(n) to
determine the set J.

Lemma 6.3. Suppose that O satisfies (6.1) of Definition 6.1 and that the bias
is upper bounded by βi(N) ≤ 1− δ(n) where δ(n) is non-negligible. Then, for
t(n) = n − i + t0(n) where t0(n) ≥ log ε(n)−1 + log δ(n)−1 + 3, Algorithm 6.2

outputs B
t(n)−1
0 (x) with probability at least 2−t(n)(1 + ε(n)/2).

Proof. For random x, [2−t(n)x]N is uniformly distributed moduloN . To simplify
expressions, let A be the event that Algorithm 6.2 outputs the correct value,
and for b ∈ {0, 1}, A(b) denotes the event that the algorithm is correct given
that O(EN ([2−t(n)x]N )) = biti([2

−t(n)x]N ) and biti([2
−t(n)x]N ) = b. Finally,

for b ∈ {0, 1} put

qb , Pr[O(EN ([2−t(n)x]N )) = biti([2
−t(n)x]N ) ∧ biti([2

−t(n)x]N ) = b]
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and
pb , Pr[O(EN ([2−t(n)x]N )) = 1 | biti([2

−t(n)x]N ) = b].

Then, by (6.1), we have |p1 − p0| ≥ ε(n), and we may in fact assume that
p1 − p0 > 0, otherwise we simply invert all outputs from O.

We have

Pr[A] ≥ Pr[A(0)]q0 + Pr[A(1)]q1. (6.2)

By definition,

qb = Pr[O(EN ([2−t(n)x]N )) = biti([2
−t(n)x]N ) | biti([2

−t(n)x]N ) = b]

·Pr[biti([2
−t(n)x]N ) = b]

so since [2−t(n)x]N is uniformly distributed in ZN , q0 = (1 − p0)
1+βi(N)

2 and

q1 = p1
1−βi(N)

2 . Hence, continuing from (6.2) above,

Pr[A] ≥ Pr[A(0)](1− p0)
1 + βi(N)

2
+ Pr[A(1)]p1

1− βi(N)

2
.

Next, it is easy to see that for b ∈ {0, 1},

Pr[A(b)] =
1

#J
=

1

#{j | ∃z, 0 ≤ z ≤ 2i−t0(n) ∧ biti([j2−t(n) + z]N) = b} .

This holds since given that the oracle is correct on deciding the ith bit, then J

does contain the correct choice for B
t(n)−1
0 (x). Hence, as [2−t(n)x]N is uniformly

distributed in ZN , we have Pr[biti([2
−t(n)x]N ) = 0] = (1 + βi(N))/2, so for

b = 0 for instance, one would expect #J = 2t(n)(1 + βi(N))/2. However, this
is not completely true, but since Pr[biti([j2

−t(n) + z]N) = biti([j2
−t(n)]N )] =

1 − 2−t0(n), we certainly have #J ≤ 2t(n)((1 + βi(N))/2 + 2−t0(n)). A similar
statement hold when the ith bit is 1. Hence,

Pr[A] ≥ 2−t(n)
( 1

(1 + βi(N))/2 + 2−t0(n)
(1− p0)

1 + βi(N)

2

+
1

(1− βi(N))/2 + 2−t0(n)
p1

1− βi(N)

2

)

= 2−t(n)
( 1

1 + 2−(t0(n)−1)/(1 + βi(N))
(1− p0)

+
1

1 + 2−(t0(n)−1)/(1− βi(N))
p1

)

≥ 2−t(n)

(
1

1 + 2−(t0(n)−1)
(1− p0) +

1

1 + 2−(t0(n)−1)δ(n)−1
p1

)

≥ 2−t(n)
(

(1− 2−(t0(n)−1))(1− p0) + (1− 2−(t0(n)−1−log δ(n)−1))p1

)

= 2−t(n)
(

1 + p1 − p0 − p12
−(t0(n)−1−log δ(n)−1) − (1− p0)2

−(t0(n)−1)
)

≥ 2−t(n)
(

1 + ε(n)− 2 · 2−(t0(n)−1−log δ(n)−1)
)

≥ 2−t(n) (1 + ε(n)/2) ,
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using the definition of t0(n) and that 0 ≤ p1, p0 ≤ 1.

Combining the above lemma, the proof in [1] of simultaneous security for the
t(n) least significant RSA bits, and our result in Theorem 5.22 now establishes
the main result:

Theorem 6.4. For all non-negligible ε(n), any single bit in x is ε(n)-secure for
RSA, or else RSA can be broken in random polynomial time.

7 Simultaneous Security of RSA Bits

The notion of simultaneous security for RSA bits is, as mentioned, defined in

terms of indistinguishability: a set of d(n) bits, B
j+d(n)−1
j (x), is said to be secure

if given EN (x), B
j+d(n)−1
j (x) is polynomially indistinguishable from a random

string of the same length.
In [1], the simultaneous security for the O(log n) least significant bits of RSA

follows more or less directly from the individual security of these bits. The proof
uses Yao’s next-bit-test, [30]: a function h, ‖h(x)‖ = d, is polynomially indis-
tinguishable from the uniform distribution on {0, 1}d, if and only if, for each i,
1 ≤ i ≤ d−1, biti(h(x)) is secure, given bit0(h(x)), bit1(h(x)), . . . , biti−1(h(x)).
Hence, assuming the existence of an oracle that given these bits predicts the ith,
one essentially has an oracle for the ith bit. The only problem is to supply that
oracle with bit0(h(x)), . . . , biti−1(h(x)). But when h(x) is the d least significant
RSA bits, this is a relatively easy task. One can assume that these bits of x are
all zeros, so that when sampling the oracle, the value of these bits agree with
the same bits of the added sample point: [rkx]N . These latter bits in turn, are
known by a lemma similar to Lemma 4.2. Trying to apply the same method
for the internal bits, we run into an obstacle. When j is far away from the
end-bits, even if we assume that bits j, . . . , j+ i− 1 of x and [rkx]N are known,
we do not know the value of these bits in the value supply to the oracle (which
in our described method is of the form [(rk + 2−τ )x]N ), as the least significant
bits of x causes wrap-around and unknown bits are shifted into the bit-segment
we are considering. Thus we need to supply some of the bits we are trying to
determine.

To remedy the problems involved, instead of taking the standard route via
the next-bit-test, we use the well-known Computational XOR-Lemma by Vazi-
rani and Vazirani, [28]. The following version is adopted from [12].

Lemma 7.1 (The Computational XOR-Lemma). Suppose that there is a
pptm D such that

∣
∣
∣Pr[D(EN (x),B

j+d(n)−1
j (x)) = 1]− Pr[D(EN (x), R) = 1]

∣
∣
∣ ≥ ε(n),

the probability taken over x ∈U ZN , R ∈U {0, 1}d(n) and D’s random choices
(i.e. the two distributions are polynomially ε(n)-distinguishable). Then there is
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a nonempty set K ⊂ [j..j + d(n)− 1] and a O so that

Pr [O(EN (x),K) = ⊕k∈K bitk(x)] ≥
1

2
+
ε(n)

2d(n)
,

the probability taken over x ∈U ZN , and O’s random choices.

Using this, we can prove

Theorem 7.2. Let d(n) ∈ O(log n). Then any set of d(n) consecutive bits of
x is simultaneously secure for RSA, or else RSA can be inverted in random
polynomial time.

The idea is the same as before: Using an oracle for ⊕k∈K bitk(x), there are
two possible paths to follow. We either decide bits two-by-two (the lsb and
another bit, determined below), or, we find a transformation that converts the
oracle into one that distinguishes intervals at distance N+1

2 , enabling inversion
through Lemma 5.4.

Proof. With K as in Lemma 7.1, let i , maxk∈K k. We would like to decide

biti+1(x), lsb(x) so consider the Π(N, i)-plane as before and fix some α
τ(n)
N (u, v).

First assume that α
τ(n)
N (u, v) is nicely distributed modulo 2i+1 (i.e. there is

no good, small rational approximation to α
τ(n)
N (u, v)/2i+1). Looking back at

the proof of Lemma 5.19 we see that all that we needed was that we had two
sets where we knew that the oracle behaved differently and that not too many
boxes were split among the two sets. In the current case the oracle predicts
⊕k∈K bitk(x). Now redefine S(0), S(1) from Definition 5.8, page 14, as the sets
S(b) , {x | ⊕k∈K bitk(x) = b}, and notice that these two sets describe vertical
stripes in the plane on which the oracle behaves differently. In addition, these
stripes are of non-negligible width (≥ 2i−d(n)) relative to 2i. Making the division
on the I-axis of the plane sufficiently fine-grained, we can make our boxes narrow
enough so that not too many are split between stripes and by the properties of

α
τ(n)
N (u, v), the right fraction of boxes fall into S(0), S(1).

Secondly, assume that α
τ(n)
N (u, v)/2i+1 is close to some r/s with s even (or

that v is even, which is a similar case). We then have sα
τ(n)
N (u, v) ≈ r2i, r odd.

By the choice of i, ⊕k∈K bitk(x) = biti(x) ⊕ (⊕k∈K\{i} bitk(x)), so that two
values differing by 2i (or an odd multiple thereof), differ also in ⊕k∈K bitk(x).
Hence this case is treated similar to Lemma 5.20.

It remains to study the case when we have a good approximation with a
small, odd denominator s. We do the same oracle conversion (by applying ϕ−1)
as before. What we need to show is that orbits at distance 2i gets mapped by ϕ
to values approximately at distance N/2 (which of course still holds) and that
there are two orbits at distance 2i where the original oracle behaves differently.
Again, by the choice of i there must be two such orbits.

For the most significant bits the definition of simultaneuous security in the
case of biased bits. The defintion is an extension of the definition of the security
of one bit. Given the definition the argument of Section 6 goes through virtually
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without change. Since the most significant bits of [2−t0 ]N are determined by the
least significant bits of x, distinguishing the former from random bits is almost
equivalent to distinguishing the latter from random bits. The details are very
similar to argument for the individual bits and we again omit them.

8 Security of Rabin Bits

The Rabin encryption function is defined by RN (x) , [x2]N where N = pq as
before. Many of the earlier results for RSA (e.g. [28, 1]), carry over to the
Rabin function in a straight-forward manner. One main complication to take
care of is of basic nature, namely that RN is not a 1–1 function since there are
four roots to each quadratic residue. Hence, given some r, it is not well-defined
what the “ith bit of

√
r” should be. One standard way to handle this problem

is to demand p ≡ q ≡ 3 mod 4 (sometimes such N are called Blum-integers)
and restrict the domain of RN to

MN , {x ∈ ZN | x < N/2 and (x/N) = 1}

(where (·/N) denotes the Jacobi-symbol). It can then be shown that the function

R′
N (x) ,

{

RN (x), if RN (x) < N/2;

N −RN (x), otherwise

induces a permutation on MN .
This approach runs into technical problems in our situation. When searching

for boxes in Π(N, i), where the oracle behaves differently on S, S+α
τ(n)
N (u, v), we

need that all of these boxes contain a non-negligible fraction of x with (x/N) = 1.
Hence we need a result on the distribution of (x/N) in “rectilinear” subsets of
ZN . There are related results known for the distribution of (x/p) (i.e. modulo
primes) in intervals. These state that in [z..z + L] ⊂ Zp, the fraction of x with
(x/p) = 1 (or −1) is very close to 1

2 , provided L ≥ √p, see [6, 9] for instance.
Notice now that a horizontal line (a “slice” of a box) in the plane corresponds
to an interval modulo N of length 2i/ poly(n). Since (x/N) = (x/p)(x/q), it
turns out that the distribution results mentioned are applicable as long as the
width of our boxes is not too small (relative to N), for which it suffices that
i ≥ 3n/4+O(log n). Similarly, when the height, h, of our boxes is large enough
(when i ≤ n/4−O(log n)), we can make a similar argument since vertical lines
in the plane correspond to an arithmetic progression over a sub-interval to ZN :
{x0+j2i+1 | j = 0, 1, . . . , h−1}. Hence we claim, without going into the details,
that this can be used prove security for roughly half of the bits.

Now, it seems very probable that, in fact, the equidistribution results of
(x/N) actually holds also when both the width and the height of the boxes are
small, as long as the measure of the box is non-negligible in comparison to N .
Thus, under this conjecture, the results carry over to all bits.
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However, we propose another way of converting the Rabin function. We drop
the demand that (x/N) = 1. We then define on M ′

N , {x ∈ ZN | x < N/2}:

R′′
N (x) , R′

N (x), (x/N)

i.e we output the Jacobi symbol as well.
Our oracle for the ith bit now gets as input some (z, b) ∈M ′

N ×{−1, 1} and
supposedly (with advantage ε(n)) answers by biti(x) where x is the unique root
of z lying in M ′

N and having (x/N) = b. When sampling the oracle, we now
need to be able to supply the oracle with the Jacobi symbol of [(rj+2−τ(n))x]N .
But this is not difficult, since by the multiplicativity of (·/N), this is determined
by (x/N) and ((rj+2−τ(n))/N), which we can compute. The only other concern
is that when covering the plane by orbits of boxes, we must be aware that the
oracle’s advantage is for values in M ′

N , i.e. the “lower half” of the plane. The
interested reader may verify that all details can be taken care of.

Theorem 8.1. For each i, given R′′
N (x), biti(x) is secure, unless R′′

N (x) can be
inverted in random polynomial time. Similarly, blocks of O(log n) bits of x are
simultaneously secure.

9 Security of Discrete Log Bits

Let fp,g(x) = [gx]p, p an n-bit prime and g a generator for Z∗
p. Suppose that

p − 1 = p′2k, where p′ is odd. Given fp,g(x), the k least significant bits of x
are “easy” since they can be found by the Pohlig-Hellman algorithm, [23], and
the O(log n) following bits are secure, see Peralta [22]. Also, the O(log n) most
significant bits are secure; Long and Wigderson [19].

By a reduction from factoring Blum-integers N = pq (and relaxing that g
must generate all of Z∗

N ) H̊astad, Schrift, and Shamir, [16], shows that all bits of
x are individually hard with respect to fN,g(x), and n/2 bits are simultaneously
secure. Patel and Sundaram, [21], adopt the techniques from [16] and prove that
if fp,g is a one-way function, even if x is restricted to be “small”, then almost all
the bits of x are (simultaneously) hard. Using another bit-representation than
the standard binary, Schnorr [25], recently proved security for all bits in this
representation under similar assumptions.

Hence, despite the large attention given also to the bit security problem of
fp,g(x), the (general) problem has remained open. Can our methods developed
here be used to prove security for all bits of x? When trying to extend our
method one immediate problem is encountered.

The problem is that we cannot query the oracle on fp,g(2
−τx) when the

group order, p − 1, is even. By the work of Schnorr in [25], we can however
reduce the problem to a subgroup of odd order, p′. We give a quick overview
of this reduction. First, by the remark above, u = [x]2k is easily found. The
remaining bits of x can then be found as bx/2kc, in other words as the discrete

log of gx/gu, to the base g2k

, and this value is considered modulo p′. Finally,
notice that the ith bit of this number is just the (i+ k)th bit of x.
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Superficially one would expect the rest of the argument to go through. The
only function specific property we need is that given EN (x) and a we can com-
pute EN (ax). This is simply replaced by the fact that gax = (gx)a which makes
gax easily computable. A problem that was dealt with in one line in the RSA-
case was the possible non-existence of ϕ−1. If the inverse did not exist then we
could factor N and immediately invert RSA. In the case of discrete logarithm
we do not get such dramatic effects from the non-invertability of ϕ and we have
to look more closely at this problem.

If ϕ is not invertible then (sP1 − κ, p′) = d > 1. When d ∈ O(poly(n))
we proceed as follows. We know that Zp′ ' Zd × Zl where l = p′/d. Recall
that we are in the situation where we would like to convert the ith bit oracle
into one that distinguishes intervals at distance (p′ + 1)/2 by querying it on
biti(ϕ

−1(x)) where ϕ(x) = [(sP1 − κ)x]p′ and using this we want to apply the
method by Fischlin and Schnorr. Now, ϕ−1 exists only modulo l, but for z such
that [z]d = 0, i.e. z = dz′, we can define a pseudo-inverse by

ϕ−1(z) , µl[(sP1 − κ)−1z]l + µdr

where µl, µd are the Chinese remaindering coefficients Zd×Zl → Zp′ and where
we choose r uniformly at random in Zd each time we compute ϕ−1(z). This gives
a uniformly distributed value in the inverse image of z = dz ′ and some simple
calculations shows that this pseudo-inverse retains the oracle’s distinguishing
advantage.

Rather than computing x, we now compute [dx]p′ and also chose the pairwise
independent points as multiples of d. In this case all values z supplied to the
oracle satisfy [z]d = 0 and we can use the pseudo-inverse above. This gives x
modulo l, and x modulo d can be computed either by exhaustive search, or the
Pohlig-Hellman algorithm. We then finally use the Chinese remainder theorem
to obtain x modulo p′.

What remains is to analyze the probability that the gcd is large.

Lemma 9.1. Fix t, w < t and let p′ = P12
w + P0, be a randomly chosen t-bit

integer (not necessarily a prime). Then

Pr
p′

[∃s, κ ≤M s.t. (sP1 − κ, p′) ≥ D] ∈ O
(
M2

D
+ tM3 max

(

2−w, 2−(t−w)
))

Proof. Say that p′ is “bad” if there are s, κ ≤ M such that (sP1 − κ, p′) ≥ D.
Clearly, (sP1 − κ, p′) ≤ sP1 + |κ| ≤ 2M2t−w , D1. Then

Pr
p′

[p′ bad ] ≤
∑

d

∑

s,κ

Pr
p′

[(sP1 − κ, p′) = d]

=
∑

d

∑

s,κ

∑

P1

Pr
P0

[(sP1 − κ, p′) = d | P1] Pr[P1]

︸ ︷︷ ︸

(∗)

, (9.1)
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where the sums range over D ≤ d ≤ D1, s, κ ≤M and 0 ≤ P1 < 2t−w. Next,

(∗) =
∑

P1:d|sP1−κ

Pr
P0

[(sP1 − κ, p′) = d | P1 ∧ d|sP1 − κ] Pr[P1]

≤
∑

P1:d|sP1−κ

(
1

d
+ 2−w

)

Pr[P1] =

(
1

d
+ 2−w

)

Pr
P1

[d|sP1 − κ].

Now, d|sP1−κ if and only if sP1 ≡ κ mod d, and this equation is solvable (in P1)
if and only if (d, s) divides κ, in which case there are precisely (d, s) solutions to
P1 mod d. Hence, since κ ≤ M , for each fixed d, s, there are at most M/(d, s)
different κ possible, so continuing from (9.1),

Pr
p′

[p′ bad ] ≤
∑

d

(
1

d
+ 2−w

)
∑

s

(d, s)
∑

κ:(d,s)|κ

(
1

d
+ 2−(t−w)

)

≤
∑

d

(
1

d
+ 2−w

)
∑

s

(
M

d
+

M

(d, s)
2−(t−w)

)

≤
∑

d

∑

s

(
M

d2
+
M

d
2−(t−w) +

M

d
2−w +M2−t

)

≤ M2
∑

d

(
1

d2
+

1

d
(2−(t−w) + 2−w) + 2−t

)

,

and this sum is bounded by O(M2(D−1 + logD1 max(2−w, 2−(t−w)) +D12
−t)).

Theorem 9.2. Unless the discrete log problem can be solved in random poly-
nomial time, with probability 1−O(n−1) over random choices of p = p′2k + 1,
‖p‖ = n, bits k, . . . , n − 1 of x are individually secure for fp,g(x). Blocks of
O(log n) bits are simultaneously secure.

Proof. Let i0(n) , 5 logn + 6 log ε(n)−1, where ε(n) is the assumed oracle-
advantage. Also, define M , cnε(n)−2 for a constant c, and D , n5ε(n)−4.

Choose a random n-bit number p (not necessarily a prime), and let k ≥ 0 be
the highest power of 2, dividing p−1. Consider a fixed i ∈ [k+i0(n)..n−1−i0(n)]
(by the results in [19, 22], these are the interesting bits). Write p = p′i2

k + 1 as
above and call p “bad” for this i if p′i = P12

i+1−k + P0 is bad in the sense of
Lemma 9.1, i.e. if there are s, κ ≤M (by Lemma 5.26, M as above suffices) such
that (sP1 − κ, p′i) ≥ D. By Lemma 9.1 with t = n− i, w = i− k, p is bad with
probability O(M2D−1 + tM3 max(2−w, 2−(t−w))), which by the choices above
is O(n−3). Moreover, there are less than n different bit positions, i, to consider,
so the probability that one of them gives a bad p′i is O(n−2).

What does this tell us about the probability that p is bad when p is a prime?
The worst case is clearly if all bad ps are prime numbers. By the prime number
theorem, the probability that an n-bit integer is a prime is Θ(n−1). Thus,

Pr
p

[p is a bad prime ] ≤ Prp∈UZ2n [∃i s.t. p′i is bad ]

Prp∈UZ2n [p is prime ]
.
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We may thus loose at most an extra factor of n here, but the probability that
p is a bad prime is still bounded by O(n−1). Finally if p is not a bad prime the
results of the previous sections extend to show that all bits are secure.

It remains to extend Theorem 9.2 to cover all values of p and in particular to
treat the case when the above gcd is large. Although this might sound like a
technicality, it seems that such an extension would require new techniques. To
see this, consider the following example.

Assume that p = q(2i+1 + 2) + 1 where q is a prime of size around 2i/2. Our
bit security proofs compute the discrete logarithm of a number y by querying
the ith bit of the discrete logarithm of numbers of the form yagb. This is
equivalent to reconstructing x from information on the ith bit of ax + b. Now
we claim that using this approach, for the above p, it is hard to distinguish x
and x′ = x + t(2i+1 + 2) for any t > 0. The reason is simply that ax + b and
ax′ + b (modulo p − 1) differ by at(2i+1 + 2) and since at is only considered
modulo q, except with exponentially small probability, the two numbers have
the same value for their ith bit.

10 Security of ax + b modulo p

As described in the introduction, the methods utilized in this paper were first
discovered when completing the proof of the results claimed in [20]. We here
give the proofs for this original application in a slightly stronger form. The
results are stronger in that they apply to smaller primes. We are interested in
the following family of hash functions.

Definition 10.1. Let Hm be the set of functions of the form h(x) , ax +
b mod p with the following probability distribution. The number p is a random
prime of m bits while a and b are random numbers modulo p.

We need to be define a family of hard core predicates.

Definition 10.2. A family B of predicates is hard core for a one-way function f
if given f(x) and a description of a random b ∈ B, b(x) cannot be predicted with
a non-neglible advantage. The definition extends to functions outputting more
than 1 bit by requiring that the output cannot be distinguished from random
bits with non-negligible advantage.

Theorem 10.3. Let f be any one-way function and m = ω(logn). Then for

any i, 0 ≤ i < m and any constant c, Bi+c logn
i (Hm) form a family of hard core

functions for f .

Proof. Most of the proof is identical to the previous proofs with the following
syntactical difference. In previous situation we created encryptions of numbers
of the form ax from encryptions on x. In the current situation this is not possible
since we have no structure in f . The point is that we are getting predictions
on bits of ax + b and this number can be manipulated by changing a and b
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which are at our disposal. In particular, division by 2 can be accomplished by
replacing (a, b) by (a/2, b/2). Thus we are in essentially the same situation as
before.

Assume that we have some O that predicts the ith bit of ax + b modulo p
given f(x), a, b and p with non-negligible advantage ε(n) and we want to recover
x. Let us first fix an x such that the advantage over random a, b and p is at
least ε(n)/2. Let us say that a p is good for this x if the advantage of O for this
fixed p (over random a and b) is at least ε(n)/4. It is easy to see that at least a
fraction ε(n)/4 of all p are good.

Let us see how the methods from Section 5 and Section 6 extend to compute
x modulo p for good p. None of the problems encountered in previous extensions
show up. The function is 1-1 and the modulus is prime and hence it is easy to
divide by 2 and invert ϕ. However, if m < n we cannot check the result. This
implies that the polynomial number of different guesses for x modulo p that
are given by the polynomially many different choices in the construction of our
pairwise independent sample points cannot be immediately distinguished. The
following powerful result of Goldreich, Ron, and Sudan [13] comes to our rescue.

Theorem 10.4. Let p1 < p2 < p3 . . . < ps be primes, t and k be integers and
(r1)

s
j=1 be given numbers. Then, provided

t ≥ Ω

(√

ks
log ps
log p1

)

,

it is possible in polynomial time to output the list of all numbers z such that
0 ≤ z ≤

∏k
j=1 pi and such that z ≡ rj modulo pj for at least t different values

of j.

To apply this theorem we proceed as follows. Let ` be a parameter to be
specified shortly. Take ` different and random pj each with m bits and apply the
procedure equivalent of Section 5 and Section 6 to get a list of size mc1ε(n)−c2

(for some constants c1 and c2 implicit in those proofs) of possible candidates
for x modulo pj for each pj . Now for each j randomly pick one element rj in
the list and input the list of (pj)

`
j=1 and (rj)

`
j=1 to the algorithm existing by

Theorem 10.4. For any element z output by that procedure compute f(z) to
see whether z is an acceptable answer.

We need to specify the choice of k and t. Since x has n bits we have x ≤ 2n

and since each pj is at least 2m−1 we can have k = d n
m−1e. Let us estimate the

number of modular equations satisfied by x. First the fraction of pj that are
good is at least ε(n)/4 and as stated above for each such pj we have a list of
length mc1ε(n)−c2 such that with probability at least 1/2 the value of x modulo
pj appears on it. Thus the expected number of modular equations satisfied by
x is at least

`m−c1ε(n)c2+1/8.

For sufficiently large ` with probability at least 1/2 the actual number is at least
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half the expected value i.e.

`m−c1ε(n)c2+1/16

and this is the value we choose for t. We need to check the condition of the
Theorem 10.4 i.e. that

t ≥ Ω

(√

ks
log ps
log p1

)

,

which in our case is translates to

`m−c1ε(n)c2+1/16 ≥ Ω(
√

`n/m)

or
` ≥ Ω

(

m2c1−1nε(n)−2(c2+1)
)

.

This implies that we can choose an ` of polynomial size which satisfies this
inequality and in this case the procedure runs in polynomial time and recovers
x with probability 1/2. We conclude that when f is a one-way function such an
oracle cannot exist and the ith bit is secure.

The extension to simultaneous security runs along the usual lines.

11 Discussion and Open Problems

Although the reduction from RSA inversion to predicting the individual bits is
polynomial time, it is still quite complex and it is hard to give practical impli-
cations of the results obtained here. It would therefore be of great interest to
find, if possible, a simpler proof, leading to tighter relation between bit security
and overall security for RSA.

Hence, to hide partial information on x in a practical application involving
RSA, it is of course still wise to use RSA in a more sophisticated way such as
in [2].

For the simultaneous security, it is in general impossible to go beyondO(log n)
bits. For specific functions (e.g. [16]) it has been done, so we ask if it is possible
also for RSA.
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A The Discrepancy of a Rational Sequence

This section follows closely the ideas behind the proof of Theorem 2.5 in [18].
The aim is to prove Theorem 5.25.

Definition A.1. Recall that for ζ ∈ Q, [ζ]1 denotes the fractional part, ζ
(mod 1) and 〈ζ〉 is the distance to the closest integer 〈ζ〉 , min([ζ]1, 1 − [ζ]1).
By a rational sequence we mean a sequence of the form {[jζ]1 | 0 ≤ j ≤ T − 1}
where ζ ∈ Q, T ∈ N. We denote such a sequence by (ζ)T .

For any sequence WT = w1, w2, . . . , wT ⊂ [0, 1], the discrepancy of W is
defined to be

D(WT ) , sup
0≤a<b<1

∣
∣
∣
∣

#(WT ∩ [a, b])

T
− (b− a)

∣
∣
∣
∣
.

Our objective is first to prove the following theorem, from which the desired
result then easily follows.

Theorem A.2. If ζ ∈ Q is of (Q,ψ)-type, then the rational sequence (ζ)T
satisfies

D((ζ)T ) ≤ 6

(
2

Q
+

8ψ log2Q

T

)

.

In order to do so, we first need a few preliminaries.
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Theorem A.3 (Erdős-Turán). For any finite set WT = {w1, w2, . . . , wT } of
real numbers and any positive integer m:

D(WT ) ≤ 6




1

m
+

m∑

h=1

1

h

∣
∣
∣
∣
∣
∣

1

T

T∑

j=1

e2πihwj

∣
∣
∣
∣
∣
∣



 .

A proof can be found in [18].

Lemma A.4. If ζ ∈ Q is of (Q,ψ)-type, then for any m ≤ Q:

D((ζ)T ) ≤ 6

(

1

m
+

1

T

m∑

h=1

1

h〈hζ〉

)

.

Proof. By the Erdős-Turán Theorem,

D((ζ)T ) ≤ 6




1

m
+

m∑

h=1

1

h

∣
∣
∣
∣
∣
∣

1

T

T∑

j=1

e2πihjζ

∣
∣
∣
∣
∣
∣





for any m. Now,
∣
∣
∣
∣
∣
∣

T∑

j=1

e2πihjζ

∣
∣
∣
∣
∣
∣

≤ 2

|e2πihζ − 1| =
1

|sinπhζ|

since hζ is never an integer for h ≤ m ≤ Q. This also implies that |sinπhζ| =
sinπ〈hζ〉. Finally, note that sinπx ≥ 2x for 0 ≤ x ≤ 1/2 so that

1

|sinπhζ| =
1

sinπ〈hζ〉 ≤
1

2〈hζ〉 .

Lemma A.5. Suppose ζ ∈ Q is of (Q,ψ)-type and m ≤ Q/2. Then

m∑

j=1

1

j〈jζ〉 ≤ 8ψ log2m.

Proof. Define sj =
∑j
k=1 1/〈kζ〉, j = 1, 2, . . . ,m. Then, by induction, it is easy

to see that

m∑

j=1

1

j〈jζ〉 =

m∑

j=1

sj
j(j + 1)

+
sm

m+ 1
. (A.1)

If 0 ≤ r < s ≤ j ≤ m ≤ Q/2,

〈sζ ± rζ〉 = 〈(s± r)ζ〉 ≥ 1

(s± r)ψ ≥
1

2jψ
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and hence

|〈sζ〉 − 〈rζ〉| ≥ 1

2jψ
. (A.2)

Consider the intervals
[

0,
1

2jψ

)

,

[
1

2jψ
,

2

2jψ

)

, . . . ,

[
j

2jψ
,
j + 1

2jψ

)

.

Each of these can by (A.2) contain at most one rational of the form 〈kζ〉, 1 ≤
k ≤ j, with no such in the first interval. Therefore

sj =

j
∑

k=1

1

〈kζ〉 ≤
j
∑

k=1

2jψ

k
≤ 4jψ log j

so that from (A.1),

m∑

j=1

1

j〈jζ〉 ≤ 4ψ





m∑

j=1

log j

j
+ logm



 ≤ 8ψ log2m.

We are now ready to prove Theorem A.2.

Proof of Theorem A.2. By Lemma A.4 and A.5, setting m = Q/2:

D((ζ)T ) ≤ 6




1

m
+

1

T

m∑

j=1

1

j〈jζ〉



 ≤ 6

(
2

Q
+

1

T
8ψ log2(Q/2)

)

.

Finally, we prove Theorem 5.25.

Proof of Theorem 5.25. Let ζ = α̃
τ(n)
N (u, v)/2i+1 and

p′ = Pr
j∈UZ

2τ(n)

[a ≤ [jα̃
τ(n)
N (u, v)]2i+1 ≤ b.]

Then

p′ = Pr
j

[
a

2i+1
≤ jζ mod 1 ≤ b

2i+1

]

=
#
(
{[jζ]1 | 0 ≤ j ≤ 2τ(n) − 1} ∩

[
a

2i+1 ,
b

2i+1

])

2τ(n)
∈ b− a

2i+1
±D((ζ)2τ(n) ).

Since ζ is of (Q(n), ψ(n))-type, Theorem A.2 tells us that

D((ζ)2τ(n) ) ≤ 6

(
2

Q(n)
+

1

2τ(n)
8ψ(n) log2(Q(n))

)

.
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However, we are restricted to picking j in {0, . . . , 2τ(n) − 2} only. But it is
easy to see that by omitting the single value (2τ(n)−1)ζ, this can only make the
discrepancy go up by 2−τ(n) so certainly, if we pick j at random in {0, . . . , 2τ(n)−
2},
∣
∣
∣
∣
Pr
j

[a ≤ [jα̃
τ(n)
N (u, v)]2i+1 ≤ b]− b− a

2i+1

∣
∣
∣
∣
≤ 7

(
2

Q(n)
+

8ψ(n) log2(Q(n))

2τ(n)

)

.
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